Topologie Algébrique II: Problem sheet 9

Problem 1. Use the Künneth theorem to compute the homology groups of $\mathbb{R P}^{m} \times \mathbb{R} \mathbb{P}^{n}$ and the homology groups of $L(p, 1) \times L(q, 1)$, where $L(p, 1)$ is the lens space.

Problem 2. Compute the cup product $\cup: H^{1}\left(\mathbb{T}^{2} ; \mathbb{Z} / 2\right) \otimes H^{1}\left(\mathbb{T}^{2} ; \mathbb{Z} / 2\right) \rightarrow H^{2}\left(\mathbb{T}^{2} ; \mathbb{Z} / 2\right)$. Use a simplicial subdivision of the torus and the formula using the front p face and the back q face corresponding to the Alexander-Whitney diagonal chain approximation map.

Problem 3. Compute the cup product $\cup: H^{1}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 2\right) \otimes H^{1}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 2\right) \rightarrow H^{2}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 2\right)$. There are only two options: show that it is nontrivial. Can you show that it is nontrivial without computing?

Problem 4. Let A and B be subspaces of X.
(i) Construct a relative cup product

$$
H^{p}(X, A) \otimes H^{q}(X, B) \rightarrow H^{p+q}(X, A \cup B)
$$

and show that the diagram below is commutative:

(ii) Introduce a basepoint in $A \cap B$ (supposed nonempty), and show that the next diagram commutes:

(iii) Let $X=A \cup B$ and $A \cap B \neq \emptyset$. Show that the cup product

$$
\widetilde{H}^{p}(X) \otimes \widetilde{H}^{q}(X) \rightarrow \widetilde{H}^{p+q}(X)
$$

vanishes.
(iv) Let $X=\Sigma Y$ for some Y. Show that the cup product

$$
\widetilde{H}^{p}(X) \otimes \widetilde{H}^{q}(X) \rightarrow \widetilde{H}^{p+q}(X)
$$

vanishes.

