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Abstract

We construct a Darboux transformation for the vector sine-Gordon
(vSG) equation group and derive its Backlund transformation. The
construction is purely algebraic and makes use of the reduction
group of the Lax representation of the vSG. Then using the
Darboux transformation we find a related Yang-Baxter map on the
sphere, an integrable discrete vector sine-Gordon equation (dvSG)
and two integrable differential difference equations which are
related to each other by a Miura transformation.
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The vmKdV-vSG hierarchy

Consider the Lax operators
L(A) = Dc =U(N), A(X) =Dt = V(})

where () and V()) belong in gly.o(C)[A, A71].

In particular we assume

UN) =X+ U, V()= zm: AV

i=—1

with [, m € N.



Consider the gl , automorphisms

r: A\ — ﬂ)\)—r
h: AN — AQ)
s: AN = QA(-N)Q

where Q = diag(—1,1,...,1).
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Consider the gl , automorphisms

r: A\ — ﬂ)\)—r
h: AN — AQ)
s: AN = QA(-N)Q

where Q = diag(—1,1,...,1).
Remark:The automorphisms r, h and s commute and are
r? = h?> = 52 = id thus they generate the group Z x Zs x Z>.

We assume

rUN) =U), hUN)) =UQ), sUQ)) =U),
r(VN)) =V, h(VQA) =V(A), s(V(A)=V().



The invariance of U(\) = AJ + U and V(\) = >_; A'V; under the
automorphisms r and h implies that

J, U, Vi € soni2(R).
while their invariance under r implies the Z,—gradation
son2(R) = Eo ® By
where
Ei={acson2(R); QaQ ™t = (~1Ya}, j€2Z

and [E,', EJ] C E;+j, i,j € Z>.



The invariance of U(\) = AJ + U and V(\) = >_; A'V; under the
automorphisms r and h implies that

J, U, Vi € soni2(R).
while their invariance under r implies the Z,—gradation
son2(R) = Eo ® By
where
Ei={acson2(R); QaQ ™t = (~1Ya}, j€2Z
and [Ej, Ej] C Eiyj, i,j € Z>.
It follows that

J, V2k+1 =1 and U, Vo, € Ey.



Elements of Ey are skew-symmetric matrices of the form

* 0 0

0 =« *

0 =x *
while of E; have the following form

0 = *

x* 0 0



The vmKdV equation

The compatibility condition of the Lax operators £ and A with

0 10 0 0 0
J=| -1 0 0 u=|0 0o #~T
0 00 0 -7 0

reads
U — Vi + U, V] =0

and is equivalent to the vmKdV equation
I TT
Ve + 5”7” Vx + Yox =0
where 77 = (y1,...,vn) and
V= XJ+ XU+ A(kJ + [Us, J]) + (kU + [Uy, U] = Uyx)

where k = —||7|[2/2.



The vSG equation

The vSG equation for @™ = (a1, ...,ap) and 3 scalar is given by
Di(f~tax) =a, [ldlf+p*=1
and it admits the following Lax pair
L=Dy—X—-U, A=D,—\tV,

where

and

When N =1 in polar coordinates («a, 3) = (sin ¢, cos ¢) we obtain
the classical SG equation.
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Darboux transformations

A Darboux transformation for the linear system
L(@, B, )W =0, A(@ B,\)V=0

is a linear transformation acting on the fundamental solution of the
linear problem

Vi Wy =MV, det(M) #0
such that W; satisfies
L(01, B1,\)V1 =0, A(d1, 81, A)V1 =0.
It follows that the Darboux matrix M satisfies
My =UM — MU, My =V1M— MV

where Uy = U(d1, B1) and Vi = V(d4, f1).



A Darboux transformation can be inverted and iterated and defines
a shift operator & such that

S (Vi,a;, Bi) = (Vig1,diy1, Biv1)

If the Darboux matrix contains a free parameter y then we denote
it by M,, and the corresponding shift by S,,. Commutativity of the
shifts S, and S, implies the discrete Lax representation

Sl,(/\//#)/\/ll, = SM(/\/I,,)M“

which is equivalent to a system of partial difference equations. The
shifts S, and S, act on the Z? lattice where on each vertex (m, n)
we attach the variables

. meon =~ men
Omn = SM Syaa Bm,n = SM 81/5



We assume that the Darboux matrix M(\) for the vSG is rational
in A (without loss of generality) and invariant under the lifted
action of h, r and s, i.e.

r: M) — I\/I()\)_T = M()\)
: M(A) — I\/I(X) M(X)
s: M) — QM(-N)Q~!= M)

Proposition: Assume that the Darboux matrix M of the vSG is

invariant under the action of r, h and s and independent of A.
Then M is a constant matrix of the form

where Q € On(R). Moreover,

/81:/87 0_5'1:90_2



We are interested in the simplest Darboux matrix M()), rational in

A, with a pole at A = p and invariant under the action of s, r and
h.

First we average over the G5 ~ Z5 subgroup generated by s

-1
My > — A QAQ
A—u/g, A— U A p

M, (A) = <Mo +
where

1 1
Ao = (Mo) g, = §(M0 + QMo@ ') and A = 5/\/11,



Since Ay € GL,?,;Z and from equations

DM, = UsM,, — MU and D:M,, = Vi M, — M,V

follows that A, is a constant matrix and of the form

A =

D oo

0
m
0

o o 3

MMM, (N7 =1, M,(X) = My(X) = A € On2(R).

Conclusion: A, is a constant Darboux matrix and thus without
loss of generality | can assume that

A QAQ!
M =1 —




The orthogonality condition M, (A\)M,(A)T = 1 implies also that
T L st L T
AA" =0and A(1—- —QA' Q)+ (1—-—QAQ|A"' =0
21 21

Assumption: A is a rank one matrix i.e.

A=|b)(al, (al=(p,q,a1,...,an), |b)= (bl,...,bN+2)T

It follows that

(ala)=0 and |b) = <a|2CSL]a> Q|a)

_ 2p o, 2u _ Qla)(al
My =14 57 P~ 5= QPQ, P =



The orthogonality condition M, (A\)M,(A)T = 1 implies also that
T L st L T
AA" =0and A(1—- —QA' Q)+ (1—-—QAQ|A"' =0
21 21

Assumption: A is a rank one matrix i.e.

A=|b)(al, (al=(p,q,a1,...,an), |b)= (bl,...,bN+2)T

It follows that

(ala)=0 and |b) = <a|2CSL]a> Q|a)

2u 2u
M,(A\) =1+ P — QPQ, P=
HA) A—p Atp (al Qla)
Remarkl: P is a projector, i.e. P> =P
Remark2: |a) — c|a) does not change P
Remark3: PPT = PQP =0
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The reality condition M,,(X) = M,,()) is satisfied in two cases:
Casel: p€Rand P=P
This assumption implies that [a) € RV*2 and since (a| a) = 0
it follows that |a) = 0. In this case we have a trivial Darboux
matrix M,(\) = 1.
Case 2: p € iR and P = QPQ
This assumption implies that

(a| = (ip, g, a1, ..., an), with p, g, ai €R

It follows (since | can multiply |a) with p~!) that

a-(2)

where (since (a| a) = 0) ||u||? = 1.
Remark: It follows that (a] Q@ |a) = 2 and thus

1
P=3Qla)(a



We have proven
Proposition: The matrix

Mu(N) =1+ 15 @la) (ol = 5 1a) (4l Q

]a>:<i>, uesV

satisfies the following relations
M)t =MW\, MQ)=M(1), QM(=A)Q™ = M()).

with © € R and

c



The Darboux matrix M, has to satisfy the semi-discrete zero
curvature conditions

DM, = V1M, — M.V, DM,, = UM, — M, U
from where we obtain that
vi+v <
u—= 7> Vv =
v+ v|

and also the Backlund transformation

vy +v 1

[lv1 + v|

QL ™

D,a D& 2
xQ1 Xa:_ 1% (&14—62)
e} B [lv1 + |




The Darboux matrix M, has to satisfy the semi-discrete zero

curvature conditions
DM, = V1M, — M.V, DM,, = UM, — M, U
from where we obtain that
vi+v <
u—= 7> Vv =
v+ v|

and also the Backlund transformation

vy +v 1

QL ™

v+ v|
Dy D, 2
xQ1 Xa:_ 14 (&14—62)
B B [lv1 + v

Remark: When N = 1 we obtain the known Backlund
transformation of the SG equation



Related Yang-Baxter map

The re-factorisation problem of the product of two Darboux
matrices can lead to a Yang-Baxter map.

1. Yu.B. Suris and A.P. Veselov. Lax matrices for Yang-Baxter maps.
J. Nonlinear Math. Phys., 10:223-230, 2003.

2. A. P. Veselov, Yang-Baxter maps and integrable dynamics, Phys.
Lett. A 314, 214-221 2003.

3. T. Kouloukas and V. Papageorgiou. Poisson Yang-Baxter maps with
binomial Lax matrices. J. Math. Phys., 52 12:404012, 2011.

4. S. Konstantinou-Rizos and A. V. Mikhailov. Darboux
transformations, finite reduction groups and related Yang-Baxter
maps. J. Phys. A: Math. Theor., 46, 2013.



For the Darboux matrix M, (x; \)

iv v

MV(X;)\):1+A—iVQ|a><a|_)\+iV

|a) (al Q

with [a) = (i,x)T and x € SN we consider the re-factorisation
problem
M, (x; N)M(y; A) = My (Y5 A)ML(X; N).

If for a given x and y the re-factorisation problem has a unique
solution for X and Y then we can define a map

R(v,u): SN xSV — SN xgN
(y) = (XY) =Xy p), Yxyiv, p))

In this case
I(A) = Tr (M, (x; \)M,(y; N))

is a generating function for invariants of the maps.






We also define the extended maps in SN x SN x SN as follows:

Ria(v,p): (x,y,2) = (X yiv,p), Y(xyivp),2)
Riz(v,k): (x,y,z) — (X(x,z;v,K),y, Y(x,z;v,K))
Rog(u k) (x,y,2) = (x,X(y,z 1, k), Y(y. 2 1, K))

and we say that R(v, i) is a parametric Yang-Baxter map if it
satisfies the (set theoretical) parametric Yang-Baxter equation

Ri2(v, p)oR13(v, k)oRa3(p, k) = Ra3(p, k)oR13(v, k)oRya(v, ).

In our case we obtain the vector Yang-Baxter map
(X,Y) = R(v, i) defined on the unit sphere, where

(V2 — 12)x + 2u(v + p (x, y))y
V2 + p? + 2uv (x, y)

(12 =12y + 2w+ v (x, y))x
V2 4 p2 4+ 2uv (x, y)

X =

)

Y =




R(v, p) o R(v, 1) = id (involution)
(X, Y) =R, 1)(x,¥) = (f,u(x,¥), fup(y, X))

(2 — 12)x + 2u(v + p{x, y))y
V2 + p? 4 2uv (x,y)

fu,u(xay) =

If P(x,y) = (y,x) then
PoR(u,v)o P = R(v,u) = R(v, 1)1 (reversible)

I(x,y) = (x,y) (scalar invariant)
H(x,y) = vx + uy (vector invariant)

. V.G. Papageorgiou, A.G. Tongas, and A.P. Veselov, Yang-Baxter
maps and symmetries of integrable equations on quad-graphs,
Journal of mathematical physics, 47 (2006), no. 8, 083502

. V. E. Adler, Integrable deformations of a polygon, Physica D 87,
52-57 (1995).



(U, V) = R(a, b)(u,v) = (Qs;l X gb;l) o R(v, p) o (¢ % Qb,u)

x = 6(u) = vlu, y = gu(v) = u v

SN g REP227D) oy g
GuXPp ¢;1X¢;1
SN « gN R SN « gN
v,
a—»b
Uu = _—
v+ HU+VH2(u+v),
a—b>b
V = u— =2
u |]u—|—vH2(u+v)’

lul?=2+a, |v[2=2+b, a=12-2, b=p?-2



Discrete vector sine-Gordon

Starting from the refactorisation problem of the YB map

My (x; Myu(y: A) = Mu (Y A)My (X3 A)

we set
y = Vo1 TV V1otV
[lvo,1 +v||’ [lvi,0 -+ vl|
and
Vi1 +Vo,1 Vi1 +Vip
x=5§X)=7""—""-,Y=S§ ===
w(X) v, +voall” W) [lvi,1 + viol|
where

(1)

where we use the notation v, ,, = S[}S/Tv, Vo0 = V.



From the first component of the YB map

(X, Y) = (fu,,u(Xa)/)a f,u,l/(}/ax))
we obtain that

vipt+v ( vii+Vo1 Vo1tV )
Ivio+vll 7" \lvii +voull” [lvos +vl|

which is equivalent to
vio=—V+2(f,u(x,y), V) fu(x,y) = F(v,vo1,v11;V, 1)
Similarly, from the second component of the inverse YB map
(> y) = (hu(X,Y), fuu(Y, X))
we obtain

Vo = —V+2(f (Y, X),v) f,(Y,X) = G(v,v10,V1,1; v, 1t)



For the dvSG equation there is a well defined initial value problem
with the initial data given by the staircase

N N
{Vik €SV Vi1 €SY; k€Z, ik +Vik1 0, Vi1 k + Vi k # 0}

Vi+1,k+2 Vi+2,k+2
[

Vi k+1

r-VkJrl.IH»l Vk42,k+1

Vi.k Vi+1,k



1. The vector invariant H(x,y) = vx + py of the YB map i.e.
the relation
vX +pY =vx+py

implies the conservation law for the dvSG
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implies the conservation law for the dvSG

Viop+V

Vo1tV
V——— —
[lvio + v|

S,—1 S, —p—"——
( 14 ) ( )M”VO71+V||

2. When N = 1 we obtain the classical discrete sine-Gordon
equation
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A local flow on the sphere

Inverse Problem: Given a Darboux transformation find all the
Lax operators that are associated with it.
We consider a Lax operator

B =D, - W()

which has the same reduction group with the operators £ and A
and the same poles in A with the Darboux matrix M,,.

First we average over the group G, X G ~ Z» x Z, generated by
the automorphisms r and s

< iyé > _ B iuQBQ*l, BT _ g
A—iv G, x G,

W) = A—iv A+iv

where B =4"1(b—bT)



The compatibility condition of the linear system

U, =W, S,(V) = MW

DM, = WM, — M,WW
and implies the following conditions:
B1A = AB,

D;A = (B —B)-— (2)*1 (B1RAR — QAQRB
+QB1QA - AQBQ) .
Remember:

A QAR
A—iv A+iv’

A=1ivQla)(al, [a) =



It can be verified that
_ Qfa){al—la)(a1]@Q
(al Qfa-1)

is skew symmetric and satisfies BiA = AB. Moreover with this
choice of B the reality condition

B

W) = W)

is satisfied.



It can be verified that
_ Qfa){al—la)(a1]@Q
(al @la-1)
is skew symmetric and satisfies BiA = AB. Moreover with this
choice of B the reality condition

B

W) = W)

is satisfied.
The other equation is equivalent to

u-+u_g1

——— uegsV
[lu+uyf[>

u-=2(S,-1)



It can be verified that
_ Qfa){al—la)(a1]@Q
(al Qfa-1)

is skew symmetric and satisfies BiA = AB. Moreover with this
choice of B the reality condition

B

W(A) = W(A)
is satisfied.
The other equation is equivalent to

u-+u_g1

——— uegsV
[lu+uyf[>

u-=2(S,—-1)
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But

QL ™

)

_ v vaafPva +v) = [lvi + (v +vog)

Vi +vVv (
u:i’ Vv =
[lvi + v|

and can be proven that v satisfies

Dyv
T i vV v  [ve || v v

Miura



But

QL ™

)

[Iv 4+ vog][P(vi + v) = [[vi + v[[*(v +v_1)
(vi+tv,v+vog)+|[vi + V|| [[v+ v

Vi +vVv (
u:i’ Vv =
[lv1 + v]|

and can be proven that v satisfies

D.v =

Miura

When N = 1 we obtain
$1— @1
r =1 EE—
10} an < 2 )

F. Nijhoff and H. Capel. The discrete Korteweg-de Vries equation. Acta
Applicandae Mathematica, 39(1-3):133-158, 1995.



Conclusions

1. Construction of a Darboux transformation for the vSG using
the reduction group

Derived the corresponding Backlund transformation
Constructed a related YB map
Constructed the dvSG

AR

Constructed a new Lax operator and derived a
differential-difference equation and established its Miura
equivalence with another differential-difference equation.
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equations on a sphere, arxiv:1507.07248



