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Moduli space Mg,n

• Mg,n — moduli space of genus g Riemann surfaces with n
punctures — a complex orbifold, dimCMg,n = 3g −3+n > 0.

• T[X ]Mg,n — holomorphic tangent space at [X ] ∈Mg,n — a
complex vector space of harmonic Beltrami differentials µ with
respect to the hyperbolic metric on type (g,n) Riemann surface
X .

• T∗
[X ]Mg,n — holomorphic cotangent space at [X ] ∈Mg,n — a

complex vector space of meromorphic quadratic differentials q
on X with at most simple poles at the punctures.

• The pairing T[X ]Mg,n ⊗T∗
[X ]Mg,n →C

(µ,q) =
∫
X

µq.

• If X ' Γ\H, where H={z = x+p−1y ∈C : y > 0} is Lobachevsky
plane and Γ is Fuchsian group of type (g,n), then q(z) is a cusp
form of weight 4 for Γ and µ(z) = y2q(z).
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Weil-Petersson metric

• The WP metic (A. Weil) is given by the Petersson inner product
in the space of cusp forms:

〈µ1,µ2〉WP =
∫
X

µ1µ2dρ =
Ï
Γ\H

q1(z)q2(z)y2dxdy.

• The WP metric is Kähler and has negative Ricci, holomorphic
sectional and scalar curvatures (L. Ahlfors).

• An explicit formula for the Riemann tensor of the WP metric in
terms of the resolvent of the automorphic Laplace operator
and explicit bounds for the curvatures (S. Wolpert).

• [ωWP] ∈ H2(Mg,n,R) is a non-zero class.

• The WP metric has global potentials on the configuration
space W0,n →M0,n and on the Schottky space Sg →Mg , given
by the classical Liouvlle action (P. Zograf & L.T.).
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Cusp (TZ) metric
• Let X ' Γ\H, where Γ is a Fuchsian group of type (g,n), n > 0.

• Let z1, . . . ,zn ∈R∪ {∞} be a complete set of non-equivalent
cusps for Γ— the fixed points of parabolic generators S1, . . . ,Sn.

• Let Γi be the cyclic subgroup 〈Si 〉 and let σi ∈ PSL(2,R) be such
that σi∞= zi and σ−1

i Siσi =
(

1 ±1
0 1

)
.

• Let Ei(z,s) be the Eisenstein-Maass series associated with the
cusp zi, which for Res > 1 is defined by the following absolutely
convergent series

Ei(z,s) = ∑
γ∈Γi\Γ

Im(σ−1
i γz)s.

• The Eisenstein-Maass series are Γ-automorphic functions on
H satisfying

∆Ei(z,s) = s(1− s)Ei(z,s),

where

∆=−y2
(
∂2

∂x2 + ∂2

∂y2

)
is the Laplace-Beltrami operator on the Lobachevsky plane.
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Cusp (TZ) metric cont.

• The inner products

〈µ1,µ2〉i =
Ï
Γ\H

µ1(z)µ2(z)Ei(z,2)
dxdy

y2 , i = 1, . . . ,n,

define Kähler metrics on the Teichmüller space Tg,n.

• The metric

〈µ1,µ2〉TZ =
n∑

i=1
〈µ1,µ2〉i

is Modg,n-invariant and projects to a Kähler metric on Mg,n.

• See P. Zograf & L.T., CMP 137 (1991), L. Weng, Math. Annalen,
320(2) (2001), S. Wolpert, Duke J. 138(3) (2007).

• Like WP metric, the TZ metric is not complete, K. Obitsu CMP
205 (1999).

• Curvature properties of the TZ metric?
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Potential on W0,n

• Let J be Klein’s Hauptmodul,

J : Γ\H→P1 \ {w1, . . . ,wn−3,0,1,∞}

• Fourier expansion of J at the cusps

J(σiz) = wi +
∞∑

k=1
ai(k)e 2π

p−1kz, i = 1, . . . ,n−1,

J(σnz) =
∞∑

k=−1
an(k)e 2π

p−1kz, i = n.

• Proposition (J. Park, L.P. Teo & L.T., 2015)

Put hi = |ai(1)|2, i = 1, . . . ,n−1, and hn = |an(−1)|2. Then − loghi and
loghn are Kähler potentials for the metrics 〈 , 〉i and 〈 , 〉n , and
logh = loghn − logh1 −·· ·− loghn−1 is a Kähler potential for the
metric 〈 , 〉TZ.
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Potential on W0,n, remarks
• Explicit description of potentials hi in terms of the hyperbolic

metric eϕ(w)|dw|2 on X =P1 \ {w1, . . . ,wn−3,0,1,∞}:

loghi = lim
w→wi

(
log |w−wi|2 + 2e−ϕ(w)/2

|w−wi|
)

, i = 1, . . . ,n−1,

loghn = lim
w→∞

(
log |w|2 − 2e−ϕ(w)/2

|w|
)

.

• Let R(z) be the projection of the Schwarzian derivative of −J(z)
on the subspace of cusp forms for weight 4 for Γ. For varying Γ
the cusp forms R(z) determine a (1,0)-form R on W0,n.

• Let SL : W0,n →R be the classical Liouville action (A. Polyakov
1983, P. Zograf & L.T., 1985). Then the function S = SL +πh on
W0,n satisfies

∂S = 2R

∂̄∂S =−2
p−1

(
ωWP − 4π2

3
ωTZ

)
,

where d = ∂+ ∂̄ — de Rham differential on W0,n.



Potential on W0,n, remarks
• Explicit description of potentials hi in terms of the hyperbolic

metric eϕ(w)|dw|2 on X =P1 \ {w1, . . . ,wn−3,0,1,∞}:

loghi = lim
w→wi

(
log |w−wi|2 + 2e−ϕ(w)/2

|w−wi|
)

, i = 1, . . . ,n−1,

loghn = lim
w→∞

(
log |w|2 − 2e−ϕ(w)/2

|w|
)

.

• Let R(z) be the projection of the Schwarzian derivative of −J(z)
on the subspace of cusp forms for weight 4 for Γ. For varying Γ
the cusp forms R(z) determine a (1,0)-form R on W0,n.

• Let SL : W0,n →R be the classical Liouville action (A. Polyakov
1983, P. Zograf & L.T., 1985). Then the function S = SL +πh on
W0,n satisfies

∂S = 2R

∂̄∂S =−2
p−1

(
ωWP − 4π2

3
ωTZ

)
,

where d = ∂+ ∂̄ — de Rham differential on W0,n.



Potential on W0,n, remarks
• Explicit description of potentials hi in terms of the hyperbolic

metric eϕ(w)|dw|2 on X =P1 \ {w1, . . . ,wn−3,0,1,∞}:

loghi = lim
w→wi

(
log |w−wi|2 + 2e−ϕ(w)/2

|w−wi|
)

, i = 1, . . . ,n−1,

loghn = lim
w→∞

(
log |w|2 − 2e−ϕ(w)/2

|w|
)

.

• Let R(z) be the projection of the Schwarzian derivative of −J(z)
on the subspace of cusp forms for weight 4 for Γ. For varying Γ
the cusp forms R(z) determine a (1,0)-form R on W0,n.

• Let SL : W0,n →R be the classical Liouville action (A. Polyakov
1983, P. Zograf & L.T., 1985). Then the function S = SL +πh on
W0,n satisfies

∂S = 2R

∂̄∂S =−2
p−1

(
ωWP − 4π2

3
ωTZ

)
,

where d = ∂+ ∂̄ — de Rham differential on W0,n.



The space Sg,n

• Consider a holomorphic fibration Sg,n →Sg over the Schottky
space Sg of compact Riemann surfaces of genus g with the
fibers being configuration spaces of n points on Schottky
domains.

• Let Σ be marked, normalized Schottky group of rank g > 1 with
domain of discontinuityΩ⊂C. The fiber over a point [Σ] ∈Sg

is a configuration space of n points in Σ\Ω.
• Let X 'Σ\Ω be compact Riemann surface of genus g > 1 with

marked points x1, . . . ,xn and let X0 = X \ {x1, . . . ,xn}, so that
X0 ' Γ\H, where Γ is a Fuchsian group of type (g,n).

• Let H∗ be the union of H and all cusps for Γ.
• The Schottky uniformization of the compact surface X with

marked points x1, . . . ,xn and the Fuchsian uniformization of a
punctured surface X0 are related by the covering map

J :H∗ →Ω

such that the image of the cusps is the orbit Σ · {w1, . . . ,wn} ⊂Ω.
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• Let z1, . . . ,zn be a complete set of cusps for Γ. Then

J(σiz) = wi +
∞∑

k=1
ai(k)e 2π

p−1kz, i = 1, . . . ,n,

where wi = J(zi).

• Let SL be the appropriately regularized at wi classical Liouville
action on Schottky space (P. Zograf & L.T., 1987).

• Let Ci be a tautological line bundle over Mg,n whose fiber at
(X ;x1, . . . ,xn) ∈Mg,n is the cotangent line T∗

xi
X , i = 1, . . . ,n.

• Let Li = p∗(Ci) under the projection p :Sg,n →Mg,n.

• hi = |ai(1)|2 determines Hermitian metric on the line bundles
Li over Sg,n, i = 1, . . . ,n.

• H = exp

{
SL

π

}
determines Hermitian metric on the line bundle

L =L1 ⊗·· ·⊗Ln over Sg,n.
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• Theorem (J. Park, L.P. Teo, L.T., 2015)

• The first Chern form of the line bundle L →Sg,n is given by

c1(L ,H) = 1

π2ωWP

• The first Chern forms of the line bundles Li →Sg,n are

c1(Li,hi) = 4

3
ωi, i = 1, . . . ,n.

• Special combination
1

π2

(
ωWP − 4π2

3
ωTZ

)
of WP and TZ metrics

has a global potential on Sg,n given by the function

1

π
SL −

n∑
i=1

log |ai(1)|2 = log
H

h1 · · ·hn
.

• Up to the factor 1/12 this combination of metrics appears in the
local index theorem for families on punctured Riemann surfaces
for k = 0,1 (P. Zograf & L.T., 1991).
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