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Structure of the talk

I Symmetric functions and reverse plane partitions (RPP)

I Affine symmetric group and cylindric RPP

I Frobenius algebras (2D TQFT) and generalised symmetric
group



Symmetric functions and RPP



Λk = C[x1, x2, . . . , xk ]Sk : ring of symmetric functions in k variables.

Λ = lim← Λk : ring of symmetric functions in infinite variables.

Let λ = (λ1, λ2, . . . ) a partition. Two basis of Λ are given by

I monomial symmetric functions mλ =
∑

α∼λ x
α.

Example. m(3,2) = x3
1 x

2
2 + x2

1 x
3
2 + x3

1 x
2
3 + x2

1 x
2
3 + . . .

I complete symmetric functions hr =
∑

λ`r mλ, hλ = hλ1hλ2 · · ·

Example. h2 = m(2) + m(1,1), h3 = m(3) + m(2,1) + m(1,1,1)

Hall inner product: 〈mλ, hµ〉 = δλµ.

Coproduct ∆ : Λ→ Λ⊗ Λ such that 〈∆f , g ⊗ h〉 = 〈f , gh〉.
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We define skew complete symmetric functions hλ/µ via

∆hλ =
∑
µ

hλ/µ ⊗ hµ

Using the product expansion mµmν =
∑

λ f
λ
µνmλ we get

hλ/µ =
∑
ν

f λµνhν

We will give a combinatorial description of hλ/µ in terms of RPP.
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Example. Let λ = (3, 2, 2, 1) = , µ = (2, 2, 1) = .

All the permutations α of µ (α ∼ µ) such that α ⊂ λ are (in grey):

Define χλ/µ as the cardinality of the set {α ∼ µ |α ⊂ λ}.

Here χλ/µ = 6.
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Example. Let λ = , µ = .

RPP of shape λ/µ: π =

λ(0) = , λ(1) = , λ(2) = , λ(3) =

xπ = xmultiplicity of 1 in π
1 xmultiplicity of 2 in π

2 · · · = x3
1 x2 x3

Lemma. hλ/µ =
∑
π

χπxπ , χπ = χλ(1)/λ(0) · χλ(2)/λ(1) · · ·

The sum is over all RPP of shape λ/µ.
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Denote with Sk the symmetric group in k letters, with generators
〈σ1, . . . , σk−1〉 and relations

σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i − j | > 1

Pk = Zk

Let λ = (λ1, . . . , λk) ∈ Pk . Right action of Sk on Pk :

(λ1, . . . , λk).σi = (λ1, . . . , λi+1, λi , . . . , λk)

Sλ = {w ∈ Sk |λ.w = λ}: stabilizer subgroup of λ.

Sλ: coset representatives in Sλ \ Sk
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Lemma. Let λ, µ, ν ∈ P+
k = {λ ∈ Pk |λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

I The coefficient f λµν appearing in hλ/µ =
∑

ν f
λ
µνhν can be

expressed as the cardinality of the set [Butler, Hales, ’93]

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ}

Example. k = 2, µ = (2, 1), ν = (1, 0), λ = (2, 2).
λ = µ+ ν.σ1 = µ.σ1 + ν. Hence f λµν = 2.

I The set {α ∼ µ |α ⊂ λ} (whose cardinality we denoted with
χλ/µ) can be expressed as

{w ∈ Sµ |µ.w ⊂ λ}

How can we generalise this to the affine symmetric group?



Lemma. Let λ, µ, ν ∈ P+
k = {λ ∈ Pk |λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

I The coefficient f λµν appearing in hλ/µ =
∑

ν f
λ
µνhν can be

expressed as the cardinality of the set [Butler, Hales, ’93]

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ}

Example. k = 2, µ = (2, 1), ν = (1, 0), λ = (2, 2).
λ = µ+ ν.σ1 = µ.σ1 + ν. Hence f λµν = 2.

I The set {α ∼ µ |α ⊂ λ} (whose cardinality we denoted with
χλ/µ) can be expressed as

{w ∈ Sµ |µ.w ⊂ λ}

How can we generalise this to the affine symmetric group?



Lemma. Let λ, µ, ν ∈ P+
k = {λ ∈ Pk |λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

I The coefficient f λµν appearing in hλ/µ =
∑

ν f
λ
µνhν can be

expressed as the cardinality of the set [Butler, Hales, ’93]

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ}

Example. k = 2, µ = (2, 1), ν = (1, 0), λ = (2, 2).
λ = µ+ ν.σ1 = µ.σ1 + ν. Hence f λµν = 2.

I The set {α ∼ µ |α ⊂ λ} (whose cardinality we denoted with
χλ/µ) can be expressed as

{w ∈ Sµ |µ.w ⊂ λ}

How can we generalise this to the affine symmetric group?



Lemma. Let λ, µ, ν ∈ P+
k = {λ ∈ Pk |λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

I The coefficient f λµν appearing in hλ/µ =
∑

ν f
λ
µνhν can be

expressed as the cardinality of the set [Butler, Hales, ’93]

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ}

Example. k = 2, µ = (2, 1), ν = (1, 0), λ = (2, 2).
λ = µ+ ν.σ1 = µ.σ1 + ν. Hence f λµν = 2.

I The set {α ∼ µ |α ⊂ λ} (whose cardinality we denoted with
χλ/µ) can be expressed as

{w ∈ Sµ |µ.w ⊂ λ}

How can we generalise this to the affine symmetric group?



Lemma. Let λ, µ, ν ∈ P+
k = {λ ∈ Pk |λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

I The coefficient f λµν appearing in hλ/µ =
∑

ν f
λ
µνhν can be

expressed as the cardinality of the set [Butler, Hales, ’93]

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ}

Example. k = 2, µ = (2, 1), ν = (1, 0), λ = (2, 2).
λ = µ+ ν.σ1 = µ.σ1 + ν. Hence f λµν = 2.

I The set {α ∼ µ |α ⊂ λ} (whose cardinality we denoted with
χλ/µ) can be expressed as

{w ∈ Sµ |µ.w ⊂ λ}

How can we generalise this to the affine symmetric group?



Affine Symmetric Group and Cylindric RPP



The affine symmetric group S̃k is generated by 〈σ0, σ1, . . . , σk−1〉
where

σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i − j | > 1

and all the relations are understood modulo k .

The extended affine symmetric group Ŝk is generated by
〈τ, σ0, σ1, . . . , σk−1〉 where

τσi+1 = σiτ

Let λ = (λ1, . . . , λk) ∈ Pk . The level n action of Ŝk on Pk is

λ.σi = (λ1, . . . , λi+1, λi , . . . , λk)

λ.σ0 = (λk + n, λ2, . . . , λk−1, λ1 − n)

λ.τ = (λk + n, λ1, . . . , λk−1)
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λ.σi = (λ1, . . . , λi+1, λi , . . . , λk)

λ.σ0 = (λk + n, λ2, . . . , λk−1, λ1 − n)

λ.τ = (λk + n, λ1, . . . , λk−1)



The affine symmetric group S̃k is generated by 〈σ0, σ1, . . . , σk−1〉
where

σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i − j | > 1

and all the relations are understood modulo k .

The extended affine symmetric group Ŝk is generated by
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For each λ ∈ Pk we construct a doubly infinite sequence

λ̂ = (. . . , λ̂−1, λ̂0, λ̂1, . . . )

such that λ̂i = λi for i = 1, . . . , k and λ̂i+k = λ̂i − n.

Let Pk,n = {λ̂ |λ ∈ Pk}. The level n action extends to Pk,n.

Example. λ = , λ̂ =

k = 2
n = 3
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Example. k = 2, n = 3, λ = , µ = , d = 1.

Cylindric RPP of shape λ/d/µ [Gessel, Krattenthaler ’97]:

π̂ =

x π̂ = xmultiplicity of 1 in π̂
1 xmultiplicity of 2 in π̂

2 · · · = x2
1 x

2
2 x3
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Define the cylindric complete symmetric functions as

hλ/d/µ =
∑
π̂

χπ̂x π̂ , χπ = χλ̂(1)/λ̂(0) · χλ̂(2)/λ̂(1) · · ·

The sum is over all cylindric RPP of shape λ/d/µ.

Theorem [Korff, DP, ’17]. hλ/d/µ =
∑
ν

Nλ
µνhν

I The sum is restricted to ν ∈ P+
k such that |ν| = nd + |λ|− |µ|.

I Nλ
µν is the cardinality of the set

{(w ,w ′) ∈ Sµ × Sν |µ.w + ν.w ′ = λ.yα for some α ∈ Pk}

Remark. If d = 0 then hλ/0/µ = hλ/µ and Nλ
µν = f λµν .
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Relation with Frobenius algebras (2D TQFT)



Fix k and n. Consider the quotient

Vk(n) = C[x1, . . . , xk ]Sk︸ ︷︷ ︸
Λk

\〈xn
i = 1〉

Ak(n) = {λ ∈ Pk | n ≥ λ1 ≥ · · · ≥ λk ≥ 1}

Theorem [Korff, DP, ’17]. {mλ}λ∈Ak(n) is a basis of Vk(n) and

mµmν =
∑

λ∈Ak(n)

Nλ
µνmλ

where the structure constants Nλ
µν coincide with the non-negative

integers appearing in hλ/d/µ =
∑

ν N
λ
µνhν .

Vk(n) is a Frobenius algebra (i.e. a 2D TQFT) with bilinear form

〈mµ,mν〉 =
δλµ∗

|Sλ|
, µ∗ = (n − µk , . . . , n − µ1)
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Theorem [Korff, DP, ’17]. Let ζn = 1 and ζλ = (ζλ1 , . . . , ζλk ).

I Verlinde formula :

Nλ
µν =

∑
σ∈Ak,n

SµσSνσS−1
λσ

Snkσ

Sλσ =
1

nk/2mλ(ζσ)

I Modular group relations :

(ST )3 = S2 = C Tλµ = δλµζ
−kn(n−1)

24 + 1
2
∑k

i=1 λi (n−λi )

Cλµ = δλµ∗

Remark. For k = 1, V1(n) is the ŝln-Verlinde algebra
(Grothendieck ring of a modular tensor category) at level 1.
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Relation with the generalised symmetric group



We give a representation theoretic interpretation of Nλ
µν in terms of

the generalised symmetric group

S(n, k) = Z×k
n o Sk

This is the semidirect product of Z×k
n (k copies of the cyclic group

of order n) and Sk .

Generators and relations,

σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i − j | > 1

yn
i = 1, yiyj = yjyi , σiyi = yi+1σi
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The simple modules Lλ of S(n, k) are labelled in terms of
multipartitions λ =

(
λ(1), . . . , λ(n)

)
, λ(i) partitions [Osima, ’54].

Representation ring RepS(n, k): Lλ ⊗ Lµ =
⊕

ν c
ν
λµ Lν .

Proposition [Korff, DP, ’17]. The structure constants Nλ
µν of

Vk(n) have the alternative expression

Nλ
µν =

∑
λ

cλµν
fλ
fµfν

, fλ =
n∏

i=1

fλ(i)

I fλ(i) : number of standard tableaux of shape λ(i);
I The sum runs over λ such that |λ(i)| = ni (λ), where |λ(i)| is

the number of boxes in λ(i);
I Similarly for µ and ν.
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Example. Let n = 3, k = 2. For all the multipartitions below we
have fµ = fν = fλ = 1. Let

µ =
(
∅ , ,

)
→ µ = (3, 2)

ν =
(

, ∅ ,
)
→ ν = (3, 1)

We have

Lµ ⊗ Lν = L(∅ , ∅ , )︸ ︷︷ ︸
(3,3)

⊕ L(∅ , ∅ , )︸ ︷︷ ︸
(3,3)

⊕ L(
, , ∅

)︸ ︷︷ ︸
(2,1)

Thus, the only non-zero Nλ
µν are

N(3,3)
µν = 2, N(2,1)

µν = 1
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Conclusions and outlook



We defined cylindric complete symmetric functions hλ/d/µ by
means of cylindric RPP and the affine symmetric group.

The expansion coefficients appearing in hλ/d/µ =
∑

ν N
λ
µνhν are

the structure constants of Frobenius Algebras and have
representation theoretic interpretation.

Plan for the future:

I Have a geometrical interpretation of Nν
λµ.

Cylindric Schur functions: sλ/d/µ =
∑

ν C
λ
µνsν [Postnikov,

05’]. Here Cλµν are 3-point, genus 0 Gromov-Witten invariants
(counting of curves intersecting 3 Schubert varieties).

I Generalise to other (affine) Coxeter groups?
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Thank you for your attention!


