ALGEBRAIC TOPOLOGY IV || EPIPHANY 2020 PROBLEM SHEET 1

Please hand in problems 2 and 4 from MT Problem Sheet 8 and parts (i), (ii), (iv), (v), and (vi) from the problem on this sheet, in lecture on Monday 27th January or at my office by 5pm that day.

Problem 1. Let $F = F_{\{a,b\}}$ be the fundamental group of $X := S^1 \vee S^1$, with a, b generators of $\pi_1(S^1)$ for each of the S^1 wedge summands.

For each of the following subgroups, sketch the covering space \widetilde{X} of $S^1 \vee S^1$ corresponding to that subgroup, that is such that $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ equals that subgroup, where $p: \widetilde{X} \to X$ is the covering map:

- (i) $\langle 1 \rangle$;
- (ii) $\langle a^2 \rangle$;
- (iii) $\langle aba^{-1}b^{-1}\rangle;$
- (iv) $\langle b^n a b^{-n} \mid n \in \mathbb{Z} \rangle$;
- (v) ker($\phi \colon F \to \mathbb{Z}/3$) where $\phi(a) = 1 = \phi(b)$;
- (vi) ker $(\psi \colon F \to \mathbb{Z} \oplus \mathbb{Z})$ where $\psi(a) = (1, 0)$ and $\psi(b) = (0, 1)$;
- (vii) $\langle a^2, b^2, aba^{-1}b^{-1}, ba^2b^{-1}, ab^2a^{-1} \rangle$.

If \widetilde{X} is non-compact, just sketch a few iterations of the pattern.