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The Kuzmak-Whitham anzats — a class of special
asymptotic solutions

Linear plane wave:
u= Acos(k -z’ — wt' + D)

Nonlinear plane wave (for instance a cnoidal wave of the KdV
equation):

= X(k-2' —wt'+ o, F)
w,k, A, E = (Ey, E1, ... E)),® are parameters,

X(0,F) is 27r—periodit:: function on 6
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Modulated wave with slightly varying parameters:

w, kA, E,® — w(ea et’), k(ex' et'), A(ea', et’), E(ea’, et’), d(ex’, t’)
e > 0 1s a small parameter.

We put z = ea’,t = et’ and introduce the phase
S(x,t) = k(x,t) - x — wt.

This gives Kuzmak-Whitham anzats for one-phase (formal)

asymptotics:
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X(%” + ®(x,t), E(x,t),z,t) is the leading term
asymptotics, Xj(ﬁ, x,t) = X;(@ + 27, x,t) are corrections.



To construct the leading term of (formal) asymptotics one
should find the “structure function” X (6, F) (or sometimes
X(0,E,x,t)), the phase S(z,1), the slow varying “parameters”
E(x,t) and the phase shift ®(x,1).

Under some assumptions the Whitham method allows one to
obtain the equations for X, S(z,t) and E(z,t). The equations
for E(x,t) (or sometimes for S(x,t) and E(x,t)) are known as

Whitham equations.

The influence of the phase shift: the same envelope but different

phase of oscillations
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THE MAIN EXAMPLES OF EQUATIONS
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The nonlinear Klein-Gordon equation “- 1/

I"-.i 10| /4
2 20 . o 5 ,/

) (T,{-“ — C (11», t)&ﬂ) + I/u('u'} €, t:- E) - D? &“}1_:#“’?'{#1 2

u(:cj t: EJli:f} - uﬂ('xr h) huf-(xr t: E) ‘f:U

v(z, )

Here V(u,z,t,e), c(z,t), u’(x) nu v"(x) € R -are smooth
functions; t € R, x € R", 0 < € < 1 is a small parameter. The
function V(u,x,t, ) for each (x,¢) has a form of a potential well
which guarantees the existence of rapidly oscillating solutions.
Examples:

(1) V = V(u,z,t,e) = %qz(:z:,t)uz + \NWi(u, z,t), Vi(u, z,t) =
O(?) (2) V = ¢*(x,t) coshu, (3) V = ¢*(x,t) cosu .
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Strong nonlinearity: A = O(1), X = X (0, E, x, 1) VoL L



The special Cauchy problem for the Korteveg-de Vries
equation with small dispersion:

up — 6utty + hUpry = 0, u(z, t, h)|i—g = v’ (2, h),




The problem: the Whitham equations are of the first order with
respect to time ¢ and very often has good “geometrical” structure.
The equation for the phase shitt is of the first order with respect
to time ¢ for weak nonlinear cases and is of the second order with
respect to time t for the strong nonlinear cases. There is no uniform
passage from strong to weak nonlinear case. Also the equation for
the phase shift has not good structure.

The main result is that one can to eliminate the phase
shift from the final asymptotic formulas and “play” only with the
Whitham equations.



The Korteveg-de Vries equation:
— buu, + Ezu;rﬂ::}; =0, e R: t > 0,

The periodic cnoidal wave: “one gap solution” with the ends of
the bands Fy < Fh < E»
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For the Kuzmak-Witham anzats we have:
E = E(x,t),
dS = Q(E(x,t)dt + k(E(x,t))dz, Sl|i—o = S°(x)

S(z,t) S(xz,1)
h h

PLUS the Whitham equations for F(z,t):
0 0

—F, =—-N(E)—F;, [=0,1,2
8t l f( )8'1'? [ g Ly &y

here A)(E) =6 (En + B+ By —2FE; —2 Ef;[]

Bli—y = E°(x)

PLUS the second order equation (for strong nonlinear case)
for the phase shift

-‘.‘_’1’1[8? E](Dﬁ + &“2[5? E]q)f, + (1'3[8, E] = (.



PROPOSITION for the KdV and nonlinear Klein-Gordon
equations and the CONJECTURE for many others.

For any Whitham-type solution one can always correct the
initial data for the Whitham equations

Eli—o = E"(z) = Eli= = E'(z) + cE'(x)
which change

S(x,t) = S(x,t,h) = S(x,t) + ed(x,t) + O(?),
E(z,t) = E(z,t,e) = E(x,t) + O(¢),

and reconstruct X; — X in such a way that the phase shift
disappear

rt.e) -~ ~ T.t
S@4E) prate))) + Xy (SDY

u= X( - -

2, t) + O(£2).

This representation is uniform with respect to a passage
from weak to strong nonlinear case.



Results for Nonlinear Klein-Gordon :

S(z,t)

u(x,t,h) = X(

S(z,t)
€

+ O(x,t), I(x, 1), x, t)+

et

+ d(x, 1), x, t) + O(£?).

EXl (
Ordinary differential equation for X (0, E, x,t)

Qz(m& t)XEJH + VU,{Xa Ly t) = (),
Q% (z,t) = S7 — *(x,t)(VS)%

Hence X (0, E, z,t) :
5 iﬂ(j f) /X(ﬁ,:r:._f} dz
o Upnin \/Q(E(:CJ t) o V(Z.} £, tj] |

here F(x,t) is the “constant of integration”, “+” is for 8 > 0 and
“—"is for 0 < 0; Upin (T, 1), Umax (T, 1), Upmin < Umax are roots of the
equation E(x,t) = V(u,x,t).




Along with E/ we introduce the action type “parameter’™

1 Umax
I(x,t) = - V2AE(x,t) = V(z,x,t))dz.
Umin
Then E(x,t) = E(I(x,t),z,t) and X (0, z,t) = X(0,[(x,t), z,1).
2m —Periodicity of X with respect to # means

Umax d z

Upnin \/2 I ‘{1’ t V(zﬂ'm’t)).

Together with the first orthogonality condition this gives Whitham
type equations for the phase S and “parameter” I (or E):

Qx,t)=Q(x,t),x,t) =7/

St — (x,1)(VS)* = I, z,1),

Sﬁ} ~ (e, t)<v* Q.(I;Im,,t)vg> =0,

5'[ I
otLO(I, x,t)



The equation for the phase shift ®(x,t)

1) Weak nonlinearity Q;(/, z,t) =0
S,y — A (x, t)(VS, V) =0, D(x,1)|—0 = P ().
2) Strong nonlinearity (1, z,t) # 0).

;[‘T@J —c2<v‘ém>
1 IOy IQJ

a1 (g~ )] = (%G~ GHnvS) =
S,d, — ¢ (vs, vq:»>

here I, = — :

QL

S(x,t)|i—o = S(z), I(z,t)]i—o =1"x), P(x,t)|—g = P(x)
(I)i(m: t)lﬂZU — Q?(r)f?(j):

fl?“'{..} o
= _(QD(I’))ZA Vi(X(0,2,0)) — Vi(x,0)do,
1

Vil@,0)(x,t) = — [ Vi(X(0,,t),x,1)d0.



The uniform representation (Almost nothing necessary to do!)
S(x,t)
x,t

S(x,t,e) = S(x,t) +ed(x,t) + O(?),
I( 1 ) [ ':'tn

—
— I(x,t,e) = I(x,t) + el(x,t) + O(?),

" -

S(x,t,h), [(z,t,e)is the solution to the same Whitham system
with corrected initial data

S(x,t,€)|—o = S°(x) + £0%(x),
I(z,t,€)|i=0 = I'(2) + eI} (),

then

"

S(x,t,¢e)
3
The phase shift disappears!

u(x, t,h) = X ( (z,t,e), z,t) + O(e)



The “stability” of Kusmak-Whitham asymptotics:

We see that if for ¢ = 0 one changes in prescribed “one phase” class
the initial data by O(e) the leading term can be changed by O(1)!
But it does mean that the Kusmak-Whitham asymptotics are
unstable in Lyapunov sense. It just means that possible changes
of the initial data should be O(e!*7), v > 0.



Kuzmak-Whitham asymptotics for the anharmonic
oscillator
d*u d*u

dt,ﬁf(ugf) 0, (t=¢ct') <— erf(-u,t):O
)

u= P, p — _Vu(ua f) = _f{ru'& t)* u‘l‘:[} — 'UU, plt:[} — po'

Kuzmak -Whitham - nonlinear WKB ansatz:
S(t)

:C:X(Tjt?g)? t:Et, 9:_?
X(0,t,e)=X(0,t)+eX,(0,t) + > Xo(0,t)- - - +

Here X.(6,t) are 27— periodic smooth functions of ¢
Luke scheme:

We have for X (0,t,¢)

2x X )2 X
7 + f(X,t,€) +e(25}§ +Sﬁ)a Zd— = (),

2
ar) dﬂ ot?

L 002



Let flu,t,e) = folu t) +ef'(u, t) + e f*(u,t) ...

Y

262X 0
9* X,
{Se’g 392 + E(X t))Xﬁl :ffc:
For k =1, 2:
) ox
Fi= —(25;,5 + SH)% — (X t)}
0 ox, 1 82X_

Fo = —(25; o +15‘ﬁ) 50
of 5
—(X. )X, — X.t).
au( ) ) 1 f( . )

A Juu th X'2 _



The zero approximation

The solution:
X =Z0+¢, E,t)

2 VA
Si (82)2 +VI(Z,t,0) = F < Sidz =0+ ¢,
0f = \/2(E —V(z,t,0)

Here F(1), ¢(t) are “constant” of integration

+
The dispersion relation (27—periodicity of X):

— Q(E,1) QW

j; V2(E- V{ﬂ



Two different cases:

1) Weak nonlinear case: V(u,t,0) = (?

S =wl(t), X =/ E(t)cos(d + ¢(t))

2

L = r_ﬁ(d— + 1) = KerL = {sin(f + ¢), cos(0 + ¢)} —

d6?

Dim/L = 2 = 2 conditions:
2 2T

Frcos(0 + ¢) df = 0, Frsin(0 + ¢) df =
0 0

0

k=1 2 equations for F(t) and the phase shift ¢(t):

d - do m
—(w(t)E) = 0. (Yy) Y, db
dt(w() ) =0, pr QWE 1Y) Y,

Initial conditions:\/ E(0) cos ¢(0) = -u“r v E(0)w(0) sin ¢(0

= P



2) Strong nonlinear case:

Sy = Q(E,t)
, d” 0
. : 0X
KerL (among 27 — periodic functions )= { 5 9} -
DimL (among 2w —periodic functions) = 1(!!') = 1 condition:
2
0X |
——df =0
T
4
k=1 the equation for E(t)

dI(E.t) 1
=0, I= zﬂj{\/z(E— V(z,t))dz

I is an adabatic invariant,

0x
do

'y 1s the “constant” of integration of the 1-st approximation

also  X; = X" 4+ C\(t)



The equation for the phase shift ¢(t)

k=2 the equation for ¢(t)

2 GX
——df =
) Fo 30 0
J
d 1 do 1 09?
aoya) = i =ki=gE
J

dd | t
d_‘-: = NI, ¢ = AI/ Qpdt+¢°, AI=const, ¢ = const
A 0

The problem: the jump of Ker{ == there is no simple
passage from a weak nonlinear case to a strong nonlinear case.

'

Again we change (S, 1) by (S, 1):

S = /Q(f(e],’r)dﬂ [=1-— Q_(;: 3 f (VA(X(6,1,0),0) — V,(0)) db

0 0

and “kill” the phase shift.



Averaging in action-angle variables

P
p:_Vh Tl':pa H:?—FV(Ht)
Let us fix ¢ and choose X (0, F,t) =2, P(0,E,t)=0
2
P = P(Q* E:' t)‘g=ﬂt+¢'r U = X(Q« E-; t)lﬂ':ﬂt_{_qj, H=F
are 1" — —periodic solutions with the period

| 1, dz
T =2m/Q = jg V2(E =V (z,t)) s %/f V2E = V(1))

PO +2r,E.t)=P0,E,t), X(0+2r E,t)=X(0,E,1)

and

X(—0,E,t)= X(0,E,t), P(—0,E,t)=—P(0,E,1)



Canonical transform:
The action:
1 [ 1
[=— | PdX=— ¢dz\/2(E —-V(z1))
271_ 0 Q?T
J

(I,6) are the action-angle variables:

E=E(I,t =p=P0O EI),t), ==X EI),t

H=H(I01t=E(I1) +cH(,0,1)

ox o, [°
Hl:‘PE+E(/ PdX) =

0
We have the problem known in classical averaging theory like

problem with one rapid phase. One can use standard averaging
process based on sequences of changes of the variable —
Neishtadt results based on ideas of Poincare, Bogoljubov,
Kolmoeorov. Arnold etc.



The defect of the Nejshtadt scheme for small amplitudes (weak
nonlinear case): there is no analyticity and even smoothness of
generating functions for small action I because

Xm\/?:_frcosﬁﬁ P ~ —/2Iw cosb.
One can use the variables P, X, but this problem could take
place. In averaging theory this problem is known like the averaging
near singular manifolds ( Gelfreich, Lerman 2002, Bruening,
Dobrokhotov, Poterjakhin, 2001 ).

The simple analysis shows that the question could be formulated
as the following problem: consider on 2-D plane with coordinates
(11, ¥2) and polar coordinates p = \/y? + y3, p the equation for the

function z(y1, y2):
0z

a—{p — F(yla yﬂ)a

where F'(y1,y2) is the analytical function in some neighborhood of
the origin and

27
/ F(pcos g, psinp)de = 0.
0

[s it possible to present integral representation for the analytical
solution z(y1,12)7?



The answer (Bruening,Dobrokhotov, Poterjakhin)

©
2(y1, o) :/ F(pcosp, psing)dp =

1 1

% ¥
5/ F(pcosp, psing)dp + 5 / F(pcosp, psing)de + C(p?).
/s _

[f now we understand the integrals in Neishtadt work in this sense
then they are working uniformly for weak and strong nonlinear
cases.



S.Yu.Dobrokhotov, D.S.Minenkov , On various averaging methods
for a nonlinear oscillator with slow time-dependent potential and
a nonconservative perturbation, Regul. Chaotic Dyn., 2010, 15
(2-3), pp. 285-299.

S. Yu. Dobrokhotov, D. S. Minenkov, Remark on the phase shift in
the Kuzmak-Whitham ansatz, Theor. Math. Phys., 166:3 (2011),
350-365

The problem which is good to study:

(1) To prove the Proposition about the phase shift in
the Whitham averaging method for equations considered by
[.Krichever

(2) To prove the Proposition about the phase shift in the
Whitham averaging method for Navier-Stokes equations and
nondifferential like Benjamin-Ono equation and Toda lattice

(3) To study numerically the interaction of two wave trains etc

(4) To analyze from this point of view the perturbed soliton
formulas obtained by Grimshaw, Maslov and Omel’janov
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