Problem 1. Let $F \rightarrow E \rightarrow B$ be a fibration of CW complexes and B simply connected. Show that $\chi(E)=\chi(F) \cdot \chi(B)$.

Problem 2. Suppose that $S^{k} \rightarrow S^{\ell} \rightarrow S^{m}$ is a fibration. Show that $\ell=2 m-1$ and $k=m-1$.
Problem 3. This exercise aims to show that $\pi_{4}\left(S^{3}\right) \cong \mathbb{Z} / 2$. We know from the Freudenthal suspension theorem that once we show this homotopy group is $\mathbb{Z} / 2$, then $\pi_{n+1}\left(S^{n}\right) \cong \mathbb{Z} / 2$ for all $n \geq 3$.

We know $\mathbb{Z} \cong H^{3}\left(S^{3} ; \mathbb{Z}\right) \cong\left[S^{3}, K(\mathbb{Z}, 3)\right]$. Let $f: S^{3} \rightarrow K(\mathbb{Z}, 3)$ be a generator. Consider the path space fibration

$$
\Omega K(\mathbb{Z}, 3) \simeq K(\mathbb{Z}, 2) \rightarrow P K(\mathbb{Z}, 3) \simeq * \rightarrow K(\mathbb{Z}, 3)
$$

and define a space X to be the pullback

(i) Show that $X \rightarrow S^{3}$ is a fibration with fibre $K(\mathbb{Z}, 2)$ (X is also the homotopy fibre of f).
(ii) Use the long exact sequence in homotopy groups associated to a fibration to prove that $\pi_{k}(X)=0$ for $k \leq 3$ and $\pi_{k}(X) \cong \pi_{k}\left(S^{3}\right)$ for $k>3$. It might help to also consider the map between fibration sequences induced by the pullback diagram above.
(iii) Deduce that $H_{4}(X ; \mathbb{Z}) \cong \pi_{4}\left(S^{3}\right)$.
(iv) Consider the cohomology spectral sequence associated to the fibration

$$
\Omega K(\mathbb{Z}, 2) \rightarrow P K(\mathbb{Z}, 2) \simeq * \rightarrow K(\mathbb{Z}, 2)
$$

as in class, and use the cup product structure to complete the induction started in class to show compute the cohomology ring $H^{*}(K(\mathbb{Z}, 2) ; \mathbb{Z}) \cong \mathbb{Z}[c]$, with $\operatorname{deg} c=2$.
(v) Write down the E_{2} page of the cohomology spectral sequence for the fibration $K(\mathbb{Z}, 2) \rightarrow$ $X \rightarrow S^{3}$, for $0 \leq p \leq 4$ and $0 \leq q \leq 6$. Let $i \in H^{3}\left(S^{3}\right)$ be a generator. Express the generators of the E_{2} terms in the form c^{q} or the form $i c^{q}$.
(vi) Show that $H^{2}(X)=H^{3}(X)=0$, and deduce from the spectral sequence that $d_{3}(c)=i$.
(vii) Show that $d^{3}\left(c^{2}\right)=2 c i$.
(viii) Deduce from the spectral sequence that $H^{4}(X)=E_{\infty}^{0,4}=0$ and $H^{5}(X)=E_{\infty}^{3,2}=\mathbb{Z} / 2$.
(ix) Use the universal coefficient theorem to show that $H_{4}(X)=\mathbb{Z} / 2$. This completes the computation of $\pi_{4}\left(S^{3}\right)$ and therefore shows that $\pi_{1}^{S} \cong \mathbb{Z} / 2$.

Problem 4. The goal of this exercise is to compute $\pi_{5}\left(S^{3}\right)$. This will be sufficient to compute $\pi_{2}^{S} \cong \mathbb{Z} / 2$. Consider the adjoint of the suspension map $\sigma: \Sigma S^{2} \rightarrow S^{3}$, that is $s: S^{2} \rightarrow \Omega S^{3}$. Let F be the homotopy fibre of s. So we have a fibration sequence $F \rightarrow S^{2} \rightarrow \Omega S^{3}$.
(i) Write down the long exact sequence in homotopy groups for this fibration sequence up to $k=4$.
(ii) Show that $\pi_{1}(F)=\pi_{2}(F)=0$ and deduce that $\pi_{3}(F)=H_{3}(F ; \mathbb{Z})$.
(iii) Compute $H_{4}\left(\Omega S^{3}\right)$ (we did it in class).
(iv) Use the homology spectral sequence for the fibration $F \rightarrow S^{2} \rightarrow \Omega S^{3}$ to show that the differential $H_{4}\left(\Omega S^{3}\right) \rightarrow H_{3}(F)$ is an isomorphism. Hence compute $\pi_{3}(F)$.
(v) Deduce from the long exact sequence from (i) that $\pi_{4}\left(S^{2}\right) \rightarrow \pi_{5}\left(S^{3}\right)$ is onto.
(vi) Show that $\pi_{5}\left(S^{3}\right)$ is either $\mathbb{Z} / 2$ or 0 . (Use the Hopf fibration $S^{1} \rightarrow S^{3} \rightarrow S^{2}$ and the outcome of the previous exercise to show that $\pi_{4}\left(S^{2}\right)$ is nontrivial.) We now need to show that the former possibility holds, i.e. we show that $\pi_{5}\left(S^{3}\right)$ is nontrivial, and we will then know that is is isomorphic to $\mathbb{Z} / 2$.
(vii) Consider the space X from the previous exercise, obtained from the pullback

. We know that $\pi_{4}(X)=\pi_{4}\left(S^{3}\right)=\mathbb{Z} / 2$. Let $f: X \rightarrow K(\mathbb{Z} / 2,4)$ be a map inducing an isomorphism on π_{4}, and let Y be the homotopy fibre of $f, Y=F f$. Show using the long exact sequence in homotopy groups of $Y \rightarrow X \rightarrow K(\mathbb{Z} / 2,4)$ and the Hurewicz theorem that $H_{5}(Y ; \mathbb{Z}) \cong \pi_{5}\left(S^{3}\right)$.
(viii) Deduce that $\pi_{5}\left(S^{3}\right) \cong H^{5}(Y ; \mathbb{Z} / 2)$.
(ix) Write down the cohomology spectral sequence for the fibration $Y \rightarrow X \rightarrow K(\mathbb{Z} / 2,4)$, with $\mathbb{Z} / 2$ coefficients.
(x) Show that

$$
H_{k}(X ; \mathbb{Z})= \begin{cases}0 & k \text { odd } \\ \mathbb{Z} & k=0 \\ \mathbb{Z} / n & k=2 n\end{cases}
$$

This is a generalisation of the cohomology spectral sequence computation from the end of the previous exercise. At least, compute the homology of X up to degree 6 .
(xi) Show that $H^{6}(X ; \mathbb{Z} / 2)=0$.
(xii) Deduce that

$$
d_{6}: H^{5}(Y ; \mathbb{Z} / 2)=E_{6}^{0,5} \rightarrow E_{6}^{6,0}=H^{6}(K(\mathbb{Z} / 2,4), \mathbb{Z} / 2)
$$

is onto.
(xiii) Assume that $H^{6}(K(\mathbb{Z} / 2,4) ; \mathbb{Z} / 2) \neq 0$ (this is part of the theory of Steenrod squares). Deduce that $\pi_{5}\left(S^{3}\right) \cong \mathbb{Z} / 2$.
(xiv) Use the Hopf fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ to show that $\pi_{6}\left(S^{4}\right) \cong \mathbb{Z} / 2$, and therefore that $\pi_{2}^{S} \cong \mathbb{Z} / 2$.

