Topologie Algébrique II: Problem sheet 6

Solve the problems using what we have seen in class so far.
Problem 1. Let X be contractible. Show that $\pi_{n}(X)=0$ for all $n \geq 0$.
Problem 2. Let X be a discrete space. Show that $\pi_{n}(X)=0$ for $n \geq 1$.
Problem 3. Let $p: E \rightarrow B$ be a covering space. Show that $p_{*}: \pi_{n}(E) \rightarrow \pi_{n}(B)$ is an isomorphism for all $n \leq 2$.

Problem 4. Show that $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $\pi_{n}\left(S^{1}\right)=0$ for $n \geq 2$.
Problem 5. Let $i \geq 2$. Show that $\pi_{1}\left(\mathbb{R P}^{i}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ and that $\pi_{n}\left(\mathbb{R}^{i}\right) \cong \pi_{n}\left(S^{i}\right)$ for $n>1$.
Problem 6. Show that $\pi_{n}(X \times Y) \cong \pi_{n}(X) \times \pi_{n}(Y)$ for any spaces X, Y and for $n \geq 0$.
Problem 7. Show that $\pi_{i}\left(S^{n}\right)=0$ for $0 \leq i<n$. (This problem does not use fibrations; assume the fact that $f: S^{i} \rightarrow S^{n}$ is homotopic to a map such that there exists $p \in S^{n}$ with $p \notin f\left(S^{i}\right)$.)

Problem 8. For $n \geq 2$, show that $\pi_{n}(X \vee Y) \cong \pi_{n}(X) \oplus \pi_{n}(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y)$.
Problem 9. Compute $\pi_{n}\left(\mathbb{R}^{n}, \mathbb{R} \mathbb{P}^{n-1}\right)$ for $n \geq 2$. Whence show that the map of pairs $\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{R} \mathbb{P}^{n-1}\right) \rightarrow\left(\mathbb{R} \mathbb{P}^{n} / \mathbb{R P}^{n-1}, *\right)$ does not induce an isomorphism on π_{n}.

Problem 10. Use the Hopf bundle $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ arising from the quaternions to show that $\pi_{7}\left(S^{4}\right)$ contains an element of infinite order. You may use that $\pi_{n}\left(S^{n}\right) \cong \mathbb{Z}$ for every $n \geq 1$, in particular for $n=7$.

However you may not use other facts that we have not yet covered in the course, but which you might know. For example, $\pi_{7}\left(S^{3}\right)$ is finite, but do not use this. Instead, you could show that the composition $\pi_{7}\left(S^{3}\right) \xrightarrow{f \mapsto \Sigma f} \pi_{8}\left(S^{4}\right) \xrightarrow{\partial} \pi_{7}\left(S^{3}\right)$, where the second map is the boundary map in the long exact sequence of the Hopf fibration, is the identity.

