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PATRICK PERRAS, MARK POWELL, JOSÉ PEDRO QUINTANILHA, LISA SCHAMBECK,
DAVID SUCHODOLL, MARTIN TANCER, ANNIKA THIELE, PAULA TRUÖL, MATTHIAS USCHOLD,
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Abstract. We show that there exists an algorithm that takes as input two closed, simply con-

nected, topological 4-manifolds and decides whether or not these 4-manifolds are homeomorphic.

In particular, we explain in detail how closed, simply connected, topological 4-manifolds can be
naturally represented by a Kirby diagram consisting only of 2-handles. This representation

is used as input for our algorithm. Along the way, we develop an algorithm to compute the

Kirby–Siebenmann invariant of a closed, simply connected, topological 4-manifold from any of
its Kirby diagrams and describe an algorithm that decides whether or not two intersection forms

are isometric.
In a slightly different direction, we discuss the decidability of the stable classification of

smooth manifolds with more general fundamental groups. Here we show that there exists an

algorithm that takes as input two closed, oriented, smooth 4-manifolds with fundamental groups
isomorphic to a finite group with cyclic Sylow 2-subgroup, an infinite cyclic group, or a group

of geometric dimension at most 3 (in the latter case we additionally assume that the universal

covers of both 4-manifolds are not spin), and decides whether or not these two 4-manifolds are
orientation-preserving stably diffeomorphic.

1. Introduction

It is a consequence of the resolution of the geometrization conjecture [Per02Per02, Per03Per03] that the
homeomorphism problem is solved for closed, orientable manifolds of dimension less than or equal
to 3, see for example [Kup19Kup19]. On the contrary, a well-known theorem due to Markov states that
there exists no algorithm that takes as input two 4-manifolds (presented as triangulations) and
outputs in finite time whether or not these manifolds are homeomorphic [Mar58Mar58] (see also [Sht05Sht05,
CL06CL06, Kir20Kir20, Gor21Gor21, Tan23Tan23]). The idea to prove this theorem (and related results for manifolds of
dimension larger than 4) is to produce from such a potential algorithm a solution to an undecidable
problem in group theory. This crucially uses the fact that the fundamental group of the input
manifolds can be isomorphic to any finitely presented group. Thus it seems natural to ask whether
such algorithms exist if the isomorphism type of the fundamental groups of the input manifolds is
fixed. The main result of this article is such an algorithm for simply connected 4-manifolds.

Theorem 7.17.1 (Abbreviated version). There exists an algorithm that

• takes as input two closed, oriented, simply connected, topological 4-manifolds X and X ′,
presented as Kirby diagrams (we refer to Section 1.11.1 for the explanation of what a Kirby
diagram in this setting means), and

• outputs whether or not X and X ′ are orientation-preserving homeomorphic.

Our proof of Theorem 7.17.1 is based on a careful step-by-step analysis of Freedman’s classifica-
tion [Fre82Fre82] of closed, oriented, simply connected, topological 4-manifolds by the intersection form
and the Kirby–Siebenmann invariant. In particular, we provide algorithms for computing and
comparing these invariants from the input data.

Remark 1.1. If X and X ′ are orientable but unoriented 4-manifolds, and we wish to determine
whether or not they are homeomorphic, it suffices to choose orientations on each, and then run
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2 ALGORITHMS IN 4-MANIFOLD TOPOLOGY

our algorithm with input (X,X ′) and (X,−X ′). If at least one of the answers is yes, the manifolds
are homeomorphic. If both answers are no, the manifolds are not homeomorphic.

1.1. Kirby diagrams of simply connected topological 4-manifolds. Since there exist closed,
oriented, simply connected, topological 4-manifolds that admit neither triangulations nor smooth
structures and thus do not admit a handle decomposition, it is a priori not clear how to input
topological 4-manifolds into an algorithm.

To encode a closed, oriented, simply connected, topological 4-manifold X as a finite data set,
in Section 33 we introduce the notion of a Kirby diagram of X. For this, let L be a framed link
in S3 with unimodular linking matrix. By attaching 4-dimensional 2-handles to D4 along L, we
obtain the diffeomorphism type of a compact, oriented, smooth 4-manifold WL whose boundary
Y is an integral homology 3-sphere. From Freedman’s work [Fre82Fre82] it follows that there exists a
contractible, compact, topological 4-manifold C with boundary Y , which we can glue to WL to
obtain a topological 4-manifold XL; see Figure 11 for a schematic of the situation. The following
theorem shows that XL yields the homeomorphism type of a closed, oriented, simply connected,
topological 4-manifold and that, conversely, any such manifold arises via this construction.

Theorem 3.63.6. Let L be a framed link with unimodular linking matrix.

(1) Then XL is a closed, oriented, simply connected, topological 4-manifold.
(2) The oriented homeomorphism type of XL only depends on the isotopy class of L.
(3) For every closed, oriented, simply connected, topological 4-manifold X there exists a framed

link L with unimodular linking matrix such that XL is orientation-preserving homeomor-
phic to X.

In the situation of Theorem 3.63.6 (33), we call L a Kirby diagram of the topological 4-manifold X.

W Y C

Figure 1. Splitting X along Y , where W is smooth and C is contractible.

Remark 1.2. Our approach to present closed, oriented, simply connected, topological 4-manifolds
crucially uses the simple connectivity of the manifold for obtaining the decomposition into a smooth
piece and a contractible piece. On the other hand, there is also work by Freedman–Zuddas [FZ19FZ19]
on presenting general compact (in particular non-simply connected) topological 4-manifolds via
finite data.

1.2. The Kirby–Siebenmann invariant. The Kirby-Siebenmann invariant ks(X) of a topolog-
ical manifold X (see [FQ90FQ90, Section 10.2B] and [KS77KS77, p. 318]) is an element of H4(X;Z/2). It
vanishes if X admits a smooth or a PL structure. Thus, if X is a connected, closed, topological
4-manifold, the Kirby–Siebenmann invariant is either 0 or 1. In Section 55 we will use a theorem of
Freedman–Kirby (see Theorem 5.35.3) to show that the Kirby–Siebenmann invariant is computable.

Proposition 5.65.6. There exists an algorithm that

• takes as input a framed link L with unimodular linking matrix, and
• outputs the Kirby–Siebenmann invariant of XL.

1.3. Intersection forms. One of the most important invariants in 4-manifold theory is the in-
tersection form. In Section 22 we will recall the background on the intersection form and in Sec-
tion 44 we will see that the intersection form of a closed, oriented, simply-connected, topological
4-manifold XL, presented by a framed link L, is in a preferred basis given by the linking matrix
of L. In Section 66 we will present a purely algebraic algorithm to compare two such intersection
forms.
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Proposition 6.16.1. There exists an algorithm that

• takes as input two integral, symmetric, unimodular matrices V and V ′, and
• outputs whether or not these two matrices are congruent over Z.

1.4. Algorithms for the stable classification of 4-manifolds. We say that two smooth 4-
manifolds X1 and X2 are stably diffeomorphic if there exists a natural number k such that
X1#k(S

2×S2) is diffeomorphic to X2#k(S
2×S2). (Note that by [Gom84Gom84] two closed, orientable,

smooth 4-manifolds are stably diffeomorphic if and only if they are stably homeomorphic.) The
classification of 4-manifolds up to stable diffeomorphism is coarser, and hence easier to compute,
which means that we can leave the realm of simply connected 4-manifolds. In Section 88 we will
use the classification of 4-manifolds up to stable diffeomorphism to present the following two algo-
rithms.

Theorem 8.38.3. There exists an algorithm that

• takes as input oriented triangulations of closed, oriented, smooth 4-manifolds X1 and X2

such that either
(1) their fundamental groups are both isomorphic to the infinite cyclic group,
(2) or X1 has a finite fundamental group with a cyclic Sylow 2-subgroup and X2 has a

finite fundamental group, and
• outputs whether or not X1 and X2 are orientation-preserving stably diffeomorphic.

Theorem 8.48.4. There exists an algorithm that

• takes as input oriented triangulations of closed, oriented, smooth 4-manifolds X1 and X2,

such that both universal covers X̃1 and X̃2 are not spin and such that
(1) their fundamental groups are isomorphic and of homological dimension ≤ 3,
(2) or their fundamental groups are both finite, and

• outputs whether or not X1 and X2 are orientation-preserving stably diffeomorphic.

1.5. Open questions. We end this introduction by highlighting some natural related questions.
In recent years, there have been several attempts to find the smallest (in terms of second ho-

mology) unrecognisable simply connected, closed, topological 4-manifold. The strongest result
so far was obtained by Tancer [Tan23Tan23] who showed that M9 = #9(S

2 × S2) is unrecognisable
among closed, triangulated, topological 4-manifolds. Earlier results of Shtan’ko [Sht05Sht05] and Gor-
don [Gor21Gor21] showed thatMk is unrecognisable for k = 14 and k = 12, respectively; see also [CL06CL06].
The recognisability of the simplest closed, topological 4-manifold, the 4-sphere S4, is still unknown,
i.e. the following remains open, see for example [Wei02Wei02, Kir20Kir20, Gor21Gor21, Tan23Tan23].

Question 1.3. Does there exist an algorithm that

• takes as input a triangulation of a closed 4-manifold X, and
• outputs whether or not X is homeomorphic to S4?

On the other hand, one could ask for which other fundamental groups there is an algorithmic
classification of 4-manifolds with this fundamental group, similar to Theorem 7.17.1, Theorem 8.38.3, or
Theorem 8.48.4. Similar to our approach in Theorem 7.17.1, one could fix a nontrivial group π and study
the homeomorphism problem for closed, oriented, topological 4-manifolds with fundamental group
isomorphic to π; or with fundamental group in a well-understood subclass of finitely presented
groups. For some groups π, complete sets of invariants have been found which classify closed, ori-
entable, topological 4-manifolds with fundamental group isomorphic to π, most notably Z [FQ90FQ90],
Z/n [HK88HK88, HK93HK93], and solvable Baumslag–Solitar groups [HKT09HKT09]. Conversely, it would be inter-
esting to see if there exists a group such that there exists no algorithmic classification of 4-manifolds
with that fundamental group.

Question 1.4. Does there exist a finitely presented group π, such that there is no algorithm that

• takes as input two 4-manifolds X1 and X2, presented as triangulations, with fundamental
groups isomorphic to π, and

• outputs whether or not X1 and X2 are homeomorphic?

It would also be interesting to study 4-manifolds from an algorithmic viewpoint with respect to
smooth aspects. Here we mention the following two problems.
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Question 1.5. Does there exist an algorithm that

• takes as input a topological 4-manifold X (if X is closed, oriented, and simply connected,
we can use a Kirby diagram of X as input, otherwise we could use [FZ19FZ19]), and

• outputs whether or not X admits a smooth structure?

Remark 1.6. A positive resolution of the 11/8-conjecture (see [GS99GS99, Page 16]) would imply a
positive answer to Question 1.51.5 for simply connected manifolds.

Question 1.7. Does there exist an algorithm that

• takes as input two smooth, homeomorphic 4-manifolds X1 and X2, presented as triangu-
lations, and

• outputs whether or not X1 and X2 are diffeomorphic?

We remark that Question 1.31.3 is known to be false in dimensions larger than 4 [VKF74VKF74], whereas
the analogues of the other questions seem to be open in all dimensions larger than 4. Question 1.41.4
and a theorem similar to Theorem 7.17.1 for PL and smooth manifolds of dimension 5 or larger are
mentioned in [NW99NW99], building upon the computability of higher homotopy groups [Bro57Bro57].

A note about algorithms. We take a pragmatic approach to the notion of algorithms. (The
underlying precise notion is in terms of Turing machines [BBJ07BBJ07] or equivalent models of compu-
tation.) For each algorithm, we will explain how the input is represented as finite data. We will
then describe the algorithms in standard mathematical language, giving enough details that the
translation to a concrete algorithmic setting is evident.
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2. Intersection forms

Recall that for a compact, oriented, connected 4-manifold X, the intersection form of X is
defined as

λX : H2(X)×H2(X) −→ Z

(φ,ψ) 7−→ ⟨PD−1
X (φ) ∪ PD−1

X (ψ), [X]⟩,

where PDX : H2(X, ∂X;Z) → H2(X) is the Poincaré duality isomorphism given by capping with
the fundamental class [X] ∈ H4(X, ∂X) determined by the orientation. Note that the intersection
form is symmetric and bilinear. It follows from the Hurewicz theorem, Poincaré duality, and the
universal coefficient theorem that if X is simply connected, then H2(X) is torsion-free. Finally
note that it follows from Poincaré duality that the intersection form is unimodular if and only if
X is closed or if ∂X is an integral homology 3-sphere.
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If we choose a basis of H2(X), which induces an isomorphism f : H2(X) → Zm, then under
this isomorphism the intersection form can be represented by an integral, symmetric, unimodular11

matrix V , via

λX : Zm × Zm −→ Z

(a, b) 7−→ aTV b.

Conversely, any symmetric (m×m)-matrix V with integral entries and determinant det(V ) = ±1
represents a unimodular, symmetric bilinear form Zm ×Zm → Z via the above formula. Two such
matrices V and V ′ represent isometric bilinear forms if and only if they are congruent over Z, i.e.
there exists an integral, unimodular matrix P such that V = PTV ′P .

The following theorem of Freedman [Fre82Fre82] implies in particular that every symmetric, unimod-
ular, bilinear form over the integers is isometric to the intersection form of some closed, oriented,
simply connected, topological 4-manifold.

Theorem 2.1 (Freedman [Fre82Fre82]).

(1) Let λ be a symmetric, unimodular, bilinear form over Z and let k ∈ Z/2. (If λ is even,
then we assume that k ≡ 1

8 · sign(λ) mod 2.) There exists a closed, oriented, simply con-
nected, topological 4-manifold X whose intersection form is isometric to λ and with Kirby–
Siebenmann invariant ks(X) = k ∈ Z/2.

(2) Let X and Y be two closed, oriented, simply connected, topological 4-manifolds with equal
Kirby–Siebenmann invariants ks(X) = ks(Y ) ∈ Z/2. If f : (H2(X), λX) → (H2(Y ), λY ) is
an isometry of the intersection forms, then there exists an orientation-preserving homeo-
morphism h : X → Y such that h∗ = f . Furthermore, f is unique up to isotopy. □

For more background on intersection forms on 4-manifolds we refer for example to [GS99GS99,
Chapter 1.2], [Kir89Kir89, Chap. II], [Sco05Sco05, Chap. III], or [Pra07Pra07, Chap. II, §2.7].

3. Kirby diagrams of topological 4-manifolds

Natural ways to present compact, smooth 4-manifolds are via triangulations or handle decompo-
sitions (Kirby diagrams). However, it is known that a compact 4-manifold admits a triangulation
if and only if it admits a handle decomposition, which in turn is equivalent to admitting a smooth
structure [Whi40Whi40, HM74HM74, Mun60Mun60, Mun64Mun64, Cer68Cer68], cf. [FQ90FQ90, Theorem 8.3B]. So if we want to de-
scribe a topological 4-manifold (that possibly carries no smooth structure), we cannot use any of
the above presentation methods. In this section, we explain how to specify a closed, oriented, sim-
ply connected, topological 4-manifold X by a Kirby diagram (even if it does not carry a smooth
structure and thus does not admit a handle decomposition). The idea is to decompose X as
X = W ∪Y C, where W is a codimension-zero submanifold of X that does carry a smooth struc-
ture and which can be described by a Kirby diagram and C is a contractible topological 4-manifold
such that the intersection Y =W ∩C is an integral homology 3-sphere. In the following, we make
this precise.

Definition 3.1. A framed link is a closed, oriented, smooth, 1-dimensional submanifold L =
L1⊔· · ·⊔Lm in S3 with ordered components, together with a Z-label of each component Li, called
its framing.

This framing corresponds to a homotopy class of trivialisations of the normal bundle of Li, for
each i. Each component of L has a closed tubular neighbourhood νLi, and using the framing we
obtain the isotopy class of a diffeomorphism from S1 ×D2 to νLi (using the standard convention
that the 0-framing corresponds to the Seifert framing of Li), we refer for example to [GS99GS99] for
details.

Remark 3.2. In algorithms, framed links will be represented by Z-labelled, oriented, ordered link
diagrams. There are several known ways to represent link diagrams (up to planar isotopy), for
example via PD codes [BNMeaBNMea, Mas15Mas15], DT codes [DT83DT83], Gauß codes [LMLM], braid words [Art25Art25],
or isosignatures [BBPeaBBPea].

1Here we say that a matrix is integral if it has only integer coefficients and such a matrix is called unimodular

if it is a square matrix and has determinant det(V ) = ±1.



6 ALGORITHMS IN 4-MANIFOLD TOPOLOGY

Definition 3.3.

(1) Let L be a framed link with components L1 ⊔ · · · ⊔Lm and framings f1, . . . , fm. Then the
linking matrix V = (vij)1≤i,j≤m of L is defined by vii := fi and vij := lk(Li, Lj) if i ̸= j.

(2) A framed, unimodular link is an oriented, framed link whose linking matrix V is unimod-
ular.

Remark 3.4. We make a few remarks about this definition.

(1) The linking matrix of a framed link L can be computed algorithmically from each diagram
of L (see the proof of Lemma 4.24.2). Since the determinant of a matrix with integral
coefficients is computable, it is algorithmically decidable whether a given framed link is
unimodular.

(2) Any framed link L determines the diffeomorphism type of a compact, oriented, simply
connected, smooth 4-manifold WL, obtained by attaching 2-handles to D4 along L. Then
H2(W ) admits a preferred basis, whose i-th element is represented by the core of the 2-
handle attached to the i-th component Li, union a cone on Li in D4. In this basis, the
intersection form λWL

is represented by the linking matrix of L. It follows that if the
framed link L is unimodular, then the intersection form λWL

is unimodular, and thus ∂WL

is an integer homology 3-sphere. We refer to [GS99GS99, Chapter 4] for more details.

Next, we observe that from a framed, unimodular link we can build a topological 4-manifold.

Definition 3.5. Let L be a framed, unimodular link. We use it to build a topological 4-
manifold XL as follows.

(1) We choose a compact, oriented, simply connected, smooth 4-manifold WL obtained by
attaching 2-handles to D4 along L as explained in Remark 3.43.4.

(2) The boundary ∂WL of WL is an integer homology 3-sphere and thus, by Freedman [Fre82Fre82,
Theorem 1.4’], there exists a contractible, compact, oriented, topological 4-manifold C
whose boundary is orientation-reversing homeomorphic to ∂WL.

(3) We choose an orientation-reversing homeomorphism h : ∂WL → ∂C and use this homeo-
morphism to glue WL and C, i.e. we build

XL :=WL ∪h C.

The following theorem, which is the main result of this section, states among other things that
the homeomorphism type of XL is independent of all choices made throughout this construction.

Theorem 3.6. Let L be a framed, unimodular link.

(1) XL is a closed, oriented, simply connected, topological 4-manifold.
(2) The oriented homeomorphism type of XL only depends on the isotopy class of L as framed

link.
(3) For every closed, oriented, simply connected, topological 4-manifold X there exists a framed,

unimodular link L such that XL is orientation-preserving homeomorphic to X.

Definition 3.7. In the situation of Theorem 3.63.6(3), we say that L is a Kirby diagram of the
topological 4-manifoldX. We callWL the handle part, C the contractible part, and Y := ∂C = ∂WL

the splitting 3-manifold of XL.

We refer to Figure 11 for a schematic sketch of the situation.

Remark 3.8. We make a comment about the justification of the term Kirby diagram for the above
construction. Recall from Remark 3.43.4 that a framed link L determines the diffeomorphism type of
a compact, oriented, smooth 4-manifold WL by attaching 2-handles along L to D4.

If the boundary ∂WL is diffeomorphic to #m(S1×S2) then we can glue in a copy of ♮m(S1×D3)
to obtain a closed, oriented, smooth 4-manifold W . A result by Laudenbach–Poenaru [LP72LP72]
implies that the diffeomorphism type of this closed 4-manifold W is independent of the gluing map
and thus L is called Kirby diagram of W .

If the boundary ∂WL is diffeomorphic to an integral homology 3-sphere we can glue in a con-
tractible topological 4-manifold to obtain a closed manifold. We can use Freedman [Fre82Fre82] to
show that the homeomorphism type of that closed 4-manifold is independent of that gluing map.
Thus the construction is essentially the same, and the name Kirby diagram for this topological
4-manifold seems to be justified.
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Theorem 3.63.6 is proven via the following sequence of lemmas.

Lemma 3.9. Let L be a framed, unimodular link. Then XL is a closed, oriented, simply connected,
topological 4-manifold.

Proof. Since XL =WL∪hC consists of two compact, oriented, simply connected 4-manifolds glued
along their common boundary by an orientation-reversing homeomorphism, XL is a closed, oriented
4-manifold. The Seifert–van Kampen theorem implies that XL is also simply connected. □

Lemma 3.10. Let L be a framed, unimodular link. Then the inclusion map ι : WL ↪→ XL =
WL ∪h C induces an isomorphism ι∗ : H2(WL) → H2(XL). Thus the handle part WL determines
a preferred isomorphism f : H2(XL) → Zm.

Proof. The first claim follows from the Mayer–Vietoris sequence of XL = WL ∪Y C, using that
H2(Y ),H1(Y ), andH2(C) are all trivial groups. As explained in Remark 3.43.4 there exists a preferred
isomorphism H2(WL) → Zm which thus induces a preferred isomorphism f : H2(XL) → Zm. □

Lemma 3.11. Let L be a framed, unimodular link. If XL = WL ∪h C and X ′
L = W ′

L ∪h′ C ′

are two topological 4-manifolds constructed as in Definition 3.53.5, then there exists an orientation-
preserving homeomorphism g : XL → X ′

L. Moreover, if we denote by f : H2(XL) → Zm and
f ′ : H2(X

′
L) → Zm the preferred isomorphisms constructed in Lemma 3.103.10, we can choose g such

that f ′ ◦ g∗ ◦ f−1 = IdZm .

Proof. First, recall that by Remark 3.43.4 (2), there exists an orientation-preserving diffeomorphism
gW : WL →W ′

L, and its induced isomorphism gW∗ : H2(WL) → H2(W
′
L) sends the bases determined

by L to one another. Moreover, these bases determine our preferred bases for H2(XL) and H2(X
′
L)

via the inclusion-induced isomorphisms ι∗ : H2(WL) → H2(XL) and ι
′
∗ : H2(W

′
L) → H2(X

′
L) from

Lemma 3.103.10. Therefore, we have

f ′ ◦ ι′∗ ◦ gW∗ ◦ ι−1
∗ ◦ f−1 = IdZm .

Thus, to prove the lemma, it is enough to show that the diffeomorphism gW : WL → W ′
L extends

to an orientation-preserving homeomorphism g : XL → X ′
L. To see this, consider the 4-manifold

C∪−C ′ glued via the homeomorphism h′ ◦gW ◦h−1. Using the fact that C and C ′ are contractible
and using Seifert-van Kampen and Mayer-Vietoris one can easily verify that π1(C ∪−C ′) = 0 and
H2(C ∪ −C ′) = 0. It follows from Theorem 2.12.1 that C ∪ −C ′ is homeomorphic to S4. Then D5

gives an h-cobordism rel. boundary (D5;C,C ′) from C to C ′. This is an h-cobordism because
C, C ′ and D5 are all contractible, so the inclusion maps are necessarily homotopy equivalences.
By the h-cobordism theorem [FQ90FQ90, Theorem 7.1A], this cobordism is a product, i.e. we have a
homeomorphism of pairs (D5, C ′) ∼= (C ′×[0, 1], C ′×{1}) that is the identity on C ′. Restricting this
to C ⊆ D5 yields an orientation-preserving homeomorphism C → C ′ × {0} = C ′, which extends
gW to an orientation-preserving homeomorphism g : XL → X ′

L. □

Lemma 3.12. Let X be a closed, oriented, simply connected, topological 4-manifold. Then there
exists a framed, unimodular link L such that XL is orientation-preserving homeomorphic to X.

Proof. Let V be a matrix representing the intersection form λX of X. Since X is a closed manifold,
V is an integral, symmetric, unimodular matrix. Thus we can choose a framed, unimodular link L
in S3 whose linking matrix is V . Then the intersection form of XL is represented by V (see
Lemma 4.14.1 below and [GS99GS99, Proposition 4.5.11]) and in particular the intersection forms of XL

and X are isometric. In [Fre82Fre82, p. 371], Freedman explained how to alter L by tying a trefoil into
some specified component of L (belonging to the characteristic sublink), in order to change the
Kirby–Siebenmann invariant ks(XL) of XL whilst preserving its intersection form. Thus we can
also arrange that ks(XL) = ks(X). For more details on this construction, we refer to the algorithm
for computing the Kirby–Siebenmann invariant in Proposition 5.65.6 below. By the uniqueness part
Freedman’s Theorem 2.12.1 we conclude that XL is orientation-preserving homeomorphic to X. □

Putting these lemmas together yields a proof of Theorem 3.63.6.

Proof of Theorem 3.63.6. (1) is Lemma 3.93.9, (2) follows from Lemma 3.113.11, and (3) is Lemma 3.123.12. □
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4. Extracting the intersection form

In this section, we discuss how to compute the intersection form of a closed, oriented, simply
connected, topological 4-manifold from any of its Kirby diagrams.

Lemma 4.1. Let L be a framed, unimodular link. Then the linking matrix V of L represents the
intersection form λXL

of XL in the preferred basis induced by the handle part.

Proof. We write XL as XL =WL ∪h C, with C a contractible 4-manifold and W the handle part.
By Lemma 3.103.10, the inclusion ι : WL ↪→ XL induces an isomorphism ι∗ : H2(W ) → H2(X), so it
follows from naturality of the cup and cap products that ι∗ is an isometry from the intersection
form λWL

ofWL, to λXL
(we refer to [Fri24Fri24, Chapter 153.7] for details). As observed in Remark 3.43.4

(see also [GS99GS99, Proposition 4.5.11]), the form λWL
is given, with respect to the basis induced from

the 2-handles of WL, by V . □

Lemma 4.2. There exists an algorithm that

• takes as input a framed, unimodular link L, and
• outputs the matrix V that represents the intersection form of XL in the preferred basis
induced by the handle part.

Proof. Since the linking numbers of the components of an oriented link L are computable from
any link diagram of L via its combinatorial formula (see for example [GS99GS99, Proposition 4.5.2]), we
can algorithmically compute the linking matrix V of a framed link L. By Lemma 4.14.1, the linking
matrix represents the isometry type of the intersection form of XL in the desired basis. □

5. Computing the Kirby–Siebenmann invariant

In this section, we explain how to compute the Kirby–Siebenmann invariant of a closed, oriented,
simply connected, topological 4-manifold from any of its Kirby diagrams. For that, we first discuss
the Arf invariant of a characteristic homology class, which will appear in a formula for the Kirby–
Siebenmann invariant due to Freedmann–Kirby.

Definition 5.1. A characteristic homology class, with respect to the intersection form λX of a 4-
manifold X, is an element c ∈ H2(X) such that λX(c, x) ≡ λX(x, x) (mod 2) for every x ∈ H2(X).

First, we briefly recall how to define the Arf invariant ArfX(c) ∈ Z/2 of a characteristic homol-
ogy class c ∈ H2(W ) in a smooth 4-manifoldW . We choose a closed, oriented, smoothly embedded
surface Σ in W representing c. In [FK78FK78], Freedman–Kirby defined a quadratic enhancement
q : H1(Σ;Z/2) → Z/2 of the Z/2-intersection form λΣ : H1(Σ;Z/2) × H1(Σ;Z/2) → Z/2. For a
detailed definition of q, we refer to [Mat86Mat86, p. 121], just above Lemma 1.1. We will not reproduce
the full argument here, but we describe the outline. One represents an element of H1(Σ;Z/2) by
a simple closed curve γ in Σ, and chooses a generically immersed disc Cγ ↬W with boundary γ.
Then q([γ]) is defined in terms of framing and intersection data derived from Cγ . With that we
define

ArfW (c) := Arf(Σ) := Arf(H1(Σ;Z/2), λΣ, q) ∈ Z/2,

where the last term is the algebraically defined Arf invariant of the quadratic form.
For a simply connected, topological 4-manifold we can define the Arf invariant as follows.

Definition 5.2. Let X be an oriented, closed, simply connected, topological 4-manifold and
c ∈ H2(X) be a homology class. Then we define the Arf invariant ArfX(c) of c as

ArfX(c) := ArfW
(
ι−1
∗ (c)

)
,

where ι : W → X = W ∪h C is the inclusion map of the handle part W for some decomposition
of X into W ∪h C as in Section 33.

That this is well-defined, in particular that it does not depend on the choice of decomposition
of X into W ∪h C, follows from the next theorem, essentially due to Freedman and Kirby [FK78FK78].
We will use it later to compute the Kirby–Siebenmann invariant.
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Theorem 5.3 (Freedman–Kirby). Let X be a closed, oriented, simply connected, topological 4-
manifold. If c is a characteristic homology class in H2(X) and σ(X) is the signature of X, then

ks(X) = ArfX(c) +
λX(c, c)− σ(X)

8
∈ Z/2.

In particular, it follows that ArfX(c) is well-defined.

Freedman–Kirby worked with smooth 4-manifolds, so for them, the left-hand side was always
zero. We will explain below how to deduce the statement we need from statements in the literature.
It requires some work because the original references on Rochlin’s theorem were written before
Freedman’s work on the disc embedding theorem, so did not consider topological 4-manifolds. The
statement we give was motivated by statements made the introduction to [CST12CST12].

Remark 5.4. Later we will relate ArfX(c) to the Arf invariant of a knot K determined by L and c.
As explained by Matsumoto [Mat86Mat86, p. 122], we can compute the Arf invariant Arf(K) of a knot K
in S3 (as defined in [Rob65Rob65]) by taking a properly smoothly embedded, connected, orientable,
compact surface F inD4 with ∂F = K, and using the quadratic enhancement q : H1(F ;Z/2) → Z/2
to define Arf(F ). Then Matsumoto showed that Arf(K) = Arf(F ).

Proof of Theorem 5.35.3. We explain how to obtain the statement from results in the literature. Fix
a decomposition X = W ∪Y C as in Section 33, with W smooth, C contractible, and Y an integer
homology 3-sphere. Since, as explained in [FNOP19FNOP19], the Kirby–Siebenmann invariant is additive
under glueing of 4-manifolds along their boundaries, ks(X) = ks(W )+ks(C) = ks(C), using thatW
is smooth in the second equality. It is known that there exists a compact, spin, smooth 4-manifold
N with ∂N = Y = ∂C. Then ks(N ∪Y C) = ks(C) and N ∪Y C is spin, so

ks(C) = ks(N ∪Y C) ≡ σ(N ∪Y C)/8 = σ(N)/8 mod 2.

The fact that ks(N∪Y C) ≡ σ(N∪Y C)/8 follows from [FQ90FQ90, Proposition 10.2B]. The last equality
follows from Novikov additivity and σ(C) = 0. The quantity σ(N)/8 modulo 2 is by definition the
Rochlin invariant µ(Y ) of Y . We deduce that ks(X) = µ(Y ). Let ι : W → X be the inclusion.
Recall that ι∗ : H2(W ) → H2(X) is an isomorphism, see Lemma 3.103.10. Then it follows from [Sav02Sav02,
Equation (2.4), p. 39] that

µ(Y ) = ArfW
(
ι−1
∗ (c)

)
+
λW

(
ι−1
∗ (c), ι−1

∗ (c)
)
− σ(W )

8
.

As in the proof of Lemma 4.14.1, we also have that ι∗ is an isometry of intersection forms, so
λX(c, c) = λW (ι−1

∗ (c), ι−1
∗ (c)) and σ(X) = σ(W ). Note that by Definition 5.25.2, we have ArfX(c) =

ArfW (ι−1
∗ (c)). We deduce that

ks(X) = µ(Y ) = ArfX(c) +
λX(c, c)− σ(X)

8
,

as desired. Since the Kirby–Siebenmann invariant is well-defined, it follows that the Arf invariant
of a characteristic homology class in a simply connected, topological 4-manifold is well-defined. □

To describe the algorithm to compute the Kirby–Siebenmann invariant we start with an al-
gorithm to compute a characteristic vector. A characteristic vector of an integral, symmetric,
unimodular matrix V is an integral vector c such that cTV x ≡ xTV x (mod 2) for every integral
vector x. The following lemma shows that any integral, symmetric, unimodular matrix admits a
characteristic vector that is algorithmically computable.

Lemma 5.5. There exists an algorithm that

• takes as input an integral, symmetric, unimodular matrix V , and
• outputs a characteristic vector of V with all entries either 0 or 1.

Proof. Let V ∈ GLm(Z) and let V2 denote the reduction of V modulo 2. It is sufficient to find c
with respect to V2, as a vector in (Z/2)m, and then to consider its entries as integers. All subsequent
computations are therefore done modulo 2.

If all the diagonal entries of V2 are zero (i.e. V is even), then it is sufficient to take c = 0. If there
is a nonzero diagonal entry in V2 (i.e. V is odd), we can perform simultaneous row and column
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operations so that the matrix of the intersection form can be expressed as(
1

V ′
2

)
for some (m− 1)× (m− 1) square matrix V ′

2 over Z/2 (cf. Lemma 6.26.2). By iterating this process
on V ′

2 , we can find a matrix P ∈ GL(m,Z/2) such that

U := PTV2P =


1

. . .

1
E


for some even (m − k) × (m − k) matrix E over Z/2, i.e. all diagonal entries of E are 0. A
characteristic vector of U is given by cT := (1, . . . , 1, 0, . . . , 0) consisting of k-times 1 followed by
(m − k)-times 0. To see this, we observe that xi = x2i , and the fact that E is even implies that
cTUx = xTUx for all x ∈ (Z/2)m. By undoing the basis change we see that Pc is a characteristic
vector for V2 and thus also for V . □

Proposition 5.6. There exists an algorithm that

• takes as input a framed, unimodular link L, and
• outputs the Kirby–Siebenmann invariant of XL.

Proof. We write XL = WL ∪h C. The link L induces a preferred isomorphism H2(XL) ∼= Zm.
We use the algorithm from Lemma 4.24.2 to compute an integer, symmetric, unimodular matrix V
representing the intersection form of XL in the above basis. Next, we compute a characteristic
vector c ∈ H2(XL) ∼= Zm using the algorithm from Lemma 5.55.5. As per that lemma, with respect to
the standard basis of Zm, the entries of c are either 0 or 1. Let Lc be the associated characteristic
sublink of L (i.e. the components of L indexed by the nonzero elements of c). LetKc in S

3 be a knot
obtained by some choice of band sum combining the components of Lc into a single component.

We claim that ArfXL
(c) = Arf(Kc). To see this, we construct a closed, oriented surface Σ

representing c as follows. Consider the cores of the 2-handles attached to the components of Lc.
Add the bands used in the construction ofKc. This gives a discD inWL with boundaryKc. Choose
an embedded, compact, oriented surface F in the 0-handleD4 inWL such that ∂F = Kc. Take Σ :=
F∪D to obtain a closed surface embedded inWL representing c. ThenH1(F ;Z/2) → H1(Σ;Z/2) is
an isomorphism, and induces an isometry of quadratic forms (because the quadratic enhancements
are geometrically computed in exactly the same way [Mat86Mat86]). Thus the Arf invariants of these
surfaces coincide, and so as claimed

ArfXL
(c) = Arf(Σ) = Arf(F ) = Arf(Kc).

The last equality follows by Remark 5.45.4. Note it follows from the above claim and Theorem 5.35.3
that

ks(XL) = Arf(Kc) +
λXL

(c, c)− σ(XL)

8
= Arf(Kc) +

(cTV c)− σ(XL)

8
,

where in the first expression we consider c ∈ H2(XL) and in the last expression we consider c ∈ Zm.
The Arf invariant of the knot Kc can be computed algorithmically from a diagram of Kc. For

example Levine [Lev66Lev66, p. 544] showed that for any knot J with Alexander polnyomial ∆J(t)
we have ∆J(−1) ≡ 1 + 4Arf(J) mod 8. Alternatively, the Arf invariant can also be calculated
from a Gauss diagram [PV94PV94]. We explain how to compute the signature σ(XL) algorithmically
in Section 66. It is elementary to see that there exists an algorithm that makes an arbitrary
choice of band sums to connect the components of L. In summary, we have shown that we can
algorithmically compute ks(XL) from a diagram of L, as desired. □

6. Comparing intersection forms

We recall from Section 44 that the intersection form of a closed 4-manifold can be represented by
an integral, symmetric, unimodular matrix V . In this section, we will present an algorithm that
decides whether or not two integral, symmetric, unimodular matrices are congruent. This result is
probably known, but we could not find it in the literature, so we include a proof here.

Proposition 6.1. There exists an algorithm that
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• takes as input two integral, symmetric, unimodular matrices V and V ′, and
• outputs whether or not these two matrices are congruent over Z.

In general, an integral, symmetric, unimodular matrix V is not congruent to a diagonal matrix
over Z. However, the following lemma shows that over Q the matrix V is always congruent to a
diagonal matrix.

Lemma 6.2. There exists an algorithm that

• takes as input an integral, symmetric, unimodular matrix V , and
• outputs an integral matrix P with determinant det(P ) ∈ Z \ {0} such that PTV P is an

integral diagonal matrix.

Proof. Write V = (vij)1≤i,j≤m. First we assume v11 ̸= 0. For k = 2, . . . ,m multiply the k-th
column by v11 and then subtract v1k times the first column from the k-th column. Perform the
analogous operation on rows. This corresponds to replacing V with PT

1,kV P1,k where

P1,k =



1 −v1k
. . .

1
v11

1
. . .

1


.

After replacing V with PT
1 V P1, for P1 = P1,2 · · ·P1,m, this results in all entries of the first row

and first column except for v11 being zero, i.e. the matrix is of the form(
v11

V ′

)
.

If v11 = 0, the unimodularity of V implies that there exists k ∈ {2, . . . ,m} with v1k = vk1 ̸= 0.
Add the k-th row to the first row and the k-th column to the first column, that is, replace V
with QT

1,kV Q1,k, where Q1,k is obtained from the identity matrix by replacing the (k, 1)-entry with

a 1. The (1, 1)-entry of the resulting matrix is no longer zero, so we can continue as in the v11 ̸= 0
case. In this case P1 = Q1,k · P1,2 · · ·P1,m.

Then we repeat the above process to simultaneously simplify the second row and the second
column, and so on. This process stops after finitely many steps and yields an integral matrix
P = P1 · · ·Pm with non-vanishing determinant such that PTV P is an integral diagonal matrix. □

A direct corollary is that the signature and the definiteness status are computable.

Corollary 6.3. There exists an algorithm that

• takes as input an integral, symmetric, unimodular matrix V , and
• outputs the signature of V and whether V is positive definite, negative definite, or indefinite.

Proof. By Lemma 6.26.2 we can algorithmically find a diagonal matrix D that is congruent to V
over Q. In particular, D has the same definiteness as V . Hence, V is positive/negative definite if all
diagonal entries of D are positive/negative, respectively, and otherwise, V is indefinite. Similarly,
the signature of V equals the signature of D and is given by the number of positive entries in D
minus the number of negative entries in D. □

As a corollary, we obtain the algorithmic classification of indefinite forms.

Corollary 6.4. There exists an algorithm that

• takes as input two integral, symmetric, unimodular, indefinite matrices V and V ′, and
• outputs whether or not V and V ′ are congruent over Z.

Proof. Since V and V ′ represent indefinite forms, they are congruent over Z if and only if they have
the same parity, rank, and signature [MH73MH73, Theorem II.5.3], cf. [Ser73Ser73, Chapter IV, Theorem 8].
Parity, rank, and signature can be computed algorithmically. Indeed, the signature was discussed
in Corollary 6.36.3. For the parity, note that a matrix V is odd if and only if it has some odd diagonal
entry, which can be checked algorithmically. □
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It remains to discuss the definite case. We will focus here only on the positive definite case, as
the proof for the negative definite case can be obtained by replacing V with −V .

Lemma 6.5. There exists an algorithm that

• takes as input two integral, positive definite, symmetric, unimodular matrices V and V ′,
and

• outputs whether or not V is congruent to V ′ over Z.

The strategy to prove Lemma 6.56.5 is to construct a finite set of lattice points that contains the
image of the standard basis of Zm under any isometry between the two given forms. This reduces
the search for an isometry to a finite list of matrices. We start with a lemma from linear algebra
for which we introduce the following notation. We write |x| for the Euclidean norm (i.e. ℓ2-norm)
of a vector x. For a matrix A with real coefficients we write ∥A∥2 and ∥A∥1, respectively, for the
operator norms with respect to the ℓ2 and ℓ1 norms. We recall that for A an (m × m) matrix,
∥A∥1 = maxj

∑m
i=1 |aij | and ∥A∥2 is the square root of the largest eigenvalue of ATA. Note that

for a symmetric matrix A, it follows ∥A∥2 = max{|λ| : λ is an eigenvalue of A}.

Lemma 6.6. Let V be an integral, unimodular, symmetric, positive-definite matrix. Then for
every integral vector x, we have

|x| ≤ ∥V −1∥1 (xTV x).

Proof. First, we observe that if λ is an eigenvalue of a matrix A with eigenvector x, then

|λ| · ∥x∥1 = ∥λx∥1 = ∥Ax∥1 ≤ ∥A∥1 · ∥x∥1,

and thus |λ| ≤ ∥A∥1. So if A is symmetric, then

∥A∥2 ≤ ∥A∥1. (1)

Since V is positive definite, Sylvester’s theorem implies that there exists an invertible matrix P
with real coefficients such that V = PTP . For P we estimate

∥P−1∥2 = ∥(P−1)T ∥2 =
√

∥P−1(P−1)T ∥2 =
√

∥(PTP )−1∥2 (2)

=
√

∥V −1∥2 ≤
√

∥V −1∥1 ≤ ∥V −1∥1.

Here the first equality uses that ∥AT ∥2 = ∥A∥2 and the second equality is the C∗-identity ∥A∥22 =
∥ATA∥2, both applied with A = (P−1)T . The first inequality is Equation (11), which we can apply
with A = V −1 since V −1 is symmetric because V is. The last inequality holds because ∥V −1∥1 is
a non-negative integer. Next, we observe that

|Px| =
√
(Px)TPx =

√
xTV x ≤ xTV x, (3)

where the last inequality holds because xTV x is a non-negative integer. Combining this, we
estimate that

|x| = |P−1Px| ≤ ∥P−1∥2 · |Px| ≤ ∥V −1∥1 (xTV x),
as desired. Here the first inequality uses a property of any operator norm ∥ − ∥op that |Ay| ≤
∥A∥op · |y|. The second inequality combines Equations (22) and (33). □

Proof of Lemma 6.56.5. Let V, V ′ ∈ GL(m,Z) be positive definite, symmetric matrices. For the
standard basis e1, . . . , em of Zm, we define the integer

R := max
{
eTi V

′ei : 1 ≤ i ≤ m
}
.

If f : (Zm, V ′) → (Zm, V ) is an isometry, then f(ei)
TV f(ei) = eTi V

′ei ≤ R, and thus f maps the
basis vectors {e1, . . . , em} into the set

F :=
{
x ∈ Zm : xTV x ≤ R

}
.

Since V is positive definite, Lemma 6.66.6 implies that the set F is contained in the finite ball

B :=
{
x ∈ Zm : |x| ≤ ∥V −1∥1R

}
.

It follows that every isometry (Zm, V ′) → (Zm, V ) is given by an integral, unimodular matrix
whose columns are lattice points contained in B.
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The algorithm to check if V and V ′ are congruent thus works as follows. Since V and V ′ are
integral matrices, we can compute ∥V −1∥1R. Then we can build all (finitely many) (m × m)-
matrices with column vectors in B. If there exists such a matrix A that is unimodular with
V ′ = ATV A, we conclude that the forms V ′ and V are isometric; otherwise they are not. □

Combining the various algorithms from this section, we obtain the claimed main result of this
section.

Proof of Proposition 6.16.1. Let V and V be integer, symmetric, unimodular matrices. First, we
use Corollary 6.36.3 to determine the definiteness status of V and V ′. If V and V ′ have different
definiteness statuses the matrices are not congruent.

If both matrices are indefinite, we use Corollary 6.46.4 to determine if V and V ′ are congruent.
If both matrices are positive definite we use Lemma 6.56.5 to determine if V and V ′ are congruent.
If both matrices are negative definite, we observe that −V and −V ′ are positive definite and
congruent if and only if V and V ′ are congruent, and thus we can reduce this case to the positive
definite case. □

7. The homeomorphism problem for simply connected 4-manifolds

With the algorithms to compute the Kirby–Siebenmann invariant and to compare intersection
forms, we can now deduce our main result. We recall, that by Theorem 3.63.6 a framed, unimod-
ular link determines the oriented homeomorphism type of a closed, oriented, simply connected,
topological 4-manifolds XL.

Theorem 7.1. There exists an algorithm that

• takes as input two framed, unimodular links L and L′, and
• outputs whether or not XL and XL′ are orientation-preserving homeomorphic.

Proof. Let L and L′ be two framed, unimodular links. By Freedman’s Theorem 2.12.1 the two
manifolds XL and XL′ are orientation-preserving homeomorphic if and only if they share the same
Kirby–Siebenmann invariant and their intersection forms are isometric.

By Lemma 4.24.2 we can compute matrices V and V ′ representing the intersection forms of XL

and XL′ and using Proposition 6.16.1 we can decide whether or not these two forms are isometric.
Furthermore, we can compute the Kirby–Siebenmann invariants of XL and XL′ from the framed,
unimodular links, see Proposition 5.65.6.

If both, the Kirby–Siebenmann invariants agree and the intersection forms are isometric, the
manifolds XL and XL′ are orientation-preserving homeomorphic. Otherwise, they are not orien-
tation-preserving homeomorphic. □

Remark 7.2. We briefly discuss the runtime of the algorithm from Theorem 7.17.1. It seems that
the bottleneck of our algorithm is in the algorithm from Lemma 6.56.5, which compares two definite
intersection forms. There we are enumerating all matrices with columns from a finite set whose
cardinality grows in the input size, and thus this algorithm has factorial runtime. On the other
hand, most other parts of the algorithm from Theorem 7.17.1 actually run in polynomial time.

We also observe that if the input manifolds both admit smooth structures, then the runtime
of the above algorithm can be improved drastically. Indeed, if X1 and X2 both admit smooth
structures, then their Kirby–Siebenmann invariants vanish and thus we do not need to run through
the algorithm from Proposition 5.65.6. Moreover, Donaldson’s theorem [Don83Don83] implies that if the
intersection form of a closed, oriented, smooth manifold is positive definite then in some basis it is
given by the identity matrix. Thus in the smooth case, it follows together with Corollary 6.46.4 that
two intersection forms are isometric if and only if they have the same rank, parity, and signature.

8. An algorithm for stably classifying smooth 4-manifolds

The aim of this section is to provide companion algorithms to the rest of the article which
classify certain classes of closed, smooth 4-manifolds up to stable diffeomorphism. The stable
classification is coarser, and hence easier to compute. This means that we can leave the realm of
simply connected 4-manifolds. In this section, all manifolds are assumed to be connected, closed,
oriented, and smooth. We will consider pointed manifolds without further comment.
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8.1. Input. Before stating our main theorems we briefly explain how we can input smooth 4-
manifolds with non-trivial fundamental groups into algorithms. The setup in the previous sections
of the paper allows us to input closed, simply connected, topological 4-manifolds into algorithms.
This relies on the theorem saying that every closed, simply connected, topological 4-manifold can
be written as a smooth piece union a contractible topological piece (see Theorem 3.63.6). This is not
known to hold for closed, topological 4-manifolds with other fundamental groups, so we will have
to restrict ourselves to considering smooth 4-manifolds to be able to easily input manifolds.

For our purpose a triangulated 4-manifold is a compact simplicial complex whose underlying
topological space is homeomorphic to a closed 4-manifold. Also, we need to work with oriented
manifolds, so our triangulations will come with oriented 4-simplices, i.e. for each 4-simplex we are
given an equivalence class of ordering of its vertices, where two orderings are considered the same
if one can be obtained from the other by an even number of swaps. The orientations need to fit
together on the 3-simplices.

In fact, a triangulation determines a unique smooth structure on the underlying 4-manifold.

Lemma 8.1. Let K be an oriented triangulation of a 4-manifold X. Then K induces a preferred
smooth structure on X, that is unique up to orientation-preserving diffeomorphism.

Proof. From the resolution of the Poincaré conjecture in dimension three [Per02Per02, Per03Per03] it follows
that in dimension four, a triangulated manifold can be given an essentially unique PL-structure.
We refer to [FNOP19FNOP19, Chapter 3] for more details. In dimension four a PL-manifold can be given
an essentially unique smooth structure (due to [HM74HM74, Mun60Mun60, Mun64Mun64, Cer68Cer68], cf. [FQ90FQ90, Theorem
8.3B]). □

From an algorithmic point of view triangulations and Kirby diagrams are equivalent as the
following lemma shows.

Lemma 8.2. There exist an algorithm that

• takes as input an oriented triangulation (Kirby diagram) of a connected, compact, oriented,
smooth 4-manifold X, and

• outputs a Kirby diagram (triangulation) of X.

Proof. It is straightforward to describe algorithms to create out of a Kirby diagram a triangulation.
(This is even practically implemented in Regina [Bur24Bur24].) On the other hand, since any two
triangulations of the same smooth manifold are related by Pachner moves and the set of Kirby
diagrams is countable, there exists also an (impractical) algorithm to create a Kirby diagram out
of a triangulation. □

8.2. Algorithms for stable diffeomorphism. We are now ready to state our main results of
this section.

Theorem 8.3. There exists an algorithm that

• takes as input oriented triangulations of closed, oriented, smooth 4-manifolds X1 and X2

such that either
(1) their fundamental groups are both isomorphic to the infinite cyclic group,
(2) or X1 has a finite fundamental group with a cyclic Sylow 2-subgroup and X2 has a

finite fundamental group, and
• outputs whether or not X1 and X2 are orientation-preserving stably diffeomorphic.

Theorem 8.4. There exists an algorithm that

• takes as input oriented triangulations of closed, oriented, smooth 4-manifolds X1 and X2,

such that both universal covers X̃1 and X̃2 are not spin and such that
(1) their fundamental groups are isomorphic and of homological dimension ≤ 3,
(2) or their fundamental groups are both finite, and

• outputs whether or not X1 and X2 are orientation-preserving stably diffeomorphic.

We note that in Theorems 8.38.3 and 8.48.4 above, in the case of finite π1 (i.e. in case (2) in each
theorem) we do not need to assume that the manifolds have isomorphic fundamental groups because
in this case the word problem is decidable (see Theorem 8.148.14).
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We recall the basics of modified surgery in Section 8.18.1. The main result of this theory (for our
interests) is Theorem 8.78.7, which states that the set of stable diffeomorphism classes of 4-manifolds

with a fixed 1-type ξ (Definition 8.68.6) is in one-to-one correspondence with Ωξ
4/Out(ξ), a quotient

of a certain bordism group. If either of the assumptions of Theorems 8.38.3 or 8.48.4 is satisfied, we will
prove that the following map given by the signature σ, and the primary invariant pri (given by
evaluating the fundamental class)

Ωξ
4

σ+pri−−−−→ Z⊕H4(Bπ)

is injective. We show that these invariants are both computable from the input data.

8.3. Combinatorial modified surgery. There is some additional setup needed that we introduce
next. Let BSO denote the classifying space of the direct limit of the special orthogonal groups
SO(n) ↪→ SO(n+1). Modified surgery, developed by Kreck [Kre99Kre99], stably classifies manifolds by
considering certain approximation spaces, denoted by B, that admit a highly coconnected map to
BSO. In the end, B will be an approximation of a given manifold M , in the sense that B will be
a Moore–Postnikov approximation for the stable normal bundle of M . We make this all precise
now.

Definition 8.5. Let ξ : B → BSO be a map from some CW-complex B with finite k-skeleton for
all k. We say that ξ is a universal fibration if it is a 2-coconnected fibration. In particular, this
means that ξ∗ : πk(B) → πk(BSO) is injective for k = 2 and an isomorphism for k ≥ 3.

Definition 8.6. Let ξ : B → BSO be a universal fibration and let νX : X → BSO be the stable
normal bundle for a closed smooth 4-manifold X. We say that ξ is a normal 1-type for X if there
exists a 2-connected lift νX such that the diagram

B

X BSO

ξ
νX

νX

commutes. We call a choice of νX a normal 1-smoothing. We call a pair (X, νX) consisting of
a manifold and a normal 1-smoothing a ξ-manifold. A ξ-diffeomorphism of two ξ-manifolds is a
diffeomorphism of the underlying manifold that commutes with the normal 1-smoothing.

Theorem 8.7 (Kreck [Kre99Kre99]). Let ξ be a universal fibration. The stable ξ-diffeomorphism classes
of ξ-manifolds are in one-to-one correspondence with elements of the bordism group Ω4(ξ). □

Since our manifolds are oriented we get that w2(X), the second Stiefel–Whitney class of TX,
agrees with the second Stiefel–Whitney class of the stable normal bundle of X. We will work with
the tangential classes since it is more convenient.

Theorem 8.8 (Various normal 1-types, Teichner [Tei92Tei92]). Let π be a finitely presented group, let

X be an orientable, smooth 4-manifold with π1(X) isomorphic to π and let X̃ denote the universal
cover of X. Then the possible normal 1-types for X fit into the following three cases.

(1) Type I (totally non-spin). If w2(X̃) ̸= 0, the normal 1-type of X is equivalent to

BSO×Bπ BSO,
ξ

where the universal fibration ξ is given by forgetting Bπ. A normal 1-smoothing is given
by a choice of orientation of X and an isomorphism π1(X) → π.

(2) Type II (spin). If w2(X) = 0, the normal 1-type is equivalent to

BSpin×Bπ BSO,
ξ

where the universal fibration ξ is induced by the natural map from Spin → SO after first
forgetting Bπ. A normal 1-smoothing is given by a choice of spin structure on X and an
isomorphism π1(X) → π.
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(3) Type III (almost spin). If w2(X) ̸= 0, but w2(X̃) = 0, there is an element wπ
2 ∈

H2(Bπ;Z/2), such that w2(X) is pulled back from wπ
2 along a 2-connected map X → Bπ.

The normal 1-type ξ is equivalent to the map given by the homotopy pullback

B Bπ

BSO K(Z/2, 2)

ξ
⌟

wπ
2

w2

where w1 and w2 denote the universal maps for the first and second Stiefel–Whitney classes,
respectively. A 1-smoothing is given by an isomorphism π1(X) → π such that w2(X) pulls
back from wπ

2 . □

It will be useful in our algorithms to have a ‘certificate’ which states that the fundamental
groups of the two manifolds in question are isomorphic.

Definition 8.9. Let π be either a finite group or Z, let X be a triangulated manifold, and let
φ : π → π1(X) be an isomorphism. The following constitutes data for the isomorphism φ : π →
π1(X) for the finite case and the infinite cyclic case respectively.

(1) A map that assigns to every element g in π a based loop γg in the 1-skeleton of X, given
by concatenation of edges, such that γg is a representative of φ(g).

(2) A based loop γ in the 1-skeleton of X, given by concatenating edges, such that γ is a
representative of φ(1).

Definition 8.10 (1-type data). Let ξ be a universal fibration, π be a finite group, and let X be
a closed, smooth, oriented 4-dimensional ξ-manifold with π1(X) isomorphic to π. We say that a
1-type datum for X is a triple

(Tπ, (Bπ)
(5), wπ

2 ),

where Tπ is a multiplication table for the finite group π, (Bπ)(5) is the 5-skeleton of some triangu-
lation of some Bπ, and wπ

2 is an element of the set H2(Bπ(5);Z/2)∪{∞}, where {∞} is a set with
one element disjoint from the cohomology group H2(Bπ(5);Z/2). We require that the element wπ

2

satisfies

(1) wπ
2 = ∞ if w2(X̃) ̸= 0,

(2) wπ
2 = 0 if w2(X) = 0,

(3) wπ
2 ̸= 0,∞ if there exists a π1-isomorphism c : X → Bπ(5) such that w2(X) = c∗(wπ

2 ).

Definition 8.11 (Reduced 1-smoothing data). For a closed, smooth, oriented 4-dimensional
ξ-manifold X, with triangulation K, together with 1-type data (Tπ, (Bπ)

(5), wπ
2 ), let ι : X →

Bπ1(X)(5) be the Postnikov truncation. Then the reduced smoothing data consists of a finite
subset A of the set of all maps

{c : Bπ1(X)(5) → Bπ(5) : w2(X) = (c ◦ ι)∗(wπ
2 ) if w

π
2 ̸= ∞},

such that

(1) all maps in A when pre-composed with ι are simplicial with respect to the two-fold barycen-
tric subdivision of K;

(2) for every isomorphism f : π1(X) → π with the property ι∗(Bf)∗(wπ
2 ) = w2(X) there is a

map cf : Bπ1(X)(5) → Bπ(5) in A with (cf )∗ = f : π1(X) → π.

We note that the reduced 1-smoothing data does not give complete information about 1-
smoothings, but the data is sufficient for our purposes. The next lemma shows that reduced
smoothing data can always be found.

Lemma 8.12. Let X be a triangulated 4-dimensional manifold, let π be a finite group and let
f : π1(X) → π be a homomorphism. Then there is a simplicial map between the two-fold barycentric
subdivision of X and the two-fold barycentric subdivision of the geometric realisation of the bar
construction Bπ, which, on the level of the fundamental groups, agrees with f . Further, we can
factor this simplicial map as a product of simplicial maps X → Bπ1(X) → Bπ such that the first
map induces the identity map and the second map induces f on the level of fundamental groups.
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Proof. We will define a simplicial map between the given triangulation of X and the ∆-complex
Bπ (whose two-fold barycentric subdivision is a simplicial complex). Recall that we can construct
Bπ as the geometric realisation of the semisimplicial set with k-simplices are given by (Bπ)k = πk,
where we denote by |g1|g2| . . . |gk| the k-simplex corresponding to (g1, g2, . . . , gk) ∈ πk, and where
the face maps are

f0(|g1|g2| . . . |gk|) = |g2| . . . |gk|,
fi(|g1|g2| . . . |gk|) = |g1|g2| . . . |gi · gi+1| . . . |gk| 1 ≤ i < k,

fk(|g1|g2| · |gk|) = |g1|g2| . . . |gk−1|.
Now construct a map of ∆-complexes from X to Bπ as follows.

• Map the 0-skeleton of X to the unique 0-simplex of Bπ.
• On the 1-skeleton of X, choose a maximal tree T ⊂ X(1) and send T to the only 0-simplex
in Bπ. For any other 1-simplex e of X, pick any based loop in T ∪ e which goes through
e exactly once (in the correct direction). This determines an element g ∈ π1(X). We send
e to the 1-simplex |f(g)| of Bπ.

• Since Bπ has vanishing higher homotopy groups, there always exists an extension (unique
up to homotopy) of the above map X(1) → Bπ to the whole X. Here is one explicit way to
do this: for any k-simplex in X, if the edges {0 → 1}, {1 → 2}, . . . , {k−1 → k} are sent to
|g1|, . . . , |gk|, then we send this k-simplex to |g1| . . . |gk|. The compatibility with face maps
is easy to check.

To turn this map of ∆-complexes into a map of simplicial complexes, we simply carry out barycen-
tric subdivision twice on both X and Bπ, recalling that a ∆-complex subdivided twice yields a
simplicial complex.

To achieve the factorisation at the end of the lemma, apply the previous construction in the
special case π = π1(X) and f = Id. Then the above procedure also gives a method for producing a
simplicial map from Bπ1(X) → Bπ which induces the map f on fundamental groups (in fact it is
easier since one does not need to consider a maximal tree). Since these two constructions give the
same map on the level of fundamental groups, this gives a factorisation of the previous simplicial
map. □

8.4. Group theoretic considerations. We will now show how to remove the need to add in
a certificate that the fundamental groups of our given manifolds are isomorphic to the input in
Theorem 8.38.3 and Theorem 8.48.4, in the case that the fundamental groups are finite or are abstractly
isomorphic. In particular, we will show that one can produce such a certificate in these cases.

Word problems for general groups are undecidable, but for finitely presented finite groups this
is not the case.

Definition 8.13. Let S be a class of groups. We say that the word problem is solvable for S if
for every presentation of a group in S there exists an algorithm which determines for every word
in terms of generators or their inverses whether it is the identity in the given group.

The word problem is in general undecidable, but there are decidability results for some classes
of groups.

Theorem 8.14 ([McK43McK43]). The word problem for finitely presented residually finite groups is
solvable. □

Finite groups are a special case of residually finite groups. The corollary that we need is the
following.

Corollary 8.15. There exists an algorithm that

• takes as input two finite presentations P1,P2 of finite groups G1, G2, and
• outputs an isomorphism from G1 to G2 or certifies that there exists no such isomorphism.

Proof. For each presentation we generate a multiplication table for the corresponding group. We
begin creating the table by adding all generators as rows/columns for the table. Then iterate the
following procedure. For each product of two elements in the table, check if it is already in the
table by using the algorithm in Theorem 8.148.14 which solves the word problem. If it is not, then this
determines an entry and a new row/column. If it is, then this determines a new entry. Continue
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until there are no more products which do not occur in the table, which will happen in finite time
since we knew the groups were both finite. Since we started by adding all of the generators, this
table gives a multiplication table for the group corresponding to the presentation.

For the presentations P1 and P2 we compare the resulting tables by trying to find an isomorphism
between them. This is done by iterating all bijections and checking if the given bijection gives an
isomorphism. □

Remark 8.16. One could avoid the use of Theorem 8.148.14 in the proof of Corollary 8.158.15 by using
the fact that finite groups are classified and hence have an enumeration. Since the classification of
finite groups is a much deeper result, we instead use the more classical fact that the word problem
is solvable.

For handling the infinite cyclic case, we have a similar corollary.

Corollary 8.17. There exists an algorithm that

• takes as input two finite presentations P1,P2 which are abstractly known to be isomorphic,
and

• outputs an isomorphism between these two groups.

Proof. Assume P1 and P2 have n1 and n2 generators, respectively. Enumerate all homomorphisms
between the free groups Fn1

and Fn2
. For each homomorphism, we can determine if this descends to

a homomorphism GP1
→ GP2

, by checking to see if each relation is sent to the trivial element. Such
an algorithm terminates in finite time if the answer is positive, and runs indefinitely if the answer
is negative. By running this algorithm diagonally, this allows us to enumerate all homomorphisms
GP1

→ GP2
. Similarly enumerate all homomorphisms GP1

→ GP2
. Now check whether each

possible composition of f and g where f : GP1
→ GP2

and g : GP1
→ GP2

is the identity map
(again in a diagonal manner). Eventually this process will end, since we abstractly know that the
groups are isomorphic. □

Applying these corollaries to a presentation of the fundamental group of a triangulation which
we abstractly know is finite or infinitely cyclic produces for us the data for the isomorphism, as
defined in Definition 8.98.9.

Corollary 8.18. There exists an algorithm that

• takes as input a triangulated manifold X whose fundamental group π1(X) is isomorphic to
a finite group or Z, and

• outputs data for such an isomorphism.

Proof. First, we construct a presentation P of π1(X) in which every generator corresponds to a
loop in the 1-skeleton, given by a word of edges. Next, we enumerate a list of presentations {Pi},
containing one presentation for Z and each finite group. Now, we apply Corollaries 8.158.15 and 8.178.17
diagonally to compare our presentation P to each Pi, until we find an isomorphism from Z or a
finite group to P. □

8.5. Algorithms for combinatorial modified surgery. We will show the existence of the
following algorithms.

Lemma 8.19. There exists an algorithm that

• takes as an input an oriented triangulation K of a closed, oriented, smooth 4-manifold X,
and a boolean variable that determines a ring R that is either Z/2 or Z, and

• outputs a matrix representing the Z/2-intersection form of X

λ
Z/2
X : H2(X;Z/2)×H2(X;Z/2) → Z/2

if R = Z/2 or outputs a matrix representing the Z-intersection form of X

λZX : (H2(X)/Tors)× (H2(X)/Tors) → Z

if R = Z.
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Proof. In the following we discuss the case R = Z. The case R = Z/2 is dealt with in almost the
same way. First, using elementary linear algebra we determine a basis for H2(K;Z)/Tors and for
H2(K;Z)/Tors. The fundamental class of X is given by the sum of all oriented 4-dimensional sim-
plices of K, and capping with it induces the Poincaré duality isomorphism H2(K;Z) → H2(K;Z)
which descends to an isomorphism H2(K;Z)/Tors → H2(K;Z)/Tors. The inverse to this isomor-
phism can be computed, e.g. by computing the isomorphism with respect to the above bases, and
then computing the inverse matrix. Use this Poincaré duality inverse map and the standard cup
product formula (which is known to descend to cohomology) to obtain a map

H2(K;Z)/Tors⊗H2(K;Z)/Tors → H4(K;Z).

By evaluating on the fundamental class we obtain the intersection form

λZX : H2(X;Z)/Tors×H2(X;Z)/Tors → Z.

Since we already chose a basis for H2(X;Z)/Tors we obtain a matrix representing the intersection
form. □

Lemma 8.20. There exists an algorithm that

• takes as input an oriented triangulation K of a closed, oriented, smooth 4-manifold X, and
• outputs the signature σ(X) of the Z-intersection form λX : H2(X;Z)×H2(X;Z) → Z.

Proof. We obtain a matrix representing the intersection form of X via Lemma 8.198.19. Then we can
use Corollary 6.36.3 to compute the signature. □

Remark 8.21. An alternative way to compute the signature is to utilise the combinatorial formula
given by Ranicki–Sullivan [RS76RS76]. From K we can construct simplicial chain and cochain groups
along with boundary and coboundary operators

∂ : Ci → Ci−1

δ : Ci → Ci+1.

where we have identified the cochain groups with the chain groups using the choice of orientation
of the simplices. Ranicki–Sullivan then define another combinatorial operator φ : Ci → C4−i such
that we can form a matrix operator(

φ δ
∂ 0

)
: C2 ⊕ C3 → C2 ⊕ C3

and they prove that the signature of this matrix gives the signature of the manifold. Compute
the signature of this matrix via a diagonalisation algorithm. Note that this can be done entirely
working over the integers, as explained in Corollary 6.36.3.

Lemma 8.22. Let π be a finite group with its multiplication table Tπ. There exists an algorithm
that

• takes as an input an oriented triangulation K of a closed, oriented, smooth 4-manifold X
along with data for some isomorphism π1(X) ∼= π (see Definition 8.98.9), and

• outputs the 1-type data for X along with the reduced 1-smoothing data.

Proof. The first entry needed for the 1-type data (Tπ) is already given to us. To build the truncated
classifying space, we apply the construction used in Lemma 8.128.12 but halt the bar construction after
adding the 5-simplices. We now determine the final element of the 1-type data, wπ

2 , which requires
the most effort.

The first step is to build a triangulation K̃ which models the universal cover of M . Start by
choosing a maximal tree T in K and taking n := |π| disjoint copies of it and labelling these by

group elements g1, . . . , gn. Denote the result by K̃0. Every remaining 1-simplex e in K corresponds
to a group element g(e). Suppose e is a 1-simplex between vertices v1 and v2 and let vgk1 and

vgk2 denote the various lifts. Then form K̃1 by, for every 1-simplex e = (v1, v2) not in T we glue

in n 1-simplices egk = (vgk1 , v
g(e)·gk
2 ). We glue the k-simplices in K for 2 ≤ k ≤ 4 dimension by

dimension. The attaching maps of these simplices lift uniquely, once any lift of any vertex of its

boundary is fixed. There are n such lifts. Thus we have constructed K̃.
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Next, we recall that the Wu formula says that in an oriented 4-manifold Y , for every y ∈
H2(Y ;Z/2), we have ⟨w2(Y ), y⟩ = λZ/2(y, y), see for example [GS99GS99, Exercise 5.7.3]. From the uni-
versal coefficient theorem with Z/2 coefficients it follows that this formula determines the Stiefel–

Whitney class w2(Y ). Thus we can compute w2(K) and w2(K̃) by using Lemma 8.198.19 to compute

the parity of the Z2-intersection form of K and K̃.

If w2(K̃) ̸= 0 then the 1-type data forM has wπ
2 = ∞. If w2(K̃) = 0 then the algorithm proceeds

as follows. Realise our given isomorphism π1(X) → π by a map X → Bπ(5) (Lemma 8.128.12). From
the Serre spectral sequence, one can deduce that the following sequence is exact

H2(Bπ;Z/2) H2(X;Z/2) H2(X̃;Z/2) 0

define wπ
2 ∈ H2(Bπ(5);Z/2) to be the unique pre-image of w2(X).

Using the multiplication table Tπ one can find the finite set of automorphisms Aut(π). Pre-
composing these with the given map π1(X) → π gives us the finite set Isom(π1(X), π) of all
isomorphisms f : π1(X) → π. To generate all reduced 1-smoothing data, apply Lemma 8.128.12 for
each isomorphism f in Isom(π1(X), π), to obtain a simplicial map cf : Bπ1(X)(5) → Bπ(5) with
(cf )∗ = f . Output only those that give ι∗(Bf)∗(wπ

2 ) = w2(X). □

Next, we give a computational method to decide the vanishing of the primary invariant pri : Ωξ
4 →

H4(Bπ).

Lemma 8.23. Let π be a finite group with multiplication table Tπ. There exists an algorithm to

calculate the primary invariant pri : Ωξ
4 → H4(Bπ), that

• takes as input two oriented triangulations K and L of two closed, oriented, smooth 4-
manifolds M and N respectively with the same 1-type data, along with both of their reduced
smoothing data and isomorphisms π1(M) ∼= π and π1(N) ∼= π (Definition 8.98.9), and

• outputs whether or not there exists reduced 1-smoothings cM and cN such that

(cN )−1
∗ ((cM )∗(ιM )∗[M ]) = (ιN )∗[N ],

where ιM : M → Bπ1(M) and ιN : N → Bπ1(N) are the Postnikov truncations.

For the proof of Lemma 8.238.23 we will need the following simple algebraic fact.

Lemma 8.24. There exists an algorithm that

• takes as input an (m× n)-matrix A with integer coefficients and a vector b ∈ Zn, and
• decides whether or not there exists a solution x ∈ Zm of Ax = b, and if such a solution
exists outputs a single solution.

Proof. Use Smith normal form to obtain a decomposition A = PDQ for P,Q some invertible
square integer matrices and D a diagonal rectangular matrix, i.e. Dij = 0 whenever i ̸= j. Apply
the algorithm for the inverse of the matrix P to obtain an equation we can easily solve

D(Qx) = P−1b. □

Proof of Lemma 8.238.23. Use the given group isomorphism data, along with the multiplication table
Tπ to generate the finite set Isom(π1(L), π1(K)) of all possible group isomorphisms.

For each f ∈ Isom(π1(L), π1(K)) we construct a simplicial map Bf : Bπ1(L) → Bπ1(K)(5) (see
Lemma 8.128.12). This gives us a map (Bf) ◦ ιL : L → Bπ1(K)(5). Similarly, we make a simplicial
map ιK : K → Bπ1(K)(5) which induces the identity on the fundamental groups.

For a finite triangulated 4-dimensional manifold, its fundamental class is the class given by the
sum of all of its top dimensional oriented simplices. Set

α := (ιK)∗[K]− ((Bf) ◦ (ιL)∗)[L] ∈ Csimp
4 (Bπ1(K)(5)),

which is a cycle in the simplicial chain complex.
The simplicial complex Csimp

∗ (Bπ1(K)(5)) is finite in each degree, hence the differential

Csimp
5 (Bπ1(K)(5)) → Csimp

4 (Bπ1(K)(5))

is given by a finite dimensional matrix A. We apply Lemma 8.248.24 to solve the following problem.

Does Ax = α for some x ∈ Csimp
5 (Bπ1(K))?
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If such an x ∈ Csimp
5 (Bπ1(K)) exists we return ‘yes’, otherwise we move on to the next isomorphism.

If all isomorphisms have been exhausted, we return ‘no’. □

8.6. Proof of Theorems 8.38.3 and 8.48.4. In this section, we prove the main theorems on stable
classification. We will be relying on the results of Teichner’s thesis [Tei92Tei92].

Proof of Theorem 8.48.4. In the case of (1) start by generating a certificate (Definition 8.98.9) that the
fundamental groups are both infinite cyclic by applying Corollary 8.178.17. Similarly, in the case of
(2) start by generating a certificate that the fundamental groups of X1 and X2 are isomorphic to
some group π by applying Corollary 8.158.15. If the fundamental groups are not isomorphic then our
manifolds are not stably diffeomorphic.

By a calculation using the Atiyah–Hirzebruch spectral sequence (see e.g. [Tei92Tei92, p. 10]) we have
ξ : BSO×Bπ → BSO and

Ωξ
4 ΩSO

4 ⊕H4(Bπ) Z⊕H4(Bπ).∼=
pri

∼=
σ⊕Id

Either the geometrical dimension of π is at most 3, implying that H4(Bπ;Z) = 0 and two such
totally non-spin manifolds M,N are orientation-preserving stably diffeomorphic if and only if
σ(M) = σ(N), which is computable (Lemma 8.208.20). Or, π is finite and we apply Algorithms 8.208.20
and 8.238.23. □

Proof of Theorem 8.38.3. In the case of (2) start by generating a certificate (Definition 8.98.9) that the
fundamental groups of X1 and X2 are isomorphic to some group π by applying Corollary 8.158.15. If
the fundamental groups are not isomorphic then our manifolds are not stably diffeomorphic.

We apply Lemma 8.228.22 to compute the 1-type data and reduced smoothing data for both of our
given manifolds. If they do not have the same 1-type data then they are not stably diffeomorphic,
so we assume that they do from now on.

It is sufficient to show that in all of these cases the map

Ωξ
4

σ+pri−−−−→ Z⊕H4(Bπ)

is an injection. Then we finish the proof by applying the algorithms in Lemma 8.238.23, and Lemma 8.208.20
or, in the case of π infinite cyclic, only the Algorithm 8.208.20.

The case of π infinite cyclic is handled by using the Atiyah–Hirzebruch spectral sequence for
types (I) and (II). Since H2(BZ;Z/2) = 0, type (III) is impossible.

For the case of π a finite group with cyclic Sylow 2-subgroup, we use the result of [Tei92Tei92,
Theorem 4.4.4.] stating that the following maps given by the signature and the invariant pri are
isomorphisms

Ωξ
4
∼= Z⊕H4(Bπ) for type (I),

Ωξ
4
∼= 16Z⊕H4(Bπ) for type (II),

Ωξ
4
∼= 8Z⊕H4(Bπ) for type (III) and π of even order,

Ωξ
4
∼= 16Z⊕H4(Bπ) for type (III) and π of odd order. □
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