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Introduction

Summary

@ Motivation: study asymptotics of orthogonal polynomials related to normal
matrix models

@ Distribution of eigenvalues of normal matrix models for the external potentials
V()= |zP" -z -9 0<d<2m, d meN, teC

© Pointwise asymptotics of the orthogonal polynomials pn(z) characterized by the
orthogonality relations

2d d_z-d
/pn(z)zke*N(‘z‘ —=t=) a0 k=0,1,...,n—1
C

in the scaling limit
n
n— oo, N — oo, N — T

Q Limiting distribution of the zeros of pn(z)

© Relations between the limiting zeros distribution of pn(z) and the eigenvalue
distribution of the normal matrix model.
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Introduction

Normal matrix models

Algebraic variety of n X n complex normal matrices:
= {M € Matnx,(C) : MM = MTm}.
External potential:
V:C =R, V(z)=(zz) - P(z) - P(2),

with V(z) > clog|z|? as |z| = co and P(z) polynomials.
Probability density on normal matrices:

1
M — — exp(—=NTr (V(M)))dM .
Zn
Invariance under unitary conjugation = joint probability density on eigenvalues:

1 _ n
Pn()‘lz-~~7)\n) = = H ‘)\kf)\l‘ze Nzkzl V(xk)
M 1<k<I<n

(with respect to the area measure dA in C).
Partition function:

Zn :_/ Ak — A2e™ N Xk VA gA(A).dA(N2) - - - dA(An)
C"1<k<i<n
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Introduction

Orthogonal polynomials associated to a normal matrix model

Monic orthogonal polynomial of degree n for the measure e*NV(Z)dA(z):

/p,,(z)?ke*NV(Z)dA(z):07 k=0,...,n—1
C
pn(z) = z" + lower order terms

Norming constants:
”":/ lpn(2)Pe MV @dA(z)  n=0,1,...
C

Christoffel-Darboux-type reproducing kernel:

n—1 1

Kn(z,w) = e” 2VEZZVOI 57 2 gy (2)py (w)
o hw

No three terms recurrence relation for OP and Christoffel-Darboux identity
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Introduction

The role of orthogonal polynomials in normal matrix models

o Joint probability density as a determinant (Gaudin—Mehta):

1 A PRe NIV — Y
ZHEM, Ajl%e =, Jet (Kn(xi, A)

o Partition function in terms of norming constants:

n—1
— pl k=l ,—NV(z) — pl
Zp =n! ogk(,ilegtn—l (/;z Z'e dA(z)) n! ,E) hg .

o Expected number of eigenvalues in a set B C C (density of states):
1
E(#{eigenvalues of M in B}) = 7/ Kn(z,z)dA(z)
nJg

Goal. Determine the behaviour of relevant quantities as n — oo, in particular, the
behaviour of the orthogonal polynomial pn(z) for every z € C, and the limiting
distribution of the zeros of pn(z).
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Introduction

Distribution of eigenvalues of the normal matrix model

Coulomb gas interpretation:

1 _ n x 1
Pordn) = = [T e dPe M VA = — e (<nZa(A, . 2n)
n

M 1<k<I<n
where
N & V(A M)
To(Ms- -3 An §jog‘A v > etk
— n
i#j k 1

The probability density is maximal when Zn(- - -) is minimal (Fekete points):
= Z 621: , (z1,...,2};) is an optimal configuration

Scaling for the asymptotics:
1

N
n—oo ,N—oc0,— — — T>0.
n T

In the continuum limit one obtains the variational problem:

Z(p) - / |og d,u(z)d,u(w) + = / z)du(z) — MIN.

n>0, u(D):L suvpu:D
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Introduction

Logarithmic energy problem

Z(w): / Iog

w>0, ,u(D*l

)W) + 2 7 [ Vi@)du(z) > min,

Theorem (Frostman, Saff-Totik, Elbau-Felder)

For every lower semi-continuos potential V(z) = ®(zz) — P(z) — P(z), bounded from
below, and such that V(z) — log|z|?> — 0o as |z| — oo, the electrostatic energy
functional Z(p) has a unique minimizer uy with support D. Moreover if &(s) is C?
and (s®’)’ is positive and integrable near zero, then

duy(z) = iXD(Z)AV(Z)CIA(Z)

where xp is the characteristics function of the domain D.

The measure uy is called the equilibrium measure for V.
If V is real analytic then the boundary 9D is a finite union of analytic arcs with at
most a finite number of singularities (Hedenmalm, Makarov).
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Introduction

Timeline

1965
1984
1986

1994
1998
2000-2013
2001

2002

2004
2005

2006

2007

2008

2009-2010
2011

2012

2014

2015

Ginibre

Girko

Girko

Di Fi Gaudin, Itzyk
Chau, Zaboronsky

Mi, Weinstein. Wi Zab

, Lesage

Kostov, Krichever, M-W W. and Z.

Akemann

Hedenmalm, Makarov
Elbau, Felder

Teodorescu, Wiegmann, Zabrodin

Etingof, Ma

Its, Takhtajan

Ameur, Hedenmalm, Makarov
Elbau

Lee-Peng Teo

Bleher, Kuijlaars

Ameur, Hedenmalm, Makarov

Balogh, Bertola, Lee, McLaughlin

Balogh, Merzi

Kuijlaars, Lépez-Garcia
Kuijlaars, Tovbis
Ameur, Kang, Makarov
Leble, Serfaty

S.Y. Lee, Riser
Natanzon, Zabrodin

2
V(z) = |z|
circular law
elliptic law
V(z) = \z\z — tz2 — 22, Hermite polynomials
general normal matrix model and Toda lattice
integrable structure in conformal maps
7 function for analytic curves

1 1

2 2 =2
V(z)= —— (|z|° — 7 (z2° + = +(2a+1)log —
1 72 ( ( )) 12|

Laguerre polynomials
equilibrium measure
V(z) = 2% + P(2) +

V(z) = \z\z + clog

(z) with a cut-off and polynomial curves

v(

=1z12 + (23 +2°)

V(z) = ®(zz) — P(z) — P(z), equilibrium measure (precritical)
H-problem

asymptotics of C-D kernel, linear statistics

polynomial curves

Integrable dynamics for a pair of (f, g) of univalent functions
cubic | : h I pol il

P poly

y of or
fluctuations and Gaussian free field
V(z) = \z\z + clog

z — al
V(z) = 22" + &9 | &=
V(z) = |2|2 + tzF + =2k, asy
critical cubic case
edge scaling limits
Asymptotic expansion of the partition function
Fine asymptotic of eigenvalues:Ellipse case
Hurwitz numbers and conformal dynamics

equilibrium measure

of orth. pol ial
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Introduction

There is a connection between the limiting distribution dv of the zeros of OPs and the
limiting distribution dy of the eigenvalues of the associated matrix models

Hermitian matrix models

Theorem | Theorem Il Theorem IlI
Christoffel-Darboux density Fekete points zeroes of OPs
1 W
—Kn,n(x, x)dx — dp dopn — dp dvpn — dp
n

asn,N — oo,N/n— T.|| asn,N—oco,N/n— T.|| asn,N—=o0,N/n—T.
(Johannson, 98) (Saff-Totik, '97) (J." 98, DKMVZ '99)
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limiting distribution dy of the eigenvalues of the associated matrix models

Hermitian matrix models

Theorem |
Christoffel-Darboux density

1
—Kn,n(x, x)dx — dp
n

as n,N — oo, N/n— T.
(Johannson, 98)

Theorem |1
Fekete points

don N R du

asn,N — oo,N/n— T.
(Saff-Totik, '97)

Theorem 11
zeroes of OPs

dv,n — du

asn,N —oo,N/n— T.
(J." 98, DKMVZ '99)

Theorem |
Christoffel-Darboux density

1 (2, 2)dA(z) 25 du
n
n,N — oo,N/n— T.

(Hedenmalm-Makarov '04,
Elbau-Felder, '05)

Normal matrix models

Theorem 11
Fekete points

donn 5 du

n,N—oco,N/n— T.
(Saff-Totik, '97)

Conjecture
zeroes of OP: dvp, v — dv

I du(s) _ s du(s)
== J ==

(No general proof yet,
several examples)

Introduction

There is a connection between the limiting distribution dv of the zeros of OPs and the
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Eigenvalues distribution

The limiting distribution dv of the zeros of orthogonal polynomials satisfies
d d
[[29-[29. see0
z—s —s

Elbau-Felder, Balogh-Bertola- S.Y.Lee-McLaughlin, Balogh-Harnad, Bleher-Kuijlaars,
Kuijlaars-Lopez Garcia...

The simplest example: V(z) = %|z|2 (Ginibre,1965).

0s

C-D density equilibrium support Fekete points zeroes of OPs
Pn(z) = 2" (by rotational symmetry)
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Eigenvalues distribution

The second simplest example: V(z) = 3 [|1z]? — Re(rz?)]

(Di Francesco-Gaudin-ltzykson-Lesage, 1994)

equilibrium support  Christoffel-Darboux density Fekete points zeroes of OPs

1— 2
Pn(z) o< Hn <“rr|\/ﬁz> , for r real, :—; +{7—§ =1 with a = ;f’r b=1/a

z—s 2i) z—s 2i z—s c2 c2

dA(s) 1 Sds 1 ds [a?+ b? 2ab 2ab \/ — s2
/ == / == s——s2—¢c2| =
c z—s

2 dA
where —2\/52 — c2ds is the Wigner semi-circle law for the zeros of OP and b is
Ta

wc
the eigenvalues distribution.
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Eigenvalues distribution

Potential with discrete rotational symmetry ( F. Balogh, D. Merzi)

Consider the potential
V(z,2) = |z)?" — tz9 — 29, 2m > d.

Notice that V(z) is invariant for z — e d z. The distribution of the eigenvalues of
the associated normal matrix model is given in term of the equilibrium measure:

du(z) = 1= xp(2)AV(2)dA(2)

where the domain D is determined explicitly.

To determine the domain D, the concept of singularity correspondence for conformal
map is used (after Richardson 1972, Gustafsson 1983, Etingof - Ma 2007). For
example for m = 9 and d = 7 the domain D is depicted below for several values of t

t=te — 0.2 t=te —0.1 t = tey t=te +0.1 t=ter +0.2
o o SN
0
o - 0
1o
o © o ©
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Eigenvalues distribution

Symmetry reduction for the equilibrium measure

Folded measure:

27k 2m(k + 1
Sk:{ZEC:%Sarg(z)<M} \‘

d

1 2mik

pk: C— Sk, gok(re"g):r?e%)e d %
WP (B) = (91 (BNSK) 4 T ) ’

(k=0,...,d—1)

d—
@ _ 1 Zl (d) fall
w = d oy . ()
k=0 Folding out p to p

If V(z) can be written in terms of the potential Q as

1.4
V(z) ==
(2) = 5 Q%)
then their equilibrium measures are related by

pv =u(§)‘
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Eigenvalues distribution

Symmetry reduction and conformal map

Symmetry reduction for the potential:

Q(z) = % (2P - ¢z - %)

@ Density of pq:
1
dug(z) = ;—AQ(2) - xk(2)dA(2)

where K C C is the support of ug
@ Support of pug: simply connected for all values of t !

u i) :
. L

Jul > 1

fo: {u:|ul>1} - C\ K

C\K

0e K: fQ(u):ru(l—&-%-i-..A) u— 0o

0¢ K: fQ(u):r(u+ao)(1+a—ul+...) u— 0o
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Eigenvalues distribution

Critical value of the parameter t:

2m—d

: 7@ T 2m
T d\2m—d

For |t| < ter the domain D is simply connected while for |t| > tcr the domain D is
multiple connected.

Theorem (Balogh-Merzi)

There exist parameters r(t) > 0 and |a(t)| < 1 so that for |t| < tc the exterior
uniformizing map of the domain K associated to the potential Q is

fo(u) = r(t)u (1 — @)

For |t| > tcr such map is given by

Q(z9) is

d
m

For |t| < ter, the folded conformal mapping for V(z) =

fu(u) = (fQ(ud))%.

For |t| > ter, fv(u) is a parametrisation of the multiply connected domain but it is not

1 conformal map 15/31



Eigenvalues distribution

The support K of the equilibrium measure for the potential Q and the support D

of the equilibrium measure for the potential
1 —
V(z) = EQ(Zd) =zP" —tz9 —1z9, m=9, d=17.

Ol O} O] O] O
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Orthogonal polynomials

Point-wise asymptotic of orthogonal polynomials

We are considering the monic orthogonal polynomials characterized by:
. 2d_, d_z-d
/Pn(z)EJe N1z e 22 )dA(z):O, j=0,1,...,n—1.
(o}

Goal: determine the asymptotic of orthogonal polynomials pn(z) as n — oo and
N — oo with N/n — T. ( Work in progress G.-Balogh-Merzi).
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Orthogonal polynomials

/p,,(z) eWEdA(z)=0, j=0,1,...,n—1
C
with V(z) = |z|?9 — tz9 — 729,

Theorem

Let dv(z) be the limiting distribution of the zeros of the orthogonal polynomials pn(z)
as n — 0o, N — oo such that N/n — T and let the contour I' be the support of such

measure. Then the equation
d
T / ) _ 5 v z)
rz—s
defines the boundary 0D of a domain D that contains . The domain D coincides

with the support of the measure dy that describes the limiting distribution of the
eigenvalues of the matrix models. Furthermore for z ¢ D it follows that

// du(s) / du(s)
Zs . z—s
Remark: an equivalent result had been obtained in several other papers, for different

potentials V/(z). The above theorem hold when the domain D is simply connected or
multiply connected.
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Orthogonal polynomials

The domains D and the curve '

The domain D, support of the eigenvalue distribution is given by
oD : 2929 — (tz? + 1z +|tP -2 =0
and the curve I' that describes the location of the zeros of the OP is given by

d .
- t
(= 29) exp z _ \2\ precrltllclal case |t]| < ter
12 tz./|t| postcritical case |t| > ter

cr

r:

Remark

The Riemann surface
29 — (¥ + )+t -2 =0

has genus g = (d — 1) for |t| > tc and |t| < ter and genus (d — 1)(d — 2)/2 for
t = ter. The surface has an anti-holomorphic involution (z,&) — (€,Z). It has only
one real oval for |t| < te that describes the support of the eigenvalues, while for
|t| > ter it has d real ovals.
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Orthogonal polynomials

Asymptotic of orthogonal polynomials

These OPs inherit the Zy symmetry from the potential:

That is, there exists a monic polynomial q,((l) of degree k such that

Pn(Z) — z'q,((’)(zd),

where qf(’) is a monic polynomial of degree k and n = kd + I, with 0 </ < d — 1.

Hence the OPs {pn(2)}52, can be split into d subsequences {qL’)(u)}iio, which
satisfy

. I—d+1 _
/q(k’)(u)nf\m2 TEVEIGAW) =0, j=0,... k-1
C
This symmetry reduction allows us to consider the OPs w.r.t. the weight

|u|_2We_N(‘”|2_t“_E‘_’)dA(u), = % €[o,1).
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Orthogonal polynomials

From 2D to 1D

It is possible to reduce the 2D integral to a contour integral on a curve (8 problem).

For any polynomial q(z) the following integral identity holds:

/ ()i |u| =27 e~ NP —tu—t) o)
C

N\
_ 7rI'(J y+1) 1 e ) t du |
Ni=7+1 27 Js t)1+1 u

where ¥ is a positively oriented simple closed loop enclosing z = 0 and z = t.

With the linear change of coordinates u = —t(A — 1) one gets

1 L a—N[t]2A A 0
= ﬂ'k()\)/\!ei<7> dA=0 j=0,1,...,k—1
2wi Jy Ak A—1
where
—1)k -
me) = Sl a0 - 1) s
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RH problem

Riemann-Hilbert problem for orthogonal polynomials

1 S e—Nlt[2A A v
MY ——— (2~ ) dr=0 i=0,1,...,k—1,
o = (25 j

wi(A)

2wi Jy

We define the weight function

—kV, (N) 1\ N|t]2
wi(A) = e "k 1-— 3 ,  where Vi (\) = T)\ + log(X) .

Fokas-Its-Kitaev Riemann-Hilbert problem

For a 2 x 2 matrix Y(\)
e Y(X) is analyticin C\ X
o the jump on ©

1 we(A
v =v-m (5 ")
o large z boundary behaviour:

Y(A) = (I+O(§>)/\’“’3 , Ao oo

characterizes the orthogonal polynomial 7y (\) uniquely.
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RH problem

Unique solution encoding 7y (\):

1 m () wi(t)dt

() 27i Iz t—A
Y(A) = 1
. 1 nea(Owit)de v
el T

so in order to obtain the large k asymptotics of mx(\) one just need to know the
asymtotics of Yi1(A).
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Deift-Zhou method

g-function and asymptotic analysis

Following Deift-Zhou steepest descent method introduce a function g(\)

£(%) = [ log(A — 5)dv(s)

for an unknown measure v and a contour I' homotopically equivalent to ¥. Then
transform Y(A) — U(X\)

e
U()) = e kE/2)a3y () (1 - %) P e kW k(t/293 \ e\ (TUo,1])

e U(X) is analytic in C \ (I U [0, 1])

o the jumps:

e—ker—g-)  oklgr+g——t—Vi(\) .
Us(\) = U-(N) 0 e—kler—g-) on
e~ Vmios on(0,1) .

@ large A boundary behaviour:

U = (/+OG)), s 6
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Deift-Zhou method

Asymptotic distribution of the zeros: Szégo type curves

The zero distribution of the OP is determined by the conditions

g+ +g-—L—Vik=0, Re(gy—g-)=0, onTl (2)
k t2,
Z = ———= — Zoo =
TN T e
Pre-critical case: zoo >'1 Post-critical case: zoo < 1
1—X 1—X
Fk . )\e Zk =1 Fk . /\e Zk = Z)

The conditions (2) determine a family of a-priori probability measure vy supported

along each of the level curves.
25/31



Deift-Zhou method

Asymptotics for m(\): precritical case

Qo

() = ek (1 - %) : [Uk(M)]11

The exterior region Q-

m(A) = Ak (1 - %)7 (1+0 (k;ﬂ)) N 7

The interior region Qo \ B

wor=gs (-1 o)

The interesting region Q1 \ B

ok 1\7 | ek I ¢ 1\ ! 1

The other interesting region z € Q> \ B:

1\ eke®) c 1\ 1 1
k(1Y _ _ —kp(X)
(X)) = A (1 )\) el w (1 Zk) e +0 (k2+’Y)




Deift-Zhou method

Post-critical case (sketch)

The geometry of the problem in the post-critical case is pretty different:

@ The level curve T is passing through z, € (0, 1) so the jumps contours are quite
different

@ The subleading order asymptotic of the orthogonal polynomials is obtained using

parabolic cylinder functions

o Critical transition at |t| = t. (Painlevé IV 7 ) [ Similar asymptotics in
Kuijlaars—Dai, 2009]

_ 1O
[SHEAG RS
<00 ]{°0 0]
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Happy Birthday Sasha
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Deift-Zhou method

A O-problem

Orthogonality relations
/CI(U)DkIUI’ZWe’N('”‘Z’t“’E)dA(U) =0, 3)
C

O-problem
(%Xk(uyl_’):Uk|u‘_2'ye_N(|”\2—tU—tu) @)

Contour integral solution:

u _
Xk(u7 L_l) — u—’yeNtu / sk—’ye—Nus+Ntst
0

1 T\"7 Nu(u—Tt)
= kot (1 — 7) eNt”/ rk=ve " dr
u 0

1 T Y oo
=———(1--) M |r(k— 17/ k=ve=rd,
Nk—v+1 ( U) ¢ |: ( v ) Nu(u—t) ' ¢ ’

R (1= 0) e o (e D)) e
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Deift-Zhou method

Applying Stokes' Theorem

For a polynomial g(z)

d[q(u)xk(u,T)du] = q(u)dzx(u,T)dT A du , (5)
/ q(u)Dk|u\’Z'*e’N“"lZ’t“*E)dA(u) = lim q(u)Dk|u\*z'ye’N(‘”lzft”*E)dA(u)
C R—o0 lul<R
= i lim q(u)ﬂk|u|_2'ye_N(‘”|2_t”_E)dU/\(
2 R—oo lu|<R
= (s, B)d
N 2i RE)noo ‘u‘:Rq Lxitd, byad
_ 1 B —w(u—7)
=5 RI|_)moo R q(u) [Gk(u) @] (e )] du
1
= G
I'J|z|=Ro
where Ry is sufficiently large and
MNk—~+1 T\ New
Gutw) = N (1) ©

(does not depend on T, single-valued on C\ [0, t])
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Deift-Zhou method

Thanks for the attention!
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