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Braid groups

Braid groups were introduced by E. Artin in the 1920’s.

a a a a1 2 3 n

The isotopy classes of geometric braids as above form a group by
composition. This is the braid group with n strands denoted by Bn.
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Braid relations

1   2            i    i                 n1

σi

+

Bn is generated by σi, 1 ≤ i ≤ n− 1 with relations

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi, |i− j| > 1
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Braid cobordisms

branched covering with simple branched points

(1,0)

(0,0)

(0,1)

(1,1)

g

h

S

Figure 1: A depiction of a braid cobordism (mostly of its boundary), and its
projection onto the unit square. Dots in the square are the simple branch
points of the projection. The image of g is the edge [0, 1]×{0} of the square.
The image of h is the edge [0, 1]×{1} of the square. Corners of S are mapped
to the vertices of the square.
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Figure 2: Composition of braid cobordisms

5

surface braid (Kamda, Carter and Saito)
braid cobordism category BCn :
- objects : geometric braids with n strands
- morphisms : relative isotopy classes of cobordisms between braids
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Plan

Monodromy representations of logarithmic connections

Knizhnik-Zamolodchikov (KZ) connection

Homological representations and hypergeometric integrals

2-categories

Higher holonomy

Representations of braid cobordism category
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Configuration spaces

Fn(X) : configuration space of ordered distinct n points in X.

Fn(X) = {(x1, · · · , xn) ∈ Xn ; xi 6= xj if i 6= j},
Cn(X) = Fn(X)/Sn

Suppose X = C.

π1(Fn(C)) = Pn, π1(Cn(C)) = Bn

We set Xn = Fn(C)
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Logarithmic forms on configuration spaces

We set
ωij = d log(zi − zj), 1 ≤ i 6= j ≤ n.

Consider a total differential equation of the form dφ = ωφ for a
logarithmic form

ω =
∑
i<j

Aijωij

with Aij ∈Mm(C).
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Infinitesimal pure braid relations

As the flatness condition we infinitesimal pure braid relations

[Aik, Aij +Ajk] = 0, (i, j, k distinct),

[Aij , Ak`] = 0, (i, j, k, ` distinct)

Algebra of horizontal chord diagrams:

+ = 0

i    j   k

X ijXik
XijXik X X X Xikik jkjk
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K. T. Chen’s iterated integrals of differential forms

ω1, · · · , ωk : differential forms on M
ΩM : loop space M

∆k = {(t1, · · · , tk) ∈ Rk ; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}

ϕ : ∆k × ΩM →M × · · · ×M︸ ︷︷ ︸
k

defined by ϕ(t1, · · · , tk; γ) = (γ(t1), · · · , γ(tk))

The iterated integral of ω1, · · · , ωk is defined as∫
ω1 · · ·ωk =

∫
∆k

ϕ∗(ω1 × · · · × ωk)
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Iterated integrals as differential forms on loop space

The expression ∫
∆k

ϕ∗(ω1 × · · · × ωk)

is the integration along fiber with respect to the projection
p : ∆k × ΩM → ΩM .

differential form on the loop space ΩM
with degree p1 + · · ·+ pk − k, where pj = degωj
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Differentiation on loop spaces

As a differential form on the loop space d
∫
ω1 · · ·ωk is

k∑
j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+

k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where νj = degω1 + · · ·+ degωj − j.
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Universal finite type invariants for braids

We put

ω =
∑
i<j

ωijXij .

Then there is a universal holonomy map

Θ0 : π1(Xn,x0) −→ C〈〈Xij〉〉/a

defined by

Θ0(γ) = 1 +

∞∑
k=1

∫
γ
ω · · ·ω︸ ︷︷ ︸

k

a : ideal generated by infinitesimal pure braid relations
C〈〈Xij〉〉/a : algebra of horizontal chord diagrams

This induces an isomorphism

CP̂n ∼= C〈〈Xij〉〉/a

CP̂n : Malcev completion
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The space of conformal blocks

Conformal field theory
(Σ, p1, · · · , pn) : Riemann surface with marked points

7→
HΣ : complex vector space - the space of conformal blocks

The mapping class group Γg,n acts on HΣ :
Quantum representations

p
p p

1

2 n
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Affine Lie algebra

g : complex semi-simple Lie algebra
ĝ = g⊗C((ξ))⊕Cc : affine Lie algebra with commutation relation

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + Resξ=0 df g 〈X,Y 〉c

ĝ = N+ ⊕N0 ⊕N− (triangular decomposition)

For the Lie algebra g we take
α1, · · · , αr : simple roots
ρ = 1

2

∑
α>0 α : half sum of positive roots
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Representations of an affine Lie algebra

K : a positive integer (level)
θ : the longest root normalized as 〈θ, θ〉 = 2
λ : dominant integral weight s. t. 〈λ, θ〉 ≤ K (level K weight)
Vλ : irreducible representation of g with highest weight λ

Construction of representations of ĝ
Mλ = U(N−)Vλ, N+Vλ = 0
Vλ : irreducible g-module with highest weight λ
c acts as K · id.
Hλ : irreducible quotient of Mλ called the integrable highest
weight modules.
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The space of conformal blocks - definition -

Suppose λ1, · · · , λn are level K weights.
p1, · · · , pn ∈ Σ (Riemann surface of genus g)
Assign highest weights λ1, · · · , λn to p1, · · · , pn.
Hλj : irreducible representations of ĝ with highest weight λj at
level K.

Mp denotes the set of meromorphic functions on Σ with poles at
most at p1, · · · , pn.

The space of conformal blocks is defined as

HΣ(p, λ) = Hλ1 ⊗ · · · ⊗ Hλn/(g⊗Mp)

where g⊗Mp acts diagonally via Laurent expansions at
p1, · · · , pn.
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Projectively flat connection

The space of conformal blocks determines a vector bundle over the
moduli space Mg,n with a projectively flat connection.

We focus on the case of genus 0.
We assign level K weights λ1, · · ·λn and λ∞ at infinity.
The space of conformal block is a quotient space of

Vλ1 ⊗ · · · ⊗ Vλn ⊗ V ∗λn+1
/ g

In this case the above connection is the KZ connection.
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KZ connections

g : complex semi-simple Lie algebra.
{Iµ} : orthonormal basis of g w.r.t. Killing form.
Ω =

∑
µ Iµ ⊗ Iµ

ri : g→ End(Vi), 1 ≤ i ≤ n representations.

Ωij : the action of Ω on the i-th and j-th components of
V1 ⊗ · · · ⊗ Vn.

ω =
1

κ

∑
i<j

Ωijd log(zi − zj), κ ∈ C \ {0}

ω defines a flat connection for a trivial vector bundle over the
configuration space Xn = Fn(C) with fiber V1 ⊗ · · · ⊗ Vn since we
have

ω ∧ ω = 0
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Monodromy representations of braid groups

As the holonomy we have representations

θκ : Pn → GL(V1 ⊗ · · · ⊗ Vn).

In particular, if V1 = · · · = Vn = V , we have representations of
braid groups

θκ : Bn → GL(V ⊗n).
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Local system over the configuration space

We write
n∑
i=1

λi − λ∞ =

r∑
j=1

kjαj

and put m =
∑r

j=1 kj .

π : Xn+m → Xn : projection defined by
(z1, · · · , zn, t1, · · · , tm) 7→ (z1, · · · , zn).
Xn,m : fiber of π.

Φ =
∏

1≤i<j≤n
(zi − zj)

〈λi,λj〉
κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
〈αi,λ`〉

κ

×
∏

1≤i<j≤m
(ti − tj)

〈αi,αj〉
κ

Consider the local system L associated with Φ.
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Solutions to KZ equation

Put
Yn,m = Xn,m/(Sk1 × · · · ×Skr)

According to Schechtman-Varchenko and others, one can construct
horizontal sections of the KZ connections by means of
hypergeometric integrals of the form∫

∆
ΦR(z, t)dt1 ∧ · · · ∧ dtm

with some rational function R(z, t).
∆ is a cycle in Hm(Yn,m,L∗).
We can construct a period map

φ : Hm(Yn,m,L∗)→ H∗(p, λ)
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Monodromy and homology of local systems

Theorem

The period map

φ : Hm(Yn,m,L∗) −→ H∗(p, λ)

is surjective and is equivariant with respect to the action of the
pure braid group Pn. If K is sufficiently large relative to
λ1, · · · , λn the period map φ gives an isomorphism. In particular,
the linear representation

ρn,m : Pn −→ Aut H∗(p, λ)

and the monodromy representation of the KZ equation

θκ,m : Pn → Aut H∗(p, λ)

are equivalent.
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2-categories

objects, morphisms, 2-morphisms

3.1 2-Categories

Sets have elements. Categories have elements, usually called ‘objects’, but also
morphisms between these. In an ‘n-category’, we go further and include 2-
morphisms between morphisms, 3-morphisms between 2-morphisms,... and so
on up to the nth level. We are beginning to see n-categories provide an algebraic
language for n-dimensional structures in physics [12]. Higher gauge theory is
just one place where this is happening.

Anyone learning n-categories needs to start with 2-categories [63]. A 2-
category consists of:

• a collection of objects,

• for any pair of objects x and y, a set of morphisms f : x → y:

y• •x

f
!!

• for any pair of morphisms f, g: x → y, a set of 2-morphisms α: f ⇒ g:

y• •x

g

""

f

##
α$$

We call f the source of α and g the target of α.

Morphisms can be composed just as in a category:

z• •y

f

## •x

g

##
= z• •x

fg

##

while 2-morphisms can be composed in two distinct ways, vertically:

y• •x

f

%% f ′
&&

f ′′

''

α
$$

α′
$$

= y• •x

f

((

f ′′

)) α′·α
$$

and horizontally:

z• y•
f1

**

f ′
1

++ α1$$ •x

f2

##

f ′
2

"" α2$$ = z• •x

f1f2

((

f ′
1f ′

2

)) α1◦α2

$$

Finally, these laws must hold:

12

vertical composition
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Categorification of KZ connections

There is a work in progress to construct 2-holonomy of KZ
connection for braid cobordism based on the 2-connection
investigated by L. Cirio and J. Martins of the form

A =
∑
i<j

ωijΩij

B =
∑
i<j<k

(ωij ∧ ωik Pjik + ωij ∧ ωjk Pijk),

where A has values in the algebra of 2-chord diagrams, a
categorification of the algebra of horizontal chord diagrams and

δB = dA+
1

2
A ∧A.
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Chen’s formal homology connection

Consider Chen’s formal homology connection

ω ∈ Ω∗(M)⊗ ̂TH+(M)

with the following properties.

ω =
∑
xi ⊗ xi + · · · , {xi}: basis of TH+(M)

deg xi = p1 − 1 for xi ∈ Hpi(M)

δω + κ = 0

κ = dω + ε(ω)ω ∧ ω, ε(ω) = ±1

δ is a derivation of degree −1
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Representations of homotopy 2-groupoids

Theorem

There is a representation of the homotopy 2-groupoid modulo
isotopy

Hol : Π2(M)/ ∼ −→ ̂TH+(M)≤2/J
where J is the ideal generated by the image of

δ3 : ̂TH+(M)3 −→ ̂TH+(M)2

The ideal J corresponds to the 2-flatness condition.
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Representations of braid cobordism category

Consider the case M = Xn.
Universal holonomy map from the the homotopy path groupoid

Θ0 : Π1(Xn) −→ C〈〈Xij〉〉

given by iterated integrals.

̂TH+(M)1
∼= C〈〈Xij〉〉

Theorem

The universal holonomy map Θ0 can be lifted to a representation
of the braid cobordism category

Hol : BCn −→ ̂TH+(M)≤2/J
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Categorification and related problems

C : cobordism between links L1 and L2

Kh(C) : Kh(L1)→ Kh(L2)
invariants of 2-knots (Khovanov, Jacobson)

Braid group action on categories

Khovanov-Rouquier-Lauda algebra

Derived categories of coherent sheaves on Calabi-Yau
manifolds

Fukaya-Seidel category

Problem : Extend the above actions to the braid cobordism
category BCn.
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