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Abstract. This is an overview of Hatcher’s proof of the Smale conjecture. We have included

extra examples and pictures as well as discussion regarding the 1-dimensional case.
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Introduction

In 1959, Smale proved that the inclusion O(3) → Diff(S2) of rotations into all diffeomorphisms
of the 2-sphere is a homotopy equivalence, [10]. Smale conjectured that the analogous statement
was true for the 3-sphere; i.e., that O(4) → Diff(S3) is a homotopy equivalence. The conjecture,
now referred to as the Smale conjecture, was proven by Hatcher in 1983, [6].

We discuss various results related to the Smale conjecture.
Progress toward the Smale conjecture. Since Diff(Sn) ' Diff∂(Dn)×O(n+ 1), the Smale conjec-
ture is equivalent to the statement that Diff∂(D3) is contractible. In 1968 [1], Cerf showed that
π0(Diff∂(D3)) = 0.

Relation to exotic spheres. Besides being intrinsically interesting, the group Diff∂(Dn), and hence
Diff(Sn), is related to exotic spheres via the bijection π0Diff∂(Dn) ∼= Θn+1 for n ≥ 5. The existence
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of an exotic (n + 1)-sphere therefore implies that O(n + 1) → Diff(Sn) is not a homotopy equiva-
lence. In 1956, Milnor constructed smooth manifolds that are homeomorphic but not diffeomorphic
to S7, thus showing that the inclusion O(7)→ Diff(S6) cannot be a homotopy equivalent, [9]. Re-
cently thereafter, Kervaire and Milnor made an analysis of exotic spheres in all dimensions ≥ 5.
In particular, they showed that exotic spheres exist in all odd dimensions 4n − 3 > 5, [8]. Thus
O(4n − 3) → Diff(S4n−4) cannot be a homotopy equivalence for n > 2. More recently, Wang and
Xu in [11] have shown that the only odd dimensions in which the sphere has a unique smooth
structure are n = 1, 2, 3, 5, 61. Thus O(2k + 1) → Diff(S2k) is not a homotopy equivalence for
2k + 1 6= 1, 2, 3, 5, 61.

Cerf’s theorem also implies that π1Diff∂Dn → π0Diff∂Dn+1 is surjective for n ≥ 5. For example,
π1Diff∂D5 surjects onto Θ7 6= 0 and is therefore nontrivial. Thus the space of diffeomorphisms
of S5 is not homotopy equivalent to O(6). Similarly, π1Diff∂D61 surjects onto Θ62 6= 0, and thus
O(n+ 1)→ Sn is not a homotopy equivalent for any n ≥ 5.

Diffeomorphisms of 3-manifolds. Let M be a (smooth) 3-manifold. One can ask more generally
if the group of diffeomorphisms Diff(M) deformation retracts onto a subgroup of diffeomorphisms
that preserve extra structure. For example, the Smale conjecture says that Diff(S3) deformation
retracts onto the subgroup of orthogonal transformations. The Smale conjecture is known for many
classes of 3-manifolds admitting geometric structure. In particular, the Smale conjecture is true for
hyperbolic manifolds.

Consider a hyperbolic 3-manifold M = H3/Γ where Γ ⊂ Isom(H3) is discrete and torsion free.
One expects that Diff(M) ' Isom(M). By Mostow rigidity, Isom(M) ' Out(π1M). In 2001, Gabai
proved the full Smale conjecture for hyperbolic manifolds, Diff(M) ' Isom(M) in [3].

For M = M1# · · ·#Mk a splitting of M into prime factors, César de Sá and Rourke reduced
Diff(M) to Diff(Mj) plus the homotopy theory of certain configuration spaces and graph spaces, [2].
See also [7].

In the announcement of his result [4], Hatcher discusses these and other results relating to the
linear structure of diffeomorphisms of 3-manifolds.

Outline of sections. We follow Hatcher’s proof [6] of the Smale conjecture that O(4)→ Diff(S3)
is a homotopy equivalence. The version of the Smale conjecture that we will prove is as follow:

Theorem 0.1. A smooth family of C∞ embeddings gt : S
2 → R3, t ∈ Sk, extends to a smooth

family of C∞ embeddings ḡt : D3 → R3, for any k ≥ 0.

When we state results from [6], we will indicate the corresponding number of the result in [6] in
parenthesis. For example, Proposition 3.1 (4.1) indicates Proposition 4.1 in [6].
An outline of the proof is roughly as follows:

Part 1: Reduction to Primitives.
Step 1: Use surgery to break gt(S

2) into simpler surfaces.

(i) Use projection onto the vertical axis gt(S
2)→ R to break gt(S

2) into simpler “ele-
mentary” surfaces. Gluing horizontal disks along the boundary of an elementary
surface creates a manifold (with corners) that is homeomorphic to a 2-sphere.
Such spheres are called primitive. For u ∈ [0, 1], form a family of surfaces (with
corners) Σtu with Σt1 = gt(S

2) and Σt0 a disjoint union of primitive spheres so
that as u varies, Σtu changes by surgery on circles in gt(S

2) with ϕt(c) = u.
The primitive spheres in Σtu are called factors.

(ii) Stratify Sk so that for t in the interior of a fixed stratum, every space {Σtu},
u ∈ [0, 1] has the same number of components glued in the same way.

(iii) Define graphs Γtu capturing how factors are glued in Σtu.

To prove Theorem 0.1, we need to fill in Σt1 = gt(S
2), t ∈ Sk, with embedded 3-disks, smoothly in

t. By Alexander’s theorem, each factor Σ of Σtu bounds a 3-manifold Σ. We want to be able to
deal with a single factor at a time and then glue back together, undoing the surgery process. To
glue the pieces back together, we will model what happens during the surgery of gt(S

2) back in the
domain S2 of the embeddings.
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Step 2: Model the family of spaces Σtu by a family of spaces Stu in S3.

(i) Construct families Stu of and S̄tu with ∂S̄tu = Stu that model the surgery process
of {Σtu} inside S3.

(ii) Define polar foliations Ftu on S̄tu.

(iii) Construct continuous versions Sctu and S
c

tu.

Once we have a model for what happens during surgery, we can reduce to working with primitive
spheres. Since the models Stu in S3 are particularly nice, one knows how to extend embeddings
Stu → R3, u ∈ [0, 1]. to embeddings S̄tu → R3.

Step 3: Reduce proving Theorem 0.1 to constructing a smooth map ḡt0 : S̄t0 → Σt0 that is a
diffeomorphism on factors. This is the content of Proposition 3.1.

Fix t and let Σ be a factor of Σt0. The main idea for constructing ḡt0 is to define foliations on Σ
whose leaves are paths from ∂Σ to either

(a) a pole in the interior of Σ, or
(b) a line segment (called a face) in ∂Σ.

corresponding to whether or not the foliation Ft0 has a pole in the associated factor of S̄ct0. The
resulting foliation will be denoted by Φt0 of Σt0. Define a map ḡt0 : S̄t0 → Σt0 by sending:

- the boundary S2 → gt(S
2) by gt,

- poles of Ft0 to poles of Φt0, and
- sending leaves of Ft0 to leaves of Φt0.

To define such a ḡt0 we therefore construct foliations Φt0. The foliations Φt0 will be defined by
the condition that their leaves are transverse to the stages of certain shrinkings of factors to either
points or faces.

Part B: Construction on primitives.
Step 4: For a factor Σ of Σtu, let A denote the leaf quotient of the vertical foliation of Σ. Call

A the contour of Σ.
(i) Show that the quotient space A has what we will call a “disk with tongues”

structure.
(ii) Show that shrinkings of contours lift to isotopies of Σtu.

One can successively shrink the tongues down to a disk. Lifting the shrinking
of the contour of Σ to a shrinking of Σ results in primitive sphere whose contour
is a disk.

Two problems arise.
(1) If Σt0 contains multiple factors that are glued together along a face, shrinking Σt0 by shrinking

one factor may destroy the disk-with-tongues structure of another factor.
(2) The factor decomposition and disk-with-tongues structures are constant on strata of S0 but

not globally on Sk.

Step 5: Fix the shrinkings to preserve the disk-with-tongues structures.
(i) Construct families of disk-with-tongues structures P (γ) for γ a component of the

graph Γt0.
Shrinking Γt0 according to the P (γ) structures will prevent connected factors

from destroying each others disk-with-tongues structures.
(ii) For (2), triangulate Sk so that in the interior of simplicies, the disk with tongue

patterns are constant. Take an associated handle decomposition of Sk and work
inductively over the index of handles.

Step 6: Construct shrinkings of all factors at once.
(i) Construct n-parameter families of deformations of Σtu.

(ii) Refine the handle decomposition so that the n-parameter families of deformations
of Σt0 are defined on overlap of handles.

Step 7: Mimic the spherical models.
(i) Construct continuous versions of Σt0.

(ii) Define foliations Φt0 modeling the polar foliations Ft0 on St0.
Step 8: Apply of Proposition 3.1
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Throughout this note we will include examples and commentary on the analogous results 1-dimension
down; i.e., for embedded circles in the plane. One can view these embedded circles as vertical slices
of embedded 2-spheres.

Acknowledgments. These notes were written for a course on Diffeomorphisms of Disks taught at
Harvard in the fall of 2017 by Alexander Kupers. Many mistakes, misunderstandings, and typos in
earlier drafts of these notes were found by Kupers.

Part A. Reduction to Primitives

1. Surgery Process

We construct a family of deformations Σtu for t ∈ Sk, u ∈ [0, 1] and a stratification S0 of Sk so
that Σt1 = gt(S

2) and Σt0 forms a family of “primitive spheres” as t ranges over strata of S0.
To define a primitive sphere, we need the following preliminary definition.

Definition 1. Let St ⊂ R3 be a family of compact embedded surfaces, parameterized by t varying
in a compact submanifold of Sk. Assume each St has a chosen orientation of its normal bundle,
varying continuously in t. Say St is a family of elementary surfaces if the following hold:

(1) For each t, each component of ∂St lies in a horizontal plane.
(2) For each t, each vertical line in R3 meets St in a connected, possibly empty, set.
(3) If S+

t (S−t ) denotes the subset of St where the positively oriented unit normal vector to St
has strictly positive (negative) z-coordinate, then:

(a) The closures in R2 × Sk of
⋃
t π(S+

t ) and
⋃
t π(S−t ) are disjoint, where π : R3 → R2

is vertical projection to a horizontal R2.
(b) The closures of

⋃
t S

+
t and

⋃
t S
−
t in R3 × Sk are disjoint from

⋃
t ∂St.

Example 1. The standard torus T in R3 is not an elementary surface; however, if we break T into 4
components using the handle decomposition from the Morse height function, and straighten things
out near the cuts, then each of the resulting components is an elementary surface.

Definition 2. A family of 2-spheres with corners Σt ⊂ R3 is called a family of primitive 2-spheres
if there is a family of elementary surfaces St ⊂ Σt such that, for each t, the closure of Σt \St consists
of finitely many disjoint horizontal disks, called faces of Σt. The only corners occur at ∂St.

Example 2. Continuing with Example 1, if we attach horizontal disks along the boundary of each
of the 4 components in the handle decomposition, we obtain 4 primitive spheres.

Non-Example 1. The standard unit sphere in R3 is not a primitive sphere, nor is it an elementary
surface. The z-axis intersects S2 in a disconnected set, so that condition (2) is not satisfied. If we
straighten out S2 near the equator so as to meet the equator orthogonally, and then cut S2 apart
along the equator, each of the two resulting straightened hemispheres are elementary surfaces.

As in our Example 1 and 2, we can break up any embedded 2-sphere in R3 into primitive spheres
by surgery. The following proposition says that we can do this for families of embeddings {gt} where
t ∈ Bi varies over a cover {Bi} of Sk.
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Proposition 1.1 (1.1). Let gt : S
2 → R3, t ∈ Sk be a family of embeddings. There exists a family

of diffeomorphisms ft : R3 → R3 and a finite collection of closed k-balls Bi ⊂ Sk, each provided with
a finite set of horizontal planes

Pij = {(x, y, z) : z = zij}

for j = 1, . . . , ni and zi1 < · · · < zini
, such that

(i)
⋃
i int(Bi) = Sk,

(ii) Pij 6= Pi′j′ if (i, j) 6= (i′, j′),
(iii) for each pair (i, j) with 1 ≤ j < ni,

ftgt(S
2) ∩ {(x, y, z) : zij ≤ z ≤ zi,j+1}

is a family of elementary surfaces as t ranges over Bi, and
(iv) for each i and each t ∈ Bi, ftgt(S2) lies between the planes Pi1 and Pini

.

For planes Pij , the index i indicates which ball Bi in the cover of Sk we are working over. For
fixed i, the planes Pi1, . . . , Pini are the various vertical levels of ftgt(S

2) where we want to do
surgery.

The diffeomorphisms ft have the effect of straightening gt(S
2) near the cuts. We replace gt with

ftgt from now on.

Example 3. Let k = 1 and take gt : S
2 → R3 to be the standard embedding of the unit sphere for

all t. Take the cover of S1 by two closed balls B0 and B1 that overlap (so that their interiors still
form a cover of S1 as in (i)). As we saw in Non-Example 1 above, it suffices to cut S2 along the
equator; however, we cannot cut in the same plane over B0 and B1 (condition (ii)). The following
choice of planes works:

P01 = {(x, y,−2)} P11 = {(x, y,−3)}
P02 = {(x, y, 0)} P12 = {(x, y, 1/2)}
P03 = {(x, y, 2)} P13 = {(x, y,−3)}

Example 4. The first image in the following picture indicates an embedding of S1 in R2. The red
horizontal lines correspond to the planes Pij (for fixed i since this is not a family of embeddings).
The second picture indicates the embedded circle cut along the horizontal lines. Here the blue disks
indicate the faces of the primitive spheres. In the third picture, the pieces of the cut embedded
1-sphere have been straightened near the horizontal disks so as to meet the faces orthogonally. The
diffeomorphism from the second figure to the third is f in the above proposition.

For an embedding S2 → R3, a horizontal plane intersects the embedded sphere in a collection of
horizontal circles. Each of these horizontal circles bounds a 2-disk. One dimension down, given an
embedding S1 → R2, a horizontal line intersects the embedded circle in a collection of points. Each
pair of points bounds a 1-disk. There is two choices of convention for how to pair these points: left
to right or concentrically. The two choices are illustrated in the following example.

Example 5. The first figure indicates a circle embedded in the plane. The top horizontal line
intersects the embedded circle at four points a1, . . . , a4. The second figure is the result of pairing
a1 with a2 and a3 with a4. The third figure is the result of pairing a1 with a4 and a2 with a3.
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Note that both conventions arise on an embedded circle coming from a vertical slice of an em-
bedded sphere. More specifically, there exists embedded 2-spheres S, S′ ⊂ R3 and a vertical plane
Q so that S ∩ Q = S′ ∩ Q is the embedded circle in the first figure above. For each S, S′ we can
find horizontal planes P, P ′ so that P ∩ S is a disjoint union of 2 non-concentric circles and P ∩ S′
is the disjoint union of 2 concentric circles. Cut S and S′ along these circles, cutting inner most
circles first. Let Σ and Σ′ denote the resulting manifolds. Then Σ ∩Q looks like the black part of
the second figure above and Σ ∩Q′ looks like the third figure above.
Notation. Let Cijt be the collection of circles of gt(S

2) ∩ Pij for t ∈ Bi. Let

Cit =

ni⋃
j=1

Cijt Ct =
⋃

{i:t∈Bi}

= Cit .

We can assume that g−1
t (Ct) are actual geometric circles on S2 (c.f. [6, Prop. 1.2], this uses Smale’s

theorem).
We would like to form deformations {Σtu} so that as u goes from 1 to 0, the spaces Σtu change by

surgery along the circles in Ct. We need a way of choosing at what time u each circle gets surgered.
Choose a smooth family of functions ϕt : Ct → (−1, 1) for t ∈ Sk so that

• ϕt is injective on Cijt giving a linear ordering on Cijt so that ϕt(c) > ϕt(c
′) if c lies inside c′

in the plane Pij .
• ϕt(Cit) > 0 for t ∈ B′i, where B′i is a closed ball in int(Bi) with

⋃
i int(B′i) = Sk.

• ϕt(Cit) < 0 for t ∈ ∂Bi.

Example 6. The following picture is a continuation of Example 3. The graphs of ϕt(c) for the two
circles C02 and C12 are drawn in red and blue, respectively. The vertical direction corresponds to
u ∈ [−1, 1]. The horizontal direction corresponds to the circle S1 with the two end points glued.
The black horizontal line corresponds to u = 0.

Example 7. The following picture illustrates an example when a certain horizontal plane inter-
sects gt(S

1) (fixed t) in multiple 0-circles. The first line of figures details gt(S
2) as t various over

S1 = [0, 1]/ ∼. We have chosen a cover of S1 by two open 1-balls B0 and B1, indicated on the black
line by green and red dashes, respectively. On each 1-ball Bi, we have chosen horizontal lines in
R2 as in Proposition 1.1 that cut gt(S

2) into elementary surfaces. Horizontal lines Pij chosen for
t ∈ B0 (resp. t ∈ B1) are indicated in green (resp. red). The various colored dots indicate families
of 0-spheres where the horizontal lines intersect gt(S

2). The graphs of ϕt(c), for the 0-spheres c, are
drawn below in the color corresponding to the color of c. For example, near one of the overlaps of
B0 and B1, we see a 0-sphere, say c, appearing when the top of the embedded circle begins to dip
down. This 0-sphere is indicated in purple. The purple line in the graph corresponds to values of
ϕt(c).

6



Note that the green horizontal line containing c also intersects gt(S
1) in another 0-sphere, say c′,

indicated in orange. The requirement that ϕt(c) > ϕt(c
′) is fulfilled in the drawn graph.

We will form Σtu so that as u decreases from u > ϕt(c) to u < ϕt(c), Σtu changes by surgery along c.
More formally, let Ctu be the collection of circles c ∈ Ct so that u = ϕt(c) along with the two circles
parallel to c ∈ Ct above and below at distance δ(c) ·min(s, 1) for u = ϕt(c)− sε, s > 0. Here δ > 0
is such that gt(S

2) is vertical within distance δ of each plane Pij with t ∈ Bi and each Pij is within
distance greater than 2δ from any other Pi′j′ . For c ∈ Ct, δ(c) ∈ (0, δ) is chosen independently of t
so that δ(c) > δ(c′) for c insides c′ in Pij . The constant ε > 0 is a small number defined in below
(Claim 4.4). The space Σtu is obtained from gt(S

2) by removing the open vertical annuli between
pairs of parallel circles in Ctu and then attaching to each circle of Ctu the horizontal disk it bounds.

Definition 3. A factor of Σtu is a 2-sphere with corners contained in Σtu obtained from the closure
of a component of gt(S

2) \Ctu (other than a vertical annulus thrown away when doing surgery) by
capping off its boundary circles.

Let Σtu be the space obtained from Σtu by gluing in the balls in R3 bounded by the factors
of Σtu. The existence and uniqueness of such 3-manifolds (with corners) Σtu is a consequence of
Alexander’s theorem [5, Thm. 1.1].

Let Σ be a primitive sphere in Σtu and Σ the corresponding 3-manifold with corners that Σ
bounds. The corners of Σ occur along a finite number of horizontal circles. After smoothing these

corners, the resulting 3-manifold Σ
′
is abstractly diffeomorphic to D3. However, there is no canonical

identification of Σ
′

with D3. One of the difficulties in the proof of Hatcher’s theorem is creating such

diffeomorphisms Σ
′ ∼= D3 in a uniform way that is continuous in the parameter direction t ∈ Sk.

Say a factor Σ is contained in another factor Σ′. When forming Σtu, we glue on disjoint 3-balls
bounded by Σ and Σ′, respectively, only identifying their common horizontal faces.

We would like to say that {Σt0}t∈Sk is a family of primitive spheres, but this is not true over
all of Sk. Indeed, as t ∈ Sk moves out of a stratum of S0, the spaces Σt0 change by surgery on
horizontal circles in Ct0. In the next section, we define a stratification of Sk so that Σt0 forms a
family of primitives spheres when restricted to each of the strata.

1.1. Stratification on Parameter Space. The goal of this section is to define a stratification
on Sk so that on stratum each factor of Σtu varies only by isotopy and the factors of Σt0 form
families of primitive 2-spheres. The stratification will be formed using the graphs of the functions
ϕt : Ct → (−1, 1). Let

Z ′(c) = {(t, ϕt(c)) : t ∈ Sk}

be the graph of ϕt,

Z(c) = Z ′(c) ∩ (Sk × [0, 1])

the subset of the graph of nonnegative values, and

Z0(c) = Z(c) ∩ (Sk × {0})
7



the values of t ∈ Sk so that ϕt(c) = 0. Assume that the graphs Z ′(c) have generic intersections
with each other and with Sk × {0}. The intersections of various Z(c)’s give a stratification S of
Sk × [0, 1] which intersects Sk × {0} in a stratification S0 of Sk × {0}.

1.2. Surgery Graphs. We define graphs Γtu that record the data of which primitives are glued to
which other primitives during various stages of the surgery process of Σtu.

Definition 4. Let Γtu be the graph whose vertices correspond to the factors of Σtu and whose
edges correspond to the common horizontal faces between factors.

Let e be an edge of Γtu. Then e corresponds to a face ∆ with (t, u) ∈ Z(∂∆). Since Σtu changes
by surgery on ∆ as u decreases from u > ϕt(∂∆) to u < ϕt(∂∆), we have that for u = ϕt(∂∆) + sε
• if s > 0, the edge e collapses to a single vertex of Γtu, and
• if s < 0, the edge e is deleted from Γtu.

Lemma 1.2. The graphs Γtu satisfy the following properties.
(1) The graphs Γtu are constant on strata of S.
(2) The components of Γtu are trees.
(3) A component γ of Γtu corresponds to a connected component Σtu(γ) of Σtu varying continu-

ously with (t, u) in the given stratum of S over which γ is defined.

Definition 5. A common face ∆ of two factors Σ1 and Σ2 of Σtu(γ) is a sum face if Σ1 and Σ2

bound balls in R3 meeting only in ∆. Otherwise, one of the balls is contained in the other and we
say ∆ is a difference face.

Example 8. In the following picture the orange disk is a sum face and the green disk is a difference
face.

2. Spherical Models

We want to be able to deal with a single factor at a time and then glue back together, undoing
the surgery process. To glue the pieces back together, we will model what is going on in the surgery
process of gt(S

2) in the domain S2. To do this, we construct families Stu and S̄tu modeling the
surgery process of {Σtu} inside S3. We start with the trivial family S2×Sk and make the following
modifications. For each circle c ∈ Ctu glue a disk D2 to g−1

t (c) along its boundary. Remove the
open vertical annuli in S2 between circles that are removed during the surgery process in Σtu. To
indicate whether surgery on c has the effect of removing a primitive sphere or gluing on a primitive
sphere, we attach disks inside of different hemispheres of S3 ⊃ S2. Specifically, embed S2 → S3 as
the equator. Each circle g−1

t (c) has a corresponding 2-sphere S2
c in S3 that meets S2 orthogonally

at g−1
t (c). Let B+

c and B−c denote the disks obtained from intersecting this orthogonal 2-sphere
with the northern and southern hemispheres of S3, respectively. We can detect whether surgery on
c bounds a sum face or a difference face by whether an arrow form the interior of the disk to its
boundary points outside or inside gt(S2).

- If c is a sum circle, glue B+
c to S2 along g−1

t (S2).
- If c is a difference circle, glue B−c to S2 along g−1

t (S2).
Let Stu denote the resulting subset of S3. Call the components of Stu that are homotopy 2-spheres
factors of Stu. Under gt, these correspond bijectively to the factors of Σtu.

Example 9. In the following picture, the spaces Stu are drawn for various (t, u) ∈ S1 × [0, 1].
Horizontally, u varies from 1 to 0. Vertically t is varying across S1, with the top and bottom rows
being identified. The Stu drawn here correspond to the graph of ϕt in Example 6. Strata are circled
in pink.
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Spaces S̄tu are formed from Stu by attaching 3-disks in S3 bounded by components of Stu to Stu.
Each factor S of Stu bounds two 3-disks in S3 by Alexander’s theorem. These two 3-disks can be
distinguished by whether an arrow from a point in the equator to the interior of the disk points into
the northern or southern hemisphere of S3. If for the corresponding factor Σ of Σtu, the normals
to Σ∩ gt(S2) pointing into Σ point into (resp. out of) the ball in R3 bounded by gt(S

2), attach the
disk with normals pointing into the northern (resp. southern) hemisphere.

Remark 1. The spaces Stu do not vary continuously in u; 2-disks are attached and removed suddenly.
Also note that S̄tu has discontinuities whenever a difference circle is surgered in Σtu but not during
surgeries of attaching circles. Continuous versions of Stu and S̄tu will be constructed in Claim 7.1.

Example 10. The following picture illustrated S̄tu as (t, u) goes from the boundary of a stratum to
its interior. The red 1-disk corresponds to a sum face in Σtu along a 0-sphere in S1. The green
portion of the sphere indicates S̄tu where ϕt(c) = u. As u decreases, the red 1-disk is replaced with
two parallel orange disks and the “annulus” S0 × D1 (indicated in grey) is removed. The result is
two factors, indicated in blue and grey, in Stu for u = ϕt(c)− δ for some small δ > 0.
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Since the circle c corresponds to a sum face, there is no discontinuity in S̄tu.

Example 11. The following illustrates a difference face. The first column shows Σtu for two values
of u. The second column shows the corresponding spherical models Stu as colored subsets of S3. In
the third and fourth columns, there are pictures of S̄tu. The blue factor and orange factor are not
glued in S̄tu. Notice that since the red face is a difference face, we see a discontinuity in S̄tu.

The following definitions will be useful in the next section.

Definition 6. FOr S1, S2 factors of Stu say S1 ≤ S2 if S1 ⊆ S2 in S3.

Definition 7. A maximal factor of Stu is a factor s not contained in any other factor.

Definition 8. The core of a factor S of Stu is

(S \
⋃
i

Bi) \ S2

where
• S is the 3-ball in S3 bounded by S that is attached during the construction of S̄tu.
• c1, . . . , cn ⊂ S2 are the circles at which S has corners and Di ⊂ S is the 2-disk capping off ci.
• Bi ⊂ S3 is the 3-ball bounded by S2

ci with Bi ∩ S = Di.

Example 12. Continuing with Example 7.1, the top row illustrates various Stu and the bottom row
ilustrates the corresponding cores of maximal factors.

2.1. Polar Foliations. We define singular foliations on S3. From these we obtain foliations on
S̄tu by restricting the foliations to S̄tu → S3. Let γ be a component of the graph Γtu. Then γ is
defined over a stratum of S. We will define families of foliations Ftu(γ) for (t, u) in the closure of
the stratum over which γ is defined. For certain components γ, γ′, we have Stu(γ) ⊂ Stu(γ′) ⊂ S3

(cf. Example 11). In this case, we require the foliations to agree, Ftu(γ) = Ftu(γ′).
10



Observe that each point p in S3 \ S2 determines a polar foliation of S3 whose leaves are arcs
through p that meet S2 orthogonally. Such foliations have two poles: one at p and one at a dual
point p′.

Example 13. One dimension down, the longitude lines on S2 define a polar foliation for the north
pole. This foliation has poles at the north and south pole. The following picture indicates another
polar foliation of S2 with pole indicated with a red dot. The orange dot corresponds to the “dual”
point.

For (t, u) in the interior of the stratum over which γ is defined, we would like each foliation Ftu(γ)
to have a pole in the core of a maximal factor of Stu(γ). Note that the core of a factor, by Definition
8, does not intersect S2. Thus any point in the core of a maximal factor defines a polar foliation on
S3. Near the boundary of strata, we only require the pole to not cross the equator S2 ⊂ S3.

Example 14. In the following picture, we continue with the situation of Example 10. The yellow point
in the first figure indicates the pole on Stu for ϕt(c) = u. This corresponds to the foliation of the
sphere by longitudinal lines. As (t, u) moves into the interior of the stratum, the corresponding graph
Γtu splits into two components: one corresponding to the pink factor (say γp) and one corresponding
to the blue factor (say γb). The foliations Ftu(γp), for (t, u) moving from the boundary of the stratum
into the interior, have poles given by the dark pink dots. Similarly, the foliations Ftu(γb) have poles
given by the dark blue dots.

The following lemma explains how the cores of maximal factors change over strata.

Lemma 2.1. Let (t, u) vary over a stratum of S so that S2∩Stu is constant along the stratum. Let
(ti, ui), i = 1, 2 be two points in the stratum. Let Ui, i = 1, 2, denote the union of the cores of the
maximal factors of Stiui

. There is an inclusion U1 ⊆ U2 inducing a bijection on π0.

Note that 0-dimensional stratum of S are points (t0, u0) so that multiple 2-disks have been at-
tached to Stu along circles in Ct0u0

, but St0u0
has not been split along these circles. This is analogous

to deformations Σt0u0
where horizontal disks have been attached in preparation for surgery, before

the surgery has been done.
Consider the family of spherical models Stu as (t, u) moves from a 0-dimensional stratum (t0, u0)

of S into a 1-dimensional stratum. Either Stu changes by splitting St0u0
along one of the 2-disks

attached in St0u0
and the other 2-disks attached at stage (t0, u0) remain unchanged along the 1-

dimensional stratum, or Stu is constant along the interior of the stratum with one of the 2-disks
attached and, at the boundary of the stratum, another 2-disk is attached to form St0u0 . This is true
regardless of whether the corresponding face in Σtu is a sum or difference face. If the corresponding
face in Σtu is a difference face, then S̄tu can change more drastically as in Example 11.
Construction.

We construct Ftu(γ) inductively over the strata of S. For a 0-dimensional strata, we need to
define a foliation on a single S̄tu. For each maximal factor of S̄tu(γ), choose a point in the interior
of the core of the maximal factor (a contractible space of choices). Let Ftu(γ) be the corresponding
polar foliation.

As (t, u) moves from a k-dimensional stratum ∂X along a (k + 1)-dimensional stratum X, two
things can happen. Either S2∩Stu remains unchanged or S2∩Stu is split into more components. In
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the first case, Stu has a certain number of 2-disks attached and at the boundary of the stratum an
additional 2-disk is suddenly attached. In this case, there is an inclusion of the union of the cores of
the maximal factors of St0u0 into the union of the cores of the maximal factors of Stu for any (t, u)
in the (k+ 1)-stratum. This inclusion induces a bijection on π0. We can therefore define Ftu(γ) for
(t, u) in X to be the same as Ft0u0

(γ).
If S2 ∩Stu changes as (t, u) varies over the (k+ 1)-dimensional stratum X, then there are factors

S1, S2 of Stu(γ) so that S1 ≤ S2 in St0u0 for (t0, u0) ∈ ∂X but S1 6≤ S2 for some (t, u) ∈ X. Assume
S2 was a maximal factor at stage (t0, u0) and that S1 and S2 are both maximal factors at stage
(t, u). Then the foliation Ft0u0

(γ) contains a pole p in the core of S2. As (t, u) moves away from
(t0, u0) along X, the edge connecting S1 and S2 disappears. The graph Γtu is then a disjoint union
of two graphs γ1 and γ2 where γi contains the vertex corresponding to Si. Define Ftu(γi) on S3 by
moving the pole p from the core of S2 to the core of S1 in some small amount of time.

Definition 9. Call a factor S of Stu polar if the disk S bounds in S̄tu contains a pole in the foliation
Ftu. Otherwise, call S facial.

In §3 of [6], Hatcher uses the foliations Ftu to create continuous versions Sctu and S̄ctu of Stu and
S̄tu. The idea is to fold the attached 2-disks back into S2 instead of deleting them. Since this is a
technical point of the paper, we will not go into the details here.

Claim 2.2. There exists continuous versions Sctu and S̄ctu of Stu and S̄tu, respectively.

3. Reduction to u = 0

The following proposition reduces the proof of Theorem 0.1 to constructing a smooth map
ḡt0 : S̄ct0 → Σ

c

t0 that is a diffeomorphism on factors.

Proposition 3.1 (4.1). Given a family of maps ḡt0 : S̄ct0 → R3 which restrict to embeddings on the
factors of S̄ct0 and which agree with gt on S2 ∩ St0, there exists a family ḡtu : S̄ctu → R3, u ∈ [0, 1],
extending ḡt0 which also restrict to embeddings on factors and agree with gt on S2 ∩ Stu.

We will apply the proposition as follows. Continuous versions Σ
c

t0 of Σt0 will be created in a

manner similar to how S
c

t0 was created from St0. The inclusions Σt0 ⊂ R3 will lead naturally to

maps Σ
c

tu → R3. We will construct a smooth family of homeomorphisms ḡt0 : S
c

t0 → Σ
c

t0 that are

diffeomorphisms on factors. Composing with the maps to R3 gives a family of maps S
c

t0 → R3 to
which the proposition will be applied.

Part B. Construction on Primitives

4. Contours

For a factor Σ of Σtu, let A denote the leaf quotient of the vertical foliation of Σ. Call A the
contour of Σ. Below is an outline of this section. New terms used in the outline will be defined later
in the section.

• The quotient space A has the structure of a disk with tongues attached.
• Within each strata of the stratification S0 of Sk, the disk-with-tongues structure of these

contours is constant.
• We can successively shrink tongues down into the initial disk.
• Alterations can be made on Σ so that no point lying over the interior of a tongue has a

vertical tangent.
• A shrinking of the contour of Σ lifts to a shrinking of Σ to a primitive sphere whose contour

is a disk.

Our goal is to define a shrinking of Σ to a standard 3-disk. The process described here actually
results in a shrinking of Σ to a cylinder with smoothed corners. We will achieve such a deformation
by lifting shrinkings of the leaf space of the vertical foliation of Σ to a disk.
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4.1. Disk-with-tongues Structures.

Definition 10. The contour of a factor Σ of Σtu is the leaf space of the vertical foliation of Σ. Let
C(Σ) denote the contour of Σ and π : Σ→ C(Σ) the projection.

Example 15. If the contour of Σ is a disk D , then Σ has a particularly simple form. The preimage
π−1(D) is a cylinder in R3. The space Σ is then a cylinder with various vertical modifications. We
can linearly deform Σ into a cylinder with smooth corners. The picture below indicates an example
of an embedded 2-sphere with contour a disk and an embedded 1-sphere with contour a line segment.

In general, the contour C(Σ) will have the structure of a disk with tongues according to the
following definition.

Definition 11. A disk with tongues is a space C which is expressible as the union of finitely many
2-disks, C =

⋃n
i=0Di where for each i > 0, the subspace

Di ∩ (
⋃
j<i

Dj)

is a subdisk di of Di meeting ∂Di in at least an arc. Furthermore, there exists a projection map
π : C → R2 which is an embedding on each Di and such that π(Di) and π(di) are smooth subdisks
of R2.

Definition 12. A disk-with-tongues structure on a disk with tongues C is a decomposition of C
into an initial disk D0 and an (unordered) collection of tongues Ti with Ti = Di \ di. The free edge

of Ti is ∂Di \ ∂di and the attaching edge of Ti is ∂di \ ∂Di.

Definition 13. A tongue Ti is of Type I if
(1) π(∂Ti) ∩ π(∂D0) = ∅, and
(2) π(∂Ti) ∩ π(∂Tj) = ∅ for each tongue Tj , j 6= i.

Example 16. In the following picture, we have shown how a Type I tongue might arise in a contour
of a factor Σ in Σt0 for some embedded sphere gt(S

2).

Proposition 4.1 (5.1). The contours of a family of primitive 2-spheres Σt ⊂ R3 have the structure
of a family of disks with Type I tongues.

We would like to shrink the contour C(Σ) to a disk. A disk-with-tongues structure on C(Σ)
preferences the initial disk. We will shrink the tongues of C(Σ) into the initial disk. It would be
useful to have more information about the initial disk of C(Σ). In particular, Σ is a factor in a
family of primitive spheres {Σt0}t. We would like the initial disks of various factors Σt ⊂ Σt0 to
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vary nicely in t. By construction, factors like Σ contain specified horizontal disks (their faces, ∆i)
which have contours C(∆i) that are disks. It turns out that we may choose the initial disk of C(Σ)
to be the projection of a large face of Σ according to the following definition.

Definition 14. A face ∆t of a family of primitives Σt is called large if, locally in t, π(∆t)∩ ∂π(Σt)
contains a smoothly varying arc.

If we specify that C(∆) is the initial disk of C(Σ), we can no longer guarantee that all tongues
will be of Type I. Additional tongues can be described as follows,

Definition 15. A tongue Ti is of Type II if
(1) The attaching edge of Ti lies in the initial disk D0, and near its cups points lies in ∂D0.
(2) The free edge of Ti projects disjointly from π(D0) except for its cusp points.
(3) π(∂Ti) ∩ π(∂Tj) = ∅, for j 6= i.

Example 17. The pictures below show Type II tongues in the 1-dimensional and 2-dimensional cases.
The top row shows Σ for a primitive 1-sphere (on the left) and a primitive 2-sphere (on the right).
In the first image, we have also indicated the vertical foliations of Σ in orange. The bottom row
shows the contours of these spheres. The initial disks D0 are chosen to correspond to the faces ∆0

in Σ. In each case, the green tongue T is of Type II. For the primitive 2-sphere (on the right), the
attaching edge of T is shown in orange and the free edge in red.

Proposition 4.2 (5.2). If ∆t is a large face of the family of primitives Σt, then C(Σt) has the
structure of a disk with Type I and II tongues, with C(∆t) as the initial disk.

Remark 2. Once the initial disk is specified, two disk-with-tongues structures on C(Σ) with only
Type I and II tongues have a canonical common subdivision obtained by taking tongues to be the
intersection of the tongues in the two structures.

Notation. We let C(Σt,∆t) denote the disk with Type I and II tongues structure on the family of
primitives Σt with initial disk C(∆t).

4.2. Shrinking Contours. We want to shrink the contour C(Σ) down to its initial disk. The idea
is to shrink the tongues, one at a time, into the initial disk. There are many ways to do this. For
example we could change the order in which we shrink the tongues or the speed at which the tongues
shrink. Formally, for Ct a family of disks with tongues, a shrinking of Ct will be any family {Cts},
s ∈ [0, 1], of disks with tongues satisfying the following:

(1) Ct0 = Ct,
(2) Cts ⊂ Cts′ if s > s′,
(3) for Tt a tongue of Ct, Tt ∩ Cts is a tongue of Cts, and
(4) for Dt the initial disk of Ct, Dt ∩ Cts is the initial disk of Cts.

Given a family of 2-spheres with corners Σt and a family of shrinkings Cts of their contours
C(Σt) =: Ct, we would like to lift Cts to a deformation Σts of the spaces Σt. Naively, one could take
Σts = π−1(Cts) where π : Σt → C(Σt) is the projection. The spaces π−1(Cts) will not be smooth.
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They will have corners at the horizontal disks at which Σt have corners, but will have other corners
as well. Additionally, points of Σt with vertical tangents can cause the deformation Σts to not be
smooth in s.

Lemma 4.3 (6.1). Let Σt ⊂ R3 be a family of 2-spheres (with corners at horizontal disks) such that
C(Σt) is a family of disks with tongues. Then a shrinking Cts of C(Σt) = Ct0 lifts to an isotopy
Σts of Σt = Σt0. Moreover, we can make Σts smooth for s > 0.

Explicitly, the statement that Σts is a lift of Cts means that C(Σts) = Cts and Σts ⊂ Σts′ for
s′ < s.

Proof Idea. Using a partition of unity argument on Sk, we can assume that the tongues of Ct attach
in a fixed order, independent of t. We construct the isotopies Σts inductively, shrinking a single
tongue at a time. We are reduced to showing that a shrinking of a single tongue of Ct or a shrinking
of the initial disk D0 lifts to an isotopy of Σt.

Assume a single tongue Tt is shrinking in C(Σt). To avoid corners and problems from points
with vertical tangents, we make a preliminary modification of Σt. Let V ⊂ Σt be the set of points
with vertical tangents that project to the interior of the tongue Tt that is shrinking. Partition
V = V+ tV− where V+ (resp. V−) is the subset of points p ∈ V where an upward (resp. downward)
pointing vertical line through p goes from inside Σt to outside Σt. As Σt is a primitive sphere, Σt
can be written as an elementary surface S together with a finite number of horizontal disks. Since
S is an elementary surface, a vertical line intersects S on a connected set. Thus the sets V+ and V−
cover V .

Claim 4.4. There exists a smooth family of smooth vector fields vt on R3 such that
(i) vt|Σt

has support in π−1(int(Tt))
(ii) vt|Σt

is orthogonal to Σt, pointing into Σt
(iii) ∂

∂z |v| is positive on V+ and negative on V−.

For an example of such a vector field, see Figure 6.2 of [6]. Form Σ′tr for r ∈ [0, 1] from Σt = Σ′t0
by flowing along vt for r ∈ [0, ε] and staying still for r ∈ [ε, 1]. Here ε is chosen so that no point
p ∈ V lies in the boundary of Ttr for r < ε. Define Σts = (π′)−1(Cts) where π′ : Σ′tr → C(Σt). The
isotopy of Σt is then Σts := ∂Σts.

Smooth the corners of Σts according to Figure 6.1 of [6]. �

5. Choosing the Right Shrinking

Our plan is to shrink Σ to a standard disk by lifting shrinkings of contours. We therefore need
the shrinkings of the tongues to be compatible with two things:

(1) the decomposition of gt(S
2) into primitive spheres; i.e., the surgery process, and

(2) the parameter t ∈ Sk.
More specifically, consider a connected component Σ(γ) ⊂ Σt0. Then Σ(γ) is a union of a primitive
surface Σ and a finite number of horizontal disks ∆1, . . . ,∆n. The horizontal disks break Σ(γ)
into primitive spheres Σ0, . . . ,Σn. For example, Σ(γ) might be as in Figure 7.1 of [6]. We want a
shrinking of Σ(γ). So far we have constructed shrinkings of each Σi. As we glue together the Σi
along the ∆i, the shrinkings may not be compatible. For example, in Figure 7.1, Σ is a difference of
two primitive spheres Σ0 and Σ1. As Σ1 shrinks, Σ0 expands. A more complicated problem arises
if shrinking a factor Σi changes the disk-with-tongues structure of the contour of Σ(γ). Section 7
of [6] describes an example when this happens.

Remark 3. For generic families of embeddings gt : S
2 → R3 for t ∈ Sk, k ≤ 2 such problems do

not arise. This is a consequence of the classification of singularities for generic families of maps
S2 → R. For k = 0, 1, 2, we can therefore skip this section and simplify define the shrinking of Σ(γ)
by shrinking each factor Σi (after assuming by genericity that the projection of the contour is at
most 2 to 1).

Recall that the tree γ describes how the primitive factors Σ0, . . .Σn are attached along the faces
∆1, . . . ,∆n. We need to incorporate the data of γ into the chosen shrinkings of contours.
The outline of this section and the next is roughly as follows:
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1. Describe a pattern of disk-with-tongue structures P (γ) that takes into account the tree γ
and varies continuously with small changes in t ∈ Sk.

2. Construct a triangulation T of Sk so that on each simplex σ of T , the contours of Σt0(γ)
have the disk-with-tongue structure prescribed by P (γ).

3. For t ∈ Sk varying in a simplex σ of T , combine the shrinkings of the primitive factors
Σ0, . . . ,Σn (using the disk-with-tongues structure from P (γ)) into n-parameter families of
deformations Σit(s1, . . . , sn), sj ∈ [0, 1], where Σnt (0, . . . , 0, sn) shrinks Σn to ∆n and if

Σi < Σj , then Σjt (s1, . . . , sn) shrinks Σi as well as Σj .
4. Show that the families Σit(s1, . . . , sn) agree on overlap of simplices of T .

These steps correspond to subsections 5.1.1, 5.2, 6, and 6.1.1 of this paper, respectively. In [6], these
steps correspond to sections 9, 10, 11, and 12, respectively.

Remark 4. We lose smoothness at the second step. It will be regained in the step of taking transverse
leaves.

5.1. Tongue Patterns. We begin by formalizing a way to compare disk-with-tongues structures.

Definition 16. A subset P of R2 is called a tongue pattern if it is the union of a finite number of
disjoint subsets Pi called tongue blocks, each of which has the form

Pi =
⋃
j

∂Tij

where the Tij are the tongues of a subdivision of a single tongue Ti ⊆ R2. A family of tongue
patterns is defined to be a family of tongues Ti and Tij as in §5.

Example 18. Let Σ be a primitive 2-sphere and T1, . . . , Tn the tongues of Type I of the contour
C(Σ) of Σ as in Proposition 4.1. Then P (Σ) =

⋃
i π(∂Ti) is a tongue pattern.

Example 19. Let Σ be a primitive 2-sphere with ∆ a large face of Σ. By Proposition 4.2, we have a
disk with Type I and II tongue structures C(Σ,∆) on Σ with initial disk ∆. Denote by T1, . . . , Tn
the tongues of C(Σ,∆) of Type I and II. Then P (Σ,∆) =

⋃
i π(∂Ti) is a tongue pattern.

5.1.1. Subdividing Tongues. The goal of this section is to address the problem of disk-with-tongue
structures being incompatible with the decomposition of Σt0 into primitive spheres. More specifi-
cally, shrinking one factor of Σt0 may induce a shrinking of Σt0 that destroys the disk-with-tongues
structure on another factor. Hatcher describes an instance of this problem in §7 of [6].

Recall that we have a family of graphs Γtu that record the data of which pieces of gt(S
2) have

been surgered off at various times u ∈ [0, 1] in the surgery process. Let γ ⊂ Γtu be a connected
component and Σ(γ) the primitive sphere corresponding to γ. Each subtree τ of γ corresponds
to a primitive sphere Στ ⊂ Σ(γ). Specifically, Στ is obtained by taking the union of the factors
Σi corresponding to vertices of τ and removing the interiors of the faces corresponding to edge of
τ . Each τ represents a collection of pieces of gt(S

2) that are still left to be surgered in Σtu as u
decreases.

We would like a compatibility relationship between the disk-with-tongues structures C(Στ ) as τ
ranges over subtrees of γ.

Definition 17. For γ ⊂ Γtu a connected component, define P (γ) to be the union

P (γ) =
⋃
τ⊂γ

(P (Στ ) ∪ P (Στ ,∆τ ))

where the union is taken over all subtrees τ of γ.

Proposition 5.1 (9.1). The tongue patterns P (γ) define a family of tongue patterns.

5.2. Handle Decomposition of Parameter Space. The goal of this section is to address the
problem of disk-with-tongue structures changing in the parameter t ∈ Sk. We will do this by
decomposing Sk into handles on which the disk-with-tongue structure changes in a manageable
way. Moreover, we need our handle decomposition of Sk to respect the tongue patterns P (γ) so
that things continue to interact well with the surgery process for each fixed t. To be able to compare
the chosen shrinkings of tongues, we introduce the following terminology:
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Definition 18. The associated tangent line field to a shrinking of a tongue D is the section of the
projectivization P(TD) of lines tangent to various stages of the shrinking.

Shrinkings of tongues with the same tangent line fields do not have to be the same shrinking, but
there is always a path between them.

Lemma 5.2. If a tongue T has two shrinkings Ts and T ′s with the same tangent line fields, then
there exists a canonical path of shrinkings connecting Ts and T ′s.

Warning. Even if the shrinking is C∞, the tangent line field will only be C0 near cusps of T .

The main result of this section is the following:

Proposition 5.3 (10.1). There is a triangulation T of Sk in which closed strata of S ′0 are subcom-
plexes, such that for each simplex σ of T and each family Σt(γ) defined for t ∈ σ, there exists:

(i) families of tongue blocks Qr(γ), parameterized by t ∈ σ,
(ii) inclusion maps Pq(γ) ↪→ Qr(γ) (with r = r(q) depending on q) for the tongue blocks Pq(γ)

with
∐
Pq(γ) = P (γ), and

(iii) families of shrinkings of the tongues of Qr(γ) such that if r1 6= r2, the associated tangent line
fields for the tongues of Qr1(γ) meet those for the tongues of Qr2(γ) transversely for all t ∈ σ \ ∂σ.
Further, if σ′ is a face of σ, Σt(γ

′) is defined for t ∈ σ′, and Σt(γ) < Σt(γ
′) for t ∈ σ′, then we

have a diagram

Pq(γ) //

��

Qr(γ)

��
Pq′(γ

′) // Qr′(γ′)

and the tangent line fields associated to the chosen shrinkings of the tongues Qr′(γ
′) restrict to those

for the tongues of Qr(γ).

Remark 5. Our goal was to give a handle decomposition of Sk. We get a handle decomposition
from the triangulation T whose i-handles Hi = Di×Dk−i are εi-neighborhoods of i-simplicies σi of
T with points in previously constructed handles of smaller index removed. Here the εi are chosen
so that

ε0 � ε1 � · · · � εk

Lemma 5.4. We may assume that gt is constant on slices {x} × Dk−i of the handles Hi in this
handle decomposition of Sk.

The proof is a consequence of an operation Hatcher calls “blowing up” where the εi in the
construction of the handles Hi are decreased.

Proof. It suffices to construct a smooth family of C∞ embeddings ĝt : S
2 → R3 so that the maps

g, ĝ : Sk → Emb(S2,R3) are homotopic. Define ĝt = gh(t) where h : Sk → Sk collapses each slice

{x} × Dk−i in a handle Hi to a point h(x) ∈ σi. �

6. Shrinking Σ(γ) in Families

Let Σ(γ) be a component of Σt0. Then Σ(γ) is the union of a elementary surface Σ and finitely
many horizontal disks ∆1, . . . ,∆n that split Σ(γ) into primitive factors Σ0, . . . ,Σn. Assume Σ0 is a
large factor. Reorder Σi so that ∆i is a face of Σi. Each ∆i splits Σ into two primitives Σi and iΣ
so that
• Σ is either a sum or difference of Σi and iΣ,
• Σi ∪ iΣ = Σ ∪∆i, and
• Σi ∩ iΣ = ∆i.

Either Σi or iΣ, but not both, intersects Σi at more than just ∆i. Say Σi has this property and
call Σi a cofactor of Σ(γ). We want to say that we can shrink the contour C(Σi) down to C(∆i).
By Proposition 4.2, this can be done if ∆i is a large face. In [6, Lem. 8.2], Hatcher shows that
indeed ∆i is a large face of Σi. We therefore have an isotopy from Σi to a smoothed preimage of
the contour of the face, π−1(C(∆i)).
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6.1. Construction of n-Parameter Families. We will use these deformations to construct de-
formations Σi(s1, . . . , sn), sj ∈ [0, 1] for each cofactor Σi of Σ(γ). These deformations will have the
following properties
• Σi(s1, . . . , sn) is independent of s1, . . . , si−1, and
• Σi(0, . . . , 0) = Σi.

Our construction will proceed inductively starting with Σi(0, . . . , sn).
Base Case Construction.
Define Σn(0, . . . , 0, sn) to be the shrinking of Σn to ∆n so that

(a) Σn(0, . . . , 0) = Σn,
(b) Σn(0, . . . , 0, 1) = ∆n,
(c) ∆n ⊂ Σn(0, . . . , 0, sn) for all sn ∈ [0, 1],
(d) Σn(0, . . . , 0, sn) \ int(∆n) for sn ∈ (0, 1) is a smooth disk bounded by ∂∆n, which moves

across Σ
n

by monotone isotopy relative ∂∆n from Σn \ int(∆n) to ∆n as sn goes from 0 to
1.

For Σn < Σi, i 6= n, we have Σn \ int(∆n) ⊂ Σi. Define Σi(0, . . . , 0, sn) by

(a) Σn(0, . . . , 0, sn) \ int(∆n) ⊂ Σi(0, . . . , 0, sn), and
(b) Σi \ Σn ⊂ Σi(0, . . . , 0, sn).

If Σn 6< Σi, set Σi(0, . . . , 0, sn) = Σi.
Inductive Step.

Fix j = 1, . . . , n − 1. Assume we have constructed families Σi(0, . . . , 0, sj+1, sn). We wish to
construct families Σi(0, . . . , 0, sj , sj+1, . . . , sn). Let Σi(sj) denote Σi(0, . . . , sj , . . . , sn) where sj ,
living in the jth spot, is the first nonzero parameter. To mimic the base case construction, we
would like the following:
• Σj(sj) to be a shrinking of Σj(0) to ∆j .
• If Σj < Σi, we want Σi(sj) to be the induced shrinking of Σi(0).
• If Σj 6< Σi, set Σi(sj) = Σi(0).

To preform the inductive step, we need the following conditions to hold:

(i) Σj(0) is an embedded sphere containing ∆j which is smooth except possibly at corners of
Σj and at the circle ∂∆j ⊂ Σj .

(ii) If Σj < Σi, j 6= i, then Σ
j
(0) ∩ Σi(0) = Σj(0) \ int(∆j).

(iii) The contour C(Σj(0)) is a disk with tongues with C(∆j) as the initial disk.
(iv) There exists a shrinking of C(Σj(0)) to C(∆j).

Using the disk with tongue structures prescribed by P (γ), one can check that these conditions hold.
This is done in §11 of [6]. In particular, Σ0(s1, . . . , sn) retains its disk with tongue structure as
(s1, . . . , sn) varies.

Extend the deformations Σi(s1, . . . , sn) over sj ∈ [1, 2] by replacing ∆j = Σj(1) with two parallel
copies of ∆(j).

6.1.1. Overlap of Handles. We want to patch together the families Σlt(s1, . . . , sn) for t ∈ σ con-
structed in the previous section to families defined on all of Sk. To do so, we need to check that our
n-parameter deformations agree for t in the overlap of simplicies of T .

Definition 19. By specialization we mean setting the appropriate variables sm equal to 0 or 2,

according to whether in passing from Σijt (γ) to Σi
′j′

t (γ′), the corresponding common face Σm of

Σijt (γ) is deleted from Σijt (γ) or splits Σijt (γ) into two components, respectively.

Proposition 6.1 (12.2). After contracting {Hij}, we may construct deformations Σlt(s1, . . . , sn)

for the cofactors Σlt of all families Σijt (γ), t ∈ Hij, such that

(?) If t ∈ Hij ∩Hi′j′ with σij ⊂ ∂σi′j′ and Σl
′

t ⊂ Σi
′j′

t (γ′) corresponds to Σlt ⊂ Σijt (γ), then the

deformation Σl
′

t (s1, . . . , sn′) is obtained from Σlt(s1, . . . , sn) by specialization.

7. Mimicking the Models

For fixed t, the main idea for constructing ḡt0 will be to define foliations on factors Σ of Σ where
leaves are paths from ∂Σ to either
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(a) a pole in the interior of Σ, or
(b) a line segment (called a face) in ∂Σ.

corresponding to whether the associated factor of S̄ctu is polar or facial. Let Φt0 denote the resulting
foliation of Σt0. Define a map S̄t0 → Σt0 by sending:

- the boundary S2 → gt(S
2) by gt,

- poles of Ftu to poles of Φtu, and
- sending leaves of Ftu to leaves of Φtu.

The foliations Φtu will be defined by the condition that there leaves are transverse to stages of
certain shrinkings of factors to either points or faces.

In §7.1, we will construct models Σct0 from Σt0 mimicking the construction of Sct0 from St0. The

new spaces Σct0 will bound disks Σ
c

t0. We then construct foliations on the Σ
c

t0 using polar foliations
as in In the next section we will flush out the details of how to apply Proposition 4.1 in this case.

7.1. Continuous Versions of Σt0. We will define Σct0 for t in a handle Hij of the handle decom-
position of Sk described in §5.2. In §12 of [6], Hatcher proves that the description of Σct0 does not
depend on which handle Hij we assumed t lived in.

We continue notation as above: Σt(γ) is a component of Σt0 with cofactors Σ0
t , . . . ,Σ

n
t . First,

re-parameterize the families Σit(s1, . . . , sn) for sj ∈ [1, 2] by setting tj = 1− sj .
Let t ∈ Sk be in a handle Hij corresponding to a simplex σij of T . Recall that in §1.1, we defined

the stratification S0 on S2 using the graphs Z0(el) of functions ϕt.

Lemma 7.1. For each edge el of γ, we have σij ⊂ Z0(el) × [−1, 1] ⊂ Sk which is a tubular
neighborhood in Sk.

Extend the product structure of Z0(el) × [−1, 1] to Z0(el) × R. Then Hij ⊂ Z0(el) × R. For
t ∈ Z0(ek)× {r}, let

ak =


r |r| ≤ 1

1 r > 1

−1 r < −1

The ak depend on ij and t. Define Σct0 as follows. First, take the union( n∐
l=1

Σlt(a1, . . . , an)
)
/ ∼

where common faces ∆m(a1, . . . , an) are identified for tm ≥ 0. If γ has a base vertex, for “shock
waves” (corresponding to hitting a pole), subdivide Σlt(t1, . . . , tn) for tl ≤ 0 by adjoining the disk

∆l(t1, . . . , τl(tl), tl+1, . . . , tn)

where τl : [−1, 0] → [0, 1] “chosen appropriately.” If γ has a base edge, the face ∆1 corresponds to
the base edge. Subdivide Σ1(t1, . . . , tn) for t1 ≤ 0 by adjoining the disk

∆1(τ ′1(t1), t2, . . . , tn)

where τ ′1 : [−1, 0]→ [0, 1] deforms ∆1(t1, . . . , tn) as in Figure 3.3 of [6].

Remark 6. The construction of Σct0 relied on C1 shrinkings of various factors of Σt0. The spaces
Σct0. t ∈ Sk, therefore only form a C1 family. To apply Proposition 3.1, we need a smooth family
Σct0. This lack of differentiability will be remedied in (Remark 8 below.

7.2. Foliation on Σ
c

t0. Define foliations Φt0 on Σ
c

t0 as follows. On factors Σlt(t1, . . . , tn) with l > 0,
define Φt0 to have leaves transverse to the stages of shrinkings of Σlt(t1, . . . , tn) to its preferred face
∆l(t1, . . . ,n ). The contours of the factors Σ0

t (t1, . . . , tn) retain their disk-with-tongues structures
as (t1, . . . , tn) varies. Define Φt0 on Σ0

t (t1, . . . , tn) to have leaves transverse to the stages of the
shrinking of Σ0

t (t1, . . . , tn) to a point shrunk as follows: First, follow the shrinking lifted from a
shrinking of C(Σ0

t (t1, . . . , tn)) to a small neighborhood of a point in its initial disk. This shrinks
Σ0
t (t1, . . . , tn) to something as in Example 15. Second, follow a linear vertical shrinking to a disk

with rounded corners. Thirdly, take a standard radial shrinking of the disk with rounded corners
to a point.
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Example 20. The first figure below shows the stages of the shrinkings described above. The shrinking
indicated in green is a lift of a shrinking of the contour to the initial disk ∆0. The blue lines indicate
the linear vertical foliation. Finally, the purple concentric circles indicate the radial shrinking to a
point. The second figure indicates the flow lines of the correspond foliation with leaves transverse
to the stages of the shrinkings in the first figure.

Remark 7. Note that Σ0
t (t1, . . . , tn) corresponds to a polar factor of Sct0. Other factors Σlt(t1, . . . , tn)

for l 6= 0 correspond to facial factors of Sct0.

Remark 8. By definition 18, the foliations Φt0 are transverse to a continuous family of tangent
planes. We can choose such a Φt0 to be smooth. The family Σct0 can be perturbed into a smooth
family, remaining transverse to Φt0.

8. Application of Proposition 3.1

We build a family of homeomorphisms ḡt0 : S̄ct0 → Σ
c

t0, restricting to gt on S2 and diffeomorphisms
on factors.

First, we extend gt to a family of diffeomorphisms St0 → Σt0. Note that St0 is formed from
S2 ∩ St0 by attaching certain 2-disks in S3 ⊃ S2. Similarly, Σt0 looks like gt(S

2) broken apart with
certain horizontal 2-disks attached. To create the extension

S2 ∩ St0

��

gt // gt(S2) ∩ Σt0

��
St0 // Σt0

we need to define diffeomorphisms between the attached 2-disks, keeping their boundary in S2 fixed.
By Smale’s theorem, Diff∂(D2) is contractible. We can therefore make this extension.

Next we extend the map St0 → Σt0 to a family of diffeomorphisms gt0 : Sct0 → Σct0.

We would like to extend gt0 to a map ḡt0 : S̄ct0 → Σ
c

t0 by requiring ḡt0 to send leaves of Ft0 to
leaves of Φt0. Since Diff∂(D1) is contractible, the choice of how to send a particular leaf of Ft0 to
the corresponding leaf of Φt0 does not matter. However, we need gt0 to send points connected by a
leaf of Ft0 to points connected by a leaf of Φt0. After possibly choosing a different Φt0, we can use
Smale’s theorem again to insure this occurs. The result is a homeomorphism ḡt0 : S̄ct0 → Σ

c

t0 so that
- ḡt0 extends gt,
- ḡt0 sends Ft0 to Φt0,
- ḡt0 is a diffeomorphism on factors.

Such a ḡt0 satisfies the conditions of Proposition 3.1. The Smale conjecture is therefore proven.
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