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Symmetry
• translational symmetry (periodicity)

• rotational symmetry
order n C B rotation by 360◦/n

• reflection symmetry (mirror symmetry)

• permutation (‘colour’) symmetry
(symmetry under exchange)

• . . .
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Icosahedral symmetry

5-fold
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2-fold



An unexpected discovery...

(Photo courtesy of the Ames Laboratory)

Dan Shechtman, Nobel prize for Chemistry 2011



Forbidden crystals

(Photo courtesy of the Ames Laboratory)



Forbidden crystals

(Figure reproduced with permission from D. Shechtman, I. Blech, D. Gratias and J.W. Cahn (1984),
Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953.

Copyright (1984) by the American Physical Society)



Forbidden crystals
5-fold

3-fold

2-fold

(Figure reproduced with permission from D. Shechtman, I. Blech, D. Gratias and J.W. Cahn (1984),
Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953.

Copyright (1984) by the American Physical Society)



Quasicrystals

(Photo courtesy of Paul Canfield, Ames Laboratory)



Quasicrystals

(Picture courtesy of Conradin Beeli)



Aperiodic Tilings
• ‘forbidden’ symmetries

• pointlike diffraction

• atomic structure of quasicrystals

• generating tilings:
I local (matching) rules

I inflation

I projection



Penrose Tilings

72°
36°
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Penrose Tilings
Sir Roger Penrose on his pattern...



Penrose Tilings
... and a less desired application

“So often we read of very large companies riding rough-shod over small
businesses or individuals, but when it comes to the population of Great
Britain being invited by a multi-national to wipe their bottoms on what
appears to be the work of a Knight of the Realm without his permission, then
a last stand must be made.” (David Bradley, Director of Pentaplex)
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Fibonacci Series

Leonardo da Pisa (Fibonacci), Liber Abaci (1202)



Fibonacci Series
Substitution rule for L (‘large’) and S (‘small’)

L 7→ LS and S 7→ L gives

L 7→ LS 7→ LSL 7→ LSLLS 7→ LSLLSLSL 7→ . . .

The Fibonacci numbers fn+1 = fn + fn−1 (f0 = 0,
f1 = 1) are

0,1,1,2,3,5,8,13,21,34,55,89,144,233, . . .

with fn
fn−1
→ 1+

√
5

2 = 1,6180339 . . . (golden ratio)



Fibonacci Series
Geometric Realisation (Inflation)

S L

L L S

One-dimensional aperiodic pattern

. . . L S L L S L S L L S L L S . . .
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The ‘Pinwheel’ Tiling

1 2
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Projection
• crystallographic restriction:

more symmetries in higher dimensions

• 5-, 8- and 12-fold symmetry realised in 4D,
icosahedral symmetry in 6D lattices

• aperiodic tilings can be obtained as ‘slices’
of higher-dimensional periodic lattices

• ‘cut & project’ or ‘model sets’

• inherit almost periodicity and pure point
diffractivity
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Fibonacci Projection

S L S L L S L L S L S L



Ammann-Beenker Projection
Projection from Z4 ⊂ R4:



Ammann-Beenker Projection
Projection from Z4 ⊂ R4:



Euclidean Model Sets

CPS:

Rd π←−− Rd × Rm πint−−→ Rm

∪ ∪ ∪ dense

π(L)
1−1←−−− L −−−→ πint(L)

‖ ‖
L ?−−−−−−−−−−−−−−−−−→ L?

Model set: Λ = {x ∈ L | x? ∈W }
with W ⊂ Rm compact, λ(∂W ) = 0

Diffraction: γ̂ =
∑

k∈L~|A(k)|2 δk

with L~ = π(L∗) and amplitude A(k) = dens(Λ)
vol(W ) 1̂W (−k?)



The quest for a monotile
Is there a single shape that tiles space without gaps
or overlaps, but does not admit any periodic tiling?
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The quest for a monotile
Is there a single shape that tiles space without gaps
or overlaps, but does not admit any periodic tiling?
3D: Schmitt-Conway-Danzer ‘einstein’
2D: Penrose’s 1 + ε+ ε2 tiling (1995)

Socolar-Taylor monotile (2011)



What about Integrable Systems?
• Ising-type spin systems on aperiodic structures

(Korepin 1986/7, Tracy 1988, Au-Yang & Perk 2006)

• aperiodic quantum spin chains
(Benza 1989, Luck 1993, Hermisson, Grimm & Baake 1997)

• entropy of random tiling ensembles
(Widom 1993, Kalugin 1994, Nienhuis & de Gier 1996/7)

• aperiodic Schrödinger operators
(lots of literature, good reviews by Damanik)

• diffraction measure and spectral measure



For more on this...
Michael Baake & UG
Aperiodic Order. Vol 1. A Mathematical Invitation
Cambridge University Press (2013)

Michael Baake, David Damanik & UG
What is Aperiodic Order? arXiv:1512.05104

Michael Baake, David Damanik & UG
Aperiodic order and spectral properties. arXiv:1506.04978

UG
Aperiodic crystals and beyond
Acta Crystallographica B 71 (2015) 258-274. arXiv:1506.05276

Michael Baake, UG & Robert V. Moody
What is Aperiodic Order? arXiv:math/0203252

UG & Michael Schreiber
Aperiodic Tilings on the Computer. arXiv:cond-mat/9903010



‘Buffalo’ Tiling
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