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Vanishing properties ofMg,k

The moduli spacesMg,k of smooth genus g Riemann surfaces
with punctures have curious vanishing properties.

Diaz’ theorem (1986):
There does not exist a complete (complex) cycle inMg of
dimension greater than g − 2

Note, that is the upper bound. The know constructions give
complete cycles of dimension of order log3 g, only.

Looijenga theorem (1995):
The tautological ring R∗(Mg,k ) vanishes in dimensions
greater then g − 2 + k

The tautological ring R∗(Mg,k ) is generated by classes

ψi = c1(Li), κi = p∗(ψi+1
1 ) ∈ H∗(Mg).

Here Lj are canonical line bundles overMg,k .
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Faber’s conjecture

Faber conjectured (1999) that:
R∗(Mg,k ) looks "like" the cohomology ring of a compact
complex variety of dimension g − 2 + k
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Conjectural geometric explanations

Widely accepted by experts "geometric explanation" of
vanishing properties ofMg,k is the existence of its stratification
by certain number of affine strata or the existence of a cover of
Mg,k by certain number of open affine sets.

Historically, Arbarello first realized that a stratification ofMg
could be useful for a study of its geometrical properties. He
studied the stratification (known already for Rauch)

W2 ⊂ W3 ⊂ · · · ⊂ Wg−1 ⊂ Wg =Mg ,

whereWn if the locus of curves having a Weierstrass point of
order at most n, and then conjectured thatWn \Wn−1 is affine.
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Alternative geometric explanation

Relatively recently, the author jointly with S. Grushevsky
proposed an alternative approach for geometrical explanation
of the vanishing properties ofMg,k motivated by certain
constructions of the Whitham perturbation theory of integrable
systems. The key elements of the new approach are:

the moduli spaceM( n )
g, k , n = (n1, . . . ,nk ) of smooth genus

g Riemann surfaces with the fixed nα-jets of local
coordinates in the neighborhoods of labeled points is the
total space of a real-analytic foliation, whose leaves L are
locally smooth complex subvarieties of real codimension
2g;

onM( n )
g, k there is an ordered set of (dimR L) continuous

functions, which restricted onto the leaves of the foliation
are piecewise harmonic. Moreover, the first of these
function restricted onto L is a subharmonic function.
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Results

Proof of Arbarello’s conjecture

Theorem
Any compact complex cycle inMg of dimension g − n must
intersectWn.
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New upper bound for dimensions of complete (complex)
cycles in the moduli spaceMct

g of stable curves of
compact type.

Theorem

There do not exist complete complex subvarieties ofMct
g

having non empty intersection withMg of dimension greater
than g − 1.
For g ≥ 2 the maximum dimension of complete complex
subvarieties inMct

g is 3
2 g − 2.
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Previously known bounds

Diaz:
there is no compact cycle inMct

g of dimension greater that
2g − 3.
Keel and Sadun:
for g ≥ 3 there do not exist complete complex subvarieties
ofMct

g of dimension greater than 2g − 4.

The proof is by easy induction arguments starting from the
base g = 3. The proof of the base statement is a corollary of
remarkable vanishing result:

there do not exist a complete complex subvarieties of the
moduli space Ag of principally polarized abelian varieties
of codimension g.
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Real normalized differentials

The foliation structure arises through identification ofM( n )
g, k with

the moduli space of curves with fixed real-normalized
meromorphic differential. By definition a real normalized
meromorphic differential is a differential whose periods over
any cycle on the curve are real.

Lemma
For any fixed singular parts of poles with pure imaginary
residues, there exists a unique meromorphic differential Ψ,
having prescribed singular part at pα and such that all its
periods on Γ are real, i.e.

Im
(∮

c
Ψ

)
= 0, ∀ c ∈ H1(Γ,Z).
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A notion of real normalized differentials is "almost equivalent" to
a notion of harmonic functions.

Indeed,the real normalization implies that the imaginary
part y(p) = Im F (p) of the abelian integral F (p) :=

∫ p
Ψ is

single-valued, and hence is a harmonic function on
Γ \ {pα}.
Conversely, for a given harmonic function y(p) on Γ \ {pα}
there exists a unique up to a constant conjugated
harmonic function x(p), i.e. a function x(p) such that
F (p) = x(p) + iy(p) is holomorphic. Hence Ψ = dF is a
real normalized holomorphic differential on Γ \ {pα}.

Conditions on order of poles of Ψ at the marked points is
equivalent to certain boundary conditions on harmonic
functions.

Integrable systems and algebraic geometry



A notion of real normalized differentials is "almost equivalent" to
a notion of harmonic functions.

Indeed,the real normalization implies that the imaginary
part y(p) = Im F (p) of the abelian integral F (p) :=

∫ p
Ψ is

single-valued, and hence is a harmonic function on
Γ \ {pα}.
Conversely, for a given harmonic function y(p) on Γ \ {pα}
there exists a unique up to a constant conjugated
harmonic function x(p), i.e. a function x(p) such that
F (p) = x(p) + iy(p) is holomorphic. Hence Ψ = dF is a
real normalized holomorphic differential on Γ \ {pα}.

Conditions on order of poles of Ψ at the marked points is
equivalent to certain boundary conditions on harmonic
functions.

Integrable systems and algebraic geometry



A notion of real normalized differentials is "almost equivalent" to
a notion of harmonic functions.

Indeed,the real normalization implies that the imaginary
part y(p) = Im F (p) of the abelian integral F (p) :=

∫ p
Ψ is

single-valued, and hence is a harmonic function on
Γ \ {pα}.
Conversely, for a given harmonic function y(p) on Γ \ {pα}
there exists a unique up to a constant conjugated
harmonic function x(p), i.e. a function x(p) such that
F (p) = x(p) + iy(p) is holomorphic. Hence Ψ = dF is a
real normalized holomorphic differential on Γ \ {pα}.

Conditions on order of poles of Ψ at the marked points is
equivalent to certain boundary conditions on harmonic
functions.

Integrable systems and algebraic geometry



A notion of real normalized differentials is "almost equivalent" to
a notion of harmonic functions.

Indeed,the real normalization implies that the imaginary
part y(p) = Im F (p) of the abelian integral F (p) :=

∫ p
Ψ is

single-valued, and hence is a harmonic function on
Γ \ {pα}.
Conversely, for a given harmonic function y(p) on Γ \ {pα}
there exists a unique up to a constant conjugated
harmonic function x(p), i.e. a function x(p) such that
F (p) = x(p) + iy(p) is holomorphic. Hence Ψ = dF is a
real normalized holomorphic differential on Γ \ {pα}.

Conditions on order of poles of Ψ at the marked points is
equivalent to certain boundary conditions on harmonic
functions.

Integrable systems and algebraic geometry



Foliation

Definition

A leaf L of the foliation onM( n )
g, k defined to be the locus along

which the periods of the corresponding differentials remain
(covariantly) constant.

The leaves L of the foliation can be regarded as a
generalization of the Hurwitz spaces of P1 covers.

It is basic fact of the Whitham theory:

Theorem (Kr-Phong 1995)

A leaf L is a smooth complex subvariety of real codimension
2g.
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Coordinates along a leaf

A set of holomorphic coordinates onM( n )
g, k are "critical" values

of the corresponding abelian integral F (p) = c +
∫ p

Ψ, p ∈ Γ:

At the generic point, where zeros qs of Ψ are distinct, the
coordinates on L are the evaluation of F at these critical points:

ϕs = F (qs), Ψ(qs) = 0, s = 0, . . . ,d = dimL, (1)

normalized by the condition
∑

s ϕs = 0.
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A direct corollary of the real normalization is the statement that:

imaginary parts fs = Imϕs of the critical values depend
only on labeling of the critical points

They can be arranged into decreasing order

f0 ≥ f1 ≥ · · · ≥ fd−1 ≥ fd .

After that fj can be seen as a well-defined continuous function
onM( n )

g, k , which restricted onto L is a piecewise harmonic
function. Moreover, f0 restricted onto L is a subharmonic
function, i.e, f0 has no local maximum on L unless it is a
constant.
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Diaz’ theorem revisited

Let X be a complete cycle inMg and Z be its preimage under
the forgetfull map: Mg,2 ⊂ C2

g 7−→Mg .
→ On Z the function f0 (defined by critical values of
real-normalized differential with two simple poles) must achieve
its maximum at some point.
→ At this point the function f0 achieves its maximum on Z ∩ L.
→ Hence, it is a constant on Z ∩ L.
→ If f0 is a constant then (inductively) all the other functions fj
are constants.
→ Then, Z ∩ L is at most zero-dimensional, i.e. Z intersects L
transversally.
→ dim X ≤ g − 2
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Calogero-Moser curves revisited

The elliptic CM system is a system of N particles with the
Hamiltonian

H2 =
1
2

N∑
i=1

p2
i − 2

∑
i 6=j

℘(qi − qj),

where ℘(q) is the Weierstrass ℘-function. It is completely
integrable and admits the Lax representation L̇ = [L,M],
where L = L(t , z) and M = M(t , z) are (N × N) matrices
depending on a spectral parameter z.

The spectral curves of the CM system are defined by the
characteristic equation for the Lax matrix

Γspec
N,τ ⊂ C × Eτ : R(k , z) = det(k · I − L(t , z)) = 0

They form a N-parametric family. The parameters are the
commuting Hamiltonians Hi . For generic values of the
parameters the spectral curves are smooth curves of genus N.
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For particular values of the parameters the spectral curve are
singular.

Let Kg,N,τ ⊂Mg be a family of smooth genus g algebraic
curves Γ that are the normalization Γ 7−→ Γspec

N,τ of N-particle CM
system. It can be shown that:

Kg,N,τ is g − 1-dimensional affine subvariety ofMg .

The closer of Kg,N,τ as N →∞ is the whole moduli space
Mg .
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In terms of the real normalized differentials the locus
Kg = ∪N,τ Kg,N,τ is characterized as:

the locus of curves on which there exists a pair of
meromorphic differentials Ψ1,Ψ2 with the only pole of the
second order at a puncture p0 and with integer periods∮

γ
Ψi ∈ Z

.

For Γ ∈ Kg the parameters N and τ are recovered by the
formulae

N =<

∮
Ψ1,

∮
Ψ2 >, τ =

Ψ1

Ψ2
(p0)
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Elliptic families of the KP equation solutions

The theory of the elliptic CM system is isomorphic to the theory
of elliptic solutions of the KP equation. Namely, a function
u(x , y , t) which is an elliptic function with respect to the
variable x satisfies the KP equation if and only if it has the form

u(x , y , t) = −2
N∑

i=1

℘(x − qi(y , t)) + c, (2)

and its poles qi as functions of y satisfy the equations of motion
of the elliptic CM system.

It can be shown directly that if u(x , y , t , λ) is an elliptic family of
solutions of the KP equation, i.e. for fixed (x , y , t) the function u
is an elliptic function of the variable λ ∈ Eτ , then it has the form

u = −2
N∑

i=1

[
λ2

i x℘(λ−λi)−λi xxζ(λ−λi)
]
+c(x , y , t), λi = λi(x , y , t).

(3)
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The sum of the residues vanishes for an elliptic function u.
Therefore,

∑
i λixx = 0. We say that the poles λi , i = 1, . . . ,N

are balanced if they can be presented in the form

λi(x , y , t) = qi(x , y , t)− hx ,
N∑

i=1

qi(x , y , t) = const , (4)

where h is an arbitrary non-zero constant.

As it was shown by Akmetshin, Volvovsky and Kr, the balance
poles of u satisfy equations that are the equations of motion of
a hamiltonian system with the phase space that is the space of
functions (q1(x), . . . ,qN(x), p1(x), . . . ,pN(x)) with the Poisson
brackets

{qi(x),pj(x̃)} = δijδ(x − x̃)

and with the Hamiltonian Ĥ =
∫

H(x) dx ,

H =
N∑

i=1

p2
i (h − qi x )− 1

Nh

( N∑
i=1

pi(h − qi x )

)2

− U(q), (5)
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The sum of the residues vanishes for an elliptic function u.
Therefore,

∑
i λixx = 0. We say that the poles λi , i = 1, . . . ,N

are balanced if they can be presented in the form

λi(x , y , t) = qi(x , y , t)− hx ,
N∑

i=1

qi(x , y , t) = const , (4)

where h is an arbitrary non-zero constant.

As it was shown by Akmetshin, Volvovsky and Kr, the balance
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where

U(q) =
N∑

i=1

q2
i xx

4(h − qi x )
−1

2

∑
j 6=i

[
(h−qj x )qi xx−(h−qi x )qj xx

]
ζ(qi−qj)

+
1
2

∑
j 6=i

[
(h − qj x )2(h − qi x ) + (h − qj x )(h − qi x )2]℘(qi − qj)

+
∂

∂x

(
h
2

∑
i 6=j

(qi x − qj x )ζ(qi − qj)

)
.
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Example.

For N = 2 this system is a hamiltonian system on the space of
two functions q(x), p(x), where we set

q = q1 = −q2,
1
h

p(h2 − q2
x ) = p1(h − qx ) = −p2(h − qx ),

The Poisson brackets are canonical, i.e.
{q(x),p(x̃)} = δ(x − x̃). The Hamiltonian density H in the
coordinates {p,q} is equal to

H =
2
h

p2(h2 − q2
x )− h

q2
xx

2(h2 − q2
x )
− 2h(h2 − 3q2

x )℘(2q).

It was noticed by A. Shabat that the equations of motion given
by this Hamiltonian are equivalent to Landau – Lifshitz equation.
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The spectral curves Γ giving elliptic families of the KP solutions
can be characterized in two equivalent ways:

they are curves whose Jacobian contains an elliptic curve,
i.e. Eτ ⊂ J(G)

This is a nontrivial constraint and the space of
corresponding algebraic curves has codimension g − 1 in
the moduli space of all the curves.
the locus K̂g of curves on which there exists a pair of
meromorphic differentials Ψ1,Ψ2 with the only pole of order
at most g at a puncture p0, with integer periods

∮
γ Ψi ∈ Z,

and such that dz = τΨ1 −Ψ2 is a holomorphic differential.

Note, that the holomorphic differential dz defines a map
Γ→ Eτ .
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Idea of the proof of the main theorem

Let X be a compact cycle inMct
g and let Y be the preimage Y

of X under the forgetful mapMct ,(g)
g,1 →Mct

g . If the dimension of
X is at least g then:
→ the intersection of Y with K̂g is at least one-dimensional
→ the compactness of X implies that the value of τ along this
intersection is constant.
→ the subvariety K̂g,N,τ is affine. Hence, Y ∩ K̂g,N,τ intersects
the boundary.
Then simply induction arguments lead to a contradiction.
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HAPPY BIRTHDAY SASHA !
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