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Part I. Flat and bi-flat F manifolds



Flat F -manifolds (Manin)

Definition
A flat F -manifold (or F -manifold with compatible flat structure)
(M, ◦,∇,e) is a manifold equipped with a product ◦ : TM × TM → TM
on the tangent spaces (with structure constants c i

jk ), a connection ∇
(with Christoffel symbols Γi

jk ) and a distinguished vector field e s.t.
1. the one parameter family of connections ∇(λ) with Christoffel

symbols
Γi

jk + λc i
jk

is flat and torsionless for any λ.
2. e is the unit of the product.
3. e is flat: ∇e = 0.

Manifolds equipped with a product ◦, a connection ∇ and a vector
field e satifying conditions 1 and 2 will be called almost flat
F -manifolds.



For a given λ the torsion is

T (λ)k
ij = Γk

ij − Γk
ji + λ(ck

ij − ck
ji )

and the curvature is

R(λ)k
ijl = Rk

ijl + λ(∇ick
jl −∇jck

il ) + λ2(ck
imcm

jl − ck
jmcm

il ),

where Rk
ijl is the Riemann tensor of ∇.
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Generalized WDVV associativity equations

From conditions 1,2,3,4 it follows that, in flat coordinates for ∇, we
have

c i
jk = ∂j∂k Ai .

Condition 5 tell us that the vector potential Ai satisfies the
associativity equations:

∂j∂lAi∂k∂mAl = ∂k∂lAi∂k∂mAl



The invariant metric

Invariant metric η:
• ∇η = 0.
• ηilc l

jk = ηjlc l
ik .

A consequence: Ai = ηil∂lF and generalized WDVV associativity
equations become WDVV associativity equations:

∂j∂h∂iFηil∂l∂k∂mF = ∂j∂k∂iFηil∂l∂h∂mF



Euler vector field and Frobenius manifolds

A vector field satisfying the conditions

[e,E ] = e, LieEc i
jk = c i

jk

is called an Euler vector field.

Frobenius manifolds are flat F -manifolds endowed with an invariant
metric and a linear Euler vector field (∇∇E = 0).



Almost duality

Let us consider the contravariant metric g = (E◦) η−1 (the
intersection form). It turns out that

- the Levi-Civita connection ∇̃ of g,

- the dual product defined as X ∗ Y = (E◦)−1 X ◦ Y , ∀X ,Y ,

- and the Euler vector field E .

define an almost flat structure with invariant metric g−1 at the points
where E◦ is invertible.

This is called the almost dual structure (Dubrovin). In general
∇̃E 6= 0. Replacing ∇̃ with ∇∗ = ∇̃+ λ̄∗ (with a suitable λ̄) one
obtains a flat connection satisfying ∇∗E = 0.



From Frobenius manifolds to bi-flat F -manifolds

Any Frobenius manifold (M, η, ◦,e,E) is equipped with:
• the flat structure (∇, ◦,e),
• the flat structure (∇∗, ∗,E).

It turns out that
(d∇ − d∇∗)(X ◦) = 0, ∀X ,

where d∇ is the exterior covariant derivative:

(d∇ω)l
i0 ... ik =

k∑
j=0

(−1)j∇ijω
l
i0 i1 ... îj ... ik

.



Bi-flat F -manifolds

Definition
A bi-flat F -manifold is a manifold equipped with two different flat
structures (∇, ◦,e) and (∇∗, ∗,E) related by the following conditions

1. E is an Euler vector field.
2. ∗ is the dual product.
3. (d∇ − d∇∗)(X ◦) = 0, ∀X .



Part II. Bi-flat F manifolds and Painlevé
transcendents.



A system of PDEs for semisimple bi-flat F -manifolds

In the semisimple case bi-flat F manifolds can be constructed from
the solution of the following system of PDEs

∂k Γi
ij = −Γi

ij Γ
i
ik + Γi

ij Γ
j
jk + Γi

ik Γk
kj , i 6= k 6= j 6= i , (1)

n∑
i=1

∂i (Γi
ij ) = 0, i 6= j (2)

n∑
i=1

ui∂i (Γi
ij ) = −Γi

ij , i 6= j (3)

for the n(n − 1) unknown functions Γi
ij (u). The above system is

compatible and thus its general solution depends on n(n − 1)
arbitrary constants.

The system (1) plays a crucial role in the theory of integrable system
of hydrodynamic type (Tsarev)



The case n = 3
From (2) and (3) it follows that

Γi
ij =

Fij

(
u2−u3

u1−u2

)
ui − uj . (4)

Imposing (1) and introducing z = u2−u3

u1−u2 , we obtain

dF12

dz
=

(F12F13 − F12F23)z + F12F23 − F13F32

z(z − 1)
,

dF21

dz
=

(F21F23 − F21F13)z + F23F31 − F21F23

z(z − 1)
,

dF13

dz
=

(F12F23 − F12F13)z − F12F23 + F13F32

z(z − 1)
,

dF31

dz
=

(F31F12 − F32F21)z − F31F32 + F32F21

z(z − 1)
,

dF23

dz
=

(F21F13 − F21F23)z − F23F31 + F21F23

z(z − 1)
,

dF32

dz
=

(F32F21 − F31F12)z + F31F32 − F32F21

z(z − 1)
.

(5)



System (5) admits three linear first integrals

I1 = F12 + F13,

I2 = F23 + F21,

I3 = F31 + F32,

and one quadratic first integral

I4 = F31F13 + F12F21 + F23F32.

Using these first integrals we can reduce (5) to the sigma form of the
generic Painlevé VI equation. A similar analysis can be repeated in
regular non-semisimple case. The role of canonical coordinates is
played by a distinguished set of coordinates found by David and
Hertling (2015).



Three dimensional regular case and Painlevé trascendents

Theorem (A.Arsie, P.L. 2015): Three dimensional regular bi-flat
F -manifolds are locally parameterized by solutions of the full Painlevé
IV, V, and VI equations according to the Jordan canonical form J of
L = E◦. More precisely,

• PVI in the case

J =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,

• PV in the case

J =

 λ1 1 0
0 λ1 0
0 0 λ3

 ,

• PIV in the case

J =

 λ1 1 0
0 λ1 1
0 0 λ1

 .



Part III. Complex reflection groups and
bi-flat F manifolds



Complex reflection groups

A complex (pseudo)-reflection is a unitary transformation of Cn of
finite order that leaves invariant a hyperplane. A finite complex
reflection group is a finite group generated by complex reflections.

Finite complex reflection groups were classified by Shephard and
Todd, and consist in an infinite family depending on 3 positive
integers and 34 exceptional cases.

The ring of invariant polynomials of a complex reflection group is
generated by n algebraically independent invariant polynomials
(u1, ...,un), where n is the dimension of the complex vector space on
which the group acts.



Frobenius manifolds from Coxeter groups

Theorem (Dubrovin)
The orbit space of a Coxeter group is equipped with a Frobenius
manifold structure (η, ◦,e,E) where

1. The flat coordinates for η are basic invariants (u1, ...,un) of the
group called Saito flat coordinates.

2. In the Saito flat coordinates

e =
∂

∂un
, E =

n∑
i=1

(
di

dn

)
ui

∂

∂ui
.

where di are the degrees of the invariant polynomials ui and
2 = d1 < d2 ≤ d3 ≤ ... ≤ dn−1 < dn (dn is the Coxeter number).



An almost flat structures associated with Coxeter groups
Let G be a Coxeter group acting on a euclidean space En with
euclidean coordinates (p1, ...,pn). Let g be the euclidean metric and
∇∗ the associated Levi-Civita connection. Then the data(

∇∗, ∗ =
∑
H∈H

dαH

αH
⊗ σHπH , E =

∑
pk

∂

∂pk

)
where

• H is the collection of the reflecting hyperplanes H,
• αH is a linear form defining a reflecting hyperplane H,
• πH is the orthogonal projection onto the orthogonal complement

of H,
• the collection of weights σH is G-invariant and satisfy∑

H∈H

σHπH = Id .

define a flat structure with invariant metric g. This an equivalent
reformulation of a result of Veselov (1999). The almost dual structure
of the Frobenius manifold structure on the orbit space of Coxeter
group has the Veselov’s form with all the weights σH equal to each
other (Dubrovin, 2003).



Two flat structure associated with complex reflection group

Starting from a complex reflection group it is possible two construct
two different flat structure:

• The first structure has been obtained by Kato-Mano-Sekiguchy
generalizing Dubrovin-Saito construction to well generated finite
complex reflection groups (a complex reflection group of rank n is
said to be well-generated if its minimal generating set consists of
n reflections).

• The second one is obtained starting from a Dunkl-Kohno-type
connection associated with complex reflection groups considered
by Looijenga.



The first flat structure

Theorem (Kato, Mano and Sekiguchi, 2015)
The orbit space of a well generated complex reflection group is
equipped with a flat structure (∇, ◦,e,E) with linear Euler vector field
where

1. The flat coordinates for ∇ are basic invariants (u1, ...,un) of the
group.

2. In the Saito flat coordinates

e =
∂

∂un
, E =

n∑
i=1

(
di

dn

)
ui

∂

∂ui
.



The second flat structure

Let G be an irreducible complex reflection group acting on Cn. Then(
∇∗ = ∇−

∑
H∈H

dαH

αH
⊗ τHπH , ∗ =

∑
H∈H

dαH

αH
⊗ σHπH , E =

∑
pk

∂

∂pk

)

where
• H is the collection of the reflecting hyperplanes H,
• αH is a linear form defining a reflecting hyperplane H,
• πH is the unitary projection onto the unitary complement of H,
• the collections of weights σH and τH are G-invariant and satisfy∑

H∈H

σHπH =
∑
H∈H

τHπH = Id .

• ∇ is the standard flat connection on Cn,
define a flat structure.



Complex reflection groups and bi-flat F -manifolds

The standard choice is to choose σH and τH proportional to the order
of the corresponding reflection.

There are other choices that lead to bi-flat F -manifolds. For instance,
in the case of Weyl groups of rank 2, 3, and 4 and for the groups
I2(m) we checked that there is a (m − 1)-parameter family of bi-flat
structures where m is the number of orbits for the action of G on the
collection of reflecting hyperplane.

Conjecture: The bi-flat structures associated with Coxeter groups
admitting a dual structure of the above form depend on m − 1
parameters.

the flat coordinates for the connection ∇ are basic polynomial
invariants of the group.



The case of B2

We have

∇∗ = ∇−
∑
H∈H

dαH

αH
⊗ τHπH , ∗ =

∑
H∈H

dαH

αH
⊗ σHπH

with

α1 = [1,0] , α2 = [0,1] , α3 = [1,−1] α4 = [1,1]

and

σ1 = σ2 = σ3 = σ4 =
1
2
, τ1 = τ2 = 2c + 1, τ3 = τ4 = −2− 2c



For any value of c we get different flat basic invariants:

u1 = p2
1 + p2

2, u2 = p4
1 + p2

4 + cu2
1 .

and a different vector potential:

A1
B2

= −2
3

(
c +

3
4

)
u3

1 + u1u2,

A2
B2

= −1
6

(c + 1)(2c + 1)u4
1 +

1
2

u2
2 .

For c = − 3
4 the vector potential comes from a Frobenius potential and

the flat basic invariants coincide with the Saito flat coordinates.



Remark

Biflat

Painleve

OO

Reflections
?

oo

gg

There are algebraic solutions of Painlevé VI equation coming from
complex reflection groups (Boalch, 2003).



Part IV. Flat F manifolds and
integrable systems of conservation laws



Principal hierarchy for flat F -manifolds

Integrable hierarchy:

v i
t(p,l+1)

= c i
jk X k

(p,l)v
k
x , p = 1, ...,n l = −1,0,1,2,3, ...

Primary flows:
∇jX i

(p,−1) = 0

Higher flows:
∇jX i

(p,l+1) = c i
jk X k

(p,l).

This is a generalization of Dubrovin’s principal hierarchy (P.L., M.
Pedroni, A. Raimondo, 2010).



Flat and canonical coordinates

In flat coordinates (u1, ...,un) the flows of the hierarchy are systems
of conservation laws:

ui
t(p,l) = c i

jk X j
(p,l−1)u

k
x = ∂xX i

(p,l).

In the product is semisimple, the in canonical coordinates (r1, ..., rn)
we have (by definition)

c i
jk = δi

j δ
i
k

and morover
r i
t(p,l+1)

= X i
(p,l)(r)r i

x , i = 1, ...n



Principal hierarchy with additional structures

In the case of F -manifolds with invariant metric the principal hierarchy
becomes Hamiltonian w.r.t. the Dubrovin-Novikov bracket associated
with η−1.

In the case of flat Frobenius manifolds the principal hierarchy
becomes bi-Hamiltonian: the second Hamiltonian structure the
Dubrovin-Novikov bracket associated with the intersection form.



The principal hierarchy for B2

In flat coordinates we have

ui
t(p,l+1)

=
(
∂j∂k Ai

B2

)
X j
(p,l)u

k
x , i = 1,2,

where A1
B2

= − 2
3

(
c + 3

4

)
u3

1 + u1u2, A2
B2

= − 1
6 (c + 1)(2c + 1)u4

1 + 1
2 u2

2

The recursion relations read

∂jX i
(p,−1) = 0, ∂jX i

(p,l+1) =
(
∂j∂k Ai

B2

)
X k
(p,l).

By straightforward computations we get:

X(1,−1) =

(
1
0

)
, X(1,0) =

(
u2

1
12 u3

1

)
, X(1,1) =

( 1
2 u2

2 + 1
48 u4

1
1

12 u3
1u2

)
, . . .

X(2,−1) =

(
0
1

)
, X(2,0) =

(
u1
u2

)
, X(2,1) =

(
u1u2

1
2 u2

2 + 1
16 u4

1

)
, . . .



The parameter c

• c 6= −1,− 1
2 ,−

3
4 (generic case): the principal hierarchy is not

hamiltonian.
• c = − 3

4 : the principal hierarchy is (bi)-Hamiltonian. For this value
of the parameter we have a Frobenius manifold.

• c = −1, c = − 1
2 : one of the chains of the principal hierarchy is

degenerate.



Integrable deformations of the principal hierarchy
Deformations of the form

ui
t = ∂x

[
X i (u) + ε(Y i

j (u)uj
x

)
+ ε2

(
W i

j (u)uj
xx + W i

jk (u)uj
xuk

x ) + . . .
]

Values of c Integrable first or-
der deformations

Integrable second
order deforma-
tions

c 6= − 3
4 ,−1,− 1

2 No functional pa-
rameters

Two functional pa-
rameters of a sin-
gle variable

c = − 3
4

(Frobenius)
No functional pa-
rameters

Two functional pa-
rameters of a sin-
gle variable

c = − 1
2 ,−1 One functional pa-

rameter of a single
variable

Two additional
functional param-
eters of a single
variable



Some open questions

• We obtained integrability up to order 2 in ε. Is it possible to
continue this procedure in principle to all orders, or are there
obstructions?

• To construct examples where the right hand side contains a finite
number of terms.

• Special values of the functional parameters seem related to a
generalization of DR hierarchy.

• Are these hierarchies (bi)-Hamiltonian w.r.t. suitable non local
Hamiltonian structures?
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