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Burchnall–Chaundy polynomials

Burchnall and Chaundy (1930): remarkable sequence of polynomials defined
by

P ′n+1(z)Pn−1(z)− Pn+1(z)P ′n−1(z) = Pn(z)2

with P−1(z) = P0(z) = 1 :

P1 = z , P2 =
1

3
(z3 + τ2), P3 =

1

45
(z6 + 5τ2z

3 + τ3z − 5τ 22 ),

P4 =
1

4725
(z10 + 15τ2z

7 + 7τ3z
5 − 35τ2τ3z

2 + 175τ 32 z −
7

3
τ 23 + τ4z

3 + τ4τ2), ...

Later rediscovered by Stellmacher ang Lagnese (1967) and independently by
Adler and Moser (1978).

The existence is not obvious at all: indeed the above relation is equivalent to

d

dz

Pn+1

Pn−1
=

P2
n

P2
n−1

,

which means that all the residues of the right-hand side must be zero.
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Parallel: Laurent phenomenon

Fomin and Zelevinsky (2002): cluster algebras and Laurent phenomenon

As an example consider the difference equation (related to cluster algebra of
type A1)

pn+1pn−1 = p2
n + 1.

If we choose the initial data p0 = p1 = 1 then the corresponding pn will be
surprisingly integer for all n: 1, 2, 5, 13, 34, 89, . . .

In fact, there is a more general result, which is the simplest example of the
Laurent phenomenon:

Theorem (FZ, 2002): pn are Laurent polynomials of the initial data p0, p1
with integer coefficients.
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Difference Burchnall-Chaundy equation

Consider the following natural difference analogue of the Burchnall-Chaundy
relation:

Qn+1(z + 1)Qn−1(z)− Qn+1(z)Qn−1(z + 1) = Qn(z)Qn(z + 1),

with Q−1(z) = Q0(z) = 1.

Willox-AV (2015): The difference BCh equation has polynomial solutions
Qn(z) with degree n(n + 1)/2 and coefficients that are Laurent polynomials of
the initial data qk = Qk(0), such that

An Qn(z) ∈ Z[z ; q±1
1 , . . . , q±1

n−2, qn−1, qn], An =
n∏

j=1

(2j − 1)!!,

where (2k + 1)!! = 1× 3× 5× · · · × (2k + 1).

The first three polynomials are

Q1 = z + q1, Q2 =
z(z2 − 1)

3
+ q1z

2 + q2
1z + q2,

Q3 =
z2(z2 − 1)(z2 − 4)

45
+

2q1z
5

15
+

q2
1z

4

3
+

(q3
1 − q1 + q2)z3

3
+

(3q1q2 − q2
1)z2

3

+(
q3
q1

+
q2
2

q1
+

2q2
3
− q3

1

3
+

q1
5

)z + q3.
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Dodgson’s method of computing determinants

Ch. Dodgson (aka L. Carroll) (1866): condensation method for computing
determinants

Proof is based on Desnanot-Jacobi identity:

∆∆1,n
1,n = ∆1

1∆n
n −∆n

1∆1
n,

where ∆ = detA, ∆j
i = detAj

i etc.
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Dodgson’s condensation method and octahedral equation

One can view Dodgson’s method as the solution of a very special Cauchy
problem for the discrete Dodgson octahedral equation

ul,m+1,n+1ul,m−1,n−1 − ul,m+1,n−1ul,m−1,n+1 = ul−1,m,nul+1,m,n,

where m, n, l ∈ Z, m ≡ n ≡ l(mod 2).

Figure: Dodgson’s Cauchy pyramid for computing 3× 3 determinants
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Relation with Hirota-Miwa equation

Hirota (1981), Miwa (1982): a discrete version of KP equation on a standard
cubic lattice

a vl+1,m,nvl,m+1,n+1 + b vl,m+1,nvl+1,m,n+1 + c vl,m,n+1vl+1,m+1,n = 0,

where l ,m, n ∈ Z and a, b, c are arbitrary non-zero parameters.

Formally the Hirota-Miwa equation may be considered as a version of the
Dodgson equation if one interprets these six vertices of the cube as the vertices
of the octahedron:

Figure: Support of the Hirota-Miwa equation in the cube
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Reductions

It is however clear that from a geometric point of view Dodgson and
Hirota-Miwa equations are different, which can be seen from their natural
reductions.

For the octahedral equation a natural reduction would be ul+1,m,n = ul−1,m,n

leading to the discrete Dodgson equation

um+1,n+1um−1,n−1 − um+1,n−1um−1,n+1 = u2
m,n,

or, in the functional version, the difference Dodgson equation:

Rn+1(z + 1)Rn−1(z − 1)− Rn+1(z − 1)Rn−1(z + 1) = R2
n (z).

For Hirota-Miwa a natural reduction is vl+1,m,n+1 = vl,m,n which, for
a = 1, b = c = −1, leads to the discrete KdV equation

Qm+1,n+1Qm,n−1 − Qm,n+1Qm+1,n−1 = Qm,nQm+1,n,

the functional version of which is the difference Burchnall-Chaundy equation

Qn+1(z + 1)Qn−1(z)− Qn+1(z)Qn−1(z + 1) = Qn(z)Qn(z + 1).
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Geometry of support

Note that the support of the dKdV equation has a domino shape, while in the
Dodgson case we have a 2× 2 square, consisting of two dominos:

Qm,n−1

t t
Qm+1,n−1

Qm,n
t t

Qm+1,n

Qm,n+1t tQm+1,n+1

d
d
d

Figure: Domino-type support for the discrete KdV equation.



Relationship

It is natural to expect that the difference Burchnall-Chaundy and Dodgson
equations are closely related, which is indeed the case.

Willox-AV (2015): The difference Burchnall-Chaundy and Dodgson equations
are equivalent on the set of initial data satisfying Φ0 = 0, where

Φn(z) := Qn(z + 1)Qn−1(z − 1) + Qn−1(z + 1)Qn(z − 1)− 2Qn−1(z)Qn(z).

More precisely, if the initial data Q−1(z),Q0(z) of the Cauchy problem for the
dBCh equation satisfy the constraint

Q0(z + 1)Q−1(z − 1) + Q−1(z + 1)Q0(z − 1)− 2Q−1(z)Q0(z) = 0,

then Rn(z) = 2−
n(n+1

2 Qn(z) satisfy the difference Dodgson equation.

Remark. If we modify the Dodgson equation as

Rn+1(z + 1)Rn−1(z − 1)− Rn+1(z − 1)Rn−1(z + 1) = 2R2
n (z),

then modulo constraint Φ0 = 0 we simply have Qn(z) = Rn(z).
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Cauchy problem and Laurent property

Fomin and Zelevinsky (2002): Laurent property for discrete KdV

Qm+1,n+1Qm,n−1 − Qm,n+1Qm+1,n−1 = Qm,nQm+1,n.

For Qm,−1 = Qm,0 = 1, Q0,n = qn, m, n ∈ Z, this means that Qm,n is a
Laurent polynomial in qi with integer coefficients. In particular, this implies
that when all qi = 1, all the Qm,n are integers:

12181 −507 −455 −91 21 5 1 21 397 6469 104145 1332565 15181325

377 13 13 21 9 −3 1 13 149 1629 14001 115245 908245

615 −26 −23 −4 3 2 1 8 59 350 2109 11492 52375

249 51 5 1 1 −1 1 5 21 91 329 977 2477

−39 −19 −7 −1 1 1 1 3 9 21 41 71 113

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5

113 71 41 21 9 3 1 1 1 −1 −7 −19 −39

2477 977 329 91 21 5 1 −1 1 1 5 51 249

52375 11492 2109 350 59 8 1 2 3 −4 −23 −26 615

908245 115245 14001 1629 149 13 1 −3 9 21 13 13 377

15181325 1332565 104145 6469 397 21 1 5 21 −91 −455 −507 12181



Cauchy problem and Laurent property

Fomin and Zelevinsky (2002): Laurent property for discrete KdV

Qm+1,n+1Qm,n−1 − Qm,n+1Qm+1,n−1 = Qm,nQm+1,n.

For Qm,−1 = Qm,0 = 1, Q0,n = qn, m, n ∈ Z, this means that Qm,n is a
Laurent polynomial in qi with integer coefficients. In particular, this implies
that when all qi = 1, all the Qm,n are integers:

12181 −507 −455 −91 21 5 1 21 397 6469 104145 1332565 15181325

377 13 13 21 9 −3 1 13 149 1629 14001 115245 908245

615 −26 −23 −4 3 2 1 8 59 350 2109 11492 52375

249 51 5 1 1 −1 1 5 21 91 329 977 2477

−39 −19 −7 −1 1 1 1 3 9 21 41 71 113

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5

113 71 41 21 9 3 1 1 1 −1 −7 −19 −39

2477 977 329 91 21 5 1 −1 1 1 5 51 249

52375 11492 2109 350 59 8 1 2 3 −4 −23 −26 615

908245 115245 14001 1629 149 13 1 −3 9 21 13 13 377

15181325 1332565 104145 6469 397 21 1 5 21 −91 −455 −507 12181



Explicit determinantal formulae

We follow essentially a difference analogue of Adler-Moser procedure.
Let us define the polynomials xn(z) by the generating function

F (z , t, u)F (z , u) :=
∞∑
k=0

xk(z)uk = e
∑∞

k=1(−1)k+1(z+tk )
uk

k :

x0 = 1, x1 = z + t1, x2 =
1

2
[(z + t1)2 − (z + t2)], . . . .

They satisfy the relation xn(z + 1)− xn(z) = xn−1(z), x0 = 1 and can be
given as the determinants:

xk(z) =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 −1 0 . . . . . . 0
z2 z1 −2 . . . . . . 0
z3 z2 z1 −3 . . . 0
...

...
...

. . .
. . . 0

zk−1 zk−2 . . . . . . z1 1− k
zk zk−1 . . . . . . z2 z1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, zk = (−1)k+1(z + tk).
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Casoratians

Let now yk = x2k−1 and consider the Casoratians Qn(z) = C(y1, . . . yn), where
by definition

C(f1, . . . fn) = det ||fi (z + j − 1)||, i , j = 1, . . . , n.

The Casoratians Qk = C(y1, . . . , yk) can be written as the determinants

Qk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x3 x5 . . . . . . x2k−1

1 x2 x4 . . . . . . x2k−2

0 x1 x3 x5 . . . x2k−3

0 1 x2 x4 . . . x2k−4

...
...

...
. . .

. . .
...

0 0 . . . . . . xk−2 xk

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1)

Willox-AV: The Casoratians Qk(z) satisfy the difference Burchnall-Chaundy
equation.
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Parameters and initial data

Note that the coefficients of the polynomials Qk(z) are polynomial in the
parameters tj :

Q1 = z + t1, Q2 =
1

3

(
z(z2 − 1) + 3t1z

2 + 3t21z + t31 − t3
)

Q3 =
1

45

(
z2(z2 − 1)(z2 − 4) + 6t1z

5 + 15t21z
4 + (20t31 − 5t3 − 15t1)z3

+15t1(t31−t1−t3)z2+(9t1−10t3+9t5−15t21 t3−5t31+6t51 )z+t61−5t23−5t31 t3+9t1t5
)
.

We need to express now the KdV parameters tj via Cauchy data qk = Qk(0).

Substituting z = 0 to Casoratian we have the relations

q1 = t1, q2 = −1

3
t3 +

1

3
t31 , q3 =

1

5
t1t5 −

1

9
t23 −

1

9
t31 t3 +

1

45
t61 ,

q4 =
1

21
(t3− t31 )t7−

1

25
t25 +

1

15
t21 t3t5 +

1

75
t51 t5−

1

27
t1t

3
3 −

1

315
t71 t3 +

1

4725
t101 , ...
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Laurent property

Further analysis gives the following result:

Willox-AV: The polynomial qk depends only on odd parameters t2i−1 with
i = 1, . . . , k and has the form

qk =
(−1)k+1

2k − 1
qk−2t2k−1 + ψk(t1, t3, . . . , t2k−3),

for some polynomials ψk with rational coefficients.
The parameter t2k−1 can be expressed in terms of qj as a Laurent polynomial
with integer coefficients

t2k−1 = (2k − 1)
(−1)k+1qk

qk−2
+ϕk(q1, . . . , qk−1) ∈ Z[q±1 , q

±
2 , . . . , q

±
k−2, qk−1, qk ].

As a corollary we have Laurent phenomenon for the difference
Burchnall-Chaundy equation:

An Qn(z) ∈ Z[z ; q±1 , . . . , q
±
n−2, qn−1, qn], qk = Qk(0).
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Continuum limit: usual Burchnall-Chaundy polynomials

Burchnall-Chaundy polynomials Pn are known to be the τ -functions

u(x ,T1, . . . ,Tn) = −2D2 logPn(x ,T1, . . . ,Tn)

of the rational solutions of the KdVries equation uT1 = D3u − 6uDu, D = d
dx

and its higher analogues uTk = D2k+1u + . . . . Our parameters t2k+1 are simply
related to the KdV times by the scaling t2k+1 = 4k(2k + 1)Tk .

Willox-AV: The continuum limit

Pn(x , t1, t3, . . . , t2n−1) = lim
ε→0

ε
n(n+1)

2 Qn(
x

ε
,
t3
ε3
, . . . ,

t2n−1

ε2n−1
),

yields the usual Burchnall-Chaundy polynomials parametrized by the scaled
KdV times t3, . . . , t2n−1.

As a corollary we have Laurent phenomenon for the usual Burchnall-Chaundy
equation:

An Pn(z) ∈ Z[z ; c±1 , . . . , c
±
n−2, cn−1, cn], ck = Pk(0).
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New form of the original Burchnall-Chaundy polynomials

In terms of the initial values ck = Pk(0) we have the new Laurent formulae

P1 = z + c1, P2 =
1

3

(
z3 + 3c1z

2 + 3c21 z + 3c2
)
,

P3 =
1

45

(
z6 +6c1z

5 +15c21 z
4 +15(c31 +c2)z3 +45c1c2z

2 +45(
c22
c1

+
c3
c1

)z +45c3
)
,

P4 =
1

4725

(
z10 + 10c1z

9 + 45c21 z
8 + 15(7c31 + 3c2)z7 + 105(c41 + 3c2c1)z6

+315(
c22
c1

+
c3
c1

+ 2c21 c2)z5 + 1575(c22 + c3)z4

+1575(
c32
c21

+ c1c3 +
c4
c2

+
c23
c21 c2

+ 2
c3c2
c21

)z3

+4725(
c23
c1c2

+
c2c3
c1

+
c1c4
c2

)z2 + 4725(
c23
c2

+
c21 c4
c2

)z + 4725c4
)
, . . .



Discussion

One of the main open questions in the theory of integrable systems is the role
of the Cauchy problem, especially at the discrete level.

As an example, consider discrete KdV in the m direction, and its functional
version by replacing n by x :

Fm+1(x + 1)Fm(x − 1)− Fm+1(x)Fm(x)− Fm+1(x − 1)Fm(x + 1) = 0

with F0(x) = 1.

For Cauchy data satisfying Fm(1) = ϕmFm(0) we have an explicit solution

Fm(x) = Cmϕ
mx , ϕ =

1 +
√

5

2
.

Question. What is the analytic structure of the solutions for general Cauchy
data (in particular, for Fm(1) = Fm(0) = 1) ?

In particular, what is the ”right” interpolation of the numbers on the vertical
lines of the next table? Note that on the second line we have the Fibonacci
sequence Fn+1 = Fn + Fn−1, on the third line the sequence satisfying

Fn−1Gn+1 = Fn+1Gn−1 + FnGn, G−1 = G0 = 1.
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Table

12181 −507 −455 −91 21 5 1 21 397 6469 104145 1332565 15181325

377 13 13 21 9 −3 1 13 149 1629 14001 115245 908245

615 −26 −23 −4 3 2 1 8 59 350 2109 11492 52375

249 51 5 1 1 −1 1 5 21 91 329 977 2477

−39 −19 −7 −1 1 1 1 3 9 21 41 71 113

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5

113 71 41 21 9 3 1 1 1 −1 −7 −19 −39

2477 977 329 91 21 5 1 −1 1 1 5 51 249

52375 11492 2109 350 59 8 1 2 3 −4 −23 −26 615

908245 115245 14001 1629 149 13 1 −3 9 21 13 13 377

15181325 1332565 104145 6469 397 21 1 5 21 −91 −455 −507 12181

Figure: Solution to the dKdV equation with Cauchy data Q0,n = Qm,−1 = Qm,0 = 1.
The axes are given by the column of 1’s (n axis) and the top row of 1’s (m axis).


