Problem 1. Let $F \to E \to B$ be a fibration of CW complexes and B simply connected. Show that $\chi(E) = \chi(F) \cdot \chi(B)$.

Problem 2. Suppose that $S^k \to S^\ell \to S^m$ is a fibration. Show that $\ell = 2m-1$ and k = m-1.

Problem 3. This exercise aims to show that $\pi_4(S^3) \cong \mathbb{Z}/2$. We know from the Freudenthal suspension theorem that once we show this homotopy group is $\mathbb{Z}/2$, then $\pi_{n+1}(S^n) \cong \mathbb{Z}/2$ for all $n \geq 3$.

We know $\mathbb{Z} \cong H^3(S^3; \mathbb{Z}) \cong [S^3, K(\mathbb{Z}, 3)]$. Let $f: S^3 \to K(\mathbb{Z}, 3)$ be a generator. Consider the path space fibration

$$\Omega K(\mathbb{Z},3) \simeq K(\mathbb{Z},2) \to PK(\mathbb{Z},3) \simeq * \to K(\mathbb{Z},3)$$

and define a space X to be the pullback

- (i) Show that $X \to S^3$ is a fibration with fibre $K(\mathbb{Z}, 2)$ (X is also the homotopy fibre of f).
- (ii) Use the long exact sequence in homotopy groups associated to a fibration to prove that $\pi_k(X) = 0$ for $k \leq 3$ and $\pi_k(X) \cong \pi_k(S^3)$ for k > 3. It might help to also consider the map between fibration sequences induced by the pullback diagram above.
- (iii) Deduce that $H_4(X; \mathbb{Z}) \cong \pi_4(S^3)$.
- (iv) Consider the cohomology spectral sequence associated to the fibration

$$\Omega K(\mathbb{Z},2) \to PK(\mathbb{Z},2) \simeq * \to K(\mathbb{Z},2),$$

as in class, and use the cup product structure to complete the induction started in class to show compute the cohomology ring $H^*(K(\mathbb{Z},2);\mathbb{Z}) \cong \mathbb{Z}[c]$, with deg c = 2.

(v) Write down the E_2 page of the cohomology spectral sequence for the fibration $K(\mathbb{Z}, 2) \rightarrow X \rightarrow S^3$, for $0 \leq p \leq 4$ and $0 \leq q \leq 6$. Let $i \in H^3(S^3)$ be a generator. Express the generators of the E_2 terms in the form c^q or the form ic^q .

- (vi) Show that $H^2(X) = H^3(X) = 0$, and deduce from the spectral sequence that $d_3(c) = i$.
- (vii) Show that $d^3(c^2) = 2ci$.
- (viii) Deduce from the spectral sequence that $H^4(X) = E^{0,4}_{\infty} = 0$ and $H^5(X) = E^{3,2}_{\infty} = \mathbb{Z}/2$.
- (ix) Use the universal coefficient theorem to show that $H_4(X) = \mathbb{Z}/2$. This completes the computation of $\pi_4(S^3)$ and therefore shows that $\pi_1^S \cong \mathbb{Z}/2$.

Problem 4. The goal of this exercise is to compute $\pi_5(S^3)$. This will be sufficient to compute $\pi_2^S \cong \mathbb{Z}/2$. Consider the adjoint of the suspension map $\sigma \colon \Sigma S^2 \to S^3$, that is $s \colon S^2 \to \Omega S^3$. Let F be the homotopy fibre of s. So we have a fibration sequence $F \to S^2 \to \Omega S^3$.

- (i) Write down the long exact sequence in homotopy groups for this fibration sequence up to k = 4.
- (ii) Show that $\pi_1(F) = \pi_2(F) = 0$ and deduce that $\pi_3(F) = H_3(F; \mathbb{Z})$.
- (iii) Compute $H_4(\Omega S^3)$ (we did it in class).
- (iv) Use the homology spectral sequence for the fibration $F \to S^2 \to \Omega S^3$ to show that the differential $H_4(\Omega S^3) \to H_3(F)$ is an isomorphism. Hence compute $\pi_3(F)$.
- (v) Deduce from the long exact sequence from (i) that $\pi_4(S^2) \to \pi_5(S^3)$ is onto.
- (vi) Show that $\pi_5(S^3)$ is either $\mathbb{Z}/2$ or 0. (Use the Hopf fibration $S^1 \to S^3 \to S^2$ and the outcome of the previous exercise to show that $\pi_4(S^2)$ is nontrivial.) We now need to show that the former possibility holds, i.e. we show that $\pi_5(S^3)$ is nontrivial, and we will then know that is is isomorphic to $\mathbb{Z}/2$.
- (vii) Consider the space X from the previous exercise, obtained from the pullback

. We know that $\pi_4(X) = \pi_4(S^3) = \mathbb{Z}/2$. Let $f: X \to K(\mathbb{Z}/2, 4)$ be a map inducing an isomorphism on π_4 , and let Y be the homotopy fibre of f, Y = Ff. Show using the long exact sequence in homotopy groups of $Y \to X \to K(\mathbb{Z}/2, 4)$ and the Hurewicz theorem that $H_5(Y; \mathbb{Z}) \cong \pi_5(S^3)$.

(viii) Deduce that $\pi_5(S^3) \cong H^5(Y; \mathbb{Z}/2)$.

- (ix) Write down the cohomology spectral sequence for the fibration $Y \to X \to K(\mathbb{Z}/2, 4)$, with $\mathbb{Z}/2$ coefficients.
- (x) Show that

$$H_k(X;\mathbb{Z}) = \begin{cases} 0 & k \text{ odd} \\ \mathbb{Z} & k = 0 \\ \mathbb{Z}/n & k = 2n. \end{cases}$$

This is a generalisation of the cohomology spectral sequence computation from the end of the previous exercise. At least, compute the homology of X up to degree 6.

- (xi) Show that $H^6(X; \mathbb{Z}/2) = 0$.
- (xii) Deduce that

$$d_6: H^5(Y; \mathbb{Z}/2) = E_6^{0,5} \to E_6^{6,0} = H^6(K(\mathbb{Z}/2, 4), \mathbb{Z}/2)$$

is onto.

- (xiii) Assume that $H^6(K(\mathbb{Z}/2,4);\mathbb{Z}/2) \neq 0$ (this is part of the theory of Steenrod squares). Deduce that $\pi_5(S^3) \cong \mathbb{Z}/2$.
- (xiv) Use the Hopf fibration $S^3 \to S^7 \to S^4$ to show that $\pi_6(S^4) \cong \mathbb{Z}/2$, and therefore that $\pi_2^S \cong \mathbb{Z}/2$.