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Initial data

Lattice N ∼= Z
n

Skew-form {·, ·} : N ×N → Z

Basis s = (e1, . . . , en) of N

Gives a pair of dual tori and bases for their character lattices:

TM ;s := Spec
(
C
[
z±e1 , . . . , z±en

])

TN ;s := Spec
(
C

[
z±e∗1 , . . . , z±e∗n

])

Recursive rule for changing basis s 7→ s′, together with birational maps
µs,s′ : TM ;s 99K TM ;s′ and µs,s′ : TN ;s 99K TN ;s′
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Two flavors of cluster varieties

X =
⋃

s

TM ;s , A =
⋃

s

TN ;s

X has a Poisson structure:

{zn1 , zn2} = {n1, n2} z
n1+n2

A has a degenerate symplectic structure, with 2-form:

∑

i,j

dze
∗

i

ze
∗

i

∧
dze

∗

j

ze
∗

j
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Cluster varieties can be encoded with scattering diagrams.

Example (A2 cluster varieties)

⊂ Ms ⊗ R

C1C2

C3 C4

C5

In general the cluster varieties will be encoded in only part of the
scattering diagram, called the cluster complex.

Theorem ([GHKK16])

The cluster complex ∆+ has a simplicial fan structure.
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Note:

X =
⋃

i

Spec
(
C
[
C∨

i ∩N
]gp)

Much more natural object from toric geometry perspective:

Special completion of X [FG15]

X̂ =
⋃

i

Spec
(
C
[
C∨

i ∩N
])
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(Partial) compactification of A

Often A varieties come frozen variables– basis functions shared by
each torus.

In this case, allowing these variables to vanish gives a partial
compactification.

Example (Affine cone over Grk (C
n))

For each cyclic degree k Plücker define Di :=
{
p[i+1,i+k] = 0

}
.

C (Grk (C
n)) \

⋃
iDi is a cluster A-variety.

Each p[i+1,i+k] is a frozen variable, so C (Grk (C
n)) is such a

compactification.
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Terminology

The generators of Cs are called g-vectors for the A-variables Ai;s on
the torus TN ;s. They are denoted gi;s.

The generators of C∨
s are called c-vectors for the X -variables Xi;s on

the torus TM ;s. They are denoted ci;s.

Note:

If we restrict to the tori TN ;s ⊂ A and TM ;s ⊂ X , then Ai;s = ze
∗

i;s

and Xi;s = zei;s .

On other tori TN ;s′ and TM ;s′ , µ
∗

s′,s (Ai;s) and µ∗

s′,s (Xi;s) will be
rational functions in the variables Aj;s′ and Xj;s′ .
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What should we demand of a decent toric degeneration of X̂ ?

Central fiber is TV (∆+).

X̂ strata go to toric strata of TV (∆+).

What additional properties would be nice?

X -variables extend canonically to family.

Extension of Xi;s homogeneous under some natural torus action, with
weight ci;s.
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Basic idea:

Add coefficients carefully to get

An
s0

= Spec (R)

X̂t X̂s0 =
⋃

s Spec (R [X1;s, . . . ,Xn;s])

where R := C [t1;s0 , . . . , tn;s0 ].

The fiber over 1 will be X̂ . The fiber over 0 will be TV (∆+).
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We define X̂s0 gluing by

µ∗

k

(
X ′

i

)
=




X−1

k if i = k

Xi

(
t
[sgn εijck]+ + t

[− sgn εijck]+X− sgn εik
k

)−εik
if i 6= k



Toric degenerations of X̂

Theorem (Bossinger, Fŕıas Medina, Nájera Chávez, M.)

With this gluing, X̂s0 satisfies all of the properties we asked our toric

degenerations to satisfy.
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In [GHKK16] an analogous family is defined for A-varieties compactified
by letting frozen variables vanish.

A
n
s0

= Spec (R)

At Aprin,s0

where R := C [t1;s0 , . . . , tn;s0 ].
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Batyrev-Borisov picture for Grassmannians

Example (Gr2 (C
5))

Add on 5 dimensional linear space, one dimension for each consecutive
Plücker:

×R
5

C1C2

C3 C4

C5



Batyrev-Borisov picture for Grassmannians

Example (Gr2 (C
5))

Cut out the cone Ξ generated by the columns of the following matrix:




1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 −1 1 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 1



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Example (Gr2 (C
5))

Have a fan structure Σ on Ξ.

Relevant slice of Ξ: P = {x ∈ Ξ |〈(1 1 1 1 1 1 1) , x〉 = 5}. Unique
interior point: v = (0 0 1 1 1 1 1)T.

Translate generators of Σ by −v to get a new fan ∆. Σ is “cone
over” ∆, and the rays of ∆ are generated by vertices of P .
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Batyrev-Borisov picture for Grassmannians

Expectations:

∆ is the “fan” for the Batyrev-Borisov dual Y to the Grassmannian.

Σ is the “fan” for a line bundle over Y . (So X̂ is this line bundle.)

Remark:

The construction works the same way for all Grk (C
n).

A generalization (higher dimensional version of “cone over”– higher
codimension CY subvarieties) works for complete flag varieties.
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