Holonomy of braids and its 2-category extension

Toshitake Kohno

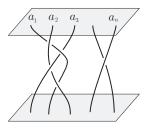
The University of Tokyo

July 13, 2015 Monte Verità

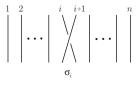
3

1/28

Braid groups were introduced by E. Artin in the 1920's.



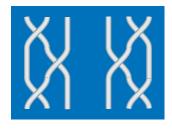
The isotopy classes of geometric braids as above form a group by composition. This is the braid group with n strands denoted by B_n .



 B_n is generated by σ_i , $1 \le i \le n-1$ with relations

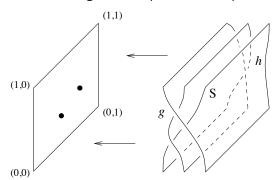
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i-j| > 1$$



3/28

Braid cobordisms



branched covering with simple branched points

surface braid (Kamda, Carter and Saito) braid cobordism category $\mathcal{B}C_n$:

- objects : geometric braids with n strands
- morphisms : relative isotopy classes of cobordisms between braids

- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and hypergeometric integrals
- 2-categories
- Higher holonomy
- Representations of braid cobordism category

 $\mathcal{F}_n(X)$: configuration space of ordered distinct n points in X.

$$\mathcal{F}_n(X) = \{ (x_1, \cdots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j \},\$$
$$\mathcal{C}_n(X) = \mathcal{F}_n(X) / \mathfrak{S}_n$$

 $\mathcal{F}_n(X)$: configuration space of ordered distinct n points in X.

$$\mathcal{F}_n(X) = \{ (x_1, \cdots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j \},\$$
$$\mathcal{C}_n(X) = \mathcal{F}_n(X) / \mathfrak{S}_n$$

Suppose $X = \mathbf{C}$.

$$\pi_1(\mathcal{F}_n(\mathbf{C})) = P_n, \quad \pi_1(\mathcal{C}_n(\mathbf{C})) = B_n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

6/28

We set $X_n = \mathcal{F}_n(\mathbf{C})$

We set

$$\omega_{ij} = d\log(z_i - z_j), \quad 1 \le i \ne j \le n.$$

Consider a total differential equation of the form $d\phi=\omega\phi$ for a logarithmic form

$$\omega = \sum_{i < j} A_{ij} \omega_{ij}$$

イロン イロン イヨン イヨン 三日

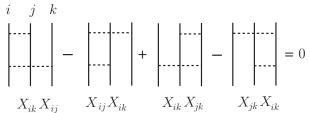
7 / 28

with $A_{ij} \in M_m(\mathbf{C})$.

As the flatness condition we infinitesimal pure braid relations

$$\begin{split} & [A_{ik}, A_{ij} + A_{jk}] = 0, \quad (i, j, k \text{ distinct}), \\ & [A_{ij}, A_{k\ell}] = 0, \quad (i, j, k, \ell \text{ distinct}) \end{split}$$

Algebra of horizontal chord diagrams:



K. T. Chen's iterated integrals of differential forms

 $\omega_1, \cdots, \omega_k$: differential forms on M ΩM : loop space M

$$\begin{split} \Delta_k &= \{(t_1, \cdots, t_k) \in \mathbf{R}^k \ ; \ 0 \leq t_1 \leq \cdots \leq t_k \leq 1\}\\ &\varphi: \Delta_k \times \Omega M \to \underbrace{M \times \cdots \times M}_k \\ &\text{defined by } \varphi(t_1, \cdots, t_k; \gamma) = (\gamma(t_1), \cdots, \gamma(t_k)) \end{split}$$

K. T. Chen's iterated integrals of differential forms

 $\omega_1, \cdots, \omega_k$: differential forms on M ΩM : loop space M

 $\Delta_k = \{(t_1, \cdots, t_k) \in \mathbf{R}^k \ ; \ 0 \le t_1 \le \cdots \le t_k \le 1\}$ $\varphi : \Delta_k \times \Omega M \to \underbrace{M \times \cdots \times M}_k$ defined by $\varphi(t_1, \cdots, t_k; \gamma) = (\gamma(t_1), \cdots, \gamma(t_k))$

The iterated integral of $\omega_1, \cdots, \omega_k$ is defined as

$$\int \omega_1 \cdots \omega_k = \int_{\Delta_k} \varphi^*(\omega_1 \times \cdots \times \omega_k)$$

 The expression

$$\int_{\Delta_k} \varphi^*(\omega_1 \times \cdots \times \omega_k)$$

イロト 不得下 イヨト イヨト 二日

is the integration along fiber with respect to the projection $p: \Delta_k \times \Omega M \to \Omega M.$

differential form on the loop space ΩM with degree $p_1 + \cdots + p_k - k$, where $p_j = \deg \omega_j$ As a differential form on the loop space $d \int \omega_1 \cdots \omega_k$ is

$$\sum_{j=1}^{k} (-1)^{\nu_{j-1}+1} \int \omega_1 \cdots \omega_{j-1} d\omega_j \,\, \omega_{j+1} \cdots \omega_k$$

$$+\sum_{j=1}^{k-1}(-1)^{\nu_j+1}\int\omega_1\cdots\omega_{j-1}(\omega_j\wedge\omega_{j+1})\omega_{j+2}\cdots\omega_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

11/28

where $\nu_j = \deg \omega_1 + \cdots + \deg \omega_j - j$.

Universal finite type invariants for braids

We put

$$\omega = \sum_{i < j} \omega_{ij} X_{ij}.$$

Then there is a universal holonomy map

$$\Theta_0: \pi_1(X_n, \mathbf{x}_0) \longrightarrow \mathbf{C} \langle \langle X_{ij} \rangle \rangle / \mathfrak{a}$$

defined by

$$\Theta_0(\gamma) = 1 + \sum_{k=1}^{\infty} \int_{\gamma} \underbrace{\omega \cdots \omega}_{k}$$

 \mathfrak{a} : ideal generated by infinitesimal pure braid relations $\mathbf{C}\langle\langle X_{ij}\rangle\rangle/\mathfrak{a}$: algebra of horizontal chord diagrams

Universal finite type invariants for braids

We put

$$\omega = \sum_{i < j} \omega_{ij} X_{ij}.$$

Then there is a universal holonomy map

$$\Theta_0: \pi_1(X_n, \mathbf{x}_0) \longrightarrow \mathbf{C} \langle \langle X_{ij} \rangle \rangle / \mathfrak{a}$$

defined by

$$\Theta_0(\gamma) = 1 + \sum_{k=1}^{\infty} \int_{\gamma} \underbrace{\omega \cdots \omega}_{k}$$

 \mathfrak{a} : ideal generated by infinitesimal pure braid relations $\mathbf{C}\langle\langle X_{ij}\rangle\rangle/\mathfrak{a}$: algebra of horizontal chord diagrams This induces an isomorphism

$$\mathbf{C}\widehat{P_n}\cong \mathbf{C}\langle\langle X_{ij}\rangle\rangle/\mathfrak{a}$$

 $\mathbf{C}\widehat{P_n}$: Malcev completion

The space of conformal blocks

Conformal field theory $(\Sigma, p_1, \cdots, p_n)$: Riemann surface with marked points \mapsto

 \mathcal{H}_{Σ} : complex vector space - the space of conformal blocks

The mapping class group $\Gamma_{g,n}$ acts on \mathcal{H}_{Σ} : Quantum representations

- g : complex semi-simple Lie algebra
- $\widehat{\mathfrak{g}}=\mathfrak{g}\otimes \mathbf{C}((\xi))\oplus \mathbf{C}c$: affine Lie algebra with commutation relation

 $[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \operatorname{Res}_{\xi=0} df g \langle X, Y \rangle c$

・ロン ・四 と ・ 回 と ・ 回 と

14 / 28

 $\widehat{\mathfrak{g}}=\mathcal{N}_{+}\oplus\mathcal{N}_{0}\oplus\mathcal{N}_{-}$ (triangular decomposition)

For the Lie algebra \mathfrak{g} we take $\alpha_1, \cdots, \alpha_r$: simple roots $\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha$: half sum of positive roots

- K: a positive integer (level)
- θ : the longest root normalized as $\langle \theta, \theta \rangle = 2$
- λ : dominant integral weight s. t. $\langle \lambda, \theta \rangle \leq K$ (level K weight)
- V_{λ} : irreducible representation of ${\mathfrak g}$ with highest weight λ

Construction of representations of $\widehat{\mathfrak{g}}$

 $\mathcal{M}_{\lambda} = U(\mathcal{N}_{-})V_{\lambda}$, $\mathcal{N}_{+}V_{\lambda} = 0$

 V_{λ} : irreducible $\mathfrak{g}\text{-module}$ with highest weight λ

c acts as $K \cdot \operatorname{id}$

 \mathcal{H}_{λ} : irreducible quotient of \mathcal{M}_{λ} called the integrable highest weight modules.

The space of conformal blocks - definition -

Suppose $\lambda_1, \dots, \lambda_n$ are level K weights. $p_1, \dots, p_n \in \Sigma$ (Riemann surface of genus g) Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_{λ_j} : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

The space of conformal blocks - definition -

Suppose $\lambda_1, \dots, \lambda_n$ are level K weights. $p_1, \dots, p_n \in \Sigma$ (Riemann surface of genus g) Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_{λ_j} : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

 \mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n .

The space of conformal blocks - definition -

Suppose $\lambda_1, \dots, \lambda_n$ are level K weights. $p_1, \dots, p_n \in \Sigma$ (Riemann surface of genus g) Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_{λ_j} : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

 \mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n .

The space of conformal blocks is defined as

$$\mathcal{H}_{\Sigma}(p,\lambda) = \mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_n} / (\mathfrak{g} \otimes \mathcal{M}_p)$$

where $\mathfrak{g} \otimes \mathcal{M}_p$ acts diagonally via Laurent expansions at p_1, \cdots, p_n .

The space of conformal blocks determines a vector bundle over the moduli space $\mathcal{M}_{q,n}$ with a projectively flat connection.

We focus on the case of genus 0. We assign level K weights $\lambda_1, \dots \lambda_n$ and λ_∞ at infinity. The space of conformal block is a quotient space of

$$V_{\lambda_1}\otimes\cdots\otimes V_{\lambda_n}\otimes V^*_{\lambda_{n+1}} / \mathfrak{g}$$

In this case the above connection is the KZ connection.

KZ connections

 $\begin{array}{l} \mathfrak{g} : \text{ complex semi-simple Lie algebra.} \\ \{I_{\mu}\} : \text{ orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.} \\ \Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu} \\ r_i : \mathfrak{g} \to End(V_i), \ 1 \leq i \leq n \text{ representations.} \end{array}$

KZ connections

$$\begin{split} \mathfrak{g} &: \text{ complex semi-simple Lie algebra.} \\ \{I_{\mu}\} &: \text{ orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.} \\ \Omega &= \sum_{\mu} I_{\mu} \otimes I_{\mu} \\ r_i : \mathfrak{g} \to End(V_i), \ 1 \leq i \leq n \text{ representations.} \end{split}$$

 Ω_{ij} : the action of Ω on the *i*-th and *j*-th components of $V_1 \otimes \cdots \otimes V_n$.

$$\omega = \frac{1}{\kappa} \sum_{i < j} \Omega_{ij} d \log(z_i - z_j), \quad \kappa \in \mathbf{C} \setminus \{0\}$$

 ω defines a flat connection for a trivial vector bundle over the configuration space $X_n = \mathcal{F}_n(\mathbf{C})$ with fiber $V_1 \otimes \cdots \otimes V_n$ since we have

$$\omega \wedge \omega = 0$$

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{\otimes n}).$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

19/28

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{\otimes n}).$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

19/28

Local system over the configuration space

We write

$$\sum_{i=1}^{n} \lambda_i - \lambda_{\infty} = \sum_{j=1}^{r} k_j \alpha_j$$

and put $m = \sum_{j=1}^r k_j$.

$$\begin{split} &\pi: X_{n+m} \to X_n \text{ : projection defined by } \\ &(z_1, \cdots, z_n, t_1, \cdots, t_m) \mapsto (z_1, \cdots, z_n). \\ &X_{n,m} \text{ : fiber of } \pi. \end{split}$$

$$\begin{split} \Phi &= \prod_{1 \leq i < j \leq n} (z_i - z_j)^{\frac{\langle \lambda_i, \lambda_j \rangle}{\kappa}} \prod_{\substack{1 \leq i \leq m, 1 \leq \ell \leq n \\ \\ \times \prod_{1 \leq i < j \leq m} (t_i - t_j)^{\frac{\langle \alpha_i, \alpha_j \rangle}{\kappa}}} (t_i - z_\ell)^{-\frac{\langle \alpha_i, \lambda_\ell \rangle}{\kappa}} \end{split}$$

Consider the local system \mathcal{L} associated with Φ .

Solutions to KZ equation

Put

$$Y_{n,m} = X_{n,m} / (\mathfrak{S}_{k_1} \times \cdots \times \mathfrak{S}_{k_r})$$

Solutions to KZ equation

Put

$$Y_{n,m} = X_{n,m} / (\mathfrak{S}_{k_1} \times \cdots \times \mathfrak{S}_{k_r})$$

According to Schechtman-Varchenko and others, one can construct horizontal sections of the KZ connections by means of hypergeometric integrals of the form

$$\int_{\Delta} \Phi R(z,t) dt_1 \wedge \dots \wedge dt_m$$

with some rational function R(z,t). Δ is a cycle in $H_m(Y_{n,m}, \mathcal{L}^*)$. We can construct a period map

$$\phi: H_m(Y_{n,m}, \mathcal{L}^*) \to \mathcal{H}^*(p, \lambda)$$

Monodromy and homology of local systems

Theorem

The period map

$$\phi: H_m(Y_{n,m}, \mathcal{L}^*) \longrightarrow \mathcal{H}^*(p, \lambda)$$

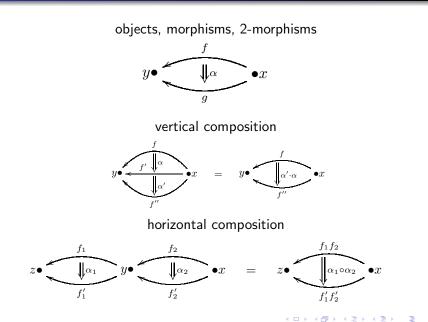
is surjective and is equivariant with respect to the action of the pure braid group P_n . If K is sufficiently large relative to $\lambda_1, \dots, \lambda_n$ the period map ϕ gives an isomorphism. In particular, the linear representation

$$\rho_{n,m}: P_n \longrightarrow \operatorname{Aut} \mathcal{H}^*(p,\lambda)$$

and the monodromy representation of the KZ equation

$$\overline{\theta}_{\kappa,m}: P_n \to \operatorname{Aut} \mathcal{H}^*(p,\lambda)$$

are equivalent.



23 / 28

There is a work in progress to construct 2-holonomy of KZ connection for braid cobordism based on the 2-connection investigated by L. Cirio and J. Martins of the form

$$A = \sum_{i < j} \omega_{ij} \Omega_{ij}$$

$$B = \sum_{i < j < k} (\omega_{ij} \wedge \omega_{ik} \ P_{jik} + \omega_{ij} \wedge \omega_{jk} \ P_{ijk}),$$

where A has values in the algebra of 2-chord diagrams, a categorification of the algebra of horizontal chord diagrams and

$$\delta B = dA + \frac{1}{2}A \wedge A.$$

24 / 28

Consider Chen's formal homology connection

$$\omega \in \Omega^*(M) \otimes T\widehat{H_+(M)}$$

25 / 28

with the following properties.

•
$$\omega = \sum x^i \otimes x_i + \cdots$$
, $\{x_i\}$: basis of $TH_+(M)$
deg $x_i = p_1 - 1$ for $x_i \in H_{p_i}(M)$

•
$$\delta\omega + \kappa = 0$$

•
$$\kappa = d\omega + \epsilon(\omega)\omega \wedge \omega, \ \epsilon(\omega) = \pm 1$$

•
$$\delta$$
 is a derivation of degree -1

Theorem

There is a representation of the homotopy 2-groupoid modulo isotopy

$$Hol: \Pi_2(M)/\sim \longrightarrow T\widetilde{H}_+(M)_{\leq 2}/\mathcal{J}$$

where ${\mathcal{J}}$ is the ideal generated by the image of

$$\delta_3: \widehat{TH_+(M)}_3 \longrightarrow \widehat{TH_+(M)}_2$$

The ideal $\mathcal J$ corresponds to the 2-flatness condition.

Representations of braid cobordism category

Consider the case $M = X_n$.

Universal holonomy map from the the homotopy path groupoid

$$\Theta_0: \Pi_1(X_n) \longrightarrow \mathbf{C}\langle\langle X_{ij}\rangle\rangle$$

given by iterated integrals.

$$\widehat{TH_+(M)}_1 \cong \mathbf{C}\langle\langle X_{ij}\rangle\rangle$$

Theorem

The universal holonomy map Θ_0 can be lifted to a representation of the braid cobordism category

$$Hol: \mathcal{B}C_n \longrightarrow T\widehat{H_+(M)}_{\leq 2}/\mathcal{J}$$

Categorification and related problems

C: cobordism between links L_1 and L_2 $Kh(C): Kh(L_1) \rightarrow Kh(L_2)$ invariants of 2-knots (Khovanov, Jacobson)

Braid group action on categories

- Khovanov-Rouquier-Lauda algebra
- Derived categories of coherent sheaves on Calabi-Yau manifolds
- Fukaya-Seidel category

Problem : Extend the above actions to the braid cobordism category $\mathcal{B}C_n$.