Saito metric and determinant on Coxeter discriminant strata

Georgios Antoniou

joint work with M. Feigin and I. Strachan

University of Glasgow
School of Mathematics and Statistics

Frobenius Structures and Relations, Glasgow March 22, 2018

LMS Classical and Quantum integrability workshop

Overview

- Coxeter groups and Root systems
 - Main Definitions
 - An example
 - Classification
- 2 Frobenius structures on the orbit spaces
 - The orbit space
 - Saito metric
 - Frobenius multiplication
- 3 Saito determinant on Coxeter discriminant strata
 - A question
 - An answer
 - An example

Coxeter groups/Root systems

Let $V = \mathbb{R}^n$, $u, \alpha \in V$ and (,) the standard bilinear form in V.

Definition

A reflection is a linear operator s_{α} on V defined by

$$u \mapsto s_{\alpha}u = u - 2\frac{(u,\alpha)}{(\alpha,\alpha)}\alpha.$$

It fixes a subspace of V of codimension 1, called a mirror (reflecting hyperplane). A **finite** group generated by reflections will be called *finite reflection group* and will be denoted by $W \subset O(V)$.

Definition

Let R be a set of non-zero vectors in V s.t

- \circ $s_{\alpha}R=R$,

 $\forall \alpha \in R$. The set R is called a root system with associated reflection group $W = \langle s_{\alpha} | \alpha \in R \rangle$.

Note that W is necessarily finite in this case.

Definition

Let R be a set of non-zero vectors in V s.t

- \circ $s_{\alpha}R=R$,

 $\forall \alpha \in R$. The set R is called a root system with associated reflection group $W = \langle s_{\alpha} | \alpha \in R \rangle$.

Note that W is necessarily finite in this case.

Definition

Let $\Delta \subset R$. We call Δ a simple system if

- it is a basis for the \mathbb{R} -span of R in V, and
- each $\alpha \in R$ is a linear combination of elements of Δ with coefficients **all** of the same sign.

Theorem (Coxeter '34)

Let $\Delta \subset R_+$ be a simple system. Then W is generated by the set $S = \{s_{\alpha} | \alpha \in \Delta\}$ subject to the relations

$$(s_{\alpha}s_{\beta})^{m(\alpha,\beta)}=1, \quad \alpha,\beta\in\Delta,$$

where
$$m(\alpha, \alpha) = 1$$
, $\forall \alpha$ and $m(\alpha, \beta) \in \mathbb{Z}_{>0}$.

Definition

Any (finite) group W having such a presentaion relative to a generating set S is called a (finite) Coxeter group. The pair (W, S) is called a Coxeter system.

Definition

Any (finite) group W having such a presentaion relative to a generating set S is called a (finite) Coxeter group. The pair (W, S) is called a Coxeter system.

Remark

W is determined up to an isomorphism by $m(\alpha, \beta)$. One can encode this information in a graph with vertex set in one-to-one correspondence with Δ . It gives rise to the notion of a **Coxeter graph**.

 $W = S_n$, the symmetric group:

- Let ϵ_i , i = 1, ..., n be the standard orthonormal basis in V,
- W acts on V by permutations of the standard basis,

 $W = S_n$, the symmetric group:

- Let ϵ_i , i = 1, ..., n be the standard orthonormal basis in V,
- ullet W acts on V by permutations of the standard basis,

•
$$R = \{\pm(\epsilon_i - \epsilon_j)\}, \quad 1 \le i \ne j \le n$$

$$\bullet \ \Delta = \{\epsilon_i - \epsilon_{i+1}\}, \quad i = 1, \ldots, n-1,$$

 $W = S_n$, the symmetric group:

- Let ϵ_i , $i=1,\ldots,n$ be the standard orthonormal basis in V,
- ullet W acts on V by permutations of the standard basis,

•
$$R = \{\pm(\epsilon_i - \epsilon_j)\}, \quad 1 \le i \ne j \le n,$$

•
$$\Delta = \{\epsilon_i - \epsilon_{i+1}\}, \quad i = 1, ..., n-1,$$

• For $\alpha \neq \beta$ in Δ ,

$$m(\alpha, \beta) = \begin{cases} 2, & \text{disjoint vertices,} \\ 3, & \text{otherwise.} \end{cases}$$

 $W = S_n$, the symmetric group:

- ullet Let ϵ_i , $i=1,\ldots,n$ be the standard orthonormal basis in V,
- ullet W acts on V by permutations of the standard basis,

•
$$R = \{\pm(\epsilon_i - \epsilon_j)\}, \quad 1 \le i \ne j \le n$$

• For $\alpha \neq \beta$ in Δ ,

$$m(\alpha, \beta) = \begin{cases} 2, & \text{disjoint vertices,} \\ 3, & \text{otherwise.} \end{cases}$$

It fixes pointwise the line $L = \{\mathbb{R}\beta\}$, $\beta = \epsilon_1 + \cdots + \epsilon_n$. Hence, we usually denote W by A_{n-1} .

Classification-Coxeter '35

Coxeter diagrams of (irred.) finite Coxeter groups/ Classical series

$$A_n$$
, $(n \ge 1)$:

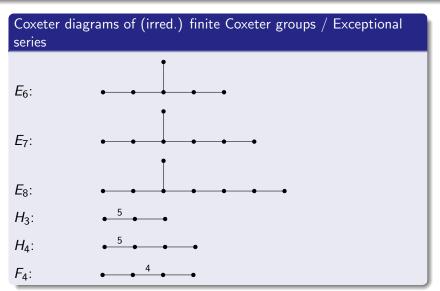
$$B_n$$
, $(n \ge 2)$:

$$D_n$$
, $(n \ge 4)$:

$$I_2(m), (m \geq 5)$$
:

Code for graphs- B. McKay

Classification-Coxeter '35



• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i,e_j)=\delta_{ij},$$

where e_i , i = 1, ..., n is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

• Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i,e_j)=\delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

- Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.
- Let $y^1(x), \ldots, y^n(x)$ be a hom. basis in the ring of invariant polynomials $S(V^*)^W = \mathbb{C}[x^1, \ldots, x^n]^W = \mathbb{C}[x]^W = \mathbb{C}[v^1, \ldots, v^n].$

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

- Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.
- Let $y^1(x), \ldots, y^n(x)$ be a hom. basis in the ring of invariant polynomials $S(V^*)^W = \mathbb{C}[x^1, \ldots, x^n]^W = \mathbb{C}[x]^W = \mathbb{C}[v^1, \ldots, v^n].$
- Let $d_i = \deg y^i$, i = 1, ..., n and fix the ordering

$$h=d_1>\cdots\geq d_n=2.$$

We call h the **Coxeter number** of W.

•
$$y^1, \ldots, y^n$$
 are coordinates on $M_W = V/W \cong \mathbb{C}^n$,

- y^1, \ldots, y^n are coordinates on $M_W = V/W \cong \mathbb{C}^n$,
- x^1, \ldots, x^n are local coordinates on $M_W \setminus \Sigma$, where $\Sigma \subset M_W$ consists of irregular orbits, i.e orbits consisting of less than |W| points.

- y^1, \ldots, y^n are coordinates on $M_W = V/W \cong \mathbb{C}^n$,
- x^1, \ldots, x^n are local coordinates on $M_W \setminus \Sigma$, where $\Sigma \subset M_W$ consists of irregular orbits, i.e orbits consisting of less than |W| points.
- Let $g^{\alpha\beta}$ be the corresponding contravariant metric. g is defined on $M_W \setminus \Sigma$, $\det(g^{\alpha\beta}(y)) = 0$ on Σ .

Definition (K.Saito et. al '80, Dubrovin '94)

The metric $\eta^{\alpha\beta}=\mathcal{L}_e g^{\alpha\beta}$ is called the *Saito* metric, it is defined up to proportionality and it is flat, where $e=\partial_{y^1}$.

Definition (K.Saito et. al '80, Dubrovin '94)

The metric $\eta^{\alpha\beta}=\mathcal{L}_e g^{\alpha\beta}$ is called the *Saito* metric, it is defined up to proportionality and it is flat, where $e=\partial_{V^1}$.

There exists a distinguished basis $t^i \in \mathbb{C}[x]^W$, $(1 \le i \le n)$ s.t η is constant and antidiagonal,

$$\eta^{\alpha\beta} = \delta^{n+1,\alpha+\beta}.$$

Such coordinates are called Saito polynomials.

Definition (K.Saito et. al '80, Dubrovin '94)

The metric $\eta^{\alpha\beta}=\mathcal{L}_e g^{\alpha\beta}$ is called the *Saito* metric, it is defined up to proportionality and it is flat, where $e=\partial_{v^1}$.

There exists a distinguished basis $t^i \in \mathbb{C}[x]^W$, $(1 \le i \le n)$ s.t η is constant and antidiagonal,

$$\eta^{\alpha\beta} = \delta^{n+1,\alpha+\beta}.$$

Such coordinates are called Saito polynomials.

Proposition

The determinant of the covariant Saito metric η in the x coordinates is given as

$$\det \eta(x) = c \prod_{\alpha \in R_+} g(\alpha, x)^2, \quad c \in \mathbb{C}^{\times}.$$

Frobenius manifolds

Definition

An algebra $(A, \circ, <, >)$ over $\mathbb C$ is called Frobenius if

- it is commutative, associative, with unity e,
- ullet <, >: $\mathcal{A} \times \mathcal{A} \to \mathbb{C}$ is a non-degenerate bilinear form s.t

$$< a \circ b, c > = < a, b \circ c > \forall a, b, c \in A.$$

Frobenius manifolds

Definition

An algebra $(A, \circ, <, >)$ over $\mathbb C$ is called Frobenius if

- it is commutative, associative, with unity e,
- ullet $<,>:\mathcal{A}\times\mathcal{A}\to\mathbb{C}$ is a non-degenerate bilinear form s.t

$$< a \circ b, c > = < a, b \circ c > \quad \forall a, b, c \in A.$$

Definition (Dubrovin '94)

 $(M, \circ, e, <, >, g, E)$ is a Frobenius manifold if each tangent space T_pM is a Frobenius algebra, varying smoothly over M with some additional axioms.

Theorem (Dubrovin'94)

There exists, up to an equivalence, a Frobenius structure on M_W with the metric $\eta=<,>$ and

- the Euler vector field $E = \sum_{i=1}^{n} \frac{1}{h} d_i y^i \partial_{y^i}$,
- the identity vector field $e := \partial_{v^1}$.

The metrics η , g form a **flat pencil** of metrics on M_W .

Coxeter discriminant

Definition (Strachan '04)

Let M be a Frobenius manifold. A natural submanifold N of M is a submanifold $N \subset M$ s.t

- TN ∘ TN ⊂ TN,
- $E_x \in TN \quad \forall x \in TN$.

Coxeter discriminant

Definition (Strachan '04)

Let M be a Frobenius manifold. A natural submanifold N of M is a submanifold $N \subset M$ s.t

- $TN \circ TN \subset TN$,
- $E_x \in TN \quad \forall x \in TN$.

Definition

 Σ is called a Coxeter discriminant. It is the image of the union of the mirrors under the natural projection map

$$\pi: V \to M_W$$
.

A stratum $\pi(D) \subset \Sigma$ is the image of the intersection subspace $D = \bigcap_{\beta \in B} \Pi_{\beta}$, where $B \subset R$, $\Pi_{\beta} = \{x \in V | g(x, \beta) = 0\}$.

- **Discriminant strata** are shown to be natural submanifolds of the Frobenius manifold M_W (Strachan '04; Feigin, Veselov '07, AFS'17)
- $\pi: D \to \pi(D)$ is a diffeomorphism near generic point $x_0 \in D$.
- The Saito metric on M_W induces a metric on $\pi(D)$ which is naturally given as the restriction of η to the stratum. Let us denote it by η_D .
- The linear coordinates x^i give rise to coordinates on the stratum D and on $\pi(D)$. These are flat coordinates for the restricted metric g on the stratum D. We denote this metric by g_D .

A question An answer An example

We are interested in answering the following:

Question

How does $\det \eta_D$ look in the flat coordinates of g_D on discriminant strata?

We are interested in answering the following:

Question

How does $\det \eta_D$ look in the flat coordinates of g_D on discriminant strata?

Let us fix some notation:

- Let $L = \{\gamma_1, \dots, \gamma_k\} \subset R$, $1 \le k \le n$ and consider $D = \bigcap_{\gamma \in L} \Pi_{\gamma}$ s.t dim D = n k.
- For any $\beta \in R \setminus \langle L \rangle$, $\widehat{L} = L \cup \{\beta\}$, define $U_{\beta} = \langle \widehat{L} \rangle \cap R$.

Proposition

The set U_{β} is a root system and admits the decomposition

$$U_{\beta} = \bigsqcup_{i=1}^{p} R_{i}, \tag{1}$$

where $\{R_i\}_{i=1}^p$ are irreducible root systems.

Theorem

The determinant of η_D on D is proportional to the product of linear factors

$$\prod_{I\in A}g_D(I,x)^{m_I},\quad m_I\in\mathbb{N},$$

where A is a collection of non-proportional vectors on D. Furthermore, each $l \in A$ has the form β_D for some $\beta \in R \setminus \langle L \rangle$, where β_D is the orthogonal projection of β on D. The multiplicity m_l equals the Coxeter number of the root system R_q from the decomposition (1), such that $\beta \in R_q$.

Coxeter group, $W = A_4$

Example

Consider a stratum of type A_2 in A_4 , let $D=\{x_1=x_2=x_3\}$. Coordinates on D are chosen as: $\xi_0=x_1=x_2=x_3$, $\xi_1=x_4$, $\xi_2=x_5$. Then,

$$\det \eta_D = c(\xi_0 - \xi_1)^4 (\xi_0 - \xi_2)^4 (\xi_1 - \xi_2)^2.$$

Coxeter group, $W = A_4$

Example

Consider a stratum of type A_2 in A_4 , let $D = \{x_1 = x_2 = x_3\}$. Coordinates on D are chosen as: $\xi_0 = x_1 = x_2 = x_3$, $\xi_1 = x_4$, $\xi_2 = x_5$. Then,

$$\det \eta_D = c(\xi_0 - \xi_1)^4 (\xi_0 - \xi_2)^4 (\xi_1 - \xi_2)^2.$$

Q: How does this match the statement of the Theorem?

1
$$\beta = e_3 - e_4$$
, $U_{\beta} = \langle e_1 - e_2, e_2 - e_3, \beta \rangle \cap R \cong A_3$, $h(A_3) = 4$,

②
$$\beta = e_4 - e_5$$
, $U_\beta = \langle e_1 - e_2, \beta, \beta \rangle \cap R \cong A_2 \sqcup A_1$, $\beta \in A_1$, $h(A_1) = 2$,

3
$$\beta = e_3 - e_5$$
, $U_{\beta} = \langle e_1 - e_2, e_2 - e_3, \beta \rangle \cap R \cong A_3$, $h(A_3) = 4$,

• No other factors in det η_D , e.g $(e_2 - e_4)_D = (e_3 - e_4)_D$ etc.

Strata in type A_N

An arbitrary *I*-dimensional stratum $D \subset V$ has the form $(k \leq I)$:

$$x_{1} = \dots = x_{m_{0}} = \xi_{0},$$

$$x_{m_{0}+1} = \dots = x_{m_{0}+m_{1}} = \xi_{1}$$

$$\vdots$$

$$x_{\sum_{i=0}^{k-1} m_{i}+1} = \dots = x_{\sum_{i=0}^{k} m_{i}} = \xi_{k}.$$

Strata in type A_N

An arbitrary *I*-dimensional stratum $D \subset V$ has the form $(k \leq I)$:

$$x_{1} = \dots = x_{m_{0}} = \xi_{0},$$

$$x_{m_{0}+1} = \dots = x_{m_{0}+m_{1}} = \xi_{1}$$

$$\vdots$$

$$x_{\sum_{i=0}^{k-1} m_{i}+1} = \dots = x_{\sum_{i=0}^{k} m_{i}} = \xi_{k}.$$

Coordinates on D: ξ_0, \ldots, ξ_I , where $\xi_i = x_i$, $i = k + 1, \ldots, I$. Then,

$$\det \eta_D = c \prod_{0 \leqslant i < j \leqslant l} (\xi_i - \xi_j)^{m_i + m_j}$$

where
$$c = (-1)^{\sum_{i=1}^{I} i m_i} (N+1)^{-N} \prod_{a=1}^{I} m_a^2 \prod_{a=0}^{I} m_a^{m_a-1}$$
.

Proof of the Theorem?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p - \xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

Proof of the Theorem?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p - \xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

The expression for the Saito metric is given as

$$\eta(\partial_i, \partial_j) = \sum_{p_s: \lambda'(p_s) = 0} res|_{p = p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)}{\lambda'(p)} dp,$$

where ∂_i denote some vector fields and where first derivatives, $\lambda'(p)$, are taken w.r.t p.

Proof of the Theorem?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p - \xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

The expression for the Saito metric is given as

$$\eta(\partial_i,\partial_j) = \sum_{p_s:\lambda'(p_s)=0} \operatorname{res}|_{p=p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)}{\lambda'(p)} dp,$$

where ∂_i denote some vector fields and where first derivatives, $\lambda'(p)$, are taken w.r.t p.

For **exceptional** series, proof relies heavily on the geometry of root systems.

Thank you for your attention!