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General construction
Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an

n-dimensional vector space V n. A submanifold X ⊂ Gr(d, n) gives rise to a

differential system Σ(X) that governs d-dimensional submanifolds of V n whose

Gaussian image is contained in X . Since d-dimensional submanifolds of V n are

parametrised by n− d functions of d variables, we will assume that the

codimension of X in Gr(d, n) also equals n− d: in this case Σ(X) will be a

determined system of n− d first-order PDEs for n− d unknown functions of d

independent variables.

Based on:

B. Doubrov, E.V. Ferapontov, B. Kruglikov and and V.S. Novikov, On the integrability in

Grassmann geometries: integrable systems associated with fourfolds in Gr(3, 5),

arXiv:1503.02274.
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Systems associated with fourfolds X ⊂ Gr(3, 5)

Introducing in V 5 coordinates x1, x2, x3, u, v one can parametrise

three-dimensional submanifolds of V 5 in the form u = u(x1, x2, x3),

v = v(x1, x2, x3). The corresponding system Σ(X) reduces to a pair of

first-order PDEs for u and v,

F (u1, u2, u3, v1, v2, v3) = 0, G(u1, u2, u3, v1, v2, v3) = 0, (1)

ui = ∂u/∂xi, vi = ∂v/∂xi. Here the Grassmannian Gr(3, 5) is identified with

the space of 2× 3 matrices,

U =

 u1 u2 u3

v1 v2 v3

 ,

and equations (1) specify a fourfold X ⊂ Gr(3, 5).
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Example 1: dKP equation

The system

vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0,

defines a Bäcklund transformation between the dKP equation,

uxt − uxuxx − uyy = 0,

and the mdKP equation,

vxt − (vy −
1

2
v2x)vxx − vyy = 0.
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Example 2: Veronese web equation

Let a1 + a2 + a3 = 0 and ã1 + ã2 + ã3 = 0 be constants. The system

a1ã2uxvy − a2ã1uyvx = 0, a1ã3uxvt − a3ã1utvx = 0,

defines a Bäcklund transformation between the equation for u,

a1uxuyt + a2uyuxt + a3utuxy = 0,

and the analogous equation for v,

ã1vxvyt + ã2vyvxt + ã3vtvxy = 0.
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Equivalence group SL(5)

The linear action of SL(5) on the variables x1, x2, x3, u, v naturally extends to

Gr(3, 5), identified with 2× 3 matrices U of partial derivatives ui, vi:

U → (AU +B)(CU +D)−1;

note that the extended action is no longer linear. These transformations preserve

the class of equations (1), indeed, first-order derivatives transform through

first-order derivatives only. Moreover, they preserve the integrability. Two

SL(5)-related equations should be regarded as ‘the same’.
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Four equivalent approaches to the integrability in 3D

(a) The method of hydrodynamic reductions.

(b) Dispersionless Lax pairs.

(c) Geometry ‘on solutions’: Einstein-Weyl geometry.

(c) Geometry ‘on equation’: GL(2) geometry.
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The method of hydrodynamic reductions
Applies to quasilinear equations

A(u)ux +B(u)uy + C(u)ut = 0.

Consists of seeking N-phase solutions

u = u(R1, ..., RN ).

The phases Ri(x, y, t) are required to satisfy a pair of commuting equations

Riy = µi(R)Rix, Rit = λi(R)Rix,

(called hydrodynamic reductions). Commutativity conditions: ∂jµ
i

µj−µi =
∂jλ

i

λj−λi .

Definition A 2+1 quasilinear system is said to be integrable if, for any N, it

possesses infinitely many N-component reductions parametrized by N arbitrary

functions of one variable.
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Hydrodynamic reductions: continuation
First we represent system (1) in evolutionary form,

ut = f(ux, uy, vx, vy), vt = g(ux, uy, vx, vy).

Next, we bring it into quasilinear form by choosing first-order derivatives of u and v

as the new dependent variables, and writing out all possible consistency conditions

among them. Applying the method of hydrodynamic reductions, one can write down

the integrability conditions in symbolic form,

d3f = R(df, dg, d2f, d2g), d3g = S(df, dg, d2f, d2g),

40 equations altogether (in involution!).

Theorem 1. The moduli space of non-degenerate integrable systems (1) is

30-dimensional.
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Dispersionless Lax pairs
System

vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0,

possesses the Lax pair

Sy = S2
x + vxSx, St =

4

3
S3
x + 2vxS

2
x + (ux + v2x)Sx;

the compatibility condition Syt = Sty is satisfied identically.

In general:

Sy = P (Sx, ui, vi), St = Q(Sx, ui, vi).

Theorem 2. Every non-degenerate integrable system (1) possesses a

dispersionless Lax pair.

Generic case is given by Odesskii-Sokolov construction.
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Geometry ‘on solutions’: conformal structure
Formal linearisation of system (1) results upon setting u→ u+ εp, v → v + εq,

and keeping terms of order ε. This gives linear system for p, q:

∑
i

 Fui
Fvi

Gui Gvi

 p

q


xi

= 0.

Dispersion relation/principal symbol is defined as

det

∑
i

ξi

 Fui
Fvi

Gui Gvi

 = 0.

This gives a conic gijξiξj = 0. For nonlinear systems, the corresponding

conformal structure gij depends on a solution.
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Geometry ‘on solutions’: Einstein-Weyl geometry
Given conformal structure gij , introduce the covector ω,

ωk = 2gkjDxs(gjs) +Dxk(ln det gij),

and the symmetric Weyl connection D such that Dkgij = ωkgij .

Theorem 3. System (1) is integrable if and only if on every solution the triple

D, g, ω satisfies the Einstein-Weyl equations,

Dkgij = ωkgij , R(ij) = Λgij .

Here R(ij) is the symmetrised Ricci tensor of D, and Λ is some function.

Einstein-Weyl geometry is integrable (Cartan, Hitchin). Thus, solutions to integrable

equations carry integrable geometry.
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Geometry ‘on equation’: GL(2) geometry
The tangent bundle to the Grassmannian Gr(3, 5) carries canonical generalised

conformal structure defined by the family of Segre cones duidvj − dujdvi = 0.

Given a fourfold X ⊂ Gr(3, 5), the intersection of its tangent space TX with the

Segre cone is a two-dimensional rational cone of degree three; its projectivisation is

a rational normal curve of degree three (twisted cubic). This is known as a GL(2)

structure on X . It was demonstrated by Bryant that every four-dimensional GL(2)

structure defines on X a canonical affine connection (with torsion).

Theorem 4. System (1) is integrable if and only if X possesses infinitely many

holonomic 3-folds. This is equivalent to the condition that the curvature R and the

covariant derivative∇T of the torsion T of the Bryant connection are certain

invariant quadratic expressions in T ,

R = f(T 2), ∇T = g(T 2).
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Linearisable systems
Systems of Monge-Ampère type are linear combinations of minors of the 2× 3

matrix U :

aij(uivj − ujvi) + biui + civi +m = 0,

αij(uivj − ujvi) + βiui + γivi + µ = 0.

Proposition. For non-degenerate system (1), the following conditions are

equivalent:

(a) System is linearisable by a transformation from the equivalence group SL(5).

(b) System belongs to the Monge-Ampère class.

(c) System is invariant under an 8-dimensional subgroup of SL(5).

(d) The principal symbol defines conformal structure which is conformally flat on

every solution.
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Linearly degenerate systems: definition
The definition is inductive. Start with a 2D system,

F (ux, ut, vx, vt) = 0, G(ux, ut, vx, vt) = 0.

Writing it in evolutionary form, ut = f(ux, vx), vt = g(ux, vx), differentiating by

x and setting ux = a, vx = b, we obtain a 2-component system of hydrodynamic

type, at = f(a, b)x, bt = g(a, b)y. The system is said to be linearly degenerate

if the corresponding characteristic speeds λi are constant in the direction of the

associated eigenvectors ξi: Lξiλ
i = 0.

In 3D, system (1) is said to be linearly degenerate if every its travelling wave

reduction to 2D is linearly degenerate in the above sense.
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Linearly degenerate integrable systems: the Chasles
construction
Let V 5 be a vector space, and A ∈ SL(5) a projective automorphism of V 5.

Chasles considered a fourfold in Gr(2, 5) spanned by 2-dimensional subspaces

〈ξ, Aξ〉 where ξ ∈ V 5. By duality, this gives a fourfold X ⊂ Gr(3, 5).

Proposition. System (1) is linearly degenerate and integrable if and only if the

associated fourfold X comes from the Chasles construction.

These fourfolds can also be characterised as images of quadratic maps

P4 99K Gr(3, 5).

Different canonical forms are labelled by Jordan normal forms of A. Thus, the

generic case of semisimple A gives the Veronese web equation.
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Integrability in 4D
Consider 4D systems,

F (ui, vi) = 0, G(ui, vi) = 0.

Theorem 5 The moduli space of non-degenerate integrable systems in 4D is

36-dimensional. Any such system is necessarily linearly degenerate. Furthermore,

the following conditions are equivalent:

(a) System is integrable by the method of hydrodynamic reductions.

(b) Conformal structure g defined by the principal symbol is anti-self-dual on every

solution.

No explicit description yet.

Particular integrable examples are provided by systems of Monge-Ampère type.
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Monge-Ampère systems in higher dimensions
Any such system is specified by a pair of differential d-forms in a

(d+ 2)-dimensional vector space V with coordinates x1, . . . , xd, u, v. Utilising

the isomorphism between Λd and Λ2, we can reduce the theory of normal forms of

Monge-Ampère systems to the classification of pencils of skew-symmetric 2-forms.

Proposition. In four dimensions, any non-degenerate system of Monge-Ampère

type is SL(6)-equivalent to one of the following normal forms:

1. u2 − v1 = 0, u3 + v4 = 0,

2. u2 − v1 = 0, u3 + v4 + u1v2 − u2v1 = 0,

3. u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,

4. u2 − v1 = 0, u1 + v2 + u3v4 − u4v3 = 0.

All these systems are integrable by the method of hydrodynamic reductions.

All of them are equivalent to various heavenly-type equations.

19



Some open problems

• For d = 3, the moduli space of non-degenerate integrable systems Σ(X)

associated with submanifolds of codimension n− 3 ≥ 2 in Gr(3, n) is

finite-dimensional. Submanifolds X corresponding to ‘generic’ integrable

systems are not algebraic.

• In higher dimensions d ≥ 4, any non-degenerate integrable system Σ(X)

associated with a submanifold of codimension n− d ≥ 2 in Gr(d, n) is

necessarily linearly degenerate. Submanifolds X corresponding to linearly

degenerate integrable systems are rational (generally, singular).

• It would be challenging to classify integrable systems that correspond to

algebraic fourfolds X ⊂ Gr(3, 5). The homology class of any such X can be

represented as aσ + bη where a, b are nonnegative integers, and σ, η are the

standard four-dimensional Schubert cycles. Which values of a and b are

compatible with the requirement of integrability?

20


