
3-Manifold Groups

Matthias Aschenbrenner

Stefan Friedl

Henry Wilton

University of California, Los Angeles, California, USA
E-mail address: matthias@math.ucla.edu

Fakultät für Mathematik, Universität Regensburg, Germany
E-mail address: sfriedl@gmail.com

Department of Pure Mathematics and Mathematical Statistics, Cam-
bridge University, United Kingdom

E-mail address: h.wilton@maths.cam.ac.uk



Abstract. We summarize properties of 3-manifold groups, with a particular focus on
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Introduction

The topic of this book is 3-manifold groups, that is, fundamental groups of compact
3-manifolds. This class of groups sits between the class of fundamental groups of sur-
faces, which are very well understood, and the class of fundamental groups of higher
dimensional manifolds, which are very badly understood for the simple reason that
given any finitely presented group π and integer n ≥ 4, there exists a closed n-manifold
with fundamental group π. (See [CZi93, Theorem 5.1.1] or [SeT80, Section 52] for
a proof.) This fact poses a serious obstacle for understanding high-dimensional mani-
folds; for example, the unsolvability of the Isomorphism Problem for finitely presented
groups [Ady55, Rab58] leads to a proof that closed manifolds of dimensions≥ 4 cannot
be classified in an algorithmically feasible way, see [Mav58, Mav60, BHP68, Sht04]
and [Sti93, Section 9.4].

The study of the fundamental groups of 3-manifolds goes hand in hand with that of
3-manifolds themselves, since the latter are essentially determined by the former. More
precisely, a closed, orientable, irreducible 3-manifold that is not a lens space is uniquely
determined by its fundamental group. (See Theorem 2.1.3 below.) Despite the great
interest and progress in 3-manifold topology during the last decades, survey papers
focussing on the group-theoretic properties of fundamental groups of 3-manifolds seem
to be few and far between. See [Neh65, Sta71, Neh74, Hem76, Thu82a], [CZi93,
Section 5], and [Kir97] for some earlier surveys and lists of open questions.

This book grew out of an appendix originally planned for the monograph [AF13].
Its goal is to fill what we perceive as a gap in the literature, and to give an extensive
overview of properties of fundamental groups of compact 3-manifolds with a particu-
lar emphasis on the impact of the Geometrization Conjecture of Thurston [Thu82a]
and its proof by Perelman [Per02, Per03a, Per03b], the Tameness Theorem of
Agol [Ag04] and Calegari–Gabai [CaG06], and the Virtually Compact Special Theo-
rem of Agol [Ag13], Kahn–Markovic [KM12a] and Wise [Wis12a].

Our approach is to summarize many of the results in several flowcharts and to pro-
vide detailed references for each implication appearing in them. We will mostly consider
fundamental groups of 3-manifolds which are either closed or have toroidal boundary,
and we are interested in those properties of such 3-manifold groups π which can be
formulated purely group-theoretically, i.e., without reference to the 3-manifold whose
fundamental group is π. Typical examples are: torsion-freeness, residual properties
such as being residually finite or residually p, linearity (over a field of characteristic
zero), or orderability. We do not make any claims to originality—all results are either
already in the literature, are simple consequences of established facts, or are well-known
to the experts.

Organization of this book. As a guide for the reader, it may be useful to briefly
go through some of the building blocks for our account of 3-manifold groups in the order
they are presented in this book (which is roughly chronologically).

1



2 INTRODUCTION

An important early result on 3-manifolds is the Sphere Theorem, proved by Pa-
pakyriakopoulos [Pap57a]. (See Section 1.3 below.) It implies that every orientable,
irreducible 3-manifold with infinite fundamental group is an Eilenberg–Mac Lane space,
and so its fundamental group is torsion-free. (See (A.2) and (C.3) in Sections 3.1 re-
spectively 3.2.)

Haken [Hak61a, Hak61b] introduced the concept of a sufficiently large 3-manifold,
later baptized Haken manifold. (See (A.10) in Section 3.1 for the definition.) He proved
that Haken manifolds can be repeatedly cut along incompressible surfaces until the
remaining pieces are 3-balls; this allows an analysis of Haken manifolds to proceed by
induction. Soon thereafter, Waldhausen [Wan68a, Wan68b] produced many results
on the fundamental groups of Haken 3-manifolds, e.g., the solution to the Word Problem.

A decade later, the Jaco–Shalen–Johannson (JSJ) decomposition [JS79, Jon79a] of
an orientable, irreducible 3-manifold with incompressible boundary gave insight into the
subgroup structure of the fundamental groups of Haken 3-manifolds. (See Section 1.6.)
The JSJ-Decomposition Theorem also prefigured the Geometrization Conjecture. This
conjecture was formulated and proved for Haken 3-manifolds by Thurston [Thu82a],
and in the general case finally by Perelman [Per02, Per03a, Per03b]. (See Theo-
rems 1.7.6 and 1.9.1.) After Perelman’s epochal results, it became possible to prove
that 3-manifold groups have many properties in common with linear groups: for exam-
ple, they are residually finite [Hem87] (in fact, virtually residually p for all but finitely
many prime numbers p [AF13], see (C.28) in Section 3.2 below) and satisfy the Tits
Alternative (see items (C.26) and (L.2) in Sections 3.2 respectively 6).

The developments outlined in the paragraphs above (up to and including the proof
of the Geometrization Conjecture and its fallout) are discussed in Chapters 1–3 of the
present book. Flowchart 1 on p. 46 collects properties of 3-manifold groups that can be
deduced using classical results of 3-manifold topology and Geometrization alone.

The Geometrization Conjecture also laid bare the special role played by hyperbolic 3-
manifolds, which became a major focus of study in the last 30 years. During this period,
our understanding of their fundamental groups has reached a level of completeness which
seemed almost inconceivable only a short while ago. This is the subject of Chapters 4–6.

An important stepping stone in this process was the Subgroup Tameness Theorem
(Theorem 4.1.2 below), which describes the finitely generated, geometrically infinite
subgroups of fundamental groups of finite-volume hyperbolic 3-manifolds. This theo-
rem is a consequence of the proof to Marden’s Tameness Conjecture by Agol [Ag04] and
Calegari–Gabai [CaG06], in combination with Canary’s Covering Theorem [Cay96].
As a consequence, in order to understand the finitely generated subgroups of funda-
mental groups of hyperbolic 3-manifolds of this kind, one can mainly restrict attention
to geometrically finite subgroups.

The results announced by Wise in [Wis09], with proofs provided in [Wis12a] (see
also [Wis12b]), revolutionized the field. First and foremost, together with Agol’s Vir-
tual Fibering Theorem [Ag08], they imply that every Haken hyperbolic 3-manifold is
virtually fibered (i.e., has a finite cover which is fibered over S1). Wise in fact proved
something stronger, namely that if N is a hyperbolic 3-manifold with an embedded
geometrically finite surface, then π1(N) is virtually compact special. See Section 4.3 for
the definition of a (compact) special group. (These groups arise as particular types of
subgroups of right-angled Artin groups and carry a very combinatorial flavor.) As well
as virtual fibering, Wise’s theorem also implies that the fundamental group of a hyper-
bolic 3-manifold N as before is subgroup separable (i.e., each of its finitely generated
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subgroups is closed in the profinite topology) and large (i.e., has a finite-index subgroup
which surjects onto a non-cyclic free group), and has some further, quite unexpected
corollaries: for instance, π1(N) is linear over Z.

Building on the aforementioned work of Wise and the proof of the Surface Sub-
group Conjecture by Kahn–Markovic [KM12a], Agol [Ag13] was able to give a proof
of Thurston’s Virtually Haken Conjecture: every closed hyperbolic 3-manifold has a
finite cover which is Haken. Indeed, he proved that the fundamental group of any closed
hyperbolic 3-manifold is virtually compact special. (See Theorem 4.2.2 below.) Flow-
chart 2 on p. 66 contains the ingredients involved in the proof of this astounding fact,
and the connections between various ‘virtual’ properties of 3-manifolds are summarized
in Flowchart 3 on p. 77.

Complementing Agol’s work, Przytycki–Wise [PW12] showed that fundamental
groups of compact, orientable, irreducible 3-manifolds with empty or toroidal boundary
which are not graph manifolds are virtually special. In particular such manifolds are
also virtually fibered and their fundamental groups are linear over Z. These and many
other consequences of being virtually compact special are summarized in Flowchart 4
on p. 84, and we collect the consequences of these results for finitely generated infinite-
index subgroups of 3-manifold groups in Flowchart 5 on page 103.

The combination of these results of Agol, Przytycki–Wise, and Wise, with a theo-
rem of Liu [Liu13] also implies that the fundamental group of a compact, orientable,
aspherical 3-manifold N with empty or toroidal boundary is virtually special if and only
if N is non-positively curved. This very satisfying characterization of virtual speciality
may be seen as a culmination of the work on 3-manifold groups in the last half-century.

We conclude the book with a discussion of some outstanding open problems in the
theory of 3-manifold groups (in Chapter 7).

What this book is not about. As with any book, this one reflects the tastes and
biases of the authors. We list some of the topics which we leave basically untouched:

(1) Fundamental groups of non-compact 3-manifolds. We note that Scott [Sco73b]
showed that given a 3-manifold with finitely generated fundamental group, there
exists a compact 3-manifold with the same fundamental group.

(2) ‘Geometric’ and ‘large scale’ properties of 3-manifold groups. For some results in
this direction see [Ger94, KaL97, KaL98, BN08, Bn12, Sis11a].

(3) Automaticity, formal languages, Dehn functions and combings. We refer to, for
instance, [Brd93, BrGi96, Sho92, ECHLPT92, Pin03].

(4) Recognition problems. These are treated in [Hen79, JO84, JLR02, JT95, Sel95,
Mng02, JR03, Mae03, KoM12, SSh14, GMW12]. We survey some of these
results in a separate paper [AFW13].

(5) 3-dimensional Poincaré duality groups. We refer to, e.g., [Tho95, Davb00, Hil11]
for further information. (But see also Section 7.1.1.)

(6) We rarely discuss specific properties of fundamental groups of knot complements
(known as ‘knot groups’), although they were some of the earliest and most pop-
ular examples of 3-manifold groups to be studied. We note that in general, irre-
ducible 3-manifolds with non-empty boundary are not determined by their funda-
mental groups, but interestingly, prime knots in S3 are in fact determined by their
groups [CGLS85, CGLS87, GLu89, Whn87].

(7) Fundamental groups of distinguished classes of 3-manifolds. For example, arith-
metic hyperbolic 3-manifolds exhibit a lot of special features [MaR03, Lac11,
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Red07]. But they also tend to be quite rare [Red91], [Bor81, Theorem 8.2],
[Chi83], [BoP89, Section 7], [GrL12, Appendix], [Mai14].

(8) The representation theory of 3-manifolds is a substantial field in its own right,
which fortunately is served well by Shalen’s survey paper [Shn02].

(9) The history of the study of 3-manifolds and their fundamental groups. We re-
fer to [Epp99, Gon99, McM11, Mil03, Mil04, Sti12, Vo96, Vo02, Vo13c,
Vo14] for some articles, dealing mostly with the early history of 3-manifold topol-
ogy and the Poincaré Conjecture.

This book is not intended as a leisurely introduction to 3-manifolds. Even though most
terms will be defined, we will assume that the reader is already somewhat acquainted
with 3-manifold topology. We refer to [Hem76, Hat, JS79, Ja80, Scs14] for back-
ground material. Another gap we perceive is the lack of a post-Geometrization textbook
on 3-manifolds. We hope that someone else will step forward to fill this gaping hole.

What is a 3-manifold? Throughout this book we tried to state the results in
maximal generality. It is one of the curses of 3-manifold topology that at times authors
make implicit assumptions on the 3-manifolds they are working with, for example that
they are orientable, or compact, or closed, or that the boundary is toroidal. When we
give a reference for a result, then to the best of our knowledge our assumptions match
the ones given in the reference. For results concerning non-compact or non-orientable
3-manifolds, it is recommended to go back to the original reference.

A few sections in our book state in the beginning some assumptions on the 3-
manifolds considered in that section, and that are in force throughout that section.
The reader should be aware of those assumptions when studying a particular section,
since we do not repeat them when stating definitions and theorems.

Conventions and notations. All topological spaces are assumed to be connected
unless it says explicitly otherwise, but we do not put any other a priori restrictions on
our spaces. All rings have an identity, and m, n range over the set N = {0, 1, 2, 3, . . . }
of natural numbers.

Notation Definition

Zn the cyclic group Z/nZ with n elements (n ≥ 1)
Dn the closed n-ball {v ∈ Rn : |v| ≤ 1}
Sn the n-dimensional sphere {v ∈ Rn+1 : |v| = 1}
I the closed interval [0, 1]
T 2 the 2-dimensional torus S1 × S1

K2 the Klein bottle
K2 ×̃ I the unique oriented total space of (a necessarily twisted)

I-bundle over K2

Various notions of ‘n-dimensional manifold’ agree for n = 3; see Section 1.1. Un-
fortunately, there are different conventions for what a topological n-dimensional sub-
manifold of a topological 3-manifold N should be. For us it is a subset S of N such
that for any point in p ∈ N there exists a homeomorphism ϕ : U → V from an open
neighborhood of p in N to an open subset of

R3
≥0 :=

{
(x, y, z) ∈ R3 : x, y ∈ R, z ∈ R≥0

}
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such that ϕ(U ∩ S) ⊆ ({0}3−n × Rn) ∩ R3
≥0. For example, according to our defi-

nition Alexander’s horned sphere [Ale24b], [Rol90, Section I] is not a topological
2-dimensional submanifold of S3.

Let S be a submanifold of N . We denote by νS a tubular neighborhood of S in N .
Given a surface Σ in N we refer to N \νΣ as N cut along Σ. Moreover, if N is orientable
and Σ is an orientable surface in N , then at times we pick a product structure Σ×[−1, 1]
for a neighborhood of Σ and we identify νΣ with Σ× (−1, 1).

When we write ‘a manifold with boundary’ then we also include the case that the
boundary is empty. If we want to ensure that the boundary is in fact non-empty,
then we will write ‘a manifold with non-empty boundary.’ Finally, beginning with
Convention 1.7, a hyperbolic 3-manifold is understood to be orientable and to have
finite volume, unless we say explicitly otherwise.

A note about the bibliography. The bibliography to this book contains well
over 1300 entries. We decided to refer to each paper or book by a combination of
letters. We followed the usual approach, for a single-author paper we use the first two
or three letters of the author’s last name, for a multiple-author paper we used the first
letters of each of the authors’ last names. Unfortunately, with so many authors this
approach breaks down at some point. For example, there are three single-author papers
by three different Hamiltons. We tried to deal with each problem on an ad-hoc basis.
We are aware that this produced some unusual choices for abbreviations. Nonetheless,
we believe that using letter-based names for papers (rather than referring to each entry
by a number, say) will make it easier to use this book. For example, for many readers
it will be clear that [Lac06] refers to a paper by Marc Lackenby and that [Wan68b]
refers to a paper by Waldhausen.
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CHAPTER 1

Decomposition Theorems

When we investigate a class of complex objects in mathematics, we commonly try to
first identify the ‘simplest’ members of this class, and then prove that all objects in
the given class can be assembled from those basic ones in some comprehensible fashion.
This general strategy is also applied during the first steps in the study of 3-manifolds.

In this realm, one class of basic objects consists of the prime 3-manifolds . These are
the building blocks that one obtains when decomposing a closed, orientable 3-manifold
by cutting along homotopically essential 2-spheres. In Section 1.2 of this chapter we
introduce these notions, and state the Prime Decomposition Theorem. Section 1.3
contains two other fundamental facts about 3-manifolds, the Loop Theorem and the
Sphere Theorem. These classical results are all of a topological nature, but they do
have consequences for the structure of the fundamental groups of 3-manifolds. Some
of them are observed in Section 1.4; for example, the Prime Decomposition Theorem
applied to a (suitable) 3-manifold N leads to a decomposition of π1(N) as a free product.

Having decomposed a 3-manifold by cutting along 2-spheres, the natural next step
is to cut along incompressible tori. This leads to the JSJ-Decomposition (named after
Jaco, Shalen, and Johannson). Here, the building blocks are the Seifert fibered manifolds
and the atoroidal 3-manifolds. We discuss Seifert fibered manifolds in Section 1.5.
The nature of atoroidal 3-manifolds is elucidated by the Geometrization Conjecture
of Thurston, which is now a theorem, thanks to the breakthrough work of Perelman.
According to this theorem, stated in Section 1.7, we may replace the ‘atoroidal’ building
blocks in the JSJ-Decomposition by ‘hyperbolic 3-manifolds.’ Hyperbolic 3-manifolds
are one example of 3-manifolds carrying geometric structure. Thurston realized the
importance of geometric structures in low-dimensional topology (see Section 1.8). In
line with this philosophy, the Geometric Decomposition Theorem (stated in Section 1.9),
asserts that all 3-manifolds may be decomposed into geometric pieces. In Section 1.10
we then look at this theorem in the instructive special case of fibered 3-manifolds.

In the final Section 1.11 we use the earlier results to classify those abelian, nilpotent,
and solvable groups which appear as fundamental groups of 3-manifolds. We begin this
chapter by briefly recalling (in Section 1.1) that, in the 3-dimensional world, we may
freely pass between the topological, piecewise linear, and smooth categories.

1.1. Topological and smooth 3-manifolds

By the work of Radó [Rad25] any topological 2-manifold (not necessarily compact) ad-
mits a unique PL-structure and a unique smooth structure. (See also [AS60], [Moi77,
p. 60], and [Hat13].) In general this does not hold for manifolds of dimension ≥ 4;
see [Mil56, Ker60, KeM63, KyS77, Fre82, Don83, Lev85, Mau13] for details.

Fortunately the 3-dimensional case mirrors the 2-dimensional situation. More pre-
cisely, by Moise’s Theorem [Moi52], [Moi77, p. 252 and 253] any topological 3-manifold
(not necessarily compact) admits a unique piecewise-linear structure. (See also [Bin59,
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8 1. DECOMPOSITION THEOREMS

Hama76, Shn84].) By work of Munkres [Mun59, p. 333], [Mun60, Theorems 6.2
and 6.3] and independently Whitehead [Whd61, Corollary 1.18] this implies that a
topological 3-manifold admits a unique smooth structure. (See also [Thu97, Theo-
rem 3.10.8 and 3.10.9].) We refer to [Kui79, Kui99] and [Les12, Section 7] for a more
detailed discussion.

Notation. Let M and N be 3-manifolds. Throughout this book we write M ∼= N
if M and N are homeomorphic, which by the above is the same as saying that they
are diffeomorphic. If M and N are oriented, then M ∼= N means that there exists
an orientation preserving homeomorphism. By a slight abuse of notation we will write
M = N if M and N are homeomorphic and if N is one of S3, S1 × D2 and S1 × S2.
At times, when we feel that there is no danger of confusion, we also write M = N for
N = T 2 × I and N = K2 ×̃ I.

Remarks.

(1) By work of Cerf [Ce68] and Hatcher [Hat83, p. 605], given any closed 3-
manifold M the natural inclusion Diff(M)→ Homeo(M) of the space of diffeo-
morphisms of M in the space of homeomorphisms of M is in fact a weak
homotopy equivalence. (See also [Lau85].)

(2) Bing [Bin52] gave an example of a continuous involution on S3 whose fixed
point set is a wild S2. In particular, this involution cannot be smoothed.

(3) Kwasik–Lee [KwL88, Corollary 2.2] showed that a topological action of a finite
group on a closed 3-manifold N is smoothable if and only if it is simplicial
in some triangulation of N , and that a topological action of a cyclic group
Zn = Z/nZ on a closed 3-manifold N is smoothable if and only if for every
subgroup H of Zn, the fixed point set NH is tame [KwL88, Corollary 2.3].
(This was also proved earlier by Moise [Moi80].)

In the theory of 3-manifolds embedded surfaces play an important rôle. It is thus
essential that we can replace topological 2-submanifolds by PL-submanifolds and by
smooth submanifolds. This is indeed the case. More precisely, let N be a topological
compact 3-manifold and let S be a topological 2-dimensional submanifold of N . Then
there exists a smooth structure on N and a smoothly embedded surface S′ in N that is
isotopic to S. (The corresponding result for PL submanifolds also holds, with verbatim
the same proof.) We denote by M the result of cutting N along S. Then there exist two
copies S1 and S2 in ∂M and there exists a homeomorphism f : S1 → S2 such that N is
homeomorphic to the result of gluing S1 to S2 via f . By the above M admits a smooth
structure. The topological submanifolds S1 and S2 of ∂M have two smooth subman-
ifolds S′1 and S′2 of ∂M as deformation retracts. (Indeed, any connected topological
submanifold of a surface contains a smooth submanifold such that inclusion induces an
isomorphism on fundamental groups, the complementary regions are therefore annuli.)
We replace f by a diffeomorphism f ′ : S′1 → S′2 that is isotopic to f under the above
deformation retracts. The result of gluing S′1 to S′2 along f ′ is a smooth 3-manifold N ′

that contains the smooth submanifold S′1 = S′2. It is straightforward to see that all these
smoothings and maps can be done in such a way that there exists a homeomorphism
g : N ′ → N such that g(S′) is isotopic to S.

1.2. The Prime Decomposition Theorem

Let N1 and N2 be oriented 3-manifolds and let Bi ⊆ Ni (i = 1, 2) be embedded closed
3-balls. For i = 1, 2 we endow ∂Bi with the orientation induced from the orientation as
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a boundary component of Ni \ intBi. We pick an orientation reversing homeomorphism
f : ∂B1 → ∂B2 and we refer to

N1#N2 := (N1 \ intB1) ∪f (N2 \ intB2)

as the connected sum of N1 and N2. The homeomorphism type of N1#N2 does not
depend on the choice of f [Hem76, Lemma 3.1].

Definition. An orientable 3-manifold N is called prime if it cannot be decomposed
as a non-trivial connected sum of two manifolds, that is: if N ∼= N1#N2, then N1 = S3

or N2 = S3. A 3-manifold N is called irreducible if every embedded 2-sphere in N
bounds a 3-ball in N .

An orientable, irreducible 3-manifold is evidently prime. Conversely, if N is an
orientable prime 3-manifold with no spherical boundary components, then either N is
irreducible or N = S1 × S2. (See [Hem76, Lemma 3.13] and also [Cal14a, Proposi-
tion 3.12].) It is a consequence of the generalized Schoenflies Theorem (see [Broc60,
CV77]), that S3 is irreducible.

The following theorem is due to Kneser [Kn29], Haken [Hak61b, p. 441f] and
Milnor [Mil62, Theorem 1].

Theorem 1.2.1 (Prime Decomposition Theorem). Let N be a compact, oriented
3-manifold with no spherical boundary components. There exist oriented prime 3-
manifolds N1, . . . , Nm such that

N ∼= N1# · · ·#Nm.

In particular,

π1(N) ∼= π1(N1) ∗ · · · ∗ π1(Nm)

is the free product of fundamental groups of prime 3-manifolds. Moreover, if

N ∼= N1# · · ·#Nm and N ∼= N ′1# · · ·#N ′n
with oriented prime 3-manifolds Ni and N ′i , then m = n and (possibly after reordering)
there exist orientation-preserving diffeomorphisms Ni → N ′i .

The uniqueness statement of the theorem only concerns the homeomorphism types
of the prime components. The decomposing spheres are not unique up to isotopy,
but two different sets of decomposing spheres are related by ‘slide homeomorphisms.’
We refer to [CdSR79, Theorem 3], [HL84] and [McC86, Section 3] for details. See
also [Hak61b, p. 441], [Sco74, Chapter III], [Hem76, Chapter 3], [Hat], [Kin05,
Section 5.1.1], [HAM08], [Scs14, Section 5.5], and [Cal14a, Theorem 3.5]. More
decomposition theorems in the bounded cases are in [Grs69, Grs70, Swp70, Prz79].

1.3. The Loop Theorem and the Sphere Theorem

The life of 3-manifold topology as a flourishing subject started with the proof of the
Loop and Sphere Theorems by Papakyriakopoulos. We first state the Loop Theorem.

Theorem 1.3.1 (Loop Theorem). Let N be a compact 3-manifold and F ⊆ ∂N a
subsurface. If the induced morphism π1(F ) → π1(N) is not injective, then there exists
a proper embedding g : (D2, ∂D2) → (N,F ) such that g(∂D2) represents a non-trivial
element in Ker(π1(F )→ π1(N)).
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A somewhat weaker version (usually called ‘Dehn’s Lemma’) of this theorem was
first stated by Dehn [De10, De87] in 1910, but Kneser [Kn29, p. 260] found a
gap in the proof provided by Dehn. The Loop Theorem was finally proved by Pa-
pakyriakopoulos [Pap57a, Pap57b] building on work of Johansson [Jos35]. We refer
to [Hom57, SpW58, Sta60, Wan67b, Gon99, Bin83, Jon94, AiR04], [Cal14a,
Theorem 1.1], and [Hem76, Chapter 4] for alternative proofs, more details and several
extensions.

Now we turn to the Sphere Theorem.

Theorem 1.3.2 (Sphere Theorem). Every orientable 3-manifold N with π2(N) 6= 0
contains an embedded 2-sphere that is homotopically non-trivial.

This theorem was proved by Papakyriakopoulos [Pap57a] under a technical assump-
tion which was removed by Whitehead [Whd58a]. (We refer to [Whd58b, Bat71,
Gon99, Bin83], [Cal14a, Theorem 2.2] and [Hem76, Theorem 4.3] for alternative
proofs, extensions and more information.) Gabai (see [Gab83a, p. 487] and [Gab83b,
p. 79]) proved that for 3-manifolds the Thurston norm equals the singular Thurston
norm. (See also [Pes93] for an alternative proof and Section 5.4.3 below for more on
the Thurston norm.) This result can be viewed as a higher-genus analogue of the Loop
Theorem and the Sphere Theorem.

1.4. Preliminary observations about 3-manifold groups

The main subject of this book are the properties of fundamental groups of compact
3-manifolds. In this section we argue that for most purposes it suffices to study the
fundamental groups of compact, orientable, irreducible 3-manifolds whose boundary is
either empty or toroidal. Throughout this section N is a compact 3-manifold.

We start out with the following basic observation.

Observation 1.4.1.

(1) Let N̂ be the 3-manifold obtained from N by gluing 3-balls to all spherical

components of ∂N . The inclusion N → N̂ induces an isomorphism π1(N)
∼=−→

π1(N̂).
(2) If N is non-orientable, then N has an orientable double cover.

Most properties of groups of interest to us are preserved under going to free products
of groups. (See, e.g., [Nis40] and [Shn79, Proposition 1.3] for linearity and [Rom69,
Bus71] for being LERF.) Similarly most properties of groups that we consider are
preserved under passing to a finite index supergroup. (See, e.g., (I.1)–(I.7) below.)
Note though that this is not true for all interesting properties; for example, conjugacy
separability does not pass to index-two extensions in general [CMi77, Goa86].

In light of Theorem 1.2.1 and Observation 1.4.1, we generally restrict ourselves to
the study of orientable, irreducible 3-manifolds with no spherical boundary components.

A properly embedded surface Σ ⊆ N with components Σ1, . . . ,Σn is incompressible
if for each i = 1, . . . , n we have Σi 6= S2, D2 and the map π1(Σi) → π1(N) is injective.
The following lemma is a well-known consequence of the Loop Theorem.

Lemma 1.4.2. There exist compact 3-manifolds N1, . . . , Nm whose boundary com-
ponents are incompressible and a free group F such that

π1(N) ∼= π1(N1) ∗ · · · ∗ π1(Nm) ∗ F.
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Proof. By the above observation we can assume that N has no spherical boundary
components. Let Σ be a component of ∂N such that π1(Σ) → π1(N) is not injective.
By the Loop Theorem 1.3.1 there exists a properly embedded disk D ⊆ N such that
the curve c = ∂D ⊆ Σ is essential. Here a curve c ⊆ Σ is called essential if it does not
bound an embedded disk in Σ.

Let N ′ be the result of capping off the spherical boundary components of N \νD by
3-balls. If N ′ is connected, then π1(N) ∼= π1(N ′)∗Z; otherwise π1(N) ∼= π1(N1)∗π1(N2)
where N1, N2 are the two components of N ′. The lemma follows by induction on the
lexicographically ordered pair (−χ(∂N), b0(∂N)) since we have either that −χ(∂N ′) <
−χ(∂N) (if Σ is not a torus), or that χ(∂N ′) = χ(∂N) and b0(∂N ′) < b0(∂N) (if Σ is
a torus). �

We say that a group G is a retract of a group H if there exist morphisms ϕ : G→ H
and ψ : H → G such that ψ ◦ ϕ = idG. In this case ϕ is injective and so we can view G
as a subgroup of H via ϕ.

Lemma 1.4.3. Suppose N has non-empty boundary. Then π1(N) is a retract of the
fundamental group of a closed 3-manifold.

Proof. Denote by M the double of N , i.e., the closed 3-manifold

M = N1 ∪∂N1=∂N2 N2

where N1, N2 are homeomorphic copies of N . Let f be the natural map N → N1
⊆−→M

and g : M → N be the map which restricts to a homeomorphism Ni → N on each of
the two copies N1, N2 of N in M . Clearly g ◦ f = idN and hence g∗ ◦ f∗ = idπ1(N). �

Many properties of groups are preserved under retracts and taking free products; this
way, many problems on 3-manifold groups can be reduced to the study of fundamental
groups of closed 3-manifolds. Due to the important rôle played by 3-manifolds with
toroidal boundary components we will be slightly less restrictive, and in the remainder
we study fundamental groups of compact, orientable, irreducible 3-manifolds N whose
boundary is either empty or toroidal.

1.5. Seifert fibered manifolds

Before we continue our systematic study of compact, oriented 3-manifolds we introduce
Seifert fibered manifolds. These form a pretty well-understood class of 3-manifolds,
and are an essential building block in the general theory. We refer to [Sei33a, Or72,
Hem76, Ja80, JD83, Sco83a, Brn93, LRa10] for the proofs of the subsequent
statements and for further information.

Definition. A Seifert fibered manifold is a compact 3-manifold N together with
a decomposition of N into disjoint simple closed curves (called Seifert fibers) such that
each Seifert fiber has a tubular neighborhood that forms a standard fibered torus. The
standard fibered torus corresponding to a pair of coprime integers (a, b) with a > 0 is the
surface bundle of the automorphism of a disk given by rotation by an angle of 2πb/a,
equipped with the natural fibering by circles. If a = 1, then the middle Seifert fiber is
called regular, otherwise it is called singular.

A Seifert fibered manifold N has only a finite number of singular fibers, which
necessarily lie in the interior of N . In particular a Seifert fibered structure defines
a product structure on each boundary component, which implies that each boundary
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component is an S1-bundle, which evidently means that each boundary component is
either a torus or a Klein bottle.

On several occasions we make use of the following fact; see [JS79, Lemma II.4.2].

Lemma 1.5.1. Let N be a Seifert fibered manifold. All regular Seifert fibers of N are
isotopic, and this isotopy class of curves defines a normal cyclic subgroup. Furthermore,
if π1(N) is infinite, then this cyclic subgroup is infinite.

The following theorem [Ja80, Theorems VI.17 and VI.18] (see also [OVZ67],[Sco83a,
Theorem 3.8], [JS79, II.4.11]) says in particular that ‘sufficiently complicated’ Seifert
fibered manifolds carry a unique Seifert fibered structure.

Theorem 1.5.2. Let N be an orientable 3-manifold that admits a Seifert fibered
structure. If N has non-trivial boundary, then the Seifert fibered structure of N is
unique up to isotopy if and only if N is not homeomorphic to one of the following:

(1) S1 ×D2, T 2 × I, K2 ×̃ I.

If N is closed, then the Seifert fibered structure is unique up to homeomorphism if and
only if N is not homeomorphic to one of the following:

(2) S3, S1 × S2 or lens spaces (see Section 1.11 for the definition),
(3) prism 3-manifolds (i.e., the closed Seifert fibered 3-manifolds for which the base

orbifold is S2 with three cone points of order (2, 2, n), n ≥ 2),
(4) the double of K2 ×̃ I.

For an additively written abelian group G we denote by PG the set of equivalence
classes of the equivalence relation g ∼ −g on G \ {0}, and for g ∈ G \ {0} we denote
by [g] its equivalence class in PG. Given a Seifert fibered manifold N with a choice
of a Seifert fibered structure and a boundary torus T , the regular fiber determines
an element f(N,T ) ∈ PH1(T ) in a natural way. It follows from Theorem 1.5.2 that
f(N,T ) is independent of the choice of the Seifert fibered structure, unless N is one of
S1 ×D2, T 2 × I or K2 ×̃ I. For later use we record:

Lemma 1.5.3. Let N1 and N2 be two Seifert fibered manifolds (where we allow
N1 = N2) and let N1 ∪T1=T2 N2 be the result of gluing N1 and N2 along boundary
tori T1 and T2. Then the following are equivalent:

(1) there exists a Seifert fibered structure on N1 ∪T1=T2 N2 that restricts (up to
isotopy) to the Seifert fibered structures on N1 and N2.

(2) f(N1, T1) = f(N2, T2) ∈ PH1(T1) = PH1(T2).

In the subsequent discussion of the JSJ-decomposition we will need a precise un-
derstanding of which elements in PH1(∂(K2 ×̃ I)) can be realized by Seifert fibered
structures on K2 ×̃ I. In order to state the result we need to carefully fix our notation.

In the following we think of the 2-torus T 2 as S1 × S1 = R2/Z2. Furthermore we
make the corresponding identifications:

π1(T 2) = 〈x, y | yxy−1 = x〉 = Z2.

Also, we identify the Klein bottle K2 with R2/∼ where (x, y) ∼ (x+ 1, y) and (x, y) ∼
(−x, y + 1

2) for all x, y ∈ R. This gives us an identification

π1(K2) = 〈x, z | zxz−1 = x−1〉.
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With these identifications the obvious 2-fold covering T 2 → K2 induces the map
π1(T 2)→ π1(K2) given by x 7→ x and y 7→ z2. Furthermore, the non-trivial deck trans-
formation of T 2 → K2 induces the map π1(T 2)→ π1(T 2) given by x 7→ −x and y 7→ y.
Identify K2 with the 0-section of the twisted I-bundle K2 ×̃ I. It is straightforward to
see that we can identify ∂(K2 ×̃ I) with T 2 = S1 × S1 in such a way that the above
covering map T 2 → K2 corresponds to the map ∂(K2 ×̃ I) → K2 ×̃ I → K, where the
last map is given by projecting onto the 0-section of the twisted I-bundle.

Proposition 1.5.4. The only elements in

PH1

(
∂(K2 ×̃ I)

)
= PH1(T 2) = PZ2

that can be realized by regular fibers of Seifert fibered structures on K2 ×̃ I are [(1, 0)]
and [(0, 1)].

Proof. By Lemma 1.5.1 the regular fiber of a Seifert fibered structure of K2 ×̃ I
defines an infinite cyclic normal subgroup. It is straightforward to see that the only
such subgroups of π1(K2 ×̃ I) = π1(K2) = 〈x, z | zxz−1 = x−1〉 are given by 〈xk〉 or 〈zk〉
with 0 6= k ∈ Z. A Seifert fibered structure on K2 ×̃ I defines a product structure
on ∂(K2 ×̃ I) = T 2. It follows that a regular fiber is either x±1 or z±2 = y±1 in
π1(∂(K2 ×̃ I)) = π1(T 2).

Conversely, the constructions of Seifert fibered structures on K2 ×̃ I in [Ja80, Sec-
tion VI] or [Scs14, p. 90] show that [(1, 0)] and [(0, 1)] do indeed arise from Seifert
fibered structures on K2 ×̃ I. �

Before we continue with the formulation of the JSJ-Decomposition Theorem we
need to consider the minor, but somewhat painful, special case of torus bundles and of
twisted doubles of K2 ×̃ I.

For this, let A ∈ SL(2,Z). By classical results there exists an orientation preserving
homeomorphism ϕ : T 2 → T 2 such that ϕ∗ = A in SAut(H1(T ;Z)) ∼= SL(2,Z), and ϕ
is unique up to isotopy. (See, e.g., [FaM12, Theorem 2.5].) We write

M(T 2, A) = (T 2 × [0, 1])/∼ where (x, 0) ∼ (x, ϕ(x)), and

D(K2 ×̃ I, A) = (K2 ×̃ I × {1}) ∪ψ (K2 ×̃ I × {2})
where ψ : ∂(K2 ×̃ I)× {1} → ∂(K2 ×̃ I)× {2}
is given by ψ(x, 1) = (ϕ(x), 2).

We say that a 3-manifold is a torus bundle if it is homeomorphic to a manifold of the
former type, and we say that it is a twisted double of K2 ×̃ I if it is homeomorphic to a
manifold of the latter type.

We say that A is Anosov if it has two distinct real eigenvalues, and denote by J be
the matrix corresponding to the non-trivial deck transformation of T 2 → K2, i.e., J is
the diagonal matrix with entries −1 and 1.

Lemma 1.5.5.

(1) The torus bundle M(T 2, A) is Seifert fibered if and only if A is not Anosov.
(2) D(T 2, A) is doubly covered by M(T 2, JAJA−1).
(3) The following statements are equivalent:

(a) D(K2 ×̃ I, A) is Seifert fibered;
(b) JAJA−1 is not Anosov;
(c) one of the entries of A is zero;
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(d) there exists a Seifert fibered structure on D(K2 ×̃ I, A) that restricts to a
Seifert fibered structure on each of the two copies of K2 ×̃ I.

Proof. The first statement follows from [Sco83a, Theorem 5.3]. By taking the 2-
fold orientation covers on both copies of K2 ×̃ I we obtain a 2-fold cover of D(K2 ×̃ I, A)
that is given by gluing two copies of T 2 × I along the boundary. It is straightforward
to see that this manifold equals M(T 2, JAJA−1).

We turn to the proof of the equivalence of (a)–(d). It follows from the first statement
that if D(K2 ×̃ I, A) is Seifert fibered, then JAJA−1 is not Anosov. An elementary,
albeit slightly painful, exercise involving matrices in SL(2,Z) shows that JAJA−1 is
Anosov, unless one of the entries of A is zero. It is a consequence of Lemma 1.5.3 and
Proposition 1.5.4 that if one of the entries of A is zero, then D(K2 ×̃ I, A) has a Seifert
fibered structure restricting to a Seifert fibered structure on each of the two copies
of K2 ×̃ I. �

We conclude this section on Seifert fibered manifolds with some remarks:

(1) By [Hat, Proposition 1.12], [Ja80, Lemma VI.7], [Scs14, Theorem 3.7.17] the
non-prime manifold RP 3#RP 3 is Seifert fibered. Furthermore, any orientable
Seifert fibered manifold that is not prime is homeomorphic to RP 3#RP 3.

(2) A compact, orientable 3-manifold admits a Seifert fibered structure if and only
if it admits a foliation by circles [Eps72, p. 81].

(3) For the most part the non-uniqueness of the Seifert fibered structures will be
of no importance to us. Sometimes, later in the text, we will therefore slightly
abuse language and say that a 3-manifold is Seifert fibered if it admits the
structure of a Seifert fibered manifold.

(4) It is often useful to think of a Seifert fibered manifold as a circle bundle over
a 2-dimensional orbifold.

1.6. The JSJ-Decomposition Theorem

In the previous sections we have seen that a compact, oriented 3-manifold with no
spherical boundary components admits a decomposition along spheres into prime 3-
manifolds 6= S3 such that the set of resulting components are unique up to diffeomor-
phism. The goal of this section is to formulate the JSJ-Decomposition Theorem, which
gives a canonical decomposition along incompressible tori.

Following [JS79, p. 185] we say that a 3-manifold N is atoroidal if any map T → N
from a torus to N which induces a monomorphism π1(T ) → π1(N) can be homo-
toped into the boundary of N . (In the literature at times slightly different definitions of
‘atoroidal’ are being used. For example, in [Ja80, p. 210] a 3-manifold is called atoroidal
if any incompressible torus is boundary parallel. It follows from Theorem 1.7.7 and stan-
dard results on Seifert fibered manifolds [Brn93] that these two notions agree except for
‘small Seifert fibered manifolds.’) There exist orientable, irreducible 3-manifolds that
cannot be cut into atoroidal components in a unique way (e.g., the 3-torus). Nonetheless,
as we will see, any compact, orientable, irreducible 3-manifold with empty or toroidal
boundary admits a canonical decomposition along tori into atoroidal and Seifert fibered
manifolds.

The following theorem was first announced by Waldhausen [Wan69] and proved
independently by Jaco–Shalen [JS79, p. 157] and Johannson [Jon75, Jon79a]. The
initials of Jaco, Shalen and Johannson gave the theorem its catchy name.
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Theorem 1.6.1 (JSJ-Decomposition Theorem). Let N be a compact, orientable,
irreducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty)
collection of disjointly embedded incompressible tori T1, . . . , Tm such that each compo-
nent of N cut along T1 ∪ · · · ∪ Tm is atoroidal or Seifert fibered. Any such collection of
tori with a minimal number of components is unique up to isotopy.

In the case of knot complements and graph manifolds, the JSJ-Decomposition The-
orem was foreshadowed by the work of Schubert [Sct49, Sct53, Sct54] (see also
[Lic97, Sulb00, BZH14]) and Waldhausen [Wan67c]. The JSJ-Decomposition The-
orem was extended to the non-orientable case by Bonahon–Siebenmann [BoS87].

Definition. Let T1, . . . , Tm be a collection of tori as in Theorem 1.6.1 of minimal
cardinality m. The isotopy class of these tori is well-defined, and we refer to T1, . . . , Tm
as the JSJ-tori of N . We refer to the components of N cut along T1 ∪ · · · ∪ Tm as the
JSJ-components of N .

The goal of this book is to understand fundamental groups of compact 3-manifolds.
We thus digress for a moment to explain the group theoretic significance of the JSJ-
Decomposition Theorem. Let M be a JSJ-component of N . After picking base points
for N and M and a path connecting them, the inclusion M ⊆ N induces a map on
the level of fundamental groups. This map is injective since the tori we cut along
are incompressible. (We refer to [LyS77, Chapter IV.4] for details.) We can thus
view π1(M) as a subgroup of π1(N), which is well defined up to the above choices, i.e.,
well defined up to conjugation. This leads to a description of π1(N) as the fundamental
group of a graph of groups with vertex groups the fundamental groups of the JSJ-
components and with edge groups the fundamental groups of the JSJ-tori. Graphs of
groups are explained in [Ser77, Ser80, Bas93].

Our next goal is to give a criterion for showing that a collection of tori in N are
in fact the JSJ-tori. In order to state it we recall from Section 1.5 that given a Seifert
fibered manifold M with a choice of a Seifert fibered structure and a boundary torus T
we refer to the image of the regular fiber in PH1(T ) by f(M,T ). Also recall that
by Theorem 1.5.2 the only orientable Seifert fibered 3-manifolds M with non-empty
incompressible boundary for which f(M,T ) depends on the choice of the Seifert fibered
structure are T 2 × I and K2 ×̃ I.

Proposition 1.6.2. Let N be a compact, orientable, irreducible 3-manifold with
empty or toroidal boundary. Let T1, . . . , Tm be disjointly embedded incompressible tori
in the 3-manifold N . The Ti are the JSJ-tori of N if and only if

(1) the components M1, . . . ,Mn of N cut along T1 ∪ · · · ∪ Tm are Seifert fibered or
atoroidal;

(2) for any choice of Seifert fibered structures for all the Seifert fibered components
among M1, . . . ,Mn the following two conditions hold:
(a) if a torus Ti cobounds two Seifert fibered components Mr and Ms with

r 6= s, then f(Mr, Ti) 6= f(Ms, Ti) ∈ PH1(Ti); and
(b) if a torus Ti abuts two boundary tori T ′i and T ′′i of the same Seifert fibered

component Mr, then f(Mr, T
′
i ) 6= f(Mr, T

′′
i ) ∈ PH1(Ti) = PH1(T ′i ) =

PH1(T ′′i );
and

(3) if one of the Mi equals T 2 × I, then m = n = 1, i.e., N is a torus bundle.
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Proof. The ‘only if’ direction of the proposition follows easily from the definitions
and Lemma 1.5.3. Suppose conversely that T1, . . . , Tm are tori that satisfy (1), (2)
and (3). It follows from [CyM04, Theorem 2.9.3] that the Ti are the JSJ tori once we
have verified the following: if some Ti cobounds components Mr and Ms (where it is
possible that r = s), then the result of gluing Mr to Ms along Ti is not Seifert fibered.

So suppose that the result of gluing Mr to Ms along Ti, is in fact Seifert fibered. It
follows from [Ja80, Theorem VI.34] and our conditions (2) and (3) that this is only pos-
sible if the Seifert fibered manifolds Mr, Ms are copies of K2 ×̃ I, i.e., N = D(K2 ×̃ I, A)
for some A ∈ SL(2,Z). By Lemma 1.5.5 there exist Seifert fibered structures on Mr

and Ms defining the same element in PH1(Ti). This contradicts (2). �

We conclude this section with the following theorem, which is an immediate conse-
quence of Proposition 1.6.2 and Lemma 1.5.3. This theorem often allows us to reduce
proofs to the closed case:

Theorem 1.6.3. Suppose the compact, orientable, irreducible 3-manifold N has
non-empty (toroidal) boundary, with boundary tori S1, . . . , Sm and JSJ-tori T1, . . . , Tn.
Let M = N ∪∂N N be the double of N along its boundary. Then the two copies of Ti
together with the Sj which bound non-Seifert fibered components are the JSJ-tori for M .

More generally, if we glue two compact, orientable, irreducible 3-manifolds N1, N2

with non-trivial toroidal boundary along boundary components T1 and T2, then Propo-
sition 1.6.2 makes it possible to determine the JSJ-decomposition of N1 ∪T1=T2 N2 in
terms of the JSJ-decompositions of N1 and N2. This conclusion is not true if the bound-
ary torus is compressible. For example, gluing a solid torus S1 ×D2 to a knot exterior
N = S3\νK can dramatically change the topology and geometry of N . Detailed surveys
for what can happen in this context are [Gon98, Boy02].

1.7. The Geometrization Theorem

Now we turn to the study of atoroidal 3-manifolds. We say that a closed 3-manifold is
spherical if it admits a complete metric of constant curvature +1. The universal cover
of a spherical 3-manifold is isometric to the 3-sphere with the usual metric (see [Lan95,
Theorem IX.3.13]). It follows that spherical 3-manifolds are closed and that their fun-
damental groups are finite; in particular spherical 3-manifolds are atoroidal. Moreover,
a 3-manifold N is spherical if and only if it is homeomorphic to the quotient of S3 by a
finite group, which acts freely and isometrically. In particular, we can then view π1(N)
as a finite subgroup of SO(4) which acts freely on S3. By Hopf [Hop26, §2] such a
group is isomorphic to precisely one of the following types of groups:

(1) the trivial group,
(2) Q4n := 〈x, y |x2 = (xy)2 = yn〉 where n ≥ 2,
(3) P48 := 〈x, y |x2 = (xy)3 = y4, x4 = 1〉,
(4) P120 := 〈x, y |x2 = (xy)3 = y5, x4 = 1〉,
(5) the dihedral group D2m(2n+1) := 〈x, y |x2m = 1, y2n+1 = 1, xyx−1 = y−1〉,

where m ≥ 2 and n ≥ 1,
(6) the group

P ′8·3m := 〈x, y, z |x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3m = 1〉,
where m ≥ 1,

(7) the direct product of any of the above groups with a cyclic group of relatively
prime order.
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Here Q4n is an extension of the dihedral group D2n by Z2, P48 is an extension of
the octahedral group by Z2, and P120 is an extension of the icosahedral group by Z2.
(See also [SeT30, SeT33],[Mil57, Theorem 2], [DuV64], [Or72, Chapter 6.1, Theo-
rem 1], [CoS03].)

Spherical 3-manifolds are Seifert fibered; see, e.g., [SeT33, §7, Hauptsatz], [Or72,
Chapter 6.1, Theorem 5], [Sco83a, §4], or [Bon02, Theorem 2.8]. By [EvM72, The-
orem 3.1] the fundamental group of a spherical 3-manifold N is solvable unless π1(N)
is isomorphic to the binary dodecahedra1 group P120 or the direct sum of P120 with a
cyclic group of order relatively prime to 120. Evidently a solvable group with trivial
abelianization is already trivial. It follows that the Poincaré homology sphere, i.e., the
unique spherical 3-manifold with fundamental group P120, is the spherical 3-manifold
that is a homology sphere. (We refer to [Vo13b] for a detailed discussion of the Poincaré
homology sphere.) We also note that by [GMW12, Lemma 7.1] the fundamental group
of any spherical 3-manifold contains a normal cyclic subgroup whose index divides 240.
In particular any spherical 3-manifold admits a finite regular cover whose index divides
240 which is a lens space. Finally we refer to [Mil57, Lee73, Tho78, Tho79, Dava83,
Tho86, Rub01] and also to [Hab14, Section 4] for some pre-Geometrization results
on the classification of finite 3-manifold groups.

A spherical 3-manifold admits a complete metric of constant curvature +1. We
say that a compact 3-manifold is hyperbolic if its interior admits a complete metric
of constant curvature −1. The universal cover of a hyperbolic 3-manifold is isometric
to the hyperbolic space H3, see [Lan95, Theorem IX.3.12]. The following theorem is
due to Mostow [Mos68, Theorem 12.1] in the closed case and due to Prasad [Pra73,
Theorem B] and Marden [Man74] independently in the case of non-empty boundary.
(See [Thu79, Section 6], [Muk80], [Grv81b], [BeP92, Chapter C], [Rat06, Chap-
ter 11], and [BBI13, Corollary 1] for alternative proofs and [Frg04] for an extension
to hyperbolic 3-manifolds with geodesic boundary.)

Theorem 1.7.1 (Rigidity Theorem). Let M , N be finite-volume hyperbolic 3-mani-
folds. Every isomorphism π1(M)→ π1(N) is induced by a unique isometry M → N .

Remarks.

(1) This theorem implies in particular that the geometry of finite-volume hyper-
bolic 3-manifolds is determined by their topology. This is not the case if
we drop the finite-volume condition. More precisely, the Ending Lamination
Theorem states that hyperbolic 3-manifolds with finitely generated funda-
mental groups are determined by their topology and by their ‘ending lami-
nations.’ This theorem was conjectured by Thurston [Thu82a] and proved by
Brock–Canary–Minsky [BCM12, Miy10], building on earlier work of Masur–
Minsky [MMy99, MMy00]. We also refer to [Miy94, Miy03, Miy06, Ji12]
for more background information and to [Bow05, Bow06, Bow11], [Ree04],
and [Som10] for alternative approaches.

(2) Applying the Rigidity Theorem to a 3-manifold equipped with two different
finite volume hyperbolic structures implies that the two hyperbolic struc-
tures are the same up to an isometry which is homotopic to the identity.
This does not imply that the set of hyperbolic metrics on a finite volume
3-manifold is path connected. Path connectedness was later shown by Gabai–
Meyerhoff–N. Thurston [GMT03, Theorem 0.1] building on earlier work of
Gabai [Gab94a, Gab97].
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(3) Gabai [Gab01, Theorem 1.1] showed that if N is a closed hyperbolic 3-
manifold, then the inclusion of the isometry group Isom(N) into the diffeo-
morphism group Diff(N) is a homotopy equivalence.

A hyperbolic 3-manifold has finite volume if and only if it is either closed or has
toroidal boundary and it is not homeomorphic to T 2×I. (See [Thu79, Theorem 5.11.1]
or [Bon02, Theorem 2.9], [BeP92, Proposition D.3.18], and [Thu82a, p. 359].) In this
book we are mainly interested in orientable 3-manifolds with empty or toroidal bound-
ary, so we henceforth restrict ourselves to hyperbolic 3-manifolds with finite volume and
work with the following understanding.

Convention. Unless we say explicitly otherwise, in the remainder of the book, a
hyperbolic 3-manifold is always understood to be orientable and to have finite volume.

With this proviso, hyperbolic 3-manifolds are atoroidal; in fact, the following slightly
stronger statement holds. (See [Man74, Proposition 6.4], [Thu79, Proposition 5.4.4],
and also [Sco83a, Corollary 4.6].)

Theorem 1.7.2. Let N be a hyperbolic 3-manifold, and let Γ be an abelian non-
cyclic subgroup of π = π1(N). Then there exists a boundary torus S of N and h ∈ π
such that Γ ⊆ hπ1(S)h−1.

The Elliptization and Hyperbolization Theorems (Theorems 1.7.3 and 1.7.5 below)
together imply that every atoroidal 3-manifold which is not homeomorphic to S1 ×
D2, T 2 × I, or K2 ×̃ I, is either spherical or hyperbolic. Both theorems had been
conjectured by Thurston [Thu82a, Thu82b]. The latter was also foreshadowed by
Riley [Ril75a, Ril75b, Ril82, Ril13]. The Hyperbolization Theorem was proved by
Thurston for Haken manifolds. (See [Wala83, Thu86c, Mor84, Sul81, McM96,
Ot96, Ot01] and [BB11, Theorem 1.3] for the fibered case and [Thu86b, Thu86d,
Mor84, McM92, Ot98, Kap01] for the non-fibered case.) A full proof of both
theorems was first given by Perelman in his seminal papers [Per02, Per03a, Per03b],
building on earlier work of R. Hamilton [Hamc82, Hamc95, Hamc99]. We refer
to [MTi07, MTi14] for full details and to [CZ06a, CZ06b, KlL08, BBBMP10] for
further information on the proof. Expository accounts can be found in [Mil03, Anb04,
Ben06, Bei07, Lot07, Ecr08, McM11].

Theorem 1.7.3 (Elliptization Theorem). Every closed 3-manifold with finite fun-
damental group is spherical.

As we mentioned before, by [Lan95, Theorem IX.3.13] any simply connected spher-
ical 3-manifold is isometric to S3. Hence the Elliptization Theorem implies the Poincaré
Conjecture, formulated in 1904 [Poi04, Poi96, Poi10]:

Corollary 1.7.4 (Poincaré Conjecture). Each closed, simply connected 3-manifold
is homeomorphic to S3.

The Poincaré Conjecture had a long and eventful history, and over the 20th century
it survived many attempts of proving it, see, e.g., [Whd34, Whd35a, Kos58, Sta66,
Vo96, Sz08, Vo14] for details.

Now we turn to atoroidal 3-manifolds with infinite fundamental groups.

Theorem 1.7.5 (Hyperbolization Theorem). Let N be a compact, orientable, irre-
ducible 3-manifold with empty or toroidal boundary. Suppose that N is atoroidal and
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not homeomorphic to S1 × D2, T 2 × I, or K2 ×̃ I. If π1(N) is infinite, then N is
hyperbolic.

Remark. The first examples of finite volume hyperbolic 3-manifolds were given
by Gieseking [Gie12, Ada87], Löbell [Lö31, Ves87], Seifert–Weber [SeW33] and
Best [Bet71]. But until the work of Thurston there were only few 3-manifolds which
were known to be hyperbolic. The picture has changed quite dramatically. Indeed,
several results in Section 7.4 show that a ‘generic’ 3-manifold is hyperbolic.

Combining the JSJ Decomposition Theorem with the Elliptization Theorem and the
Hyperbolization Theorem (and the aforementioned facts that spherical 3-manifolds as
well as S1×D2, T 2× I, and K2 ×̃ I are Seifert fibered, and that hyperbolic 3-manifolds
are atoroidal) we obtain the following:

Theorem 1.7.6 (Geometrization Theorem). Let N be a compact, orientable, irre-
ducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty)
collection of disjointly embedded incompressible tori T1, . . . , Tm in N such that each
component of N cut along T1∪· · ·∪Tm is hyperbolic or Seifert fibered. Furthermore any
such collection of tori with a minimal number of components is unique up to isotopy.

Remarks.

(1) The Geometrization Conjecture has also been formulated for non-orientable 3-
manifolds; we refer to [Bon02, Conjecture 4.1] for details. To the best of our
knowledge this has not been fully proved yet. Note however that by (E.3),
a non-orientable 3-manifold has infinite fundamental group, i.e., it cannot
be spherical. It follows from [DL09, Theorem H] that a closed atoroidal 3-
manifold with infinite fundamental group is hyperbolic.

(2) In 1982 Thurston [Thu82a] announced a proof of the Orbifold Geometrization
Theorem for irreducible orbifolds with a non-empty singular set. A detailed
sketch of the proof appears in [CHK00], and full details of the proof appear
in [BP01, BLP01, BLP05] and [BMP03, Theorem 3.27].

(3) Stallings [Sta66, Section 3] and Jaco [Ja69, Theorem 6.3] gave algebraic re-
formulations of the Poincaré Conjecture, and Myers [Mye00, Theorem 1.3]
gave an algebraic reformulation of the Geometrization Conjecture.

We conclude this section on the Geometrization Theorem with a discussion of the
characteristic submanifold.

Definition. Let N be a compact, orientable, irreducible 3-manifold with empty or
toroidal boundary. The characteristic submanifold of N is the union of the following:

(1) all JSJ-components of N that are Seifert fibered;
(2) all boundary tori of N which cobound an atoroidal JSJ-component;
(3) all JSJ-tori of N .

Now we can formulate the following variation on the ‘Characteristic Pair Theorem’
of Jaco–Shalen [JS79, p. 138]. (This theorem shows that our definition of characteristic
submanifold is equivalent to the original definition in [JS79].)

Theorem 1.7.7. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. Let M be a Seifert fibered manifold not homeomorphic to S3,
S1 × D2, or S1 × S2. Then every π1-injective map M → N is homotopic to a map
g : M → N such that g(M) lies in a component of the characteristic submanifold of N .
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Proof. In the case where N admits a non-trivial JSJ-decomposition or the bound-
ary of N is non-empty, the theorem is an immediate consequence of the ‘Characteristic
Pair Theorem’ of Jaco–Shalen [JS79, p. 138]. Now suppose that the JSJ-decomposition
is trivial. If N is Seifert fibered, then there is nothing to prove. By Theorem 1.7.6 it
remains to consider the case that N is closed and hyperbolic. By (C.3) we know that
π1(N) is torsion-free, thus it can not contain the fundamental group of a spherical 3-
manifold. On the other hand it follows easily from the consideration of centralizers
in Theorems 2.5.1 and 2.5.2 below that π1(N) can not contain a subgroup that is the
fundamental group of a non-spherical Seifert fibered manifold different from S1 × D2

and S1 × S2. �

1.8. Geometric 3-manifolds

The decomposition in Theorem 1.7.6 may be considered as being somewhat ad hoc
(‘Seifert fibered vs. hyperbolic’). The geometric point of view introduced by Thurston
gives rise to an elegant reformulation of Theorem 1.7.6. He introduced the notion of
a geometry of a 3-manifold and of a geometric 3-manifold. We give a quick summary
of the definitions and the most relevant results, and refer to the expository papers by
Scott [Sco83a] and Bonahon [Bon02] as well as to Thurston’s book [Thu97] for proofs
and further references.

A 3-dimensional geometry is a smooth, simply connected 3-manifold X equipped
with a smooth, transitive action of a Lie group G by diffeomorphisms on X, with
compact point stabilizers. The Lie group G is called the group of isometries of X. A
geometric structure on a 3-manifold N (modeled on X) is a diffeomorphism from the
interior of N to X/π, where π is a discrete subgroup of G acting freely on X. The
geometry X is said to model N , and N is said to admit an X-structure, or just to be an
X-manifold. There is also one technical condition, which rules out redundant examples
of geometries: the group of isometries is required to be maximal among Lie groups
acting transitively on X with compact point stabilizers.

Thurston showed that, up to a certain equivalence, there exist precisely eight 3-
dimensional geometries that model compact 3-manifolds. These are: the 3-sphere with
the standard spherical metric; Euclidean 3-space; hyperbolic 3-space; S2 × R, H2 × R;

the universal cover ˜SL(2,R) of SL(2,R); and two further geometries called Nil and Sol.
We refer to [Thu97, Sco83a, KLs14] for details. The spherical and the hyperbolic
manifolds in this sense are precisely the type of manifolds we introduced in the previous
section. A 3-manifold is called geometric if it is an X-manifold for some geometry X.

By [Bon02, Proposition 2.1] a geometric 3-manifold that is either spherical, Nil or
˜SL(2,R) is in fact orientable. No other geometries have non-orientable examples.

The following theorem summarizes the relationship between Seifert fibered mani-
folds and geometric 3-manifolds.

Theorem 1.8.1. Let N be a compact, orientable 3-manifold with empty or toroidal
boundary, which is not homeomorphic to S1×D2, T 2×I, or K2 ×̃ I. Then N is Seifert
fibered if and only if N admits a geometric structure modeled on one of the following

geometries: the 3-sphere, Euclidean 3-space, S2 × R, H2 × R, ˜SL(2,R), or Nil.

We refer to [Bon02, Theorem 4.1] and [Bon02, Theorems 2.5, 2.7, 2.8] for the
proof and for references; see also [Sco83a, Theorem 5.3] and [FoM10, Lecture 31].
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(In [Bon02] the geometries ˜SL(2,R) and Nil are referred to as H2×̃E1 and E2×̃E1,
respectively.)

For closed orientable Sol-manifolds the combination of [Sco83a, Theorem 5.3 (i)]
and Lemma 1.5.5 gives the following characterization. As in Section 1.5 we denote by J
the 2× 2 diagonal matrix with entries −1 and 1.

Theorem 1.8.2. A closed orientable 3-manifold is a Sol-manifold if and only if it
is homeomorphic to one of the following two types of manifolds:

(1) a mapping torus M(T 2, A) where A is Anosov,
(2) a twisted double D(K2 ×̃ I, A) where JAJA−1 is Anosov.

Before we continue our discussion of geometric 3-manifolds we introduce a defini-
tion. Given a property P of groups we say that a group π is virtually P if π admits
a (not necessarily normal) subgroup of finite index that satisfies P. Completely analo-
gously, given a property P of manifolds, we say that a connected manifold virtually has
property P if it has a finite cover which has the property P.

In Table 1.1 we summarize some of the key properties of geometric 3-manifolds. In
the table, a surface group is the fundamental group of a closed, orientable surface of
genus at least one. Given a geometric 3-manifold N , the first column lists the geometric
type, the second describes the fundamental group of N and the third describes the
topology of N (or a finite-sheeted cover). The table is very similar in content to the
flowcharts given in [Thu97, p. 281 and 283].

A geometric 3-manifold is Seifert fibered if its geometry is neither Sol nor hyperbolic,
by Theorem 1.8.1. One can think of a Seifert fibered manifold as an S1-bundle over an
orbifold. We denote by χ the orbifold Euler characteristic of the base orbifold and by e
the Euler number. We refer to [Sco83a, pp. 427, 436] for precise definitions.

Now we give the references for Table 1.1. We refer to [Sco83a, p. 478] for the last two
columns, and the first three rows to [Sco83a, p. 449, 457, 448] and [HzW35]. Details
regarding Nil-geometry can be found in [Sco83a, p. 467], and regarding Sol-geometry
in [Bon02, Theorem 2.11] and [Sco83a, Theorem 5.3]. Finally we refer to [Sco83a,
pp. 459, 462, 448] for details regarding the last three geometries. The fact that the
fundamental group of a hyperbolic 3-manifold does not contain a non-trivial abelian
normal subgroup will be shown in Theorem 2.5.5.

By Lemma 1.5.1, if N is a non-spherical Seifert fibered manifold, then the subgroup
of π1(N) generated by a regular fiber is infinite cyclic and normal in π1(N). It follows
from the above table that the geometry of a geometric manifold can be read off from
its fundamental group. In particular, if a 3-manifold admits a geometric structure,
then the type of that structure is unique (see also [Sco83a, Theorem 5.2] and [Bon02,
Section 2.5]). Some of these geometries are very rare: there are only finitely many
3-manifolds with Euclidean or S2×R geometry [Sco83a, p. 459]. Finally, the geometry
of a geometric 3-manifold with non-empty boundary is either H2 × R or hyperbolic.

1.9. The Geometric Decomposition Theorem

We are now in a position to state the ‘geometric version’ of Theorem 1.7.6 (see [Mor05,
Conjecture 2.2.1] and [FoM10, p. 5])) and to deduce it from Theorems 1.7.6, 1.8.1
and 1.8.2.

Theorem 1.9.1 (Geometric Decomposition Theorem). Let N be a compact, ori-
entable, irreducible 3-manifold with empty or toroidal boundary such that N 6= S1×D2,
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Geometry Fundamental group Topology χ e

Spherical π is finite N is finitely covered by S3 > 0 6= 0

S2 × R π = Z or π is the N or a double cover > 0 = 0
infinite dihedral group equals S1 × S2

Euclidean π is virtually Z3 N is finitely covered by 0 0
S1 × S1 × S1

Nil π is virtually nilpotent N finitely covered by 0 6= 0
but not virtually Z3 a torus bundle with

nilpotent monodromy

Sol π is solvable N or a double cover
but not virtually is a torus bundle with
nilpotent Anosov monodromy

H2 × R π is virtually a N is finitely covered by < 0 0
product Z× F with S1 × Σ where Σ is a
F a non-cyclic free group compact surface
or a surface group with χ(Σ) < 0

˜SL(2,R) π is a non-split extension N is finitely covered by < 0 6= 0
of a surface group by Z a non-trivial S1-bundle

over a closed surface Σ
with χ(Σ) < 0

hyperbolic π infinite and π does N is atoroidal
not contain a non-trivial
abelian normal subgroup

Table 1.1. Geometries of 3-manifolds.

N 6= T 2 × I and N 6= K2 ×̃ I. There is a (possibly empty) collection of disjointly em-
bedded incompressible surfaces S1, . . . , Sm which are either tori or Klein bottles, such
that each component of N cut along S1∪· · ·∪Sm is geometric. Any such collection with
a minimal number of components is unique up to isotopy.

Proof. If N is already geometric, then there is nothing to prove. For the remainder
of the proof we therefore assume that N is not geometric. In light of Theorem 1.10.1 we
can thus in particular assume that N is not a torus bundle. It follows from Lemma 1.5.5
and Theorems 1.8.1 and 1.8.2 that N is not a twisted double of K2 ×̃ I.

By Theorem 1.7.6 there exists a minimal collection T of disjointly embedded incom-
pressible tori such that each component of N cut along T is either hyperbolic or Seifert
fibered. We denote the components of N cut along T by M1, . . . ,Mn. It follows from
our assumption that N 6= S1 ×D2 and from the fact that the tori are incompressible
that none of the Mi’s equals S1 × D2. Furthermore, our assumption that N is not a
torus bundle together with the minimality of a JSJ decomposition implies that none of
the Mi’s equals T 2 × I.

We replace all components of T that bound a copy of K2 ×̃ I in N by the Klein
bottle which is the core of the twisted I-bundle. We denote by S the resulting collection
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of Klein bottles and tori. By the above none of the components of N cut along S equals
one of S1 ×D2, T 2 × I, K2 ×̃ I. It is straightforward to verify (using Theorem 1.8.1)
that cutting N along S decomposes N into geometric pieces.

Now suppose that we are given another collection S ′ of tori and Klein bottles such
that each component of N cut along S ′ is geometric. We replace each Klein bottle S
in S ′ by the torus ∂νS and we denote by T ′ the resulting collection of tori. It follows
from Theorem 1.8.1 that the components of N cut along T ′ are either Seifert fibered
or hyperbolic. By the minimality of a JSJ-decomposition we have #S ′ = #T ′ ≥ #T =
#S. The uniqueness part of Theorem 1.6.1 says that if #T ′ = #T , then T ′ and T are
isotopic. It follows easily that S ′ and S are also isotopic. �

In the following we refer to the union of tori and Klein bottles from Theorem 1.9.1 as
the geometric decomposition surface of N . The proof of Theorem 1.9.1 also shows how to
obtain the geometric decomposition surface from the JSJ-tori given by Theorem 1.7.6
and vice versa. More precisely, the combination of Lemma 1.5.5 and Theorem 1.8.2
together with the proof of Theorem 1.9.1 gives us the following proposition.

Proposition 1.9.2. Let N be a compact, orientable, irreducible 3-manifold with
empty or toroidal boundary with N 6= S1 ×D2, N 6= T 2 × I and N 6= K2 ×̃ I.

(1) If N is a Sol-manifold, then N is geometric, i.e., the geometric decomposition
surface is empty. On the other hand N has one JSJ-torus, namely, if N is a
torus bundle, then the fiber is the JSJ-torus, and if N is a twisted double of
K2 ×̃ I, then the JSJ-torus is given by the boundary of K2 ×̃ I.

(2) Suppose that N is not a Sol-manifold, and denote by T1, . . . , Tm the JSJ-tori
of N . We assume that they are ordered such that the tori T1, . . . , Tn do not
bound copies of K2 ×̃ I and that for i = n+ 1, . . . ,m, each Ti cobounds a copy
of K2 ×̃ I. Then the geometric decomposition surface of N is given by

T1 ∪ · · · ∪ Tn ∪Kn+1 ∪ · · · ∪Km.

Conversely, if T1∪· · ·∪Tn∪Kn+1∪· · ·∪Km is the geometric decomposition such
that T1, . . . , Tn are tori and Kn+1, . . . ,Km are Klein bottles, then the JSJ-tori
are given by

T1 ∪ · · · ∪ Tn ∪ ∂νKn+1 ∪ · · · ∪ ∂νKm.

The following theorem says that the geometric decomposition surface behaves well
under passing to finite covers:

Theorem 1.9.3. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary such that N 6= S1×D2, N 6= T 2×I and N 6= K2 ×̃ I. Let p : N ′ →
N be a finite cover and let S be the geometric decomposition surface of N . Then N ′ is
irreducible and p−1(S) is the geometric decomposition surface of N ′. Furthermore N ′

is hyperbolic if and only if N is hyperbolic.

The preimages of the JSJ-tori of N under a finite covering map p : N ′ → N are in
general not the JSJ-tori of N ′. For example, if N is a Sol-manifold, then N ′ is also
a Sol-manifold. A Sol-manifold has precisely one JSJ-torus, but the preimage of the
JSJ-torus of N under the map p might have many components. The precise behavior of
the JSJ-tori under finite covers can easily be obtained from Proposition 1.9.2 together
with Theorem 1.9.3.
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Proof. The fact that N ′ is again irreducible follows from the Equivariant Sphere
Theorem (see [MSY82, p. 647] and see also [Duw85, Ed86, JR89]). (The assumption
that N is orientable is necessary, see, e.g., [Row72, Theorem 5].)

If N is geometric, then N ′ is clearly also geometric, and there is nothing to prove.
We henceforth assume that N is not geometric. It follows from Lemma 1.5.5, and from
Theorems 1.8.1 and 1.8.2 that N is not a twisted double of K2 ×̃ I.

Let S be the collection of tori and Klein bottles that form the geometric decom-
position surface of N and denote by T the corresponding collection of JSJ tori. Set
S ′ := p−1(S) and denote by T ′ the collection of tori in N ′ that is given by replacing each
Klein bottle K in S ′ by ∂νK. In light of Proposition 1.9.2 it suffices to show that T ′ are
the JSJ tori of N ′, or equivalently, that T ′ satisfies the conditions of Propositions 1.6.2.

So let T ′ be a surface in T ′. A moments thought shows that the uniqueness of Seifert
fibered structures on manifolds with non-empty boundary that are not homeomorphic
to S1 × D2, T 2 × I and K2 ×̃ I (see Theorem 1.5.2) and the fact that T satisfies
the conditions of Propositions 1.6.2 takes care of all cases, except the following: T ′

corresponds to a toroidal component of S′ such that S := p(S′) is a Klein bottle.
We turn our attention to this special case. By definition S cobounds a copy X of

K2 ×̃ I in N . By the above N is not a twisted double of K2 ×̃ I. It follows that S
also bounds a component M of N cut along S that is not homeomorphic to K2 ×̃ I.
We denote by M ′ a component of p−1(M) that bounds S′. Furthermore we pick an
identification of K2 ×̃ I with the twisted Klein bottle cobounded by S.

We identify ∂M ′ with the standard 2-torus T ′ that we described in Section 1.9.
Moreover, we denote by J ′ : T ′ → T ′ the deck transformation described in Section 1.9.
The component of p−1(X ∪∂X=∂M M) that contains S′ is given by

−M ′ ∪
∂M ′=∂X′=T ′

J′−→T ′=∂X′=∂M ′
M ′.

If M is hyperbolic, then so is M ′, and T ′ satisfies the condition of Proposition 1.6.2.
Now suppose that M is Seifert fibered. By the above M is not one of S1 ×D2, T 2 × I,
K2 ×̃ I. By Theorem 1.5.2 the Seifert fibered structure on M is unique up to isotopy.

We write T = p(T ′) and we denote by J : T → T the deck transformation map.
By the minimality of T the Seifert fibered structure of M does not extend to a Seifert
fibered structure of X. By Proposition 1.5.4 this implies that f(M,T ) 6∈

{
(1, 0), (0, 1)

}
.

But this also implies that J ′(f(M ′, T ′)) 6= ±f(M ′, T ′), i.e., the Seifert fibered structures
in the above gluing via J ′ do not match up. �

Here is another way of succinctly stating the behavior of the JSJ-decomposition
under finite covers: if p : N ′ → N is a finite cover as in Theorem 1.9.3 such thatN is not a
Sol-manifold, then the preimage of the characteristic manifold of N is the characteristic
submanifold of N ′. This result was generalized in [MeS86, p. 290] and [JR89] to
the study of characteristic submanifolds of compact, orientable, irreducible 3-manifolds
with a finite group action.

1.10. The Geometrization Theorem for fibered 3-manifolds

In this section we discuss the Geometrization Theorem for the special case of fibered
3-manifolds, i.e., for 3-manifolds that are the total space of a surface bundle over S1.

Given a compact surface Σ we denote by M(Σ) the mapping class group of Σ, that
is, the group of isotopy classes of orientation preserving self-diffeomorphisms of Σ. For
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ϕ ∈M(Σ) we denote by

M(Σ, ϕ) =
(
Σ2 × [0, 1]

)/
(x, 0) ∼

(
x, ϕ(x)

)
the corresponding mapping torus with monodromy ϕ.

The geometry of a mapping torus can be studied in terms of the monodromy. We
start out with the ‘baby case’ that Σ is the torus T 2 = S1×S1. Here recall that for the
torus T 2 we can identify M(T 2) with SAut(H1(T 2;Z)); see, e.g., [FaM12, Theorem 2.5]
for details. Given ϕ ∈ SAut(H1(T 2;Z)) it follows from an elementary linear algebraic
argument that one of the following occurs:

(1) ϕn = id for some n ∈ {1, 2, 4, 6}, or
(2) ϕ has two distinct real eigenvalues, or
(3) ϕ is non-diagonalizable but has eigenvalue ±1.

Accordingly we say that ϕ is periodic, or nilpotent, or Anosov. We then have the
following geometrization theorem for torus bundles.

Theorem 1.10.1. Let ϕ ∈ SAut(H1(T 2;Z)) and N = M(T 2, ϕ). Then

(1) ϕ is periodic ⇒ N Euclidean;
(2) ϕ is Anosov ⇒ N is a Sol-manifold; and
(3) ϕ is nilpotent ⇒ N is a Nil-manifold.

The Nielsen–Thurston Classification Theorem says that if Σ is a compact, orientable
surface with negative Euler characteristic, then there exists also trichotomy for elements
in M(Σ). More precisely, any class ϕ ∈M(Σ) is either

(1) periodic, i.e., ϕ is represented by f with fn = idΣ for some n ≥ 1, or
(2) pseudo-Anosov, i.e., there exists f : Σ → Σ which represents ϕ and a pair of

transverse measured foliations and a λ > 1 such that f stretches one measured
foliation by λ and the other one by λ−1, or

(3) reducible, i.e., there exists f : Σ → Σ which represents ϕ and a non-empty
embedded 1-manifold Γ in Σ consisting of essential curves with a f -invariant
tubular neighborhood νΓ such that on each f -orbit of Σ \ νΓ the restriction of
f is either finite order or pseudo-Anosov.

We refer to [Nie44, BlC88, Thu88], [FaM12, Chapter 13], [FLP79a, FLP79b],
and [CSW11, Theorem 2.15] for details, to [Iva92, Theorem 1] for an extension, and
to [Gin81, Milb82, HnTh85] for the connection between the work of Nielsen and
Thurston. If Σ is a closed surface of genus g ≥ 2 and if ϕ ∈M(Σ) is periodic then it fol-
lows from classical work of Wiman [Wim95] from 1895 (see also [FaM12, Corollary 7.6]
and [HiK14]).

The following theorem, due to Thurston, determines the geometric type of a map-
ping torus in terms of the monodromy. (See [Thu86c] and [Ot96, Ot01].)

Theorem 1.10.2. Let Σ be a compact, orientable surface with negative Euler char-
acteristic, let ϕ ∈M(Σ), and let N = M(Σ, ϕ).

(1) If ϕ is periodic, then N admits an H2 × R structure.
(2) If ϕ is pseudo-Anosov, then N is hyperbolic.
(3) If ϕ is reducible, then N admits a non-trivial JSJ-decomposition. More pre-

cisely, if Γ is a 1-manifold in Σ as in the definition of a reducible element in
the mapping class group, then the JSJ-tori of N are given by the ϕ-mapping
tori of the 1-manifold Γ, where ϕ is also as in the definition of a reducible
element in the mapping class group.
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In the third case the geometric decomposition of M(Σ) can be obtained by applying
the theorem again to the mapping torus of Σ \ νΓ and by iterating this process.

1.11. 3-manifolds with (virtually) solvable fundamental group

We finish this chapter by classifying the abelian, nilpotent and solvable groups which
appear as fundamental groups of 3-manifolds.

Theorem 1.11.1. Let N be an orientable, non-spherical 3-manifold such that no
boundary component is a 2-sphere. Then the following are equivalent:

(1) π1(N) is solvable;
(2) π1(N) is virtually solvable;
(3) N is one of the following six types of manifolds:

(a) N = RP 3#RP 3;
(b) N = S1 ×D2;
(c) N = S1 × S2;
(d) N has a finite solvable cover which is a torus bundle;
(e) N = T 2 × I;
(f) N = K2 ×̃ I.

Before we prove the theorem, we state a useful lemma.

Lemma 1.11.2. Let π be a group. If π decomposes non-trivially as an amalgamated
free product π ∼= A ∗C B, then π has a non-cyclic free subgroup unless [A : C] ≤ 2 and
[B : C] ≤ 2. Similarly, if π decomposes non-trivially as an HNN-extension π ∼= A∗C ,
then π contains a non-cyclic free subgroup unless one of the inclusions of C into A is
an isomorphism.

The proof of the lemma is a standard application of Bass–Serre theory [Ser77,
Ser80]. Now we are ready to prove the theorem.

Proof of Theorem 1.11.1. The implication (1) ⇒ (2) is obvious. The funda-
mental group of RP 3#RP 3 is isomorphic to Z2 ∗ Z2, the infinite dihedral group, so
is solvable. It is clear that if N is one of the remaining types (b)–(f) of 3-manifolds,
then π1(N) is also solvable. This shows (3)⇒ (1).

Finally, assume that (2) holds. We will show that (3) holds. Let A and B be
two non-trivial groups. By Lemma 1.11.2, A ∗ B contains a non-cyclic free group (in
particular it is not virtually solvable) unless A = B = Z2. By the Elliptization Theorem,
any 3-manifold M with π1(M) ∼= Z2 is diffeomorphic to RP 3. It follows that if N has
solvable fundamental group, then either N ∼= RP 3#RP 3 or N is prime.

Since S1 × S2 is the only orientable prime 3-manifold which is not irreducible we
can henceforth assume that N is irreducible. Now let N be an irreducible 3-manifold
such that no boundary component is a 2-sphere and such that π = π1(N) is infinite and
solvable. The proof of Lemma 1.4.2 in combination with Lemma 1.11.2 and the Poincaré
Conjecture show that our assumption that π1(N) is virtually solvable implies that one
of the following occurs: either N = S1 × D2 or the boundary of N is incompressible.
We can thus assume that the boundary of N is incompressible. Since π1(N) is virtually
solvable this implies that N is either closed or that its boundary is toroidal. From now
on we also assume that N 6= T 2×I and that N 6= K2 ×̃ I. It follows from Theorem 1.9.1
that π1(N) is the fundamental group of a graph of groups where the vertex groups are
fundamental groups of geometric 3-manifolds. By Lemma 1.11.2, π1(N) contains a non-
cyclic free group unless the 3-manifold is already geometric. By the discussion preceding
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this theorem, if N is geometric, then N is either a Euclidean manifold, a Sol-manifold
or a Nil-manifold, and N is finitely covered by a torus bundle. It follows from the
discussion of these geometries in [Sco83a] that the finite cover is in fact a finite solvable
cover. (Alternatively we could have applied [EvM72, Theorems 4.5 and 4.8], [EvM72,
Corollary 4.10], and [Tho79, Section 5] for a proof of the theorem without using the
full Geometrization Theorem, only requiring the Elliptization Theorem.) �

Remark. The proof of the above theorem shows that every compact 3-manifold
with nilpotent fundamental group is either spherical, Euclidean, or a Nil-manifold.
Using the discussion of these geometries in [Sco83a] one can then determine the list
of nilpotent groups which can appear as fundamental groups of compact 3-manifolds.
This list was already determined pre-Geometrization by Thomas [Tho68, Theorem N]
for the closed case and by Evans–Moser [EvM72, Theorem 7.1] in general.

We conclude this section with a discussion of 3-manifolds with abelian fundamental
groups. In order to do this we first recall the definition of lens spaces. Given coprime
natural numbers p and q we denote by L(p, q) the corresponding lens space, defined as

L(p, q) := S3/Zp = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}/Zp,

where k ∈ Zp acts on S3 by (z1, z2) 7→ (z1e
2πik/p, z2e

2πikq/p). Note that π1(L(p, q)) ∼= Zp
and that the Hopf fibration on S3 descends to a decomposition of L(p, q) into circles
endowing L(p, q) with the structure of a Seifert fibered 3-manifold. We refer to [Vo13a]
for a summary of the long history of lens spaces in 3-manifold topology.

abelian group π compact 3-manifolds with fundamental group π

Z S1 × S2, S1 ×D2

Z3 S1 × S1 × S1

Zp the lens spaces L(p, q), q ∈ {1, . . . , p− 1} with (p, q) = 1
Z⊕ Z T 2 × I
Z⊕ Z2 S1 × RP 2

Table 1.2. Abelian fundamental groups of 3-manifolds.

In Table 1.2 we give the complete list of all compact, orientable 3-manifolds with-
out spherical boundary components for which the fundamental group is abelian. The
table can be obtained in a straightforward fashion from Lemma 1.4.2, the Prime De-
composition Theorem and the Geometrization Theorem. The fact that the groups in
the table are indeed the only abelian groups that appear as fundamental groups of
compact 3-manifolds is in fact a classical pre-Geometrization result. The list of abelian
fundamental groups of closed 3-manifolds was first determined by Reidemeister [Rer36,
p. 28], and in general by Epstein [Eps61a, Theorem 3.3] [Eps61b, Theorem 9.1] and
Specker [Sp49, Satz IX’]. (See also [Hem76, Theorems 9.12 and 9.13].)





CHAPTER 2

The Classification of 3-Manifolds by their Fundamental
Groups

We have already seen that the structure of the fundamental group of a 3-manifold N
can determine many topological properties of N . The Poincaré Conjecture is a profound
example of this. In this chapter we systematically investigate this phenomenon.

In Sections 2.1 and 2.2 we ask whether isomorphism (of fundamental groups) implies
homeomorphism (of the corresponding 3-manifolds). In the closed and irreducible case
(Section 2.1), the answer is affirmative, except in the case of lens spaces. The picture
is somewhat more complicated in the case of non-empty boundary (Section 2.2), where
the peripheral structure of a 3-manifold needs to be taken into account. In Section 2.3
we briefly consider the relationship between two submanifolds in the interior of a given
3-manifold having conjugate fundamental groups. In Section 2.4 we ask about the kinds
of topological properties of a 3-manifold which can be inferred from a knowledge of its
fundamental group alone, using only the results in Chapter 1, and not the more recent
results discussed in Chapter 4 below. Finally, Section 2.5 contains a description of the
centralizers of elements of 3-manifold groups, and some applications.

2.1. Closed 3-manifolds and fundamental groups

It is well known that closed, compact surfaces are determined by their fundamental
groups; more generally, compact surfaces with possibly non-empty boundary are deter-
mined by their fundamental groups together with the number of boundary components.
(See, e.g., [Brh21, FW99, Gra71, Gra84, SeT34, SeT80, Msy81].) In 3-manifold
theory a similar, but more subtle, picture emerges.

There are several ways for constructing pairs of compact, orientable, non-diffeomor-
phic 3-manifolds with isomorphic fundamental groups.

(A) Consider lens spaces L(p1, q1) and L(p2, q2). They are diffeomorphic if and only
if p1 = p2 and q1q

±1
2 ≡ ±1 mod pi, but they are homotopy equivalent if and only

if p1 = p2 and q1q
±1
2 ≡ ±t2 mod pi for some t, and their fundamental groups are

isomorphic if and only if p1 = p2.
(B) Let M , N be compact, oriented 3-manifolds. Denote by N the manifold N with

opposite orientation. Then π1(M#N) ∼= π1(M#N) but if neither M nor N has an
orientation reversing diffeomorphism, thenM#N andM#N are not diffeomorphic.

(C) Let M1, M2 and N1, N2 be compact, oriented 3-manifolds with π1(Mi) ∼= π1(Ni)
and such that M1 and N1 are not diffeomorphic. Then π1(M1#M2) ∼= π1(N1#N2)
but in general M1#M2 is not diffeomorphic to N1#N2.

Reidemeister [Rer35, p. 109] and Whitehead [Whd41a] classified lens spaces in the
PL-category. (See also [Tur02, Corollary 10.3].) The classification of lens spaces
up to homeomorphism (i.e., the first statement above), then follows from Moise’s
proof [Moi52] of the ‘Hauptvermutung’ in dimension 3. Alternatively, this follows

29
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from Reidemeister’s argument together with [Chp74]. We refer to [Mil66] and [Hat,
Section 2.1] for more modern accounts and to [Fo52, p. 455], [Bry60, p. 181], [Tur76],
[Bon83], [HoR85, Theorem 5.3], [PY03] and [Gre13, Section 1.4] for different ap-
proaches. The fact that lens spaces with the same fundamental group are not necessarily
homeomorphic was first conjectured by Tietze [Tie08, p. 117], [Vo13a] and was first
proved by Alexander [Ale19, Ale24a]; see also [Sti93, p. 258–260]. The other two
statements follow from the uniqueness of the prime decomposition. In the subsequent
discussion we will see that (A), (B), and (C) form in fact a complete list of methods
for finding examples of pairs of closed, orientable, non-diffeomorphic 3-manifolds with
isomorphic fundamental groups.

Recall that Theorem 1.2.1 implies that the fundamental group of a compact, ori-
entable 3-manifold is isomorphic to a free product of fundamental groups of prime
3-manifolds. The Kneser Conjecture implies that the converse holds.

Theorem 2.1.1 (Kneser Conjecture). Let N be a compact, oriented 3-manifold
with incompressible boundary. If π1(N) ∼= Γ1 ∗ Γ2, then there exist compact, oriented
3-manifolds N1 and N2 with π1(Ni) ∼= Γi for i = 1, 2 and N ∼= N1#N2.

This theorem was first stated by Kneser [Kn29], with a (rather obscure) proof re-
lying on Dehn’s Lemma. The statement was named ‘Kneser’s Conjecture’ by Papakyr-
iakopoulos. The Kneser Conjecture was first proved completely by Stallings [Sta59a,
Sta59b] in the closed case, and by Heil [Hei72, p. 244] in the bounded case. (We
refer to [Eps61c], [Hem76, Section 7], and [Cal14a, Theorem 3.9] for details, and to
[Gon99] for the history.)

The following theorem is a consequence of the Geometrization Theorem, the Rigid-
ity Theorem 1.7.1, work of Waldhausen [Wan68a, Corollary 6.5] and Scott [Sco83b,
Theorem 3.1] and classical work on spherical 3-manifolds (see [Or72, p. 113]). We refer
to [Boe72], [Jon75, Corollary 8], [Swp78, Theorem 5], and [Rak81] for earlier work.

Theorem 2.1.2. Let N and N ′ be closed, orientable, prime 3-manifolds and let
ϕ : π1(N)→ π1(N ′) be an isomorphism.

(1) If N and N ′ are not lens spaces, then N and N ′ are homeomorphic.
(2) If N and N ′ are not spherical, then there exists a homeomorphism which in-

duces ϕ.

Remark. The Borel Conjecture states that every homotopy equivalence N →
N ′ between closed and aspherical topological manifolds (of the same dimension) is
homotopic to a homeomorphism. In dimensions ≥ 5 this conjecture is known to
hold for large classes of fundamental groups, e.g., if the fundamental group is word-
hyperbolic [BaL12, Theorem A]. The high-dimensional results also extend to dimen-
sion 4 if the fundamental groups are good in the sense of Freedman [Fre84]. The Borel
Conjecture holds for all 3-manifolds: if N and N ′ are orientable, this is immediate from
Theorem 2.1.2; the case where N or N ′ is non-orientable was proved by Heil [Hei69a].

Summarizing, Theorems 1.2.1, 2.1.1 and 2.1.2 show that fundamental groups deter-
mine closed 3-manifolds up to orientation of the prime factors and up to the indetermi-
nacy arising from lens spaces. More precisely, we have the following theorem.

Theorem 2.1.3. Let N and N ′ be closed, oriented 3-manifolds with isomorphic fun-
damental groups. Then there exist natural numbers p1, . . . , pm, q1, . . . , qm and q′1, . . . , q

′
m

and oriented manifolds N1, . . . , Nn and N ′1, . . . , N
′
n such that
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(1) we have homeomorphisms

N ∼= L(p1, q1)# · · ·#L(pm, qm) #N1# · · ·#Nn and

N ′ ∼= L(p1, q
′
1)# · · ·#L(pm, q

′
m) #N ′1# · · ·#N ′n;

(2) Ni and N ′i are homeomorphic (but possibly with opposite orientations); and

(3) for i = 1, . . . ,m we have q′i 6≡ ±q
±1
i mod pi.

2.2. Peripheral structures and 3-manifolds with boundary

According to Theorem 2.1.2, orientable, prime 3-manifolds with infinite fundamental
groups are determined by their fundamental groups, provided they are closed. The
same conclusion does not hold if we allow boundary. For example, if J ⊆ S3 is the
trefoil knot with an arbitrary orientation, then S3 \ν(J#J) and S3 \ν(J#−J) (i.e., the
exteriors of the granny knot and the square knot) have isomorphic fundamental groups,
but the spaces are not homeomorphic. This can be seen by studying the linking form
(see [Sei33b, p. 826]) or the Blanchfield form [Bla57], which in turn can be studied
using Levine–Tristram signatures (see [Kea73, Lev69, Tri69]).

Before we can discuss to what degree the fundamental group determines the home-
omorphism of a 3-manifold with boundary we need to introduce a few more definitions.

Definition. Let N be a 3-manifold.

(1) Suppose N has incompressible boundary. The fundamental group of N to-
gether with the set of conjugacy classes of its subgroups determined by the
boundary components is called the peripheral structure of N .

(2) We say that a properly embedded surface S in N is boundary parallel if there
exists an isotopy, through properly embedded surfaces, from S to a subsurface
of ∂N .

(3) An essential annulus in N is a properly embedded annulus which is incom-
pressible and not boundary parallel.

The following definition is from [Jon79a, p. 227].

Definition. Let N and N ′ be two compact 3-manifolds and let W ⊆ N be a solid
torus such that ∂W \ ∂M consists of essential annuli in N . We say N ′ is obtained
from N by a Dehn flip along W if the following conditions hold:

(1) there exists a solid torus W ′ in N ′ such that ∂W ′ \ ∂N ′ consists of essential
annuli in N ′,

(2) there is a homeomorphism h : W \N →W ′ \N ′ with

h(∂W \ ∂N) = ∂W ′ \ ∂N ′,
and

(3) there is a homotopy equivalence f : W →W ′ with

f(∂W \ ∂N) = ∂W ′ \ ∂N ′.

Now we have the following theorem.

Theorem 2.2.1. Let N and N ′ be compact, orientable, irreducible 3-manifolds with
non-spherical, non-trivial incompressible boundary.

(1) If π1(N) ∼= π1(N ′) are isomorphic, then N can be turned into N ′ using finitely
many Dehn flips.
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(2) Up to homeomorphism there exist only finitely many compact, orientable, ir-
reducible 3-manifolds with non-spherical, non-empty incompressible boundary
such that the fundamental group is isomorphic to π1(N).

(3) If there exists an isomorphism π1(N) → π1(N ′) which sends the peripheral
structure of N isomorphically to the peripheral structure of N ′, then N and N ′

are homeomorphic.

The first two statements of the theorem were proved by Johannson [Jon79a, The-
orem 29.1 and Corollary 29.3]. (See also [Swp80a] for a proof of the second state-
ment.) The third statement was proved by Waldhausen. We refer to [Wan68a, Corol-
lary 7.5] and [JS76] for details. If the manifolds N and N ′ have no Seifert fibered
JSJ-components, then any isomorphism of fundamental groups is in fact induced by a
homeomorphism (this follows, e.g., from [Jon79c, Theorem 1.3]).

We conclude this section with a short discussion of knots. A knot is a connected
1-submanifold of S3. A knot is called prime if it is not the connected sum of two non-
trivial knots. Somewhat surprisingly, in light of the above discussion, prime knots are in
fact determined by their fundamental groups. More precisely, if J1 and J2 are two prime
knots with π1(S3 \νJ1) ∼= π1(S3 \νJ2), then there exists a homeomorphism f : S3 → S3

with f(J1) = J2. This was first proved by Gordon–Luecke [GLu89, Corollary 2.1]
(see also [Gra92]) extending earlier work of Culler–Gordon–Luecke–Shalen [CGLS85,
CGLS87] and Whitten [Whn86, Whn87]. See [Tie08, Fo52, Neh61a, Sim76b,
FeW78, Sim80, Swp80b, Swp86] for earlier discussions and work on this result.
Non-prime knots are determined by their ‘quandles’, see [Joy82] and [Mae82], by
their ‘2-generalized knot groups’, see [LiN08, NN08, Tuf09], and by certain quotients
of the knot groups induced by the longitudes, see [Zim91, Theorem 1].

2.3. Submanifolds and subgroups

Let M be a connected submanifold of a 3-manifold N . If M has incompressible bound-
ary, then the inclusion-induced map π1(M) → π1(N) is injective, and π1(M) can be
viewed as a subgroup of π1(N), which is well defined up to conjugacy. In the previ-
ous two sections we have seen that 3-manifolds are, for the most part, determined by
their fundamental groups. The following theorem, due to Jaco–Shalen [JS79, Corol-
lary V.2.3], says that submanifolds of 3-manifolds are, under mild assumptions, com-
pletely determined by the subgroups they define.

Theorem 2.3.1. Let N be a compact, irreducible 3-manifold and let M , M ′ be two
compact connected submanifolds in the interior of N whose boundaries are incompress-
ible. Then π1(M) and π1(M ′) are conjugate if and only if there exists a homeomorphism
f : N → N which is isotopic (relative to ∂N) to the identity, with f(M) = f(M ′).

2.4. Properties of 3-manifolds and their fundamental groups

In the previous section we saw that orientable, closed irreducible 3-manifolds with in-
finite fundamental groups are determined by their fundamental groups. We also saw
that the fundamental group of a given compact, orientable 3-manifold determines the
fundamental groups of the prime factors of this manifold. It is interesting to ask which
topological properties of 3-manifolds can be ‘read off’ from the fundamental group.

Given a 3-manifold N we denote by Diff(N) the group of self-diffeomorphisms of N
which restrict to the identity on the boundary. Furthermore we denote by Diff0(N) the
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identity component of Diff(N). The quotient Diff(N)/Diff0(N) is denoted by M(N).
Also, given a group π, we denote by Out(π) the group of outer automorphisms of π
(i.e., the quotient of the group of automorphisms of π by its normal subgroup of inner
automorphisms of π). If N 6= S1×D2 is a compact, irreducible 3-manifold which is not
an I-bundle over a surface, then the natural morphism

Φ: M(N)→
{
ϕ ∈ Out(π) : ϕ preserves the peripheral structure

}
is injective. This follows from the Rigidity Theorem 1.7.1, work of Waldhausen [Wan68a,
Corollary 7.5], Scott [Sco85b, Theorem 1.1] (see also [Som06b, Theorem 0.2]), Boileau–
Otal [BO86], [BO91, Théorème 3], and the Geometrization Theorem.

(1) A Seifert fibered manifold is called small if it is not Haken. Small Seifert
fibered manifolds have been classified, see [Brn93, Section 2.3.3] and [Ja80,
Theorem VI.15]. Inspection of trivial cases and [McC91, p. 21] show that if N
is a small Seifert manifold, then Out(π1(N)) is finite. On the other hand, if N
is Seifert fibered but not small, then the map Φ above is in fact an isomorphism.

(2) Let N be a hyperbolic 3-manifold. As a consequence of the Rigidity Theorem,
Out(π1(N)) is finite and naturally isomorphic to the isometry group of N .
(See [BeP92, Theorem C.5.6] and also [Jon79b], [Jon79a, p. 213] for details.)

(3) Kojima [Koj88] (see also [BeL05, Theorem 1.1]) showed that every finite
group appears as the full isometry group of a closed hyperbolic 3-manifold.
Also, Cooper and Long [CoL00] showed that for each finite group G there is
a rational homology sphere with a free G-action.

On the other hand Milnor [Mil57, Corollary 1] gave restrictions on finite
groups which can act freely on an integral homology sphere. See also [MeZ04,
MeZ06, Reni01, ReZ02, Zim02a, Zim02b, Zim04, GMZ11, GZ13] for
further information and extensions. Also, by [Kaw90, Theorem 10.5.3], if
N = S3 \ νK is the exterior of a knot K ⊆ S3, then M(N) is either cyclic or
a finite dihedral group.

(4) For the fundamental group π of any compact 3-manifold, Out(π) is residually
finite, as shown by Antoĺın–Minasyan–Sisto [AMS13, Corollary 1.6], extend-
ing [AKT06, AKT09].

(5) If N is a closed irreducible 3-manifold which is not Seifert fibered, then any
finite subgroup of Out(π1(N)) can be represented by a finite group of diffeo-
morphisms of N . This follows from the above discussion of the hyperbolic case,
from Zimmermann [Zim82, Satz 0.1], and from the Geometrization Theorem.
(See also [HeT87].) The case of Seifert fibered 3-manifolds is somewhat more
complicated and is treated by Zieschang and Zimmermann [ZZ82, Zim79]
and Raymond [Ray80, p. 90]; see also [RaS77, HeT78, HeT83].

(6) Suppose N is hyperbolic or Haken (see (A.10) for the definition). It follows
from work of Gabai [Gab01, Theorem 1.2] and Hatcher [Hat76, Hat83,
Hat99] and Ivanov [Iva76, Iva80] (extending [Lau74]) that Diff(N) is weakly
homotopy equivalent to the space of homotopy equivalences of N fixing the
boundary.

(7) If N is a Seifert fibered manifold, then N admits a fixed-point free S1-action,
and Diff(N) thus contains torsion elements of arbitrarily large order. On the
other hand Kojima [Koj84, Theorem 4.1] showed that if N is a closed irre-
ducible 3-manifold which is not Seifert fibered, then there is a bound on the
order of finite subgroups of Diff(N).
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For 3-manifolds which are spherical or not prime the map Φ is in general neither
injective nor surjective. See [Gab94b, McC90, McC95] for more information.

Now we give a few more situations in which topological information can be ‘directly’
obtained from the fundamental group.

(1) Let N be a compact 3-manifold and φ ∈ H1(N ;Z) = Hom(π1(N),Z) be non-
trivial. Work of Stallings (see [Sta62, Theorem 2] and (L.9)), together with
the resolution of the Poincaré Conjecture, shows that φ : π1(N) → Z is a
fibered morphism (i.e., can be realized by a surface bundle N → S1) if and
only if its kernel is finitely generated. (If π1(N) is a one-relator group the
latter condition can be verified easily using Brown’s criterion, see [Brob87,
§4] and [BR88, Mas06a, Dun01, FTi15, FST15].) We refer to [Neh63b,
p. 381] for an alternative proof for knots, to [Siv87, p. 86] and [Bie07, p. 953]
for a homological reformulation of Stallings’ criterion, and to [Zu97, Theo-
rem 5.2] for a group-theoretic way to detect semibundles. Finally we refer to
(M.2) for various strenghtenings of Stallings’ result.

(2) Let N be a closed, orientable, irreducible 3-manifold such that π1(N) is an
amalgamated product A1 ∗B A2 where B is the fundamental group of a closed
surface S 6= S2. Feustel [Feu72a, Theorem 1] and Scott [Sco72, Theorem 2.3]
showed that this splitting of π1(N) can be realized geometrically, i.e., there
exists an embedding of S into N such that N \ S consists of two components
N1, N2 such that the triples (B,B → A1, B → A2) and (π1(S), π1(S) →
π1(N1), π1(S)→ π1(N2)) are isomorphic in the obvious sense. See [Feu73] and
Scott [Sco74, Theorem 3.6] for more details. Moreover, we refer to Feustel–
Gregorac [FeG73, Theorem 1] and [Sco80, Corollary 1.2 (a)] (see also [TY99])
for a similar result corresponding to HNN-extensions where the splitting is
given by closed surfaces or annuli.

More generally, if π1(N) admits a non-trivial decomposition as a graph of
groups (e.g., as an amalgamated product or an HNN-extension), then this de-
composition gives rise to a decomposition along incompressible surfaces of N
with the same underlying graph. (Some care is needed here: in the general
case the edge and vertex groups of the new decomposition may be different
from those of the original one.) We refer to Culler–Shalen [CuS83, Proposi-
tion 2.3.1] for details and for [Hat82, HO89, Rat90, LiR91, SZ01, ChT07,
HoSh07, Gar11, DG12] for extensions of this result.

(3) If N is a geometric 3-manifold, then the geometry of N is determined by the
properties of π1(N), by the discussion of Section 1.9.

(4) The Thurston norm H1(N ;R) → R≥0 measures the minimal complexity of
surfaces dual to cohomology classes. We refer to [Thu86a] and Section 5.4.3
for a precise definition and for details.
(a) It follows from [FeG73, Theorem 1] that if N is a closed 3-manifold with

b1(N) = 1, then the Thurston norm can be recovered in terms of splittings
of fundamental groups along surface groups. By work of Gabai [Gab87,
Corollary 8.3] this also gives a group-theoretic way to recover the genus
of a knot in S3.

(b) It is shown in [FSW13] that the genus of a knot J in S3 is determined
by the possible HNN-splittings of π1(S3 \ νJ).
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(c) Let N be a 3-manifold such that the boundary consists of a single torus
and with H2(N ;Z) = 0, i.e., N is the exterior of a knot K in a rational
homology sphere. Calegari [Cal09a, Proof of Proposition 4.4] gave a
group-theoretic interpretation of the Thurston seminorm of N in terms of
the ‘stable commutator length’ of a longitude of K.

However, there does not seem to be a good group-theoretical equivalent to
the Thurston norm for general 3-manifolds. Nevertheless, the Thurston norm
and the hyperbolic volume can be recovered from the fundamental group alone
using the Gromov norm; see [Grv82], [Gab83a, Corollary 6.18], [Gab83b,
p. 79], and [Thu79, Theorem 6.2], for background and details. For most 3-
manifolds, the Thurston norm can be obtained from the fundamental group
using twisted Alexander polynomials; see [FKm06, FV12, DFJ12].

(5) Scott and Swarup algebraically characterized the JSJ-decomposition of a com-
pact, orientable 3-manifold with incompressible boundary; see [SSw01, Theo-
rem 2.1] and also [SSw03].

In many cases, however, it is difficult to obtain topological information about N by just
applying group-theoretical methods to π1(N). For example, it is obvious that given a
closed 3-manifold N , the minimal number r(N) of generators of π1(N) is a lower bound
on the Heegaard genus g(N) of N . It has been a long standing question of Waldhausen
to determine for which 3-manifolds the equality r(N) = g(N) holds. (See [Hak70,
p. 149] and [Wan78b].) The case r(N) = 0 is equivalent to the Poincaré conjecture. It
has been known for a while that r(N) 6= g(N) for graph manifolds [BoZ83, BoZ84,
Zie88, Mon89, Wei03, ScW07, Won11], and evidence for the inequality for some
hyperbolic 3-manifolds was given in [AN12, Theorem 2]. In contrast to this, work
of Souto [Sou08, Theorem 1.1] and Namazi–Souto [NaS09, Theorem 1.4], and also
Biringer [Bir09, Theorem 1.1] together with work of Bachmann-Schleimer [BcS05,
Corollary 3.4], yields that r(N) = g(N) for ‘sufficiently complicated’ hyperbolic 3-
manifolds. (See also [Mas06a] and [BiS14] for more examples.) Recently Li [Lia13]
showed that there also exist hyperbolic 3-manifolds with r(N) < g(N). See [Shn07]
for some background.

2.5. Centralizers

Let π be a group. The centralizer of a subset X of π is defined to be the subgroup

Cπ(X) := {g ∈ π : gx = xg for all x ∈ X}
of π. For x ∈ G we also write Cπ(x) := Cπ({x}). Determining the centralizers is often
one of the key steps in understanding a group. In the world of 3-manifold groups, thanks
to the Geometrization Theorem, an almost complete picture emerges. In this section
we only consider 3-manifolds to which Theorem 1.7.6 applies, i.e., 3-manifolds that are
compact, orientable, and irreducible, with empty or toroidal boundary. But many of
the results of this section also generalize fairly easily to fundamental groups of compact
3-manifolds in general, using the arguments of Sections 1.2 and 1.4.

The following theorem reduces the determination of centralizers to the case of Seifert
fibered manifolds.

Theorem 2.5.1. Let N be a compact, orientable, and irreducible 3-manifold with
empty or toroidal boundary. Let 1 6= g ∈ π := π1(N) be such that Cπ(g) is non-cyclic.
One of the following holds:
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(1) there is a JSJ-torus T of N and h ∈ π with g ∈ hπ1(T )h−1 and

Cπ(g) = hπ1(T )h−1;

(2) there is a boundary component S of N and h ∈ π with g ∈ hπ1(S)h−1 and

Cπ(g) = hπ1(S)h−1;

(3) there is a Seifert fibered component M of N and h ∈ π with g ∈ hπ1(M)h−1

and

Cπ(g) = hCπ1(M) (h−1gh)h−1.

Remark. One could formulate the theorem more succinctly: if g 6= 1 and Cπ(g) is
non-cyclic, then there exists a component C of the characteristic submanifold of N and
h ∈ π such that g ∈ hπ1(C)h−1 and

Cπ(g) = hCπ1(C) (h−1gh)h−1.

We will provide a short proof of Theorem 2.5.1 which makes use of the deep re-
sults of Jaco–Shalen and Johannson and of the Geometrization Theorem for non-Haken
manifolds. Alternatively the theorem can be proved using the Geometrization Theorem
much more explicitly—we refer to [Fri11] for details.

Proof. We first consider the case that N is hyperbolic. In Section 5 we will see
that we can view π as a discrete, torsion-free subgroup of PSL(2,C). Let g ∈ π, g 6= 1.

The centralizer of any non-trivial matrix in PSL(2,C) is abelian; this can be seen
easily using the Jordan normal form of such a matrix. Since π is a discrete, torsion-free
subgroup of PSL(2,C) it is straightforward to see that the centralizer of g in π1(N) is
isomorphic to either Z or Z2. If Cπ(g) is not infinite cyclic, then it is a free abelian
group of rank two. It follows from Theorem 1.7.2 that either (1) or (2) holds.

If N is Seifert fibered, then the theorem holds trivially. By Theorem 1.7.6 it remains
to consider the case where N admits a non-trivial JSJ-decomposition. In that case N
is Haken (see (A.10) for the definition), and the theorem follows from [JS79, Theo-
rem VI.1.6]. (See also [JS78, Theorem 4.1], [Jon79a, Proposition 32.9], and [Sim76a,
Theorem 1].) �

Now we turn to the study of centralizers in Seifert fibered manifolds. Let M be
a Seifert fibered manifold with a given Seifert fiber structure. Then there exists a
projection map p : M → B onto the base orbifold B of M . We denote by B′ → B the
orientation cover; this is either the identity or a 2-fold cover. We denote by πorb

1 (B′)
the orbifold fundamental group of B′ (see [BMP03]), and following [JS79, p. 23] we
refer to (p∗)

−1(πorb
1 (B′)) as the canonical subgroup of π1(M). (If B is orientable, then

the canonical subgroup of π1(M) is just π1(M) itself.) If f is a regular Seifert fiber
of the Seifert fibration, then we refer to the subgroup of π1(M) generated by f as the
Seifert fiber subgroup of π1(M). Recall that if M is non-spherical, then the Seifert fiber
subgroup of π1(M) is infinite cyclic and normal. (Recall that in general, the Seifert
fiber subgroup is only unique up to conjugacy.)

Remark. The definition of the canonical subgroup and of the Seifert fiber subgroup
depend on the Seifert fiber structure. As we saw in Theorem 1.5.2, ‘most’ Seifert fibered
3-manifolds admit a unique Seifert fibered structure up to homeomorphism.

The following theorem, together with Theorem 2.5.1, now classifies centralizers of
compact, orientable, irreducible 3-manifolds with empty or toroidal boundary.
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Theorem 2.5.2. Suppose N is a non-spherical Seifert fibered manifold with a given
Seifert fiber structure. Let g ∈ π = π1(N), g 6= 1. Then

(1) if g lies in the Seifert fiber subgroup of π, then Cπ(g) equals the canonical
subgroup of π;

(2) if g does not lie in the Seifert fiber subgroup of π, then the intersection of
Cπ(g) with the canonical subgroup of π is abelian—in particular, Cπ(g) admits
an abelian subgroup of index at most two;

(3) if g does not lie in the canonical subgroup of π, then Cπ(g) is infinite cyclic.

Proof. The first statement is [JS79, Proposition II.4.5]. The second and the third
statement follow from [JS79, Proposition II.4.7]. �

It follows immediately from the theorem that if N is a non-spherical Seifert fibered
manifold and g ∈ π = π1(N) does not lie in the Seifert fiber group of a Seifert fiber
structure, then Cπ(g) is isomorphic to one of Z, Z⊕ Z, or the fundamental group of a
Klein bottle. (See also [JS78, p. 82].)

Let π be a group and g ∈ π. We say h ∈ π is a root of g if hn = g for some n.
The roots of g necessarily lie in Cπ(g). We denote by rootsπ(g) the set of all roots of g
in π. As in [JS79, p. 32] we say that g has trivial root structure if rootsπ(g) lies in a
cyclic subgroup of π. We say that g has nearly trivial root structure if rootsπ(g) lies in
a subgroup of π which has an abelian subgroup of index at most 2.

The theorem below follows immediately from Theorem 2.5.1 and from [JS79, Propo-
sition II.4.13].

Theorem 2.5.3. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. Let g ∈ π = π1(N).

(1) If g does not have trivial root structure, then there exists a Seifert fibered JSJ-
component M of N and h ∈ π such that g lies in hπ1(M)h−1 and

rootsπ(g) = h rootsπ1(M)(h
−1gh)h−1.

(2) If N is Seifert fibered and g does not have nearly trivial root structure, then
hgh−1 lies in a Seifert fiber group of N .

(3) If N is Seifert fibered and g lies in the Seifert fiber group, then all roots of
hgh−1 are conjugate to an element represented by a power of a singular Seifert
fiber of N .

Remarks.

(1) By [JS79, Addendum II.4.14] we get the following strengthening of conclu-
sion (2) provided the Seifert fibered manifold N does not contain any embed-
ded Klein bottles: either g has trivial root structure or is conjugate to an
element in a Seifert fiber group of N .

(2) Let N be a 3-manifold. Kropholler [Kr90a, Proposition 1] showed, without
using the Geometrization Theorem, that if g is an element of infinite order of
π1(N) and k, l ∈ Z are such that gk is conjugate to gl, then k = ±l. (See
also [Ja75] and [Shn01].) This fact also follows immediately from Theo-
rem 2.5.3.

We also say that an element g of a group π is divisible by n if there exists an h ∈ π
with g = hn. Theorem 2.5.3 has the following corollary.
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Corollary 2.5.4. Let N be as in Theorem 2.5.3. No element of π1(N) \ {1} is
divisible by infinitely many n.

Remark. For Haken 3-manifolds this result had been proved in [EJ73, Corol-
lary 3.3], [Shn75, p. 327] and [Ja75, p. 328]; see also [Wan69] and [Swp73, Feu76a,
Feu76b, Feu76c].

As we saw in Lemma 1.5.1, the fundamental group of a non-spherical Seifert fibered
manifold has a normal infinite cyclic subgroup, namely its Seifert fiber subgroup. The
following consequence of Theorem 2.5.1 shows that the converse holds.

Theorem 2.5.5. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. If π1(N) has a normal infinite cyclic subgroup, then N is Seifert
fibered.

Proof. Suppose π = π1(N) admits a normal infinite cyclic subgroup G. Recall
that AutG is canonically isomorphic to Z2. The conjugation action of π on G defines
a morphism ϕ : π → AutG = Z2. We write π′ = Ker(ϕ). Clearly π′ = Cπ(G). It
follows immediately from Theorem 2.5.1 that either N is Seifert fibered, π′ = Z, or
π′ = Z2. But the latter case also implies that N is one of S1 ×D2, T 2 × I, or K2 ×̃ I.
In particular, N is again Seifert fibered. �

Remarks.

(1) This theorem was proved before the Geometrization Theorem:
(a) Casson–Jungreis [CJ94] and Gabai [Gab92], extending earlier work of

Tukia [Tuk88a, Tuk88b], showed that every word-hyperbolic group with
boundary is homeomorphic to S1 acts properly discontinuously and co-
compactly on H2 with finite kernel. See Section 4.4 below for the definition
of ‘word-hyperbolic group’ and [BrH99] for the definition of the boundary
of such a group.

(b) Mess [Mes88] showed that this result on word-hyperbolic groups implies
Theorem 2.5.5.

We also refer to [Neh60, Neh63a, Mur65, BZ66, Wan67a, Wan68a,
BdM70, GoH75] and [Ja80, Theorem VI.24] for partial results, [Bow04,
Corollary 0.5], [KKl04, Theorem 1.4], and [Mac13, Theorem 1.4] for al-
ternative proofs, and [Mai01][Mai03, Theorem 1.3], [Whn92, Theorem 1],
[HeW94], and [Win94] for extensions to orbifolds, to the non-orientable case
and to the non-compact case. We refer to [Pre14] and to [Cal14b] for a survey
on the development of Theorem 2.5.5.

(2) By [JS79, Lemma II.4.8] a more precise conclusion holds if the boundary of N
is non-empty: every normal infinite cyclic subgroup of π1(N) is the Seifert
fiber group for some Seifert fibration of N .

Given an element g of a group π, the set of conjugacy classes of g is in a canonical
bijection with the set π/Cπ(g). We thus obtain the following corollary to Theorem 2.5.1.

Theorem 2.5.6. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. If N is not a Seifert fibered manifold, then each element of π1(N)
has infinitely many conjugacy classes.

This result was proved in slightly greater generality and using different methods by
de la Harpe–Préaux [dlHP07, p. 563]. We refer to [dlHP07] for an application of this
result to the von Neumann algebra W ∗λ (π1(N)).
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The following was shown by Hempel [Hem87, p. 390], generalizing work of No-
ga [No67], without using the Geometrization Theorem.

Theorem 2.5.7. Let N be a compact, orientable, irreducible 3-manifold with toroi-
dal boundary, and let S be a JSJ-torus or a boundary component. Then π1(S) is a
maximal abelian subgroup of π1(N).

Proof. The result is well known to hold for Seifert fibered manifolds. The general
case follows immediately from Theorem 2.5.1. �

A subgroup A of a group π is called malnormal if A∩ gAg−1 = 1 for all g ∈ π \A.

Theorem 2.5.8. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary.

(1) Let S be a boundary component of N . If the JSJ-component of N which con-
tains S is hyperbolic, then π1(S) is a malnormal subgroup of π1(N).

(2) Let T be a JSJ-torus of N . If both of the JSJ-components of N abutting T are
hyperbolic, then π1(T ) is a malnormal subgroup of π1(N).

The first statement was proved by de la Harpe–Weber [dlHW11, Theorem 3] and
can be viewed as a strengthening of the previous theorem. See [Fri11, Theorem 4.3] for
an alternative proof. The second statement can be proved using the same techniques.

The following theorem was first proved by Epstein [Eps61d, Eps62]:

Theorem 2.5.9. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. Suppose π1(N) ∼= A×B where A is infinite and B is non-trivial.
Then N = S1 × Σ where Σ is a surface.

Proof. Any element of A has a non-cyclic centralizer in π1(N). It follows easily
from Theorem 2.5.1 that N is a Seifert fibered manifold. The case of a Seifert fibered
manifold then follows from an elementary argument. �

Remark. An infinite group π is said to be presentable by a product if there is a
morphism ϕ : Γ1 × Γ2 → π onto a finite-index subgroup of π such that for i = 1, 2 the
groups ϕ(Γi) are infinite. Kotschick–Neofytidis [KoN13, Theorem 8] and Kotschick–
de la Harpe [KdlH14, Theorem 6.4], building on work of Kotschick–Löh [KoL09,
KoL13] showed that a 3-manifold is Seifert fibered if and only if its fundamental group
is presentable by a product.

Given a group π we define an ascending sequence of centralizers of length m in π to
be a sequence of subgroups of the form:

Cπ(g1)  Cπ(g2)  · · ·  Cπ(gm).

Let m(π) denote the supremum (in N ∪ {∞}) of the lengths of ascending sequences of
centralizers in π. If m(π) is finite, then π satisfies the maximal condition on centralizers
(‘Max-c’); see [Kr90a] for details. It follows from Theorems 2.5.1 and 2.5.2 that for any
compact, orientable, aspherical 3-manifold with empty or toroidal boundary the inequal-
ity m(π1(N)) ≤ 3 holds. Furthermore, by [Kr90a, Lemma 5] we have m(π1(N)) ≤ 16
if N is spherical. It follows from [Kr90a, Lemma 4.2], combined with the basic facts
of Sections 1.2 and 1.4 and some elementary arguments, that m(π1(M)) ≤ 17 for any
compact 3-manifold M . We refer to [Kr90a] for an alternative proof of this fact which
does not require the Geometrization Theorem. See also [Hil06] for a different approach.
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We finish this section by illustrating how the results discussed so far can often be
used to quickly determine all 3-manifolds whose fundamental groups have a given group-
theoretic property. More precisely, we will describe all fundamental groups of compact
3-manifolds that are CA and CSA. A group is said to be CA (short for centralizer
abelian) if the centralizer of any non-identity element is abelian. Equivalently, a group
is CA if and only if the intersection of any two distinct maximal abelian subgroups is
trivial, if and only if ‘commuting’ is an equivalence relation on the set of non-identity
elements. For this reason, CA groups are also sometimes called ‘commutative transitive
groups’ (or CT groups, for short).

Lemma 2.5.10. Let π be a CA group and g ∈ π, g 6= 1, such that Cπ(g) is infinite
cyclic. Then Cπ(g) is self-normalizing.

Proof. Let x generate C, and let y ∈ π such that yC = Cy. Then yxy−1 = x±1

and hence y2xy−2 = x. Thus x commutes with y2, and since y2 commutes with y, we
see that x commutes with y. Hence y commutes with g, thus y ∈ Cπ(g) = C. �

The class of CSA groups was introduced by Myasnikov–Remeslennikov [MyR96]
as a natural (in the sense of first-order logic, universally axiomatizable) generalization
of torsion-free word-hyperbolic groups. (See Section 4.4 below.) A group is said to be
CSA (short for conjugately separated abelian) if all of its maximal abelian subgroups are
malnormal. Alternatively, a group is CSA if and only if the centralizer of every non-
identity element is abelian and self-normalizing. (As a consequence, every subgroup
of a CSA group is again CSA.) It is easy to see that a group that is CSA is also CA.
There are CA groups which are not CSA, e.g., the infinite dihedral group, see [MyR96,
Remark 5]. But for fundamental groups of 3-manifolds we have the following result:

Corollary 2.5.11. Let N be a compact, orientable, irreducible 3-manifold with
empty or toroidal boundary. Suppose π = π1(N) is not abelian. The following are
equivalent:

(1) Every JSJ-component of N is hyperbolic.
(2) π is CA.
(3) π is CSA.

Proof. We only need to show (1) ⇒ (3) and (2) ⇒ (1). Suppose all JSJ-compo-
nents of N are hyperbolic. By Theorem 2.5.1, the centralizer Cπ(g) of each g 6= 1 in π is
abelian (so π is CA). It remains to show that each such Cπ(g) is self-normalizing. This
follows from the preceding lemma if Cπ(g) is cyclic, and by Theorems 2.5.1 and 2.5.8
otherwise. This shows (1) ⇒ (3). The implication (2) ⇒ (1) follows easily from Theo-
rems 2.5.1 and 2.5.2, (1), and the fact that subgroups of CA groups are CA. �



CHAPTER 3

3-manifold groups after Geometrization

In Section 1.4 we argued that for our purposes it suffices to study the fundamental groups
of compact, orientable, 3-manifolds with empty or toroidal boundary. The following
theorem about such manifolds is an immediate consequence of the Prime Decomposition
Theorem, the Geometric Decomposition Theorem 1.2.1 and 1.9.1, and Table 1.1.

Theorem 3.0.1. Let N be a compact, orientable 3-manifold with empty or toroidal
boundary. Then N admits a decomposition

N ∼= S1# . . .#Sk # T1# . . .#Tl # N1# . . .#Nm (k, l,m ∈ N)

as a connected sum of orientable prime 3-manifolds, where:

(1) S1, . . . , Sk are spherical;
(2) for any i = 1, . . . , l the manifold Ti is either one of S1 × S2, S1 ×D2, T 2 × I,

K2 ×̃ I, or it has a finite solvable cover which is a torus bundle; and
(3) N1, . . . , Nm are irreducible 3-manifolds which are either hyperbolic, or finitely

covered by an S1-bundle over a surface Σ with χ(Σ) < 0, or have a non-trivial
geometric decomposition.

The decomposition above can also be stated in terms of fundamental groups:

(1) S1, . . . , Sk are the prime components of N with finite fundamental groups,
(2) T1, . . . , Tl are the prime components of N with infinite solvable fundamental

groups,
(3) N1, . . . , Nm are the prime components of N with fundamental groups which

are neither finite nor solvable.

The first two types of manifolds are well understood, so from now on we mostly restrict
our attention to fundamental groups of compact, orientable, irreducible 3-manifolds N
with empty or toroidal boundary, which are neither finite nor solvable. (These assump-
tions on N imply that its boundary is incompressible: the only irreducible 3-manifold
with compressible, toroidal boundary is S1 ×D2 [Nemd99, p. 221].)

In this chapter we summarize the properties of π1(N) that can be deduced from
either classical techniques or the Geometrization Theorem. This can be thought of
as the state of the art immediately before the intervention of Agol, Calegari–Gabai,
Kahn–Markovic and Wise discussed in Chapter 4 below.

The principal instrument of our summary is Flowchart 1 on p. 46. The flowchart
describes a set of implications about 3-manifold groups. Section 3.1 contains the defini-
tions of the properties in question, as well as the conventions adopted in the flowchart.
Section 3.2 contains the justifications for the implications in the flowchart. Finally,
Section 3.3 contains some further implications not listed in the flowchart.

41
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3.1. Definitions and conventions

We first give some of the definitions which we use in Flowchart 1, roughly in the order
that they appear there. Below we let N be a 3-manifold and π be a group.

(A.1) A space X is aspherical if X is connected and if πi(X) = 0 for i ≥ 2.
(A.2) A space X is an Eilenberg–Mac Lane space for π, written as X = K(π, 1), if

π1(X) ∼= π and if X is aspherical.
(A.3) The deficiency of a finite presentation 〈g1, . . . , gm | r1, . . . , rn〉 of a group is de-

fined to be m− n. The deficiency of a finitely presented group is defined to be
the supremum of the deficiencies of all its finite presentations. (Note that some
authors use the negative of this quantity.)

(A.4) A group is called coherent if each of its finitely generated subgroups is finitely
presented.

(A.5) The L2-Betti numbers b
(2)
i (X,α), for a given topological space X and a group

morphism α : π1(X) → Γ, were introduced by Atiyah [At76]; see [Ecn00]

and [Lü02] for the definition. Set b
(2)
i (X) := b

(2)
i (X, id) for Γ = π1(X), α = id.

(A.6) A cofinal (normal) filtration of π is a decreasing sequence {πn} of finite-index
(normal) subgroups of π such that

⋂
n πn = {1}. A cofinal (regular) tower of N

is a sequence {Ñn} of connected covers of N such that {π1(Ñn)} is a cofinal
(normal) filtration of π1(N). Let R be an integral domain. If the limit

lim
n→∞

b1(Ñn;R)

[N : Ñn]

exists for any cofinal regular tower {Ñn} of N , and if all the limits agree, then
we denote this unique limit by

lim
Ñ

b1(Ñ ;R)

[N : Ñ ]
.

(A.7) We denote by Q the algebraic closure of Q.
(A.8) The Frattini subgroup of π is the intersection Φ(π) of all maximal subgroups

of π. If π does not admit a maximal subgroup, then we define Φ(π) = π. (By
an elementary argument, Φ(π) also agrees with the intersection of all maximal
normal subgroups of π.)

(A.9) Let R be a commutative ring. We say that π is linear over R if there exists an
embedding π → GL(n,R) for some n. In this case, π also admits an embedding
into SL(n+ 1, R).

(A.10) Unless we say specifically otherwise we will mean by a surface in N a compact,
orientable surface, properly embedded in N . If N is orientable, then a surface
in our sense will always be two-sided. A surface Σ in N is called
(a) separating if N \ Σ is disconnected;
(b) a (non-) fiber surface if it is incompressible, connected, and (not) the fiber

of a surface bundle map N → S1;
(c) separable if Σ is connected and π1(Σ) is separable in π1(N). (See (A.22)

for the definition of a separable subgroup.)
A 3-manifold is Haken (or sufficiently large) if it is compact, orientable, irre-
ducible, and has an embedded incompressible surface.

(A.11) A group is large if it contains a finite-index subgroup which admits a surjective
morphism onto a non-cyclic free group.
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(A.12) We refer to

coker
{
H1(∂N ;Z)→ H1(N ;Z)

}
as the non-peripheral homology of N . A standard transfer argument shows that
if N has non-peripheral homology of rank at least n, then so does any finite
cover of N . We say that N is homologically large if given any n, N has a finite
regular cover which has non-peripheral homology of rank at least n.

(A.13) Let R be an integral domain with fraction field F . We write vb1(π;R) = ∞ if
for any n there is a finite-index (not necessarily normal) subgroup π′ of π with

rankR(H1(π′;R)) := dimF (H1(π′;F )) ≥ n.

In that case we say that π has infinite virtual first R-Betti number. We write
vb1(N ;R) =∞ if vb1(π1(N);R) =∞, and sometimes vb1(N) = vb1(N ;Z).

Suppose π = π1(N), where N is irreducible, non-spherical, compact, with
empty or toroidal boundary, and vb1(π;R) = ∞. Then for any n there exists
also a finite-index normal subgroup π′ of π with rankR(H1(π′;R)) ≥ n. Indeed,
if char(R) = 0, then this follows from elementary group-theoretic arguments,
and if char(R) 6= 0, from [Lac09, Theorem 5.1], since the Euler characteristic
of N = K(π, 1) is zero. (Here we used that our assumptions on N imply that
N = K(π, 1)—see (C.1) and (C.2).)

(A.14) A group is called indicable if it admits a surjective morphism onto Z, and locally
indicable if each of its finitely generated subgroups is indicable.

(A.15) A left ordering on π is a total ordering ‘≤’ on π which is left-invariant, i.e.,
if g, h, k ∈ π with g ≤ h, then kg ≤ kh. Similarly one defines the notion of
right ordering on π. A bi-ordering on π is an ordering on π which is both a
left ordering and a right ordering on π. One calls π left orderable if it has a left
ordering, and similarly with ‘right’ and ‘bi’ in place of ‘left.’

(A.16) Following Bowditch [Bow00] we say that a group π is diffuse if every finite
non-empty subset A of π has an extremal point, i.e., an element a ∈ A such
that for any g ∈ π \ {1} one of ga or g−1a is not in A.

(A.17) See [Pie84] or [CSC14, Section 4] for the definition of an amenable group.
(A.18) Given a property P of groups we say that a group is virtually P if it has a

finite-index subgroup (not necessarily normal) which satisfies P.
(A.19) Given a class P of groups we say that π is residually P if given any g ∈ π,

g 6= 1, there exists a surjective group morphism α onto a group from P such
that α(g) 6= 1. A case of particular importance is when P is the class of finite
groups, in which case π is said to be residually finite. Another important case is
when P is the class of finite p-groups for p a prime (that is, the class of groups
of p-power order), and then π is said to be residually p.

(A.20) Given a class P of groups we say that π is fully residually P if given any
g1, . . . , gn ∈ π \ {1}, there exists a surjective group morphism α onto a group
from P such that α(gi) 6= 1 for all i = 1, . . . , n.

(A.21) The profinite topology on π is the coarsest topology with respect to which every
morphism from π to a finite group, equipped with the discrete topology, is
continuous. Note that π is residually finite if and only if the profinite topology
on π is Hausdorff. Similarly, the pro-p topology on π is the coarsest topology
with respect to which every morphism from π to a finite p-group, equipped with
the discrete topology, is continuous.
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(A.22) A subset S of π is separable if S is closed in the profinite topology on π; equiv-
alently, for any g ∈ π \ S, there exists a morphism α from π to a finite group
with α(g) 6∈ α(S). The group π is called
(1) locally extended residually finite (LERF, or subgroup separable) if each

finitely generated subgroup of π is separable,
(2) AERF (or abelian subgroup separable) if any finitely generated abelian

subgroup of π is separable.
(A.23) We say that π is double-coset separable if for all finitely generated subgroups

A, B of π and g ∈ π, the subset AgB ⊆ π is separable. Note that AgB is
separable if and only if (g−1Ag)B is, and so to prove double-coset separability
it suffices to show that products of finitely generated subgroups are separable.

(A.24) Let Γ be a subgroup of π. We say that π induces the full profinite topology
on Γ if the restriction of the profinite topology on π to Γ is the full profinite
topology on Γ; equivalently, for any finite-index subgroup Γ′ ⊆ Γ there exists a
finite-index subgroup π′ of π such that π′ ∩ Γ ⊆ Γ′.

(A.25) Suppose N is compact, orientable, irreducible, with empty or toroidal boundary.
We say that N is efficient if the graph of groups corresponding to the JSJ-
decomposition is efficient, i.e., if
(a) π1(N) induces the full profinite topology on the fundamental groups of the

JSJ-tori and of the JSJ-components; and
(b) the fundamental groups of the JSJ-tori and the JSJ-components, viewed

as subgroups of π1(N), are separable.
We refer to [WZ10] for more about this notion.

(A.26) Suppose π is finitely presentable. We say that the word problem for π is solv-
able if given any finite presentation for π there exists an algorithm which can
determine whether or not a given word in the generators is trivial. Similarly,
the conjugacy problem for π is solvable if given any finite presentation for π
there exists an algorithm to determine whether or not any two given words in
the generators represent conjugate elements of π. We refer to [CZi93, Sec-
tion D.1.1.9] and to [AFW13] for details. (By [Mila92, Lemma 2.2] the word
problem is solvable for one finite presentation if and only if it is solvable for
every finite presentation; similarly for the conjugacy problem.)

(A.27) A group is called Hopfian if it is not isomorphic to a proper quotient of itself.
(A.28) The Whitehead group Wh(π) is defined as the quotient of K1(Z[π]) by ±π; here

K1(Z[π]) is the abelianization of the direct limit lim
n→∞

GL(n,Z[π]) of the general

linear groups over Z[π]. We refer to [Mil66] for details.
(A.29) If every countable group embeds in a quotient of π, then π is called SQ-universal.

Before we move on to Flowchart 1, we state a few conventions which we apply there.

(B.1) In Flowchart 1, N is a compact, orientable, irreducible 3-manifold whose bound-
ary consists of a (possibly empty) collection of tori. Furthermore we assume
throughout Flowchart 1 that π := π1(N) is neither solvable nor finite. Without
these extra assumptions some of the implications do not hold. For example, not
every Seifert fibered manifold N has a finite cover N ′ with b1(N ′) ≥ 2, but this
is the case if π additionally is neither solvable nor finite.

(B.2) Arrow 6 splits into three arrows, this means that precisely one of the three
possible conclusion holds.
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(B.3) Red arrows indicate that the conclusion holds virtually. For example, Arrow 11
says that if N is a Seifert fibered manifold such that π1(N) is neither finite nor
solvable, then N contains virtually an incompressible torus.

(B.4) If a property P of groups is written in green, then the following conclusion
always holds: If N is a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary such that the fundamental group of a finite (not necessarily
regular) cover of N is P, then π1(N) also is P. We will justify on page 58 that
the green properties in Flowchart 1 do indeed have the above property.

(B.5) The Conventions (B.3) and (B.4) imply that a concatenation of red and black
arrows which leads to a green property means that the initial group also has the
green property.

(B.6) An arrow with a condition next to it indicates that this conclusion only holds if
this extra condition is satisfied.

Finally, one last disclaimer: the flowchart is meant as a guide to the precise statements
in the text and in the literature; it should not be used as a reference in its own right.

3.2. Justifications

Now we give the justifications for the implications of Flowchart 1. In the subsequent
discussion we strive for maximal generality; in particular, unless we say otherwise, we
will only assume (as we do throughout this book) that N is a connected 3-manifold. We
will give the required references and arguments for the general case, so each justification
can be read independently of all the other steps.

In many cases, after the justification we will give further information and background
material to put the statements in context.

(C.1) Suppose N is irreducible, orientable, with infinite fundamental group. It follows
from the irreducibility of N and the Sphere Theorem 1.3.2 that π2(N) = 0.
Since π1(N) is infinite, it follows from the Hurewicz theorem that πi(N) = 0
for any i > 2, i.e., N is aspherical. (For the exterior of an alternating knot in S3

this result was first proved by Aumann [Aum56].1)
If N is non-orientable, then the above conclusion does not hold since for

example S1 × RP 2 is not aspherical. Following [Hem76, p. 88] we say that
a 3-manifold is RP 2-irreducible if it is irreducible and if it contains no 2-sided
projective planes. If N is a non-orientable RP 2-irreducible 3-manifold, then
its 2-fold orientable cover Ñ is by [Hem76, Lemma 10.4] also RP 2-irreducible.

Hence by the above Ñ (and thus also N) are aspherical.
(C.2) It follows immediately from the definitions that if X is an aspherical space,

then X is an Eilenberg–Mac Lane space for its fundamental group. In particular
by (C.1), if N is orientable, irreducible, with infinite fundamental group, then N
is an Eilenberg–Mac Lane space for its fundamental group.

If N is compact, orientable, irreducible, with infinite fundamental group
and non-empty boundary, then it has a deformation retract to the 2-skeleton,
so π1(N) has a 2-dimensional Eilenberg–Mac Lane, space by the above.

An argument as in [FJR11, p. 458] shows that if N is compact, ori-
entable, irreducible, with non-trivial toroidal boundary, and if P is a presen-
tation of π1(N) of deficiency 1, then the 2-complex X corresponding to P is
also an Eilenberg–Mac Lane space for π1(N). (This argument relies on the fact

1Robert Aumann won a Nobel Memorial Prize in Economic Sciences in 2005.
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that π1(N) is locally indicable, see (C.19).) In fact by (C.36) the complex X is
simple homotopy equivalent to N .

If N is an Eilenberg–Mac Lane space for π1(N), then the cohomology ring
of N is an invariant of π1(N). Postnikov [Pos48], Sullivan [Sula75] and Tu-
raev [Tur83, Tur84] classified the graded rings that appear as cohomology
rings of closed 3-manifolds.

(C.3) Suppose N is orientable, irreducible, with infinite fundamental group. By (C.1)
and (C.2) we have N = K(π1(N), 1). Since the Eilenberg–Mac Lane space is
finite-dimensional it follows by standard arguments that π1(N) is torsion-free.
(Indeed, if X is an aspherical space and if g ∈ π1(X) is an element of finite
order k, then consider the covering space of X corresponding to the subgroup
of π1(X) generated by g. Then X̃ is an Eilenberg–Mac Lane space for Zk, hence

H∗(Zk;Z) = H∗(X̃;Z); but the only finite cyclic group with finite homology is
the trivial group. See [Hat02, Proposition 2.45].)

(C.4) Suppose N is compact, irreducible, with empty or toroidal boundary and with
infinite fundamental group. By (C.1) and (C.2), N is an Eilenberg–Mac Lane
space. By work of Epstein it follows that the deficiency of π1(N) equals 1 −
b3(N); see [Eps61a, Lemmas 2.2 and 2.3], [Eps61a, Theorem 2.5].

The fact that the fundamental group of any closed 3-manifold admits a
balanced presentation, i.e., a presentation of deficiency 0, is an immediate con-
sequence of the existence of a Heegaard splitting, a surface which splits the
3-manifold into two handlebodies. (See [Hee1898, Hee16], [Hem76, Theo-
rem 2.5], [CZi93, Theorem 5.1.2], and [Sav12, Theorem 1.1].) The question
which groups with a balanced presentation are fundamental groups of a compact
3-manifold is studied in [Neh68, Neh70, OsS74, OsS77a, OsS77b, Osb78,
Sts75, Hog00].

(C.5) Scott [Sco73b] proved the Core Theorem: if Y is any 3-manifold such that π1(Y )
is finitely generated, then Y has a compact submanifold M such that the natural
morphism π1(M)→ π1(Y ) is an isomorphism. By applying the Core Theorem
to all covers of the given 3-manifold N corresponding to finitely generated sub-
groups of π1(N) we see that π1(N) is coherent. (See also [Sco73a, Sco74,
Sta77, RS90] and [Cal14a, Theorem 3.6].)

(C.6) The Geometrization Theorem 1.7.6 implies that any compact, orientable, irre-
ducible 3-manifold with empty or toroidal boundary
(a) is Seifert fibered, or
(b) is hyperbolic, or
(c) admits an incompressible torus.

(C.7) Suppose N is hyperbolic. Then the fundamental group of N admits a faith-
ful discrete representation π1(N) → Isom+(H3), where Isom+(H3) denotes the
group of orientation preserving isometries of 3-dimensional hyperbolic space.
(Here recall that we assume throughout that hyperbolic 3-manifolds are ori-
entable.) By [Bon09, Theorem 9.8] we can identify Isom+(H3) with PSL(2,C),
which thus gives rise to a faithful discrete representation π1(N) → PSL(2,C).
As a consequence of the Rigidity Theorem 1.7.1, this representation is unique
up to conjugation and complex conjugation. Another consequence of rigidity is
that there exists in fact a faithful discrete representation ρ : π1(N)→ PSL(2,Q)
over the algebraic closure Q of Q [MaR03, Corollary 3.2.4]. Thurston showed
that the representation ρ lifts to a faithful discrete representation ρ̃ : π1(N)→
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SL(2,Q). (See [Cu86, Corollary 2.2] and [Shn02, Section 1.6].) The set of lifts
of ρ to a representation π1(N)→ SL(2,Q) is in a natural one-to-one correspon-
dence with the set of Spin-structures on N , with the number of Spin-structures
on N given by |H1(N ;Z2)|; see [MFP14, Section 2] for details.

Let T be a boundary component of N and ρ̃ : π1(N)→ SL(2,Q) be a lift as
above. Then ρ̃(π1(T )) is a discrete subgroup of SL(2,Q) isomorphic to Z2, so
up to conjugation, we have

ρ̃(π1(T )) ⊆
{(

ε a
0 ε

)
: ε ∈ {−1, 1}, a ∈ Q

}
.

By [Cal06, Corollary 2.4], if a ∈ π1(T ) is represented by a curve on T which
cobounds a surface in N , then tr(ρ̃(a)) = −2 .

Button [But12] studied the question of which non-hyperbolic 3-manifolds
admit (non-discrete) embeddings of their fundamental groups into SL(2,C). For
example, he showed that if N is given by gluing two figure-8 knot complements
along their boundary, then there are some gluings for which such an embedding
exists, and there are some for which it does not.

(C.8) Long–Reid [LoR98, Theorem 1.2] showed that if a subgroup π of SL(2,Q) is
isomorphic to the fundamental group of a compact, orientable, non-spherical
3-manifold, then π is residually finite simple. (The assumption that π is a
non-spherical 3-manifold group is necessary since not all subgroups of SL(2,Q)
are residually simple.) Reading the proof of [LoR98, Theorem 1.2] shows that
under the same hypothesis as above a slightly stronger conclusion holds: π is
fully residually simple.

We refer to [But11b] for more results on 3-manifold groups (virtually)
surjecting onto finite simple groups.

(C.9) Residually simple groups clearly have trivial Frattini subgroup. The combina-
tion of (C.7) and (C.8) thus shows that the Frattini subgroup of the fundamental
group of a hyperbolic 3-manifold is trivial. Platonov [Pla66] showed that the
Frattini subgroup of any finitely generated linear group is nilpotent. In partic-
ular the combination of (C.8) with Platonov’s result gives the weaker statement
that the Frattini subgroup of the fundamental group of a hyperbolic 3-manifold
is nilpotent, which in this context means that it is abelian.

(C.10) Below we argue that if N is Seifert fibered, then it is finitely covered by an
S1-bundle N ′ over an orientable, connected surface. In the diagram we restrict
ourselves to 3-manifolds such that the fundamental group is neither finite nor
solvable. Theorem 1.11.1 implies that π1(N ′) is solvable if and only if π1(N) is.

So let N be a Seifert fibered 3-manifold. We first consider the case that N
is closed. Denote by B the base orbifold of N . If B is a ‘good’ orbifold in the
sense of [Sco83a, p. 425], then B is finitely covered by an orientable connected
surface F . This cover F → B gives rise to a map Y → N of Seifert fibered
manifolds. Since the base orbifold of the Seifert fibered manifold Y is a surface
it follows that Y is in fact an S1-bundle over F .

The ‘bad’ orbifolds are classified in [Sco83a, p. 425], and in the case of base
orbifolds the only two classes of bad orbifolds which can arise are S2(p) and
S2(p, q) (see [Sco83a, p. 430]). The former arises from the lens space L(p, 1)
and the latter from the lens space L(p, q). But lens spaces are covered by S3

which is an S1-bundle over the sphere.
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Now consider the case that N has boundary. We consider the double M =
N ∪∂N N , which is again a Seifert fibered manifold. By the above there exists a
finite-sheeted covering map p : Y →M where Y is an S1-bundle over a surface
and p preserves the Seifert fibers. It follows that p−1(N) ⊆ Y is a sub-Seifert
fibered manifold. In particular any component of p−1(N) is also an S1-bundle
over a surface.

Let N be any compact, orientable, irreducible 3-manifold with empty or
toroidal boundary. A useful generalization of the above statement says that N
has a finite cover all of whose Seifert fibered JSJ-components are in fact S1-
bundles over a surface. See [AF13, Section 4.3] and [Hem87, Hamb01].

(C.11) The fundamental group of an S1-bundle over a surface is linear over Z. This
fact is well-known, we will provide a proof that was suggested to us by Boyer.

Before we give this proof, we recall that the fundamental group of a com-
pact surface F is linear over Z. Indeed, this is obvious if F is a sphere or a
torus. If F has boundary, then π1(F ) is free and hence embeds into SL(2,Z).
Newman [New85, Lemma 1] showed that if F is closed, then there exists an
embedding π1(F )→ SL(8,Z). In the closed case we may also argue as follows:
Scott [Sco78, Section 3] showed that π1(F ) is a subgroup of a right angled Cox-
eter group on 5 generators, hence by [Bou81, Chapitre V, §4, Section 4] can be
embedded into SL(5,Z). Or we may use that if F is closed then π1(F ) embeds
into a RAAG (see, e.g., [DSS89, p. 576], [CrW04, Theorem 3], or [Rov07]),
hence is linear over Z by (H.31).

We first consider the case that N is a trivial S1-bundle, i.e., N ∼= S1 × F .
Then π1(N) = Z×π1(F ) is the direct product of Z with the fundamental group
of a compact surface, hence is Z-linear by the above.

Now assume that N is a non-trivial S1-bundle over a surface F . If N
has boundary, then F also has boundary and we obtain H2(F ;Z) = 0, so the
Euler class of the S1-bundle N → F is trivial, so N would be a trivial S1-
bundle. Hence F is a closed surface. If F = S2, then the long exact sequence
in homotopy theory shows that π1(N) is cyclic, hence linear. If F 6= S2, then
it follows again from the long exact sequence in homotopy theory that the
subgroup 〈t〉 of π1(N) generated by a fiber is normal and infinite cyclic, and
that we have a short exact sequence

1→ 〈t〉 → π1(N)→ π1(F )→ 1.

Let e ∈ H2(F ;Z) ∼= Z be the Euler class of F . By the discussion on [Sco83a,
p. 435], a presentation for π := π1(N) is given by

π =

〈
a1, b1, . . . , an, bn, t :

n∏
i=1

[ai, bi] = te, t central

〉
.

Let πe be the subgroup of π generated by the ai, bi, and te. It is straightforward
to check that the assignment

ρ(a1) :=

1 1 0
0 1 0
0 0 1

 , ρ(b1) :=

1 0 0
0 1 1
0 0 1

 , ρ(te) :=

1 0 1
0 1 0
0 0 1
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and ρ(ai) := ρ(bi) := 1 for i = 2, . . . , n yields a morphism ρ : πe → SL(3,Z)
such that ρ(te) has infinite order. Now let σ be the composition

πe → π = π1(N)→ π1(F )→ SL(n,Z),

where the last arrow is a faithful representation of π1(F ) in SL(n,Z), which
exists by the above. Then

ρ× σ : πe → SL(3,Z)× SL(n,Z) ⊆ SL(n+ 3,Z)

is an embedding. This concludes the proof that fundamental groups of S1-
bundles over surfaces are linear over Z.

Together with (C.10) this implies that fundamental groups of Seifert fibered
manifolds are linear over Z. The fact that Seifert fibered manifolds admit a geo-
metric structure can in most cases be used to give an alternative proof of the
fact that their fundamental groups are linear over C. More precisely, if N ad-
mits a geometry X, then π1(N) is a discrete subgroup of Isom(X). By [Boy]
the isometry groups of the following geometries are subgroups of GL(4,R):
spherical geometry, S2×R, Euclidean geometry, Nil, Sol and hyperbolic geom-
etry. Moreover, the fundamental group of an H2 × R–manifold is a subgroup
of GL(5,R). On the other hand, the isometry group of the universal covering
group of SL(2,R) is not linear (see, e.g., [Di77, p. 170]).

Finally, groups which are virtually polycyclic are linear over Z by the
Auslander–Swan Theorem (see [Swn67], [Aus67, Theorem 2] and [Weh73,
Theorem 2.5]) and (D.2). This implies in particular that fundamental groups
of Sol-manifolds are linear over Z.

(C.12) Niblo [Nib92, Corollary 5.1] showed that if N is Seifert fibered (in particular
if N is an S1-bundle over a surface), then π1(N) is double-coset separable.

It follows in particular that fundamental groups of Seifert fibered manifolds
are LERF. This was first implicitly proved by Hall [Hal49, Theorem 5.1] if N
has non-empty boundary, and by Scott [Sco78, Theorem 4.1], [Sco85a] if N
is closed. We refer to [BBS84, Nib90, Tre90, HMPR91, Lop94, GR95,
Git97, LoR05, Wil07, BaC13, Pat14, GR13] and [RiZ93, Theorem 2.1]
for alternative proofs and extensions of these results.

(C.13) It follows from elementary arguments that if N is an S1-bundle over a surface F
such that π1(N) is neither solvable nor finite, then χ(F ) < 0, so F thus admits
an essential curve c; the S1–bundle over c is an incompressible torus.

(C.14) Suppose N is compact and orientable, and let T be an incompressible torus
in N . (In particular T could be any incompressible boundary torus of N .) By
(C.32) the subgroup π1(T ) of π1(N) is separable, i.e., T is a separable surface.
If in addition π1(N) is not solvable, then the torus is not a fiber surface.

(C.15) Suppose N is compact, irreducible, with non-empty incompressible boundary,
and not covered by T 2× I. Cooper–Long–Reid [CLR97, Theorem 1.3] showed
that π1(N) is large. (See also [But04, Corollary 6], [Lac07a, Theorem 2.1].)

Now suppose N is closed. Let Σ be a separable non-fiber surface, i.e., Σ is a
connected incompressible surface in N which is not a fiber surface. By Stallings’
Fibration Theorem [Sta62] there exists a g ∈ π1(N \Σ× (0, 1)) \ π1(Σ× {0}).
(See also (L.9) and [Hem76, Theorem 10.5].) Since π1(Σ×{0}) is separable by
assumption, we can separate g from π1(Σ× {0}). A standard argument shows
that in the corresponding finite cover N ′ of N the preimage of Σ consists of at
least two non null-homologous and non-homologous orientable surfaces. Any
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two such surfaces give rise to a morphism from π1(N ′) onto a free group with
two generators. (See also [LoR05, Proof of Theorem 3.2.4].)

Let π be a group. The co-rank c(π) of π is defined as the maximal n such
that π admits a surjective morphism onto the free group on n generators, if
it exists; otherwise c(π) := ∞. If N is a 3-manifold, then c(N) := c(π1(N))
equals the ‘cut number’ of N ; we refer to [Har02, Proposition 1.1] for de-
tails. Jaco [Ja72, Theorem 2.3] showed that the cut number is additive under
connected sum. Clearly b1(N) ≥ c(N). On the other hand, Harvey [Har02,
Corollary 3.2] showed that, given any b, there exists a closed hyperbolic 3-
manifold N with b1(N) ≥ b and c(N) = 1. (See also [LRe02] and [Sik05].)
Upper bounds on c(N) in terms of quantum invariants are obtained in [GiM07,
Theorem 15.1] and [Gil09, Theorem 1.5].

(C.16) Higman–Neumann–Neumann [HNN49] showed that non-cyclic free groups are
SQ-universal. Immediately from the definitions, large groups are SQ-universal.

Minasyan–Osin [MO13, Corollary 2.12] (extending earlier work in [Rat87]
and [But04]) showed that fundamental groups of compact 3-manifolds are ei-
ther virtually polycyclic or SQ-universal. Alternatively this follows later on
from the discussion in Flowchart 4.

(C.17) Suppose N is compact with empty or toroidal boundary, and let ϕ : π1(N)→ F
be a morphism onto a non-cyclic free group. Then π1(N) is homologically large.
Recall that this means that given any k ∈ N there is a finite cover N ′ of N with

rankZ coker{H1(∂N ′;Z)→ H1(N ′;Z)} ≥ k.

Indeed, denote by S1, . . . , Sm (respectively T1, . . . , Tn) the boundary compo-
nents of N which have the property that ϕ restricted to the boundary torus
is trivial (respectively non-trivial). The image of π1(Ti) ⊆ F is a non-trivial
infinite cyclic group generated by some ai ∈ F . Given k ∈ N, we pick a prime
number p with p ≥ 2n + k. Since F is residually p [Iw43, Neh61b], we can
take an a morphism α from F onto a p-group P with α(ai) 6= 1 for i = 1, . . . , n.
Let F ′ = Ker(α) and denote by q : N ′ → N the covering of N corresponding
to α ◦ ϕ. If S′ is any boundary component of N ′ covering one of the Si, then
π1(S′)→ π1(N ′)→ F ′ is the trivial map. Using this observation we calculate

rankZ coker{H1(∂N ′;Z)→ H1(N ′;Z)}
≥ rankZ coker{H1(∂N ′;Z)→ H1(F ′;Z)}

≥ b1(F ′)−
n∑
i=1

b1(q−1(Ti)) ≥ b1(F ′)− 2
n∑
i=1

b0(q−1(Ti))

≥ |P |(b1(F )− 1) + 1− 2n |P |p ≥ |P | − 2n |P |p = |P |
p (p− 2n) ≥ k.

(See also [CLR97, Corollary 2.9] for a related argument.)
The combination of (C.14), (C.15) and (C.17) shows in particular that if N

is compact, orientable, and irreducible, if N contains an incompressible, non-
boundary parallel torus and if π1(N) is not solvable, then vb1(N ;Z) =∞. This
was first proved by Kojima [Koj87, p. 744] and Luecke [Lue88, Theorem 1.1].

As we just saw, if N is compact, orientable, and irreducible with non-trivial
toroidal boundary, then either N = T 2×I or vb1(N ;Z) =∞. The same conclu-
sion also holds for more general types of boundary. More precisely, suppose N
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is compact, orientable with incompressible boundary and no spherical bound-
ary components, which is not a product on a boundary component (i.e., there
does not exist a component Σ of ∂N such that N ∼= Σ× [0, 1]). It follows from
standard arguments (e.g., boundary subgroup separability, see (C.32) below)

that for any n there exists a finite cover Ñ of N with at least n boundary com-
ponents. Since none of these boundary components is spherical it follows from
a Poincaré duality argument that b1(Ñ) ≥ n. Thus indeed vb1(N ;Z) =∞.

(C.18) A straightforward Thurston norm argument (see [Thu86a] or [CdC03, Corol-
lary 10.5.11] together with the argument of the first paragraph of (C.22)) shows
that if N is compact, orientable, irreducible, with empty or toroidal boundary,
and with b1(N) ≥ 2, then either N is a torus bundle (in which case π1(N)
is solvable), or N admits a connected, incompressible, homologically essential
non-fiber surface Σ. (A surface is called homologically essential if it represents
a non-trivial homology class, such a surface is necessarily non-separating.)

Note that since Σ is homologically essential it follows from standard argu-
ments (e.g., using Stallings’ Fibration Theorem, see [Sta62] and (L.9)) that Σ
does in fact not lift to the fiber of a surface bundle in any finite cover.

In (C.22) we will see that a generic 3-manifold is a rational homology sphere.
Rivin [Riv14, Theorem 4.1] showed that b1(N) = 1 for a generic fibered N .

(C.19) Howie [How82, Proof of Theorem 6.1] used Scott’s Core Theorem (C.5) and the
fact that a 3-manifold with non-trivial non-spherical boundary has positive first
Betti number to show that if N is compact, orientable, and irreducible, and Γ
is a finitely generated subgroup of infinite index of π1(N), then b1(Γ) ≥ 1. (See
also [HoS85, Lemma 2] and [Rol14b, Section 7].)

A standard transfer argument shows that if G is a finite-index subgroup of
a group H, then b1(G) ≥ b1(H). Combining these two facts it follows that if N
is compact, orientable, irreducible, with b1(N) ≥ 1, then b1(Γ) ≥ 1 for each
finitely generated subgroup Γ of π1(N), i.e., π1(N) is locally indicable.

It follows from [Hig40, Appendix] that a free product of finitely many
groups is locally indicable if and only if each factor is locally indicable.

(C.20) Burns–Hale [BHa72, Corollary 2] showed that a locally indicable group is
left-orderable. (The converse does not hold even for 3-manifold groups, see,
e.g., [Bem91] for the first examples.) Note that left-orderability is not a ‘green
property,’ i.e., there exist compact 3-manifolds with non-left-orderable funda-
mental groups which admit left-orderable finite-index subgroups; see, for exam-
ple, [BRW05, Proposition 9.1] and [DPT05].

A free product of finitely many groups is left-orderable if and only if each
factor is left-orderable, see [Vi49, DS14] and [Pas77, Theorem 13.27]. We
refer to the survey paper [Rol14a] for more interactions between orderability
of fundamental groups and topological properties of 3-manifolds.

(C.21) By [DKR14, Section 2.2] every left-orderable group is diffuse. But there
are examples of 3-manifold groups that are diffuse but not left-orderable, see
[DKR14, Appendix].

(C.22) Suppose N is compact, orientable, and irreducible. If N has non-empty incom-
pressible boundary, then N is clearly Haken. It follows from [Nemd99, p. 221]
that if N 6= S1 ×D2 and N has toroidal boundary, then each boundary com-
ponent of N is incompressible and hence N is Haken. It follows from Poincaré
duality that if N is closed and b1(N) ≥ 1, then H2(N ;Z) 6= 0. Let Σ be an
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oriented surface representing a non-trivial element φ ∈ H2(N ;Z). Since N is
irreducible we can assume that Σ has no spherical components and that Σ has
no component which bounds a solid torus. Among all such surfaces we take
a surface of maximal Euler characteristic. It follows from an extension of the
Loop Theorem to properly embedded surfaces (see [Sco74, Corollary 3.1] and
Theorem 1.3.1) that any component of such a surface is incompressible; thus, N
is Haken. (See also [Hem76, Lemma 6.6].)

It follows from [EdL83, Lemma 5.1] that if φ is a primitive fibered class
(see (F.5) for the definition), then the corresponding fiber Σ is, up to isotopy, the
unique incompressible surface representing φ. (See also [Gra77, Proposition 8].)
On the other hand, if φ is not a fibered class, then at times Σ can be represented
by an incompressible surface that is unique up to isotopy (see, e.g., [Whn73,
Ly74a, Koi89, CtC93, HiS97, Kak05, GI06, Brt08, Juh08, Ban11a]),
but in general it can not (see, e.g., [Scf67, Alf70, AS70, Ly74b, Ein76b,
Ein77b, STh88, Gus81, Kak91, Kak92, Sak94, Ban11b, Alt12, Rob13,
Ban13, HJS13]).

It also follows from [EdL83, Lemma 5.1] that for a fiber Σ corresponding
to a primitive fibered class, any incompressible surface in N disjoint from Σ
is in fact a parallel copy of Σ. In general, there can be disjoint incompressible
surfaces. But Haken’s Endlichkeitssatz [Hak61b, p. 442], [BL14, Theorem 1.3]
says that there exists an n (that depends on N) such that any collection of n
disjoint incompressible surfaces contains two surfaces that are parallel.

We just showed that any orientable, irreducible N with b1(N) ≥ 1 is Haken.
The conclusion does not hold without the assumption b1(N) ≥ 1. Indeed, the
work of Hatcher [Hat82] together with [CJR82, Men84], [HaTh85, The-
orem 2(b)], [FlH82, Theorem 1.1], [Lop92, Theorem A], and [Lop93, Theo-
rem A] shows that almost all Dehn surgeries on many classes of 3-manifolds with
toroidal boundary are non-Haken, even though most of them are hyperbolic. See
also [Thu79, Oe84, Ag03, BRT12] for more examples of non-Haken mani-
folds. We point out that Jaco–Oertel [JO84, Theorem 4.3] (see also [BCT14])
specified an algorithm to decide whether a given closed irreducible 3-manifold
is Haken.

Finally, let N be compact, orientable, irreducible, with non-empty bound-
ary. A properly embedded surface Σ in N is essential if Σ is incompress-
ible and not isotopic into a boundary component. It follows from the above
that if H2(N ;Z) 6= 0, then N contains an essential closed non-separating sur-
face. On the other hand, Culler–Shalen [CuS84, Theorem 1] showed that if
H2(N ;Z) = 0, then N contains an essential, separating surface with non-empty
boundary. Furthermore, if H2(N ;Z) = 0, then in some cases N will contain
an incompressible, closed, non-boundary parallel surface (see [Ly71, Swp74,
Sht85, Gus94, FiM99, LMo99, FiM00, MQ05, Lib09, Ozb09]) and in
some cases it will not (see [GLit84, Corollary 1.2], [HaTh85], [Oe84, Corol-
lary 4], [Lop93, Mad04, QW04, Ozb08, Ozb10]).

(C.23) Suppose that N is compact, orientable, irreducible, with empty or toroidal
boundary. By work of Allenby–Boler–Evans–Moser–Tang [ABEMT79, The-
orems 2.9 and 4.7], if N is Haken and not a closed Seifert fibered manifold,
then the Frattini group of π1(N) is trivial. On the other hand, if N is a closed
Seifert fibered manifold and π1(N) is infinite, then the Frattini group of π1(N)
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is a (possibly trivial) subgroup of the infinite cyclic subgroup generated by a
regular Seifert fiber (see [ABEMT79, Lemma 4.6]).

(C.24) By Evans–Moser [EvM72, Corollary 4.10], the fundamental group of an irre-
ducible Haken 3-manifold, if non-solvable, has a non-cyclic free subgroup.

(C.25) A group which contains a non-abelian free group is non-amenable. Indeed, any
subgroup of an amenable group is amenable [Pie84, Propositions 13.3]. On the
other hand, non-cyclic free groups are not amenable [Pie84, Proposition 14.1].
In contrast, most 3-manifold groups are weakly amenable, see (J.5).

(C.26) Tits [Tit72, Corollary 1] showed that a finitely generated group which is lin-
ear over C is either virtually solvable or has a non-cyclic free subgroup; this
dichotomy is commonly referred to as the Tits Alternative. (Recall that as
in Flowchart 1 we assumed that π is neither finite nor solvable, π is also not
virtually solvable by Theorem 1.11.1.)

The combination of the above and of (C.24) shows that the fundamental
group of a compact 3-manifold with empty or toroidal boundary is either vir-
tually solvable or contains a non-cyclic free group. This dichotomy is a weak
version of the Tits Alternative for fundamental groups of compact 3-manifolds.
We refer to (L.2) for a stronger version of this, and to [Par92, ShW92, KZ07]
for pre-Geometrization results on the Tits Alternative.

Aoun [Ao11] showed that ‘most’ two generator subgroups of a group which
is linear over C and not virtually solvable, are in fact free.

It follows from the above that if N is hyperbolic, then π1(N) has a non-
cyclic free subgroup. In fact, Jaco–Shalen [JS79, Theorem VI.4.1] showed that
if x, y ∈ π1(N) do not commute and the subgroup Γ of π1(N) generated by
x, y has infinite index in π1(N), then Γ is free on the generators x, y. (See
also [JS76, Lemma 5.4] and [Rat87, Corollary 4].) For closed N this result
was generalized by Gitik [Git99a, Theorem 1].

IfN is closed and hyperbolic, there are many other ways of finding non-cyclic
free subgroups in π1(N). For example, in this case let Γ be any geometrically
finite subgroup of π1(N) (e.g., a cyclic subgroup). It follows from work of
Gromov [Grv87, 5.3.C] (see also [Ar01, Theorem 1]) that then there exists
some g ∈ π1(N) \ Γ such that the canonical map Γ ∗ 〈g〉 → π1(N) is injective
and the image is a geometrically finite subgroup of π1(N). This result was
extended by Martinez-Pedroza [MP09, Theorem 1.1].

Finally, a group is called n-free if every subgroup generated by at most n
elements is free. For a closed, orientable, hyperbolic N such that π1(N) is n-free
for n ∈ {3, 4, 5}, the results of [ACS10, Theorem 9.6] and [CuS12, Guz12]
give lower bounds on the volume of N . The growth of n-freeness in a filtration
of an arithmetic 3-manifold was studied in [Bel12].

(C.27) A consequence of the Lubotzky Alternative (cf. [LuSe03, Window 9, Corol-
lary 18]) asserts that a finitely generated group which is linear over C either is
virtually solvable or, for any prime p, has infinite virtual first Fp-Betti number.
(See also [Lac09, Theorem 1.3] and [Lac11, Section 3].)

We refer the interested reader to [CaE11, Example 5.7], [Lac09, The-
orems 1.7 and 1.8], [ShW92, Walb09], and [Lac11, Section 4] for more
on the growth of Fp-Betti numbers of finite covers of hyperbolic 3-manifolds.
See [Mes90, Proposition 3] for a pre-Geometrization result regarding the Fp-
homology of finite covers of 3-manifolds.
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(C.28) Suppose N is compact. In [AF13] it is shown that, for all but finitely many
primes p, the group π := π1(N) is virtually residually p.

For special types of 3-manifolds one can obtain more precise results:
(a) By [AF13, Proposition 2], if N is a graph manifold (i.e., if all its JSJ-

components are Seifert fibered manifolds), then for any prime p, π is vir-
tually residually p.

(b) The proof of [AF13, Proposition 4.16] shows that if N is a Seifert fibered
manifold, then π has a finite-index subgroup that is residually torsion-free
nilpotent. By (H.33), torsion-free nilpotent groups are residually p for any
prime p. Together with (H.35) this implies that fundamental groups of
Seifert fibered manifolds are virtually bi-orderable. (See also (E.2.)

(c) If N is compact, orientable, and fibered, then there is a compact, orientable
surface Σ such that π ∼= ZnF where F = π1(Σ). The group π1(Σ) is resid-
ually p (see, e.g., [Gru57] or [Bag62, p. 424]), and the semidirect product
of a residually p group with Z is virtually residually p (see, e.g., [AF13,
Corollary 4.32]). See [AF13, Corollary 4.32], [Kob13] for full details.

For 3-manifolds N such that π is linear over C (i.e., for hyperbolic N), it already
follows from [Pla68] that for all but finitely many p, the group π is virtually
residually p. (See also [Weh73, Theorem 4.7] and [Nic13, Theorem 3.1].)

The fundamental groups of many (arguably, most) 3-manifolds are not resid-
ually p. For example, [Sta65, Lemma 3.1] implies that if J ⊆ S3 is a non-trivial
knot, then π1(S3 \ νJ) is not residually nilpotent, let alone residually p.

(C.29) The well-known argument in (I.2) below can be used to show that a group which
is virtually residually p is also residually finite. Residual finiteness of funda-
mental groups of compact 3-manifolds was first shown by Hempel [Hem87] and
Thurston [Thu82a, Theorem 3.3].

Pre-Geometrization results on the residual finiteness of fundamental groups
of knot exteriors were obtained by Mayland, Murasugi, and Stebe [May72,
May74, May75a, May75b, MMi76, Ste68].

In Section 4.7 we will see that fundamental groups of compact, orientable,
irreducible 3-manifolds that are not closed graph manifolds are ‘virtually spe-
cial.’ By [BHPa14] this implies that fundamental groups of such groups have
‘linear residual finiteness growth function.’ Loosely speaking this means that
non-trivial elements can be detected by ‘small’ finite quotients.

Residual finiteness of π implies that if we equip π with its profinite topology,
then π is homeomorphic to the rationals. See [ClS84] for details.

Given an oriented hyperbolic 3-manifold N , the residual finiteness of π1(N)
can be seen using congruence subgroups. By (C.7) there is an embedding
π1(N) ↪→ SL(2,Q) with discrete image; write Γ := ρ(π1(N)). We say that
a subgroup H of Γ is a congruence subgroup of Γ if there exists a ring R which
is obtained from the ring of integers of a number field by inverting a finite
number of elements and a maximal ideal m of R such that Γ ⊆ SL(2, R) and

Ker
{

Γ→ SL(2, R)→ SL(2, R/m)
}
≤ H.

Congruence subgroups have finite index (see, e.g., [Weh73, Theorem 4.1])
and the intersection of all congruence subgroups is trivial (see, e.g., [Mal40]
and [Weh73, Theorem 4.3]). This implies that π1(N) ∼= Γ is residually finite.
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Lubotzky [Lub83, p. 116] showed that in general not every finite-index
subgroup of Γ is a congruence subgroup. We refer to [Lub95, CLT09, Lac09]
and [Lac11, Section 3] for further results.

The fact that fundamental groups of compact 3-manifolds are residually
finite together with the Loop Theorem shows in particular that a non-trivial
knot admits a finite-index subgroup such that the quotient is not cyclic. Broad-
dus [Brs05] gave an explicit upper bound on the index of such a subgroup in
terms of the crossing number of the knot. (See also [Kup14].)

(C.30) Mal’cev [Mal40] showed that every finitely generated residually finite group is
Hopfian. (See also [Mal65, Theorem VII].) Here are some related properties:
one says that a group π is
(a) co-Hopfian if it is not isomorphic to any proper subgroup of itself;
(b) cofinitely Hopfian if every endomorphism of π whose image is of finite index

in π is in fact an automorphism;
(c) hyper-Hopfian if every endomorphism ϕ of π such that ϕ(π) is normal in π

and π/ϕ(π) is cyclic, is in fact an automorphism.
If Σ is a surface then π1(S1×Σ) = Z×π1(Σ) is neither co-Hopfian, nor cofinitely
Hopfian, nor hyper-Hopfian.
(a) Suppose N is compact, orientable, and irreducible. If N is closed, then

π1(N) is co-Hopfian if and only ifN has no finite cover that is either a direct
product S1×Σ or a torus bundle over S1 [WY94, Theorem 8.7]. González-
Acuña–Whitten [GW92, Theorem 2.5] showed that if N has non-trivial
toroidal boundary, then π1(N) is co-Hopfian if and only if π1(N) 6= Z2

and if no non-trivial Seifert fibered piece of the JSJ-decomposition of N
meets ∂N .

(b) Bridson–Groves–Hillman–Martin [BGHM10, Theorems A, C] showed that
fundamental groups of hyperbolic 3-manifolds are cofinitely Hopfian, and
also that if J ⊆ S3 is not a torus knot, then π1(S3 \ νJ) is cofinitely
Hopfian.

(c) Silver [Sil96] established that if J ⊆ S3 is not a torus knot, then π1(S3\νJ)
is hyper-Hopfian. (See also [BGHM10, Corollary 7.2].)

We refer to [GW87, Dam91, GW92, GW94, GLW94, WW94, WY99,
PV00] for more details and related results.

(C.31) See [LyS77, Theorem IV.4.6] and [AFW13] for a proof of the fact that finitely
presented residually finite groups have solvable Word Problem. In fact, for 3-
manifold groups a more precise statement can be made: the fundamental group
of a compact 3-manifold has an exponential Dehn function [ECHLPT92].
Waldhausen [Wan68b] established the solvability of the Word Problem for
fundamental groups of 3-manifolds which are virtually Haken.

(C.32) Hamilton [Hamb01] showed that the fundamental group of any orientable 3-
manifold is AERF. Earlier results are in [LoN91, Theorem 2] and [AH99].

It follows from the above that the fundamental groups carried by embed-
ded tori are separable. Long–Niblo [LoN91, Theorem 1] proved the related
statement that if N is compact, orientable, irreducible, with (not necessarily
toroidal) boundary, and X is a connected, incompressible subsurface of ∂N ,
then π1(X) is separable in π1(N).

(C.33) The Conjugacy Problem was solved for all 3-manifolds with incompressible
boundary by Préaux [Pre05, Pre06], building on ideas of Sela [Sel93].
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For the fundamental group of the exterior of an alternating knot a pre-
Geometrization solution to the Conjugacy Problem was given in [LyS77, The-
orem V.8.5].

(C.34) Every algorithm solving the Conjugacy Problem in a given group, applied to
the conjugacy class of the identity, also solves the Word Problem.

The combination of (C.28), (C.29) and the above thus shows that the
word problem is solvable for π1(N) if N is a compact 3-manifold. A pre-
Geometrization solution to the Word Problem for fundamental groups of certain
knot complements was given by Weinbaum [Web71, Theorem C].

(C.35) By Wilton–Zalesskii [WZ10, Theorem A], closed orientable prime 3-manifolds
are efficient. Suppose N is prime with toroidal boundary, and denote by W the
result of gluing exteriors of hyperbolic knots to the boundary components of N .
It follows from Proposition 1.6.2 that the JSJ-tori of W consist of the JSJ-tori
of N and the boundary tori of N . Since W is efficient, by [WZ10, Theorem A]
it follows that N is also efficient.

See also [AF13, Chapter 5] for a discussion of the question whether closed
orientable prime 3-manifolds are, for all but finitely many primes p, virtually
p-efficient. (Here p-efficiency is the natural analogue of efficiency for the pro-p-
topology; cf. [AF13, Section 5.1].)

(C.36) The Whitehead group of the fundamental group of a compact, orientable,
non-spherical irreducible 3-manifold is trivial. This follows from the Geo-
metrization Theorem together with the work of Farrell–Jones [FJ86, Corol-
lary 1], Waldhausen [Wan78a, Theorem 17.5], Farrell–Hsiang [FaH81] and
Plotnick [Plo80]. We also refer to [FJ87] for extensions of this result.

Using this fact and building on [Tur88], Kreck–Lück [KrL09, Theorem 0.7]
showed that every orientation preserving homotopy equivalence M → N be-
tween closed, oriented, connected 3-manifolds, where π1(N) is torsion-free, is
homotopic to a homeomorphism.

By [Coh73, § 22], homotopy equivalent CW-complexes M and M ′ are sim-
ple homotopy equivalent if Wh(π1(M ′)) is trivial. It follows in particular that
two compact, orientable, non-spherical irreducible 3-manifolds which are homo-
topy equivalent are in fact simple homotopy equivalent. On the other hand,
homotopy equivalent lens spaces are not necessarily simple homotopy equiva-
lent. See [Mil66, Coh73, Rou11] and [Kir97, p. 119] for more details.

Continuing earlier investigations by Roushon [Rou08a, Rou08b], Bartels–
Farrell–Lück [BFL14] showed that the fundamental group of any 3-manifold
(not necessarily compact) satisfies the Farrell–Jones Conjecture from algebraic
K-theory. As pointed out in [BFL14, p. 4], the Farrell–Jones Conjecture for
fundamental groups of 3-manifolds implies in particular the following, for each
3-manifold group π:
(a) an alternative proof that Wh(π) is trivial if π is torsion-free;
(b) if π is torsion-free, then it satisfies the Kaplansky Conjecture, i.e., the

group ring Z[π] has no non-trivial idempotents [Kay57, Kay70];
(c) the Novikov Conjecture holds for π.

Matthey–Oyono-Oyono–Pitsch [MOP08, Theorem 1.1] showed that the fun-
damental group of any orientable 3-manifold satisfies the Baum–Connes Con-
jecture, which gives an alternative proof for the Novikov and Kaplansky Con-
jectures for 3-manifold groups [MOP08, Theorem 1.13].
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(C.37) Lott–Lück [LoL95, Theorem 0.1] showed that if N is compact, irreducible,

non-spherical, with empty or toroidal boundary, then b
(2)
i (N) = b

(2)
i (π) = 0 for

any i. See also [Lü02, Section 4.2]. We refer to the above references for the
calculation of L2-Betti numbers of any compact 3-manifold.

(C.38) Let X be a topological space, α : π1(X)→ Γ be a morphism to a residually finite
group, and {Γn} be a cofinal normal filtration of Γ. Lück [Lü94, Theorem 0.1]
showed that

b
(2)
1 (X,α) = lim

n→∞

b1
(

Ker(π1(X)
α−→ Γ→ Γ/Γn)

)
[Γ : Γn]

.

This extends earlier work of Gromov [Grv93, pp. 20, 231], Kazhdan [Kaz75].
Combining this result with (C.37) we see that if N is a compact, irreducible,

non-spherical 3-manifold with empty or toroidal boundary, then

lim
Ñ

b1(Ñ ;R)

[N : Ñ ]
= 0.

We refer to [Far98] for a generalization of this result, to [ClW03, Theo-
rem 0.1] for more information on the rate of convergence of the limit, and
to [ABBGNRS11, Théorème 0.1], [ABBGNRS12, Corollary 1.4] for a gen-
eralization for closed hyperbolic 3-manifolds. Here the assumption that the
finite covers are regular is necessary: Girão (see proof of [Gir14, Theorem 3.1])
gave an example of a hyperbolic 3-manifold with non-empty boundary together
with a cofinal (not necessarily normal) filtration of {πn} of π = π1(N) with

lim
n→∞

b1(πn)

[π : πn]
> 0.

See [BeG04] for more on limits of Betti numbers in finite irregular covers.
The study of the growth of various complexities of groups (first Betti num-

ber, rank, size of torsion homology, etc.) in filtrations of 3-manifold groups has
garnered a lot of interest in recent years. See [BD13, BE06, BV13, BBW02,
CD06, Gir14, Gir13, KiS12, Lü13, Lü15, Pf13, Rai12b, Rai13, Sen11,
Sen12, Fri14] for more results.

Remark. In Flowchart 1, statements (C.1)–(C.5) don’t rely on the Geometriza-
tion Theorem. Statement (C.6) is a variation on the Geometrization Theorem, whereas
(C.7)–(C.27) gain their relevance from the Geometrization Theorem. The general state-
ments (C.28)–(C.38) rely directly on the Geometrization Theorem. In particular the
results of Hempel [Hem87] and Hamilton [Hamb01] were proved for 3-manifolds ‘for
which geometrization works.’ After Perelman, these results hold in the above generality.

In most cases it is clear that the properties in Flowchart 1 written in green satisfiy
indeed the ‘green condition’ of (B.4). Thus it suffices to give the following justifications.

(D.1) Theorem 1.9.3 implies that if N ′ is a finite cover of a compact, orientable,
irreducible 3-manifoldN with empty or toroidal boundary, thenN ′ is hyperbolic
(Seifert fibered, admits non-trivial JSJ-decomposition) if and only if N has the
same property.

(D.2) Let π be a group containing subgroup π′ of finite index. Suppose π′ is lin-
ear over the commutative ring R, witnessed by a faithful representation π′ →
GL(n,R). Then π acts faithfully on R[π] ⊗R[π′] R

n ∼= Rn[π:π′] by left-multipli-
cation. Hence π is also linear over R.
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(D.3) Niblo [Nib92, Proposition 2.2] showed that a finite-index subgroup of π is
double-coset separable if and only if π is double-coset separable.

(D.4) Suppose π has a finite-index subgroup π′ which is LERF; then π is LERF itself.
Indeed, let Γ be a finitely generated subgroup of π. Then the subgroup Γ ∩ π′
of π′ is separable, i.e., closed (in the profinite topology of) π′. It then follows
that Γ∩ π′ is closed in π. Finally Γ, which can be written as a union of finitely
many translates of Γ ∩ π′, is also closed in π, i.e., Γ is separable in π.

(D.5) In [Nemc73] it is shown that if π is a group that admits a finite-index subgroup
that is SQ-universal, then π is also SQ-universal.

(D.6) By [Pie84, Propositions 13.4] a finite-index supergroup of an amenable group
is again amenable.

3.3. Additional results and implications

There are a few arrows and results on 3-manifold groups which can be proved using the
Geometrization Theorem, and which we left out of the flowchart. Again, we let N be a
3-manifold.

(E.1) Wilton [Wil08, Corollary 2.10] determined the closed 3-manifolds with residu-
ally free fundamental group. In particular, it is shown there that if N is com-
pact, orientable, prime, with empty or toroidal boundary, and π1(N) residually
free, then N is the product of a circle with a connected surface.

(E.2) Boyer–Rolfsen–Wiest [BRW05, Corollary 1.6] established the virtual bi-order-
ability of the fundamental groups of Seifert fibered manifolds. Perron–Rolf-
sen [PR03, Theorem 1.1], [PR06, Corollary 2.4] and Chiswell–Glass–Wil-
son [CGW14, Corollary 2.5] gave many examples of fibered 3-manifolds (i.e.,
3-manifolds which fiber over S1) with bi-orderable fundamental group. In the
other direction, Smythe proved that the fundamental group of the trefoil com-
plement is not bi-orderable (see [Neh74, p. 228]). Thus not all fundamental
groups of fibered 3-manifolds are bi-orderable. See [CR12, NaR14, CDN14]
and again [CGW14, Corollary 2.5] for many more examples, including some
fibered hyperbolic 3-manifolds whose fundamental groups are not bi-orderable.

(E.3) A Poincaré duality argument shows that if N is closed and not orientable, then
b1(N) ≥ 1; see, e.g., [BRW05, Lemma 3.3] for full details.

(E.4) Teichner [Tei97] showed that if the lower central series of the fundamental
group π of a closed 3-manifold stabilizes, then the maximal nilpotent quotient
of π is the fundamental group of a closed 3-manifold (and such groups were de-
termined in [Tho68, Theorem N]). The lower central series and nilpotent quo-
tients of 3-manifold groups were also studied by Cochran–Orr [CoO98, Corol-
lary 8.2], Cha–Orr [ChO13, Theorem 1.3], Freedman–Hain–Teichner [FHT97,
Theorem 3], Putinar [Pur98], and Turaev [Tur82].

Kawauchi (see [Kaw89a, Corollary 4.3] and [Kaw89b, Property V]) showed
that if N is compact, orientable, with empty or toroidal boundary, then there
exists a degree 1 map N ′ → N from a hyperbolic 3-manifold N ′ which, for
each n, induces an isomorphism π1(N ′)/π1(N ′)(n) → π1(N)/π1(N)(n). We re-
fer to [Kaw93, Kaw94, Kaw97] for related results.

(E.5) Groves–Manning [GrM08, Corollary 9.7] and independently Osin [Osi07, The-
orem 1.1] showed that if N is a hyperbolic 3-manifold with non-empty boundary,
then π1(N) is fully residually the fundamental group of a closed hyperbolic 3-
manifold. More precisely, if A ⊆ π1(N) is finite, they showed that there exists
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a hyperbolic Dehn filling M of N such that the induced map π1(N) → π1(M)
is injective when restricted to A.

(E.6) A group is said to have Property U if it has uncountably many maximal sub-
groups of infinite index. Margulis–Soifer [MrS81, Theorem 4] showed that
every finitely generated group which is linear over C and not virtually solv-
able has Property U . Using the linearity of free groups, one can use this to
show that every large group also has Property U . Tracing through Flowchart 1
yields that the fundamental group π of every compact, orientable, aspherical
3-manifold with empty or toroidal boundary has Property U , unless π is solv-
able. It follows from [GSS10, Corollary 1.2] that every maximal subgroup of
infinite index of the fundamental group of a hyperbolic 3-manifold is infinitely
generated.

(E.7) As pointed out in the introduction, in higher dimensions, topology puts no
restrictions on the finitely presented groups occurring as fundamental groups
of manifolds: for each finitely presented group π and n ≥ 4, there is a closed
n-manifold with fundamental group π. (See [CZi93, Theorem 5.1.1], [De11,
Kapitel III], [GfS99, Theorem 1.2.33], [SeT34, p. 180] or [SeT80, Section 52].)

On the other hand, if one adds further geometric or topological restric-
tions on the class of manifolds under consideration, one often obtains further
restrictions on the type of fundamental groups which can occur.

For example, let π be the fundamental group of a Kähler manifold. If π also
happens to be the fundamental group of a closed 3-manifold N , then π is finite.
Indeed, by Gromov [Grv89] the fundamenal group of a Kähler manifold not a
free product of non-trivial groups. By the Kneser Conjecture 2.1.1 this implies
that N is prime. Kotschick [Kot12, Theorem 4] showed that vb1(N) = 0. It
follows from (C.14), (C.15), and (C.17) together with (H.2), (H.5) and (H.13)
that π is indeed finite. This result was first obtained by Dimca–Suciu [DiS09],
with an alternative proof in [BMS12, Theorem 2.26]. See [CaT89, DPS11,
FS12, BiM12, Kot13, BiM14] for other approaches and extensions of these
results to quasiprojective groups.

We refer to [Tau92, p. 165], [Gom95, Theorem 0.1], [ABCKT96, Corol-
lary 1.66], [GfS99, Theorem 10.2.10], [FS12], [PP12] and [ANW13, Theo-
rem 1] for further results where additional assumptions on the class of manifolds
do (not) preclude 3-manifold groups to occur.

(E.8) Ruberman [Rub01, Theorem 2.4] compared the behavior of the Atiyah–Pato-
di–Singer η-invariant [APS75a, APS75b] as well as the Chern–Simons in-
variants [ChS74] under finite coverings to give an obstruction for a group to
be a 3-manifold group.

(E.9) Using connected sums of lens spaces one shows that any finite abelian group ap-
pears as the first homology of a closed orientable 3-manifold. In fact by [KKo0,
Theorem 6.1] any non-singular symmetric bilinear pairing H ×H → Q/Z over
a finite abelian group H appears as the linking pairing of a closed rational ho-
mology sphere. On the other hand Reznikov [Rez97] and Cavendish [Cav14]

showed that not every finite metabelian group appears as π1(N)/π1(N)(2) for
a closed orientable 3-manifold N . Other potential restrictions on the type of
finite solvable groups that can appear as π1(N)/π1(N)(k) for a closed orientable
3-manifold N are in [Rou04, Conjecture (0.2)] and [Cav14, Question 1].
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(E.10) Suppose N is compact, orientable, with no spherical boundary components.
De la Harpe and Préaux [dlHP11, Proposition 8] showed that if N is neither
a Seifert manifold nor a Sol-manifold, then π1(N) is a ‘Powers group,’ which
implies that π1(N) is C∗–simple, by [Pow75]. (A group is called C∗-simple if
it is infinite and if its reduced C∗-algebra has no non-trivial two-sided ideals.
We refer to [Dan96] for background.)

(E.11) Suppose N is closed, orientable, irreducible, and has n hyperbolic JSJ-compo-
nents. Weidmann [Wei02, Theorem 2] showed that the minimal number of
generators of π1(N) is bounded below by n+ 1.

(E.12) Suppose N is compact, orientable, and every loop in N is freely homotopic to a
loop in a boundary component. Brin–Johannson–Scott [BJS85, Theorem 1.1]
showed that there exists a boundary component F such that π1(F ) → π1(N)
is surjective. (See also [MMt79, §2] with ρ = 1.)

(E.13) Let S be a finite generating set of a group π. The growth function of (π, S) is

n 7→ an(π, S) := #{elements in π with word length ≤ n},
where the word length is taken with respect to S. The exponential growth rate
of (π, S) is then defined as

ω(π, S) := lim
k→∞

n
√

#an(π, S).

The uniform exponential growth rate of π is defined as

ω(π) := inf{ω(π, S) : S finite generating set of π}.
By work of Leeb [Leb95, Theorem 3.3] and di Cerbo [dCe09, Theorem 2.1]
there is a C > 1 such that ω(π1(N)) > C for any closed irreducible 3-manifold N
which is not a graph manifold. This result builds on and extends work of Mil-
nor [Mil68], Avez [Av70], Besson–Courtois–Gallot [BCG11] and Bucher–de
la Harpe [BdlH00]. The growth function was studied in more detail for certain
torus knots in [Sho94, JKS95, Gll99, Mnna11, NTY14] and [Mnna12,
Section 14.1], and for Sol-manifolds in [Pun06, Par07].

(E.14) The Lickorish-Wallace Theorem states that each closed 3-manifold is the bound-
ary of a smoooth 4-manifold; see [Lic62, Wac60] and see also [Rol90, p. 277]
and [ELL13]. Hausmann [Hau81, p. 122] showed that given any closed 3-mani-
fold N there exists in fact a smooth 4-manifold W such that π1(N) → π1(W )
is injective. (See also [FR12].)





CHAPTER 4

The Work of Agol, Kahn–Markovic, and Wise

The Geometrization Theorem resolves the Poincaré Conjecture and, more generally,
the classification of 3-manifolds with finite fundamental group. For 3-manifolds with
infinite fundamental group, the Geometrization Theorem can be viewed as asserting
that the key problem is to understand hyperbolic 3-manifolds. Even after Perelman’s
proof, many questions remained about the topology of this central type of 3-manifold,
the most important of which had been articulated by Thurston. In this chapter we
discuss the resolution of these questions.

We first discuss the Tameness Theorem (Section 4.1), which was proved indepen-
dently by Agol [Ag04] and by Calegari–Gabai [CaG06], and implies an essential di-
chotomy for finitely generated subgroups of hyperbolic 3-manifolds. Then (in Sec-
tions 4.2–4.6) we turn to the Virtually Compact Special Theorem of Agol [Ag13],
Kahn–Markovic [KM12a] and Wise [Wis12a]. This theorem, together with the Tame-
ness Theorem and further work of Agol [Ag08] and Haglund [Hag08] and many others,
answers many hitherto intractable questions about hyperbolic 3-manifolds. For exam-
ple, it implies that every hyperbolic 3-manifold is virtually Haken. In Section 4.9 we
summarize earlier work on virtual properties of hyperbolic 3-manifolds. We will sur-
vey consequences of the Tameness and Virtually Compact Special theorems for the
fundamental groups of 3-manifolds in Chapter 5, and for their subgroups in Chapter 6.

A ‘compact special’ group is the fundamental group of a compact (non-positively
curved) ‘special cube complex,’ a topological space with a very combinatorial flavor.
This type of group is intimately intertwined with the more familiar notion of ‘right-
angled Artin group.’ These are introduced in Section 4.3. Wise showed that hyperbolic
3-manifolds with non-empty boundary and more generally, ‘most’ Haken hyperbolic 3-
manifolds, are virtually compact special; see Section 4.4. Agol built on Wise’s work to
show that in fact all hyperbolic 3-manifolds are virtually compact special, a result which
in particular implies the famous Virtually Haken conjecture. Both Wise’s and Agol’s
work concerns cube complexes. The link with 3-manifolds is provided by a construction
of Sageev. Kahn–Markovic’s proof of the Surface Subgroup Conjecture in fact made
it possible to apply Sageev’s construction to show that all hyperbolic 3-manifolds are
cubulable. These results are explained in Sections 4.5 and 4.6.

In generalizing the Virtually Compact Special Theorem beyond the hyperbolic case,
a connection with non-positive curvature emerges (see Section 4.7). In Section 4.8, we
discuss the case of compact, orientable 3-manifolds with non-toroidal boundary. Finally,
in Section 4.9, we survey some of the enormous body of work addressing Thurston’s
questions that were at last resolved by the Virtually Compact Special Theorem.

4.1. The Tameness Theorem

In 2004, Agol [Ag04] and Calegari–Gabai [CaG06, Theorem 0.4] independently proved
the following theorem, which was first conjectured by Marden [Man74] in 1974:

63
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Theorem 4.1.1 (Tameness Theorem). Let N be a hyperbolic 3-manifold, not nec-
essarily of finite volume, whose fundamental group is finitely generated. Then N is
topologically tame, i.e., homeomorphic to the interior of a compact 3-manifold.

We refer to [Cho06, Som06a, Cal07, Cay08, Gab09, Bow10, Man07] for
further details regarding the statement and alternative approaches to the proof. We
especially refer to [Cay08, Section 6] for a detailed discussion of earlier results lead-
ing towards the proof of the Tameness Theorem. It is not known whether the con-
clusion of the Tameness Theorem also holds if N is a non-positively curved manifold
(see, e.g., [Bek13, Question 2.6]), but some positive evidence is given by [Bow10,
Theorem 1.4], [Cay08, Theorem 9.2] and [BGS85, Appendix 2]. On the other hand
the conclusion of the Tameness Theorem does not hold for all 3-manifolds, see, e.g.,
[Whd35b], [STu89, Example 3], and [FrG07, Remark 0.5].

In the context of this book, the main application of the Tameness Theorem is the
Subgroup Tameness Theorem below. To formulate it requires a few more definitions.

(1) A surface group is the fundamental group of a closed, orientable surface of
genus at least 1.

(2) Let Γ be a Kleinian group, i.e., a discrete subgroup of PSL(2,C). If Γ acts
cocompactly on the convex hull of its limit set, then Γ is called geometrically
finite; see [LoR05, Chapter 3] for details. (Note that a geometrically finite
Kleinian group is necessarily finitely generated.) Now let N be a hyperbolic
3-manifold. We can identify π1(N) with a discrete subgroup of PSL(2,C),
up to conjugation and complex conjugation; see [Shn02, Section 1.6] and
(C.7). A subgroup of π1(N) is geometrically finite if, viewed as subgroup of
PSL(2,C), it is a geometrically finite Kleinian group. We refer to [Bow93] for a
discussion of various different equivalent definitions of ‘geometrically finite.’ An
incompressible surface Σ ⊆ N is geometrically finite if π1(Σ) is a geometrically
finite subgroup of π1(N).

(3) A 3-manifold is fibered if it admits the structure of a surface bundle over S1.
By a surface fiber in a 3-manifold N we mean the fiber of a surface bundle
N → S1. Let Γ be a subgroup of π1(N). We say that Γ is a surface fiber
subgroup of N if there exists a surface fiber Σ such that Γ = π1(Σ), and that
Γ is a virtual surface fiber subgroup if N admits a finite cover N ′ → N such
that Γ ⊆ π1(N ′) and Γ is a surface fiber subgroup of N ′.

Now we can state the Subgroup Tameness Theorem, which follows from combining the
Tameness Theorem with Canary’s Covering Theorem. (See [Cay94, Section 4], [Cay96]
and [Cay08, Corollary 8.1].)

Theorem 4.1.2 (Subgroup Tameness Theorem). Let N be a hyperbolic 3-manifold
and let Γ be a finitely generated subgroup of π1(N). Then either

(1) Γ is a virtual surface fiber group, or
(2) Γ is geometrically finite.

The importance of this theorem will become fully apparent in Sections 5 and 6.

4.2. The Virtually Compact Special Theorem

In his landmark 1982 article [Thu82a], Thurston posed twenty-four questions, which
illustrated the limited understanding of hyperbolic 3-manifolds at that point. These
questions guided research into hyperbolic 3-manifolds in the following years. Otal’s
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discussion [Ot14] of Thurston’s original paper shows that huge progress towards an-
swering these questions has been made since. For example, Perelman’s proof of the
Geometrization Theorem answered Thurston’s Question 1 and the proof by Agol and
Calegari–Gabai of the Tameness Theorem answered Question 5.

By early 2012, all but five of Thurston’s questions had been answered. Of the
remaining open problems, Question 23 plays a special rôle: Thurston [Thu82a] conjec-
tured that not all volumes of hyperbolic 3-manifolds are rationally related, i.e., there
exist closed hyperbolic 3-manifolds such that the ratio of volumes is not a rational num-
ber. (See [Mil82] for a related conjecture.) This is a very difficult question which in
nature is much closer to deep problems in number theory than to topology or differential
geometry. We list the other four questions (with the original numbering):

Questions 4.2.1. (Thurston, 1982)

(15) Are fundamental groups of hyperbolic 3-manifolds LERF?
(16) Is every hyperbolic 3-manifold virtually Haken?
(17) Does every hyperbolic 3-manifold have a finite-sheeted cover with positive first

Betti number?
(18) Is every hyperbolic 3-manifold virtually fibered?

(It is clear that a positive answer to Question 18 implies a positive answer to Ques-
tion 17, and in (C.22) we saw that a positive answer to Question 17 implies a positive
answer to Question 16.) There has been a tremendous effort to resolve these four ques-
tions over the last three decades. (See Section 4.9 for an overview of previous results.)
Nonetheless, progress had been slow for the better part of the period. In fact opin-
ions on Question 18 were split. Regarding this particular question, Thurston himself
famously wrote ‘this dubious-sounding question seems to have a definite chance for a
positive answer’ [Thu82a, p. 380]. According to [Gab86] the ‘question was upgraded
in 1984’ to the ‘Virtual Fibering Conjecture,’ i.e., it was conjectured by Thurston that
the question should be answered in the affirmative.

A stunning burst of collective creativity during the years 2007–2012 lead to the
following theorem. It was proved by Agol [Ag13], Kahn–Markovic [KM12a] and
Wise [Wis12a], with major contributions coming from Agol–Groves–Manning [Ag13],
Bergeron–Wise [BeW12], Haglund–Wise [HaW08, HaW12], Hsu–Wise [HsW12],
and Sageev [Sag95, Sag97].

Theorem 4.2.2 (Virtually Compact Special Theorem). The fundamental group of
each hyperbolic 3-manifold N is virtually compact special.

Remarks.

(1) We give the definition of ‘virtually compact special’ in Section 4.3. In that sec-
tion we will also state the theorem of Haglund–Wise (see Corollary 4.3.4) which
gives an alternative formulation of the Virtually Compact Special Theorem in
terms of subgroups of right-angled Artin groups.

(2) In the case that N is closed and admits a geometrically finite surface, a proof
was first given by Wise [Wis12a, Theorem 14.1]. Wise also gave a proof
in the case that N has non-empty boundary (see Theorem 4.4.8). Finally,
for the case that N is closed and does not admit a geometrically finite sur-
face, the decisive ingredients of the proof were given by the work of Kahn–
Markovic [KM12a] and Agol [Ag13]. The latter builds heavily on the ideas
and results of [Wis12a]. See Flowchart 2 on p. 66 for further details.
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(3) Recall that, according to our conventions, a hyperbolic 3-manifold is assumed
to be of finite volume. In fact the theorems of Agol [Ag13, Theorems 9.1
and 9.2] and Wise [Wis12a, Theorem 14.29] deal precisely with that case.
But from these theorems one can also deduce that the fundamental group of
any compact hyperbolic 3-manifold with (possibly non-toroidal) incompressible
boundary is virtually compact special. This is well known to the experts, but
as far as we are aware does not appear in the literature. In Section 4.8 below
we explain how to deduce the infinite-volume case from Wise’s results.

We discuss consequences of the Virtually Compact Special Theorem in detail in
Section 5, but as an amuse-bouche we mention that it gives affirmative answers to
Thurston’s Questions 15–18. More precisely, Theorem 4.2.2 together with the Tameness
Theorem, work of Haglund [Hag08], Haglund–Wise [HaW08] and Agol [Ag08] yields:

Corollary 4.2.3. If N is a hyperbolic 3-manifold, then

(1) π1(N) is LERF;
(2) N is virtually Haken;
(3) vb1(N) =∞; and
(4) N is virtually fibered.

Flowchart 2 summarizes the various contributions to the proof of Theorem 4.2.2. It
can also be viewed as a guide to the next sections. We use the following color code.

(1) Turquoise arrows correspond to Section 4.4.
(2) The red arrow is treated in Section 4.5.
(3) The green arrows are covered in Section 4.6.
(4) Finally, the brown arrows correspond to the consequences of Theorem 4.2.2.

They are treated in detail in Section 5.

4.3. Special cube complexes

The idea of applying non-positively curved cube complexes to the study of 3-manifolds
originated with the work of Sageev [Sag95]. The definition of a special cube complex
given by Haglund–Wise was a major step forward, and sparked the recent surge of
activity [HaW08]. In this section, we give rough definitions that are designed to give a
flavor of the material. The reader is referred to [HaW08] for a precise treatment. For
most applications, Corollary 4.3.3 or Corollary 4.3.4 can be taken as a definition of a
‘special group’ and a ‘compact special group.’ See also [Bea14, Sag12, Cal13b, Ag14]
for an exposition of some of the subsequent definitions, results and proofs.

A cube complex is a finite-dimensional cell complex X in which each cell is a cube
and the attaching maps are combinatorial isomorphisms. We also impose the condition,
whose importance was brought to the fore by Gromov, that X should admit a locally
CAT(0) (i.e., non-positively curved) metric. One of the attractions of cube complexes
is that this condition can be phrased purely combinatorially. Before we state Gromov’s
theorem we point out that the link of a vertex in a cube complex naturally has the
structure of a simplicial complex. Recall that a simplicial complex X is a flag if every
subcomplex that is isomorphic to the boundary of an n-simplex (for n ≥ 2) is the
boundary of an n-simplex in X.

Theorem 4.3.1 (Gromov’s Link Condition). A cube complex admits a non-positive-
ly curved metric if and only if the link of each vertex is flag.
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Flowchart 2. The Virtually Compact Special Theorem.

This theorem is due originally to Gromov [Grv87]. See also [BrH99, Theo-
rem II.5.20] for a proof, as well as many more details about CAT(0) metric spaces
and cube complexes. The next concept is due to Salvetti [Sal87].

Example (Salvetti complexes). Let Σ be a (finite) graph. We build a cube com-
plex SΣ as follows:

(1) SΣ has a single 0-cell x0;
(2) SΣ has one (oriented) 1-cell ev for each vertex v of Σ;
(3) SΣ has a square 2-cell with boundary reading euev ēuēv whenever u and v are

joined by an edge in Σ;
(4) for n ≥ 3, the n-skeleton is defined inductively—attach an n-cube to any

subcomplex isomorphic to the boundary of n-cube which does not already
bound an n-cube.
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It is an easy exercise to check that SΣ satisfies Gromov’s Link Condition and hence is
non-positively curved.

Definition. Given a finite graph Σ with vertices v1, . . . , vn, the corresponding
right-angled Artin group (RAAG) AΣ is defined as

AΣ =
〈
v1, . . . , vn

∣∣ [vi, vj ] = 1 if vi and vj are connected by an edge of Σ
〉
.

Note that here the definition of AΣ specifies a generating set. Clearly the fundamental
group of the Salvetti complex SΣ is canonically isomorphic to the RAAG AΣ.

Right-angled Artin groups were introduced by Baudisch [Bah81] under the name
semi-free groups, but they are also sometimes referred to as graph groups or free partially
commutative groups. We refer to [Cha07] for a very readable survey on RAAGs.

Cube complexes have natural immersed codimension-one subcomplexes, called hy-
perplanes. Identifying an n-cube C in X with [−1, 1]n, a hyperplane of C is any inter-
section of C with a coordinate hyperplane of Rn. We then glue together hyperplanes
in adjacent cubes whenever they meet, to get the hyperplanes of {Yi} of X, which nat-
urally immerse into X. Pulling back the cubes in which the cells of Yi land defines an
I-bundle Ni over Yi, which also has a natural immersion ιi : Ni → X. This I-bundle
has a natural boundary ∂Ni, which is a 2-to-1 cover of Yi, and we let N◦i = Ni \ ∂Ni.

Henceforth, although it will sometimes be convenient to consider non-compact cube
complexes, we will always assume that the cube complexes we consider have only finitely
many hyperplanes.

Using this language, here is a list of pathologies for hyperplanes in cube complexes.

(1) A hyperplane Yi is one-sided if Ni → Yi is not a product bundle; otherwise Yi
is two-sided.

(2) A hyperplane Yi is self-intersecting if the restriction of ιi to Yi is not injective.
(3) A hyperplane Yi is directly self-osculating if there are vertices x 6= y in the same

component of ∂Ni such that ιi(x) = ιi(y) but, for some small neighborhoods
Bε(x) and Bε(y), the restriction of ιi to (Bε(x) tBε(y)) ∩N◦i is injective.

(4) A pair of distinct hyperplanes Yi, Yj is inter-osculating if Yi, Yj intersect and
osculate; that is, the map Yi t Yj → X is not an embedding and there are
vertices x ∈ ∂Ni and y ∈ ∂Nj such that ιi(x) = ιj(y) but, for some small
neighborhoods Bε(x) and Bε(y), the restriction of ιi t ιj to (Bε(x) ∩ N◦i ) t
(Bε(y) ∩N◦j ) is an injection.

In Figure 1 we give a schematic illustration of directly self-osculating and inter-
osculating hyperplanes in a cube complex.

Definition (Haglund–Wise [HaW08]). A cube complex is special if none of the
above pathologies occur. (This is the definition of A-special from [HaW08]. Their
definition of a special cube complex is slightly less restrictive. But these two definitions
agree up to passing to finite covers, so the two notions of ‘virtually special’ coincide.)

Definition. The hyperplane graph of a cube complex X is the graph Σ(X) with
vertex-set equal to the hyperplanes of X, and with two vertices joined by an edge if and
only if the corresponding hyperplanes intersect.

Suppose every hyperplane of X is two-sided; then there is a natural typing map
φX : X → SΣ(X), which we now describe. Each 0-cell of X maps to the unique 0-
cell x0 of SΣ(X). Each 1-cell e crosses a unique hyperplane Ye of X; φX maps e to
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Figure 1. Directly self-osculating and inter-osculating hyperplanes.

the 1-cell eYe of SΣ(X) that corresponds to the hyperplane Ye, and the two-sided-ness
hypothesis ensures that orientations can be chosen consistently. Finally, φX is defined
inductively on higher dimensional cubes: a higher-dimensional cube C is mapped to the
unique cube of SΣ(X) with boundary φX(∂C).

The key observation of [HaW08] is that pathologies (2)–(4) above correspond ex-
actly to the failure of the map φX to be a local isometry. We sketch the argument. For
each 0-cell x of X, the typing map φX induces a map of links φX∗ : lk(x)→ lk(x0). This
map φX∗ embeds lk(x) as an isometric subcomplex of lk(x0). Indeed, if φx identifies
two 0-cells of lk(x), then we have a self-intersection or a direct self-osculation; likewise,
if there are 0-cells u, v of lk(x) that are not joined by an edge but φX∗(u) and φX∗(u)
are joined by an edge in lk(x0), then there is an inter-osculation.

Theorem 4.3.2 (Haglund–Wise). A non-positively curved cube complex X is special
if and only if there is a graph Σ and a local isometry X → SΣ.

This is one direction of [HaW08, Theorem 4.2]; the other direction of the theorem
is a straightforward consequence of the results of [HaW08].

Let Σ be a graph and φ : X → SΣ be a local isometry. Lifting φ to universal

covers, we obtain a genuine isometric embedding X̃ ↪→ S̃Σ. So φ induces an injection
π1(X) → AΣ. Since a covering space of a special cube complex is itself a special cube
complex, Theorem 4.3.2 thus yields a characterization of subgroups of RAAGs.

Definition. A finitely generated group is called special (respectively, compact spe-
cial) if it is the fundamental group of a non-positively curved special cube complex
(respectively, a compact, non-positively curved special cube complex).

Corollary 4.3.3. Every special group is a subgroup of a RAAG. Conversely, every
subgroup of a RAAG is the fundamental group of a special non-positively curved cube
complex.

Proof. Haglund–Wise [HaW08, Theorem 1.1] showed that every special group has
a finite-index subgroup which is a subgroup of a RAAG. Indeed, suppose that π is the
fundamental group of a special cube complex X. Take a graph Σ and a local isometry

φ : X → SΣ, by Theorem 4.3.2. The induced map on universal covers φ̃ : X̃ → S̃Σ is

then an isometry onto a convex subcomplex of S̃Σ [HaW08, Lemma 2.11]. It follows
that φ∗ is injective.
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For the partial converse, if π is a subgroup of a RAAG AΣ, then π is the funda-
mental group of a covering space X of SΣ; the Salvetti complex SΣ is special and so,
by [HaW08, Corollary 3.8], is X. �

Arbitrary subgroups of RAAGs may exhibit quite wild behavior. However, if the
cube complex X is compact, then π1(X) turns out to be a quasi-convex subgroup of a
RAAG, and hence much better behaved.

Definition. Let X be a geodesic metric space. A subspace Y of X is said to be
quasi-convex if there exists κ ≥ 0 such that any geodesic in X with endpoints in Y is
contained within the κ-neighborhood of Y .

Definition. Let π be a group with a fixed generating set S. A subgroup of π is
said to be quasi-convex (with respect to S) if it is a quasi-convex subspace of CayS(π),
the Cayley graph of π with respect to the generating set S.

In general the notion of quasi-convexity depends on the choice of generating set S.
The definition of a RAAG as given above specifies a generating set; we always take this
given choice of generating set when we talk about a quasi-convex subgroup of a RAAG.

Corollary 4.3.4. A group is compact special if and only if it is a quasi-convex
subgroup of a right-angled Artin group.

Proof. Let π be the fundamental group of a compact special cube complex X.
Just as in the proof of Corollary 4.3.3, there is a graph Σ and a map of universal covers

φ̃ : X̃ → S̃Σ that maps X̃ isometrically onto a convex subcomplex of S̃Σ. It follows

from [Hag08, Corollary 2.29] that φ̃∗π1(X̃) is a quasi-convex subgroup of π1(SΣ) = AΣ

because π1(X̂) acts cocompactly on X̃.
For the converse let π be a subgroup of a RAAG AΣ. As in the proof of Corol-

lary 4.3.3, π is the fundamental group of a covering space X of SΣ. By [Hag08,

Corollary 2.29], π acts cocompactly on a convex subcomplex Ỹ of the universal cover

of SΣ. The quotient Y = Ỹ /π is a locally convex, compact subcomplex of X and so is
special, by [HaW08, Corollary 3.9]. �

4.4. Haken hyperbolic 3-manifolds: Wise’s Theorem

In this section, we discuss Wise’s work on hyperbolic groups with a quasi-convex hi-
erarchy. One of its most striking consequences is that Haken hyperbolic 3-manifolds
are virtually fibered. The starting point for this implication is the following theorem of
Bonahon [Bon86] and Thurston, which is a special case of the Tameness Theorem. (See
also [CEG87, CEG06].) Geometrically finite surfaces were introduced in Section 4.1.

Theorem 4.4.1 (Bonahon–Thurston). Let N be a closed hyperbolic 3-manifold and
let Σ ⊆ N be an incompressible connected surface. Then either Σ lifts to a surface fiber
in a finite cover, or Σ is geometrically finite.

Hence a closed hyperbolic Haken manifold is virtually fibered or admits a geomet-
rically finite surface. Also, note that by the argument of (C.18) and Theorem 4.4.1,
every hyperbolic 3-manifold N with b1(N) ≥ 2 contains a geometrically finite surface.

Let N be a closed, hyperbolic 3-manifold that contains a geometrically finite sur-
face. Thurston proved that N in fact admits a hierarchy of geometrically finite sur-
faces [Cay94, Theorem 2.1]. In order to link up with Wise’s results we need to recast
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Thurston’s result in the language of geometric group theory. The following notion
was introduced by Gromov [Grv81b, Grv87]. See [BrH99, Section III.Γ.2], and the
references therein, for details.

Definition. A group is called word-hyperbolic if it acts properly discontinuously
and cocompactly by isometries on a Gromov-hyperbolic space.

For a word-hyperbolic group π, the quasi-convexity of a subgroup of π does not
depend on the choice of generating set [BrH99, Corollary III.Γ.3.6], so we may speak
unambiguously of a quasi-convex subgroup of π.

Next, we introduce the class QH of groups with a quasi-convex hierarchy.

Definition. The class QH is defined to be the smallest class of finitely generated
groups that is closed under isomorphism and satisfies the following properties.

(1) {1} ∈ QH.
(2) If A,B ∈ QH and the inclusion map C ↪→ A ∗C B is a quasi-isometric embed-

ding, then A ∗C B ∈ QH.
(3) If A ∈ QH and the inclusion map C ↪→ A∗C is a quasi-isometric embedding,

then A∗C ∈ QH.

A finitely generated subgroup of a word-hyperbolic group is quasi-isometrically
embedded if and only if it is quasi-convex, which justifies the terminology. (See,
e.g., [BrH99, Corollary III.Γ.3.6].)

The next proposition makes it possible to go from hyperbolic 3-manifolds to the
purely group-theoretic realm.

Proposition 4.4.2. Let N be a closed hyperbolic 3-manifold. Then

(1) π = π1(N) is word-hyperbolic;
(2) a subgroup of π is geometrically finite if and only if it is quasi-convex;
(3) if N has a hierarchy of geometrically finite surfaces, then π1(N) ∈ QH.

Proof. For the first statement, note that H3 is Gromov-hyperbolic and so fun-
damental groups of closed hyperbolic manifolds are word-hyperbolic; see [BrH99] for
details. We refer to [Swp93, Theorem 1.1 and Proposition 1.3] and [KaS96, Theorem 2]
for proofs of the second statement. The second statement implies the third. �

We thus obtain a reinterpretation of the aforementioned theorem of Thurston:

Theorem 4.4.3 (Thurston). The fundamental group of each closed, hyperbolic 3-
manifold containing a geometrically finite surface is word-hyperbolic and in QH.

The main theorem of [Wis12a], Theorem 13.3, concerns word-hyperbolic groups
with a quasi-convex hierarchy.

Theorem 4.4.4 (Wise). Word-hyperbolic groups in QH are virtually compact spe-
cial.

We immediately obtain the following corollary.

Corollary 4.4.5. If N is a closed hyperbolic 3-manifold that contains a geometri-
cally finite surface, then π1(N) is virtually compact special.
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The proof of Theorem 4.4.4 is beyond the scope of this book. However, we will state
two of the most important ingredients here. Recall that a subgroup H of a group G is
called malnormal if gHg−1 ∩H = {1} for every g ∈ G \H. A finite set H of subgroups
of G is called almost malnormal if for all g ∈ G and H,H ′ ∈ H with g /∈ H or H 6= H ′,
one has |gHg−1 ∩H ′| <∞.

The first ingredient is the Malnormal Special Combination Theorem of Haglund–
Hsu–Wise, which is a gluing theorem for virtually compact special groups. The state-
ment we give is Theorem 11.3 of [Wis12a], which is a consequence of the main theorems
of [HaW12] and [HsW12].

Theorem 4.4.6 (Haglund–Hsu–Wise). Let G = A ∗C B (respectively G = A∗C) be
word-hyperbolic, where C is almost malnormal and quasiconvex and A,B are (respectively
A is) virtually compact special. Then G is virtually compact special.

The second ingredient is Wise’s Malnormal Special Quotient Theorem [Wis12a,
Theorem 12.3]. (An alternative proof of this theorem is in [AGM14, Corollary 2.8].)
This asserts the profound fact that the result of a (group-theoretic) Dehn filling on a
virtually compact special word-hyperbolic group is still virtually compact special, for
all sufficiently deep (in a suitable sense) fillings.

Theorem 4.4.7 (Wise). Suppose π is a word-hyperbolic and virtually compact special
group, and {H1, . . . ,Hn} is an almost malnormal family of subgroups of π. Then there
are finite-index subgroups Ki of Hi such that, for all finite-index subgroups Li of Ki,
the quotient π/〈〈L1, . . . , Ln〉〉 is word-hyperbolic and virtually compact special.

Wise also proved a generalization of Theorem 4.4.4 to the case of certain rela-
tively hyperbolic groups, from which he deduces the corresponding result in the cusped
case [Wis12a, Theorem 16.28 and Corollary 14.16].

Theorem 4.4.8 (Wise). The fundamental group of each non-closed hyperbolic 3-
manifold is virtually compact special.

This last theorem relies on extending some of Wise’s techniques from the word-
hyperbolic case to the relatively hyperbolic case. Some foundational results for the
relatively hyperbolic case were proved in [HrW14].

4.5. Quasi-Fuchsian surface subgroups: the work of Kahn and Markovic

As discussed in Section 4.4, Wise’s work applies to hyperbolic 3-manifolds with a geo-
metrically finite hierarchy. A non-Haken 3-manifold, on the other hand, by definition
has no hierarchy. Likewise, although Haken hyperbolic 3-manifolds without a geomet-
rically finite hierarchy are virtually fibered by Theorem 4.4.1, Thurston’s Question 15
(LERF), as well as other important open problems such as largeness, do not follow from
Wise’s theorems in this case.

The starting point for dealing with hyperbolic 3-manifolds without a geometrically
finite hierarchy is provided by Kahn and Markovic’s proof of the Surface Subgroup
Conjecture. More precisely, as a key step towards answering Thurston’s question in
the affirmative, Kahn–Markovic [KM12a] showed that the fundamental group of any
closed hyperbolic 3-manifold contains a surface group. In fact they proved a significantly
stronger statement. In order to state their theorem precisely, we need two additional
definitions. In the following, N is a closed hyperbolic 3-manifold.
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(1) We refer to [KAG86, p. 4] and [KAG86, p. 10] for the definition of a quasi-
Fuchsian surface group. A surface subgroup Γ of π1(N) is quasi-Fuchsian if
and only if it is geometrically finite [Oh02, Lemma 4.66]. (If N has cusps then
we need to add the condition that Γ has no ‘accidental’ parabolic elements.)

(2) We fix an identification of π1(N) with a discrete subgroup of Isom(H3). We
say that N contains a dense set of quasi-Fuchsian surface groups if for each
great circle C of ∂H3 = S2 there exists a sequence of π1-injective immersions
ιi : Σi → N of surfaces Σi such that the following hold:
(a) for each i the group (ιi)∗(π1(Σi)) is a quasi-Fuchsian surface group,
(b) the sequence (∂Σi) converges to C in the Hausdorff metric on ∂H3.

We are now able to state the theorem of Kahn–Markovic [KM12a]. See also [Ber12]
and [Han14]; this particular formulation is [Ber12, Théorème 5.3].

Theorem 4.5.1 (Kahn–Markovic). Every closed hyperbolic 3-manifold contains a
dense set of quasi-Fuchsian surface groups.

The theme that closed hyperbolic 3-manifolds contain a wealth of quasi-Fuchsian
surface was further developed in [KM12b] and [LMa13].

4.6. Agol’s Theorem

The following theorem of Bergeron–Wise [BeW12, Theorem 1.4], building extensively
on work of Sageev [Sag95, Sag97], makes it possible to approach hyperbolic 3-manifolds
via non-positively curved cube complexes.

Theorem 4.6.1 (Sageev, Bergeron–Wise). Let N be a closed hyperbolic 3-manifold
which contains a dense set of quasi-Fuchsian surface groups. Then π1(N) is also the
fundamental group of a compact non-positively curved cube complex.

In the previous section we saw that Kahn–Markovic showed that every closed hy-
perbolic 3-manifold satisfies the hypothesis of the theorem.

The next theorem was conjectured by Wise [Wis12a] and proved by Agol [Ag13].

Theorem 4.6.2 (Agol). If the fundamental group π of a compact, non-positively
curved cube complex is word-hyperbolic, then π is virtually compact special.

The proof of Theorem 4.6.2 relies heavily on results in the appendix to [Ag13],
which are due to Agol, Groves and Manning. The results of this appendix extend the
techniques of [AGM09] to word-hyperbolic groups with torsion, and combine them
with the Malnormal Special Quotient Theorem 4.4.7. We refer to [Bea14, Section 8]
for a summary of Agol’s proof and to [Ber14] for another account of this proof.

The combination of Theorems 4.5.1, 4.6.1 and 4.6.2 now implies Theorem 4.2.2 for
closed hyperbolic 3-manifolds.

4.7. 3-manifolds with non-trivial JSJ-decomposition

Although a grasp of the hyperbolic case is key to an understanding of all 3-manifolds, a
good understanding of hyperbolic 3-manifolds and of Seifert fibered manifolds does not
necessarily immediately lead to answers to questions on 3-manifolds with non-trivial
JSJ-decomposition. For example, by (C.7) the fundamental group of a hyperbolic 3-
manifold is linear over C, but it is still an open question whether the fundamental group
of any closed irreducible 3-manifold is linear. (See Section 7.3.1 below.)
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In the following we say that a 3-manifold with empty or toroidal boundary is non-
positively curved if its interior admits a complete non-positively curved Riemannian
metric. Furthermore, a compact, orientable, irreducible 3-manifold with empty or
toroidal boundary is called a graph manifold if all of its JSJ-components are Seifert
fibered manifolds. In particular Seifert fibered manifolds are graph manifolds. These
concepts are related the following theorem due to Leeb [Leb95].

Theorem 4.7.1 (Leeb). Let N be an irreducible 3-manifold with empty or toroidal
boundary. If N is not a closed graph manifold, then N is non-positively curved.

The question of which closed graph manifolds are non-positively-curved was treated
in detail by Buyalo and Svetlov [BuS05]. The following theorem is due to Liu [Liu13].

Theorem 4.7.2 (Liu). Let N be an aspherical graph manifold. Then π1(N) is
virtually special if and only if N is non-positively curved.

Remarks.

(1) Liu [Liu13], building on the ideas and results of [Wis12a], proved Theo-
rem 4.7.2 in the case where the JSJ-decomposition of N is non-trivial. The
case that N is a Seifert fibered 3-manifold is well known to the experts and
follows ‘by inspection.’ More precisely, let N be an aspherical Seifert fibered
3-manifold. If π = π1(N) is virtually special, then by the arguments of Sec-
tion 5 (see (H.5), (H.17) and (H.18)) the group π virtually retracts onto each
of its infinite cyclic subgroups. This implies easily that π is virtually special
if and only if its underlying geometry is either Euclidean or H × R. On the
other hand it is well known that these are precisely the geometries of aspheri-
cal Seifert fibered 3-manifolds supporting a non-positively curved metric (see,
e.g., [ChE80, Eb82, Leb95]).

(2) By Theorem 4.7.1 graph manifolds with non-empty boundary are non-positive-
ly curved. Liu thus showed in particular that fundamental groups of graph
manifolds with non-empty boundary are virtually special; this was also ob-
tained by Przytycki–Wise [PW14a].

(3) The fundamental group of many graph manifolds are not virtually special:
(a) There exist closed graph manifolds with non-trivial JSJ-decompositions

that are not virtually fibered (see, e.g., [LuW93, p. 86] and [Nemd96,
Theorem D]), and hence by (H.5), (H.17) and (H.20) are not non-positi-
vely curved and their fundamental groups are not virtually special; see
also [BuK96a, BuK96b], [Leb95, Example 4.2] and [BuS05].

(b) The fundamental groups of non-trivial torus bundles are not virtually
special by (H.5), (H.18) and (H.19) (cf. [Ag08, p. 271]).

(c) By [Liu13, Section 2.2] and [BuS05] there exist fibered graph mani-
folds with non-trivial JSJ-decomposition which are not torus bundles, and
which are not virtually special.

(4) Hagen–Przytycki [HaP13, Theorem B] showed that if N is a graph manifold
such that π1(N) is virtually cocompactly cubulated (e.g., if π1(N) is virtually
compact special), then N is ‘chargeless.’ Since many, arguably most, graph
manifolds have non-zero charges, it follows that the fundamental groups of
many non-positively curved graph manifolds (closed or with boundary) are
not virtually cocompactly cubulated, let alone virtually compact special.
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Przytycki–Wise [PW12, Theorem 1.1], building on [Wis12a], proved the following
theorem, which complements the Virtually Compact Special Theorem of Agol, Kahn–
Markovic and Wise, and Liu’s Theorem.

Theorem 4.7.3 (Przytycki–Wise). The fundamental group of an irreducible 3-mani-
fold with empty or toroidal boundary, which is neither hyperbolic nor a graph manifold,
is virtually special.

The combination of the Virtually Compact Special Theorem of Agol, Kahn–Marko-
vic and Wise, the results of Liu and Przytycki–Wise and the theorem of Leeb now gives
us the following succinct and beautiful statement:

Theorem 4.7.4. A compact, orientable, aspherical 3-manifold N with empty or
toroidal boundary is non-positively curved if and only if π1(N) is virtually special.

Remarks.

(1) The connection between π1(N) being virtually special and N being non-posi-
tively curved that we presented is very indirect. It is an interesting question
whether one can find a more direct connection between these two notions.

(2) By the Virtually Compact Special Theorem, the fundamental groups of hy-
perbolic 3-manifolds actually are virtually compact special. It seems to be
unknown whether fundamental groups of non-positively curved irreducible non-
hyperbolic 3-manifolds are also virtually compact special.

4.8. 3-manifolds with more general boundary

For simplicity of exposition, we have only considered compact 3-manifolds with empty
or toroidal boundary. However, the Virtually Special Theorems above apply equally
well in the case of general boundary, and in this section we give some details. We
emphasize that we make no claim to the originality of any of the results of this section.

The main theorem of [PW12] also applies in the case with general boundary, and
so we have the following addendum to Theorem 4.7.4.

Theorem 4.8.1 (Przytycki–Wise). The fundamental group of a compact, orientable,
aspherical 3-manifold N with non-empty boundary is virtually special.

Remark. Compressing the boundary and doubling along a suitable subsurface, one
may also deduce that π1(N) is a subgroup of a RAAG directly from Theorem 4.7.4.

Invoking suitably general versions of the torus decomposition (e.g., [Bon02, Theo-
rem 3.4] or [Hat, Theorem 1.9]) and the Geometrization Theorem for manifolds with
boundary (e.g., [Kap01, Theorem 1.43]), the proof of Theorem 4.7.1 applies equally
well in this setting, and one obtains the following statement. (See [Bek13, Theorem 2.3]
for further details.)

Theorem 4.8.2. The interior of a compact, orientable, aspherical 3-manifold with
non-empty boundary admits a complete, non-positively curved, Riemannian metric.

Remark. Bridson [Brd01, Theorem 4.3] proved that the interior of a compact,
orientable, aspherical 3-manifold N with non-empty boundary admits an incomplete,
non-positively curved, Riemannian metric that extends to a non-positively curved (i.e.,
locally CAT(0)) metric on the whole of N .

Combining Theorems 4.8.1 and 4.8.2, the hypotheses on the boundary in Theo-
rem 4.7.4 can be removed. For completeness, we state the most general result here.
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Theorem 4.8.3 (Agol, Liu, Przytycki, Wise). Let N be a compact, orientable, as-
pherical 3-manifold with possibly empty boundary. Then π1(N) is virtually special if
and only if N is non-positively curved.

Next, we turn to the case of a hyperbolic 3-manifold with infinite volume. Recall
from the discussion preceding Convention 1.7 that these are precisely the manifolds that
admit a complete hyperbolic structure which are either homeomorphic to T 2×I or that
have a non-toroidal boundary component. Appealing to the theory of Kleinian groups,
the (implicit) hypotheses of Theorem 4.2.2 can be relaxed. We begin with a classical
result about Kleinian groups [Cay08, Theorem 11.1].

Theorem 4.8.4. Let N 6= T 2× I be a hyperbolic 3-manifold of infinite volume. The
fundamental group of N has a geometrically finite representation as a Kleinian group
in which only the fundamental groups of toroidal boundary components are parabolic.

Now we can apply a theorem of Brooks [Brk86, Theorem 2] to deduce that π1(N)
can be embedded in the fundamental group of a hyperbolic 3-manifold of finite volume.

Theorem 4.8.5. Let N 6= T 2 × I be a hyperbolic 3-manifold of infinite volume.
There exists a hyperbolic 3-manifold M of finite volume such that π1(N) embeds into
π1(M) as a geometrically finite subgroup and only the fundamental groups of toroidal
boundary components are parabolic.

Now we obtain the following theorem, which says that π1(N) is virtually compact
special (cf. Theorem 14.29 and the paragraph before Corollary 14.33 of [Wis12a]).

Theorem 4.8.6 (Wise). Let N be a hyperbolic 3-manifold of infinite volume. The
group π1(N) is virtually compact special.

Proof. Let M be as in Theorem 4.8.5. By Theorem 4.4.8, π1(M) is virtually com-
pact special. We argue that π1(N) is virtually compact special as well. Indeed, π1(N) is
a geometrically finite, and hence relatively quasiconvex, subgroup of π1(M); see (L.18).
As π1(N) contains any cusp subgroup that it intersects non-trivially, it is in fact a fully
relatively quasiconvex subgroup of π1(M), and is therefore virtually compact special
by [CDW12, Proposition 5.5] or [SaW12, Theorem 1.1]. �

As a consequence of Theorem 4.8.1 and the discussion in Section 5, we obtain some
properties of fundamental groups of 3-manifolds with general boundary:

Corollary 4.8.7. Let N be a compact, orientable, aspherical 3-manifold with non-
empty boundary with at least one non-toroidal boundary component. Then π1(N) is

(1) linear over Z;
(2) RFRS (see (F.4) for a definition); and
(3) LERF provided N is hyperbolic.

Proof. It follows from Theorem 4.8.1 that π1(N) is virtually special. Linearity
over Z and RFRS now both follow from Theorem 4.8.1: see (H.5), (H.17) and (H.31) in
Section 5 for details. If N is hyperbolic, then by Theorem 4.8.5, π1(N) is a subgroup
of π1(M), where M is a hyperbolic 3-manifold of finite volume. Because π1(M) is
LERF (H.11), it follows that π1(N) is also LERF. �
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4.9. Summary of previous research on the virtual conjectures

Questions 15–18 of Thurston, stated in Section 4.2 above, have been of central concern
in 3-manifold topology over the last 30 years. The study of these questions lead to
various other questions and conjectures. Perhaps the most important of these is the
Lubotzky–Sarnak Conjecture (see [Lub96a, Conjecture 4.2]), that there is no closed hy-
perbolic 3-manifold with fundamental group having Property (τ). (We refer to [Lub94,
Definition 4.3.1] and [LuZ03] for the definition of Property (τ).)

N virtually Haken

if π1(N) is LERF

vb1(N ;Z) ≥ 1

vb1(N ;Z) =∞

π1(N) large N virtually fibered

π1(N) contains a surface group

.

.

.

π1(N) does not have
Property (τ)

Flowchart 3. Virtual properties of 3-manifolds

In Flowchart 3 we list various (virtual) properties of 3-manifold groups and logical
implications between them. Some of the implications are obvious, and two implications
follow from (C.17) and (C.22). Note that if a 3-manifold N contains a surface group,
then there is a π1-injective morphism π1(Σ)→ π1(N), for a closed surface Σ with genus
at least 1. If in addition π1(N) is LERF, then there is a finite cover of N such that the
immersion lifts to an embedding. (See [Sco78, Lemma 1.4] for details.) Finally note
that by [Lub96a, p. 444], if vb1(N ;Z) ≥ 1, then π1(N) does not have Property (τ).

Now we will survey some of the work in the past on Thurston’s questions and the
properties of Flowchart 3. The literature is so extensive that we cannot hope to achieve
completeness. Beyond the summary below we also refer to the survey papers by Long–
Reid [LoR05] and Lackenby [Lac11] for further details and references.

We arrange this survey by grouping references under the question that they address.

Question 4.9.1 (Surface Subgroup Conjecture). Let N be a closed hyperbolic 3-
manifold. Does π1(N) contain a (quasi-Fuchsian) surface group?

The following papers attack Question 4.9.1.

(1) Cooper–Long–Reid [CLR94, Theorem 1.5] showed that if N is a closed hyper-
bolic 3-manifold which fibers over S1, then there exists a π1-injective immersion
of a quasi-Fuchsian surface into N . We note one important consequence: if N
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is a hyperbolic 3-manifold such that π1(N) is LERF and contains a surface
subgroup, then π1(N) is large (cf. (C.15)).

(2) The work of [CLR94] was extended by Masters [Mas06b, Theorem 1.1], which
in turn allowed Dufour [Duf12, p. 6] to show that if N is a closed hyperbolic
3-manifold which is virtually fibered, then π1(N) is also the fundamental group
of a compact non-positively curved cube complex. This proof does not require
the Surface Subgroup Theorem 4.5.1 of Kahn–Markovic [KM12a].

(3) Cooper–Long [CoL01] and Li [Li02] showed that given a hyperbolic 3-mani-
fold with one boundary component, almost all Dehn fillings result in a 3-
manifold containing a surface group. This result was extended by Bart [Bar01,
Bar04], Wu [Wu04] and Easson [Ea06].

(4) Masters–Zhang [MaZ08, MaZ09] showed that any cusped hyperbolic 3-mani-
fold contains a quasi-Fuchsian surface group which implies that the same con-
clusion holds for ‘most’ Dehn fillings. (See also [BaC14].)

(5) Lackenby [Lac10, Theorem 1.2] showed that closed arithmetic hyperbolic 3-
manifolds contain surface groups.

(6) Bowen [Bowe04] attacked the Surface Subgroup Conjecture with methods
which foreshadowed the approach taken by Kahn–Markovic [KM12a].

Question 4.9.2 (Virtually Haken Conjecture). Is every closed hyperbolic 3-manifold
virtually Haken?

Here is a summary of approaches towards the Virtually Haken Conjecture.

(1) Thurston [Thu79] showed that all but finitely many Dehn fillings of the figure-
8 knot complement are not Haken. For this reason, there has been consid-
erable interest in the Virtually Haken Conjecture for fillings of 3-manifolds.
A lot of work in this direction was done by various people: Aitchison–Ru-
binstein [AiR99b], Aitchison–Matsumoti–Rubinstein [AMR97, AMR99],
Baker [Bak88, Bak89, Bak90, Bak91], Boyer–Zhang [BrZ00], Cooper–
Long [CoL99] (building on [FF98]), Cooper–Walsh [CoW06a, CoW06b],
Hempel [Hem90], Kojima–Long [KLg88], Masters [Mas00, Mas07], Mas-
ters–Menasco–Zhang [MMZ04, MMZ09], Morita [Moa86], as well as by
X. Zhang [Zha05] and Y. Zhang [Zhb12].

(2) Hempel [Hem82, Hem84, Hem85a] and Wang [Wag90], [Wag93, p. 192]
studied the Virtually Haken Conjecture for 3-manifolds which admit an orien-
tation reversing involution.

(3) Long [Lo87] showed that every hyperbolic 3-manifold which admits a totally
geodesic immersion of a closed surface is virtually Haken. (See also [Zha05,
Corollary 1.2].)

(4) We refer to Millson [Mis76], Clozel [Cl87], Labesse–Schwermer [LaS86],
Xue [Xu92], Li–Millson [LiM93], Rajan [Raj04], Reid [Red07] and Schwer-
mer [Scr04, Scr10] for details of approaches to the Virtually Haken Conjecture
for arithmetic hyperbolic 3-manifolds using number-theoretic methods.

(5) Reznikov [Rez97] studied hyperbolic 3-manifolds N with vb1(N) = 0.
(6) Experimental evidence towards the validity of the conjecture was provided by

Dunfield–Thurston [DnTb03].
(7) We refer to Lubotzky [Lub96b] and Lackenby [Lac06, Lac07b, Lac09] for

work towards the stronger conjecture that fundamental groups of hyperbolic
3-manifolds are large. (See Question 4.9.5 below.)
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Question 4.9.3. Let N be a hyperbolic 3-manifold. Is π1(N) LERF?

The following papers gave evidence for an affirmative answer to Question 4.9.3.
Note that by the Subgroup Tameness Theorem, π1(N) is LERF if and only if every
geometrically finite subgroup is separable, i.e., π1(N) is GFERF. See (H.11) for details.

(1) Let N be a compact hyperbolic 3-manifold and Σ a totally geodesic immersed
surface in N . Long [Lo87] proved that π1(Σ) is separable in π1(N).

(2) The first examples of hyperbolic 3-manifolds with LERF fundamental groups
were given by Gitik [Git99b].

(3) Agol–Long–Reid [ALR01] showed that geometrically finite subgroups of Bian-
chi groups are separable.

(4) Wise [Wis06] showed that the fundamental group of the figure-8 knot com-
plement is LERF.

(5) Agol–Groves–Manning [AGM09] showed that fundamental groups of hyper-
bolic 3-manifolds are LERF if every word-hyperbolic group is residually finite.

(6) After the definition of special complexes was given in [HaW08], it was shown
that various classes of hyperbolic 3-manifolds had virtually special fundamental
groups, and hence were LERF (and virtually fibered). The following were
shown to be virtually compact special:
(a) ‘standard’ arithmetic 3-manifolds [BHW11];
(b) certain branched covers of the figure-8 knot [Ber08, Theorem 1.1];
(c) manifolds built from gluing all-right ideal polyhedra, such as augmented

link complements [CDW12].
(7) As we saw in the previous sections, the fact that a hyperbolic 3-manifold

group can be cubulated played an essential rôle in showing that the group is
GFERF. Aitchison–Rubinstein [AiR89, AiR92] showed that alternating link
complements can be cubulated.

Question 4.9.4 (Lubotzky–Sarnak Conjecture). Let N be a closed hyperbolic 3-
manifold. Is it true that π1(N) does not have Property (τ)?

The following represents some of the major work on the Lubotzky–Sarnak Conjec-
ture. We also refer to [Lac11, Section 7] and [LuZ03] for further details.

(1) Lubotzky [Lub96a] stated the conjecture and proved that certain arithmetic
3-manifolds have positive virtual first Betti number, extending the above-
mentioned work of Millson [Mis76] and Clozel [Cl87].

(2) Lackenby [Lac06, Theorem 1.7] showed that the Lubotzky–Sarnak Conjecture,
together with a conjecture about Heegaard gradients, implies the Virtually
Haken Conjecture.

(3) Long–Lubotzky–Reid [LLuR08] proved that the fundamental group of every
hyperbolic 3-manifold has Property (τ) with respect to some cofinal regular
filtration of π1(N).

(4) Lackenby–Long–Reid [LaLR08b] proved that if the fundamental group of a
hyperbolic 3-manifold N is LERF, then π1(N) does not have Property (τ).

Questions 4.9.5. Let N be a hyperbolic 3-manifold with b1(N) ≥ 1.

(1) Does N admit a finite cover N ′ with b1(N ′) ≥ 2?
(2) Is vb1(N) =∞?
(3) Is π1(N) large?
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The virtual Betti numbers of hyperbolic 3-manifolds in particular were studied by
the following authors:

(1) Cooper–Long–Reid [CLR97, Theorem 1.3] showed that if N is a compact,
irreducible 3-manifold with non-trivial incompressible boundary, then either N
is covered by N = T 2 × I, or π1(N) is large. (See also [But04, Corollary 6]
and [Lac07a, Theorem 2.1].)

(2) Cooper–Long–Reid [CLR07, Theorem 1.3], Venkataramana [Ven08, Corol-
lary 1] and Agol [Ag06, Theorem 0.2] proved that if N is an arithmetic 3-
manifold, then vb1(N) ≥ 1 ⇒ vb1(N) = ∞. Further work of Lackenby–Long–
Reid [LaLR08a] shows that if vb1(N) ≥ 1, then π1(N) is large.

(3) Long and Oertel [LO97, Theorem 2.5] gave many examples of fibered 3-
manifolds with vb1(N ;Z) = ∞. Masters [Mas02, Corollary 1.2] showed that
vb1(N ;Z) =∞ for every fibered 3-manifold N whose fiber has genus 2.

(4) Kionke–Schwermer [KiS12] showed that certain arithmetic hyperbolic 3-mani-
folds admit a cofinal tower with rapid growth of first Betti numbers.

(5) Cochran and Masters [CMa06] studied the growth of Betti numbers in abelian
covers of 3-manifolds with Betti number equal to two or three.

(6) Button [But11a] gave computational evidence towards the conjecture that the
fundamental group of any hyperbolic 3-manifold N with b1(N) ≥ 1 is large.

(7) Koberda [Kob12a, Kob14] gave a detailed study of Betti numbers of finite
covers of fibered 3-manifolds.

Question 4.9.6 (Virtually Fibered Conjecture). Is every hyperbolic 3-manifold vir-
tually fibered?

The following papers deal with the Virtually Fibered Conjecture:

(1) An affirmative answer was given for specific classes of 3-manifolds (e.g., certain
knot and link complements) by Agol–Boyer–Zhang [ABZ08], Aitchison–Ru-
binstein [AiR99a], DeBlois [DeB10], Gabai [Gab86], Guo–Zhang [GZ09],
Reid [Red95], Leininger [Ler02], and Walsh [Wah05].

(2) Button [But05] gave computational evidence towards an affirmative answer
to the Virtually Fibered Conjecture.

(3) Sakuma [Sak81], Brooks [Brk85], and Montesinos [Mon86, Mon87] showed
that every closed, orientable 3-manifold admits a 2-fold branched cover which
is fibered and hyperbolic.

(4) Long–Reid [LoR08b] showed that arithmetic hyperbolic 3-manifolds which
are fibered admit in fact finite covers with arbitrarily many fibered faces in the
Thurston norm ball. (See also Dunfield–Ramakrishnan [DR10] and [Ag08,
Theorem 7.1].)

(5) Lackenby [Lac06, p. 320] gave an approach to the Virtually Fibered Conjec-
ture using ‘Heegaard gradients.’ (See also [Lac11].) This idea was further
developed by Lackenby [Lac04], Maher [Mah05] and Renard [Ren10]. The
latter author gave another approach [Ren14a, Ren14b] to the conjecture.

(6) Agol [Ag08, Theorem 5.1] showed that aspherical 3-manifolds with virtually
RFRS fundamental groups are virtually fibered. (See (F.4) for the defini-
tion of RFRS.) The first examples of 3-manifolds with virtually RFRS funda-
mental groups were given by Agol [Ag08, Corollary 2.3], Bergeron [Ber08,
Theorem 1.1], Bergeron–Haglund–Wise [BHW11], and Chesebro–DeBlois–
Wilton [CDW12].



CHAPTER 5

Consequences of the Virtually Compact Special Theorem

In Chapter 4 we explained the content and the significance of the Virtually Com-
pact Special Theorem of Agol, Kahn–Markovic and Wise. In the present chapter we will
outline the numerous consequences of this theorem. As in Chapter 3, we will organize
most results in a flowchart (Flowchart 4). Section 5.1 contains the definitions of the
properties discussed in the flowchart, Section 5.2 contains the justifications for the im-
plications in the flowchart, and Section 5.3 lists some additional material not contained
in the flowchart. Finally, Section 5.4 contains detailed proofs of a few statements made
earlier in the chapter.

5.1. Definitions and Conventions

In this section we summarize various consequences of the fundamental group of a 3-
manifold being virtually (compact) special. As in Section 3 we present the results in a
flowchart, see p. 84. We start out with additional definitions needed for Flowchart 4.
Again the definitions are roughly in the order that they appear in the flowchart. In the
items below we let π be a group.

(F.1) One says that π virtually retracts onto a subgroup A ⊆ π if there exists a finite-
index subgroup π′ ⊆ π that contains A and a morphism π′ → A which is the
identity on A. In this case, we say that A is a virtual retract of π.

(F.2) We call π conjugacy separable if for any two non-conjugate elements g, h ∈ π
there exists a morphism α from π onto a finite group in which α(g) and α(h)
are non-conjugate. A group is called hereditarily conjugacy separable if any of
its finite-index (not necessarily normal) subgroups is conjugacy separable.

(F.3) For a hyperbolic 3-manifold N , we say that π1(N) is GFERF if all geometrically
finite subgroups are separable.

(F.4) One calls π residually finite rationally solvable (RFRS ) if there exists a se-
quence {πn} of subgroups of π such that

⋂
n πn = {1} and for any n,

(1) the subgroup πn is normal and of finite index in π;
(2) πn ⊇ πn+1, and the natural surjection πn → πn/πn+1 factors through

πn → H1(πn;Z)/torsion.
(F.5) Let N be a compact, orientable 3–manifold. From Section 4.1 recall that N is

said to be fibered if it admits the structure of a surface bundle over S1. We
call φ ∈ H1(N ;R) is fibered if it can be represented by a non-degenerate closed
1-form.

By [Tis70] an integral class φ ∈ H1(N ;Z) = Hom(π1(N),Z) is fibered if
and only if there exists a surface bundle p : N → S1 such that the induced map
p∗ : π1(N)→ π1(S1) = Z coincides with φ.

(F.6) A torsion-free group π satisfies the Atiyah Conjecture if given any finite CW-
complex X and given any epimorphism α : π1(X)→ π all the L2-Betti numbers

81
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b
(2)
i (X,α) are integers. We refer to [At76, p. 72], [Ecn00, p. 209] and [Lü02,

Chapter 10] for details.
(F.7) A group has the finitely generated intersection property (f.g.i.p.) if the inter-

section of any two of its finitely generated subgroups is finitely generated.
(F.8) The group π is called poly-free if there is a finite sequence of subgroups

π = π0 B π1 B π2 B · · ·B πn = {1}

of π such that for any i ∈ {0, . . . , n − 1} the quotient group πi/πi+1 is a (not
necessarily finitely-generated) free group.

(F.9) We denote the profinite completion of π by π̂. (We refer to [RiZ10, Sec-
tion 3.2] and [Win98, Section 1] for the definition and for the main properties.)
The group π is called good if the natural morphism H∗(π̂;A) → H∗(π;A) is
an isomorphism for any finite abelian group A with a π-action. (See [Ser97,
D.2.6 Exercise 2].)

(F.10) The unitary dual of a group is defined to be the set of equivalence classes
of its irreducible unitary representations. The unitary dual can be viewed as
a topological space with respect to the Fell topology. One says that π has
Property FD if the finite representations of π are dense in its unitary dual. We
refer to [BdlHV08, Appendix F.2] and [LuSh04] for details.

(F.11) The class of elementary-amenable groups is the smallest class of groups which
contains all abelian and all finite groups, which is extension closed and which
is closed under directed unions.

(F.12) The group π has the torsion-free elementary-amenable factorization property
if any homomorphism to a finite group factors through a homomorphism to a
torsion-free elementary-amenable group.

(F.13) The group π is called potent if for any non-trivial g ∈ π and any n there exists
a morphism α of π onto a finite group such that α(g) has order n.

(F.14) A subgroup of π is called characteristic if it is preserved by every automorphism
of π. Every characteristic subgroup of π is normal. One calls π characteristically
potent if for all g ∈ π \ {1} and any n there exists a finite-index characteristic
subgroup π′ ⊆ π such that gπ′ has order n in π/π′.

(F.15) The group π is called weakly characteristically potent if for any g ∈ π\{1} there
exists an m such that for any n there is a characteristic finite-index subgroup
π′ ⊆ π such that gπ′ has order mn in π/π′.

(F.16) Suppose π is torsion-free. We say that g1, . . . , gn ∈ π are independent if distinct
pairs of elements do not have conjugate non-trivial powers; that is, if there are
k, l ∈ Z \ {0} and c ∈ π with cgki c

−1 = glj , then k = l. The group π is called
omnipotent if given any independent g1, . . . , gn ∈ π there exists an m ≥ 1 such
that for any l1, . . . , ln ∈ N there exists a morphism α from π to a finite group
such that the order of α(gi) is lim. This definition was introduced by Wise
in [Wis00, Definition 3.2].

(F.17) See [Lub94, Definition 4.3.1] and [LuZ03] for the definition of Property (τ).

Flowchart 4 is supposed to be read in the same manner as Flowchart 1. For the reader’s
convenience we recall some of the conventions.

(G.1) In Flowchart 4, N is a compact, orientable, irreducible 3-manifold such that its
boundary consists of a (possibly empty) collection of tori. Moreover we assume
throughout that π := π1(N) is neither solvable nor finite. Without these extra
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assumptions some of the implications do not hold. For example the fundamental
group of the 3-torus T 3 is a RAAG, but π1(T 3) is not large.

(G.2) In the flowchart the top arrow splits into several arrows. In this case exactly one
of the possible three conclusions holds.

(G.3) Red arrows indicate that the conclusion holds virtually, e.g., Arrow 20 says that
if π = π1(N) is RFRS, then N is virtually fibered.

(G.4) If a property P of groups is written in green, then the following conclusion
always holds: If N is a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary such that the fundamental group of a finite (not necessarily
regular) cover of N has Property P, then π1(N) also has Property P. In (I.1)–
(I.7) below we will show that the various properties written in green do indeed
have the above property.

(G.5) The Conventions (F.3) and (F.4) imply that a concatenation of red and black
arrows which leads to a green property means that the initial group also has the
green property.

(G.6) An arrow with a condition next to it indicates that this conclusion only holds if
this extra condition is satisfied.

5.2. Justifications

Now we give the justifications for the implications of Flowchart 4. As in Flowchart 1 we
strive for maximal generality. Unless we say otherwise, we will therefore only assume
that N is a connected 3-manifold and each justification can be read independently of
all the other steps.

(H.1) Suppose N is compact, orientable, irreducible, with empty or toroidal boundary.
It follows from the Geometrization Theorem 1.7.6 that N is either hyperbolic
or a graph manifold, or the JSJ-decomposition of N is non-trivial with at least
one hyperbolic JSJ-component.

(H.2) The Virtually Compact Special Theorem proved by Agol [Ag13], Kahn–Marko-
vic [KM12a], and Wise [Wis12a] implies that if N is hyperbolic, then π1(N)
is virtually compact special. We refer to Section 4 for details.

(H.3) Suppose N is irreducible with empty or toroidal boundary, and that it is neither
hyperbolic nor a graph manifold. Then π1(N) is virtually special by the theorem
of Przytycki–Wise. (See [PW12, Theorem 1.1] and Theorem 4.7.3.)

(H.4) Suppose N is an aspherical graph manifold. Liu [Liu13] (see Theorem 4.7.2)
showed that π1(N) is virtually special if and only if N is non-positively curved.
By Theorem 4.7.1 a graph manifold with non-empty boundary is non-positively
curved. Przytycki–Wise [PW14a] gave an alternative proof that fundamental
groups of graph manifolds with non-empty boundary are virtually special.

As mentioned in Section 4.7, by Hagen–Przytycki [HaP13, Theorem B]
the fundamental group of many (arguably, ‘most’) non-positively curved graph
manifolds (closed or with boundary) are not virtually compact special.

(H.5) In Corollary 4.3.3 we saw that a group is virtually special if and only if it is
virtually a subgroup of a RAAG. In fact a somewhat stronger statement holds:
as Agol [Ag14, Theorem 9.1] points out, the proof of Haglund–Wise [HaW08]
gives the slightly stronger statement that a virtually special group π fits into a
short exact sequence

1→ Γ→ π → G→ 1
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Flowchart 4. Consequences of being virtually (compact) special.
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where Γ is a RAAG and G is finite.
(H.6) In Corollary 4.3.4 we saw that a group is virtually compact special if and only

if it is virtually a quasiconvex subgroup of a RAAG.
(H.7) Haglund [Hag08, Theorem F] showed that quasi-convex subgroups of RAAGs

are virtual retracts. In fact, he proved more generally that quasi-convex sub-
groups of Right-Angled Coxeter Groups are virtual retracts, generalizing ear-
lier results of Scott [Sco78] (the reflection group of the right-angled hyperbolic
pentagon) and Agol–Long–Reid [ALR01, Theorem 3.1] (reflection groups of
arbitrary right-angled hyperbolic polyhedra).

(H.8) Minasyan [Min12, Theorem 1.1] showed that any RAAG is hereditarily con-
jugacy separable. It follows immediately that virtual retracts of RAAGs are
hereditarily conjugacy separable.

The combination of Minasyan’s result with (H.2), (H.6), (H.7) and (I.1)
implies that fundamental groups of hyperbolic 3-manifolds are conjugacy sepa-
rable. In (J.1) we will see that this is a key ingredient in the proof of Hamilton–
Wilton–Zalesskii [HWZ13] that the fundamental group of any closed, ori-
entable, irreducible 3-manifold is conjugacy separable.

(H.9) Suppose that N is hyperbolic and π = π1(N) is a quasi-convex subgroup of a
RAAG AΣ. Let Γ be a geometrically finite subgroup of π. The idea is that Γ
should be a quasi-convex subgroup of AΣ. One could then apply [Hag08,
Theorem F] to deduce that Γ is a virtual retract of AΣ and hence of π. However,
it is not true in full generality that a quasi-convex subgroup of a quasi-convex
subgroup is again quasi-convex, and so a careful argument is needed. In the
closed case, the required technical result is [Hag08, Corollary 2.29]. In the
cusped case, in fact it turns out that Γ may not be a quasi-convex subgroup
of AΣ. Nevertheless, it is possible to circumvent this difficulty. Now we give
detailed references.

Suppose first that N is closed. It follows from Proposition 4.4.2 that then π
is word-hyperbolic and Γ is a quasi-convex subgroup of π (see (L.18)). The

group π acts by isometries on S̃Σ, the universal cover of the Salvetti complex

of AΣ. Fix a base 0-cell x0 ∈ S̃Σ. The 1-skeleton of S̃Σ is the Cayley graph
of AΣ with respect to its standard generating set, and so, by hypothesis, the

orbit πx0 is a quasi-convex subset of S̃
(1)
Σ . By [Hag08, Corollary 2.29], π acts

cocompactly on some convex subcomplex X̃ ⊆ S̃Σ. Using the Morse Lemma for
geodesics in hyperbolic spaces [BrH99, Theorem III.D.1.7], the orbit Γx0 is

a quasi-convex subset of X̃(1). Using [Hag08, Corollary 2.29] again, it follows

that Γ acts cocompactly on a convex subcomplex Ỹ ⊆ X̃. The complex Ỹ is also

a convex subcomplex of S̃Σ, which by a final application of [Hag08, Corollary

2.29] implies that Γx0 is a quasi-convex subset of S̃
(1)
Σ , or, equivalently, that Γ is

a quasi-convex subgroup of AΣ. Hence, by [Hag08, Theorem F], Γ is a virtual
retract of AΣ and hence of π.

If N is not closed, then π is not word-hyperbolic, but in any case it is
relatively hyperbolic and Γ is a relatively quasi-convex subgroup. (See (L.18)
below for a reference.) One can show that in this case Γ is again a virtual
retract of AΣ and hence of π. The argument is rather more involved than the
argument in the word-hyperbolic case; in particular, it is not necessarily true
that Γ is a quasi-convex subgroup of AΣ. See [CDW12, Theorem 1.3] for the
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details; the proof again relies on [Hag08, Theorem F] together with work of
Manning–Martinez-Pedrosa [MMP10]. See also [SaW12, Theorem 7.3] for an
alternative argument.

This result about retraction onto subgroups is foreshadowed by the classi-
cal theorem of Hall [Hal49] that any finitely generated subgroup G of a free
group F is virtually a subfactor, i.e., there exists a finite-index subgroup F ′

which contains G and a subgroup H such that F ′ = G ∗H. (See also [Bus69,
Theorem 1] and [Sta85, Corollary 6.3].)

(H.10) The following well-known argument shows that a virtual retractG of a residually
finite group π is separable (cf. [Hag08, Section 3.4]): Let ρ : π0 → G be a
retraction onto G from a subgroup π0 of finite index in π. Consider the map
g 7→ δ(g) := g−1ρ(g) : π0 → π0. It is easy to check that δ is continuous in the
profinite topology on π0, and so G = δ−1(1) is closed. That is to say, G is
separable in π0, and hence in π. In particular, this shows that if N is compact
and π = π1(N) virtually retracts onto geometrically finite subgroups, then π is
GFERF (since by (C.29), π = π1(N) is residually finite).

(H.11) Suppose N is hyperbolic and π = π1(N). If π is GFERF and Γ is a finitely
generated subgroup of π; then Γ is separable: by the Subgroup Tameness The-
orem (see Theorem 4.1.2) we only have to deal with the case that Γ is a virtual
surface fiber group, but an elementary argument shows that in that case Γ is
separable. (See (L.11) for more details.)

In fact (regardless whether π is GFERF or not), π is in fact double-coset
separable, which means that any subset of the form SgT is separable, where S
and T are finitely generated subgroups of π and g is an element of π. Indeed, let
S, T ⊆ π be finitely generated subgroups and g ∈ π. If S or T is a virtual fiber
subgroup, then a direct argument using part (ii) of [Nib92, Proposition 2.2]
shows that SgT is separable in π. If neither one of S or T is a virtual fiber
subgroup, then this follows from the Subgroup Tameness Theorem (see Theo-
rem 4.1.2), from (H.2), from work of Wise [Wis12a, Theorem 16.23] and from
work of Hruska [Hr10, Corollary 1.6].

We just showed that the fundamental group of each hyperbolic 3-manifold
is LERF. In contrast, fundamental groups of graph manifolds are in general not
LERF; see, e.g., [BKS87], [Mat97a, Theorem 5.5], [Mat97b, Theorem 2.4],
[RuW98], [NW01, Theorem 4.2], [Liu14], [Wod15] and Section 7.2.1 below.
In fact, there are finitely generated surface subgroups of graph manifold groups
that are not contained in any proper subgroup of finite index [NW98, The-
orem 1]. On the other hand, Przytycki–Wise [PW14a, Theorem 1.1] showed
that if Σ is an oriented incompressible surface embedded in a graph manifold N ,
then π1(Σ) is separable in π1(N). See Section 7.2.1 for a more detailed discus-
sion on (non-) separability of subgroups of 3-manifold groups.

(H.12) Suppose N is hyperbolic such that π = π1(N) virtually retracts onto each of
its geometrically finite subgroups. Let F ⊆ π be a geometrically finite non-
cyclic free subgroup, such as a Schottky subgroup. (Every non-elementary
Kleinian group contains a Schottky subgroup, as was first observed by Myr-
berg [Myr41].) Then by assumption there exists a finite-index subgroup of π
with a surjective morphism onto F . This shows that fundamental groups of
hyperbolic 3-manifolds are large.
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The combination with (C.15) shows that the fundamental group of any
compact 3-manifold N with empty or toroidal boundary is large, as long as
π1(N) is not virtually polycyclic.

(H.13) Antoĺın–Minasyan [AM11, Corollary 1.6] showed that every (not necessarily
finitely generated) subgroup of a RAAG is either free abelian of finite rank or
maps onto a non-cyclic free group. This implies directly the fact that if π1(N)
is virtually special, then either π1(N) is virtually solvable or π1(N) is large.
(Recall that in the flowchart we assume throughout that π1(N) is neither finite
nor solvable, and that π1(N) is also not virtually solvable by Theorem 1.11.1.)

The combination of (H.13) together with (C.6), (C.13), (C.14), (C.15) shows
that the fundamental group π of a compact 3-manifold with empty or toroidal
boundary is either virtually polycyclic or large. Together with (C.38) this shows
that π is either virtually polycyclic or SQ-universal. As mentioned in (C.38),
this dichotomy was also proved by Minasyan–Osin [MO13] without the Virtu-
ally Compact Special Theorem.

The result of Antoĺın–Minasyan also implies that every 2-generator sub-
group of a RAAG is either free abelian or free. This result was first proved
by Baudisch [Bah81, Theorem 1.2] and reproved by several other authors,
see [KiK13, Corollary 4], [Scri10] and [Car14].

(H.14) We already saw in (C.17) that a group π which is large is homologically large,
in particular, vb1(π;Z) =∞.

Hence if N is compact, irreducible, with empty or toroidal boundary such
that π1(N) is not virtually solvable, then given any free abelian group A there

exists a finite cover Ñ of N such that A embeds into H1(Ñ ;Z). For closed hy-
perbolic 3-manifolds this was considerably strengthened by Sun [Sun13, Corol-
lary 1.6] who showed that given any closed hyperbolic 3-manifold N and given

any finitely generated abelian group A there exists a finite cover Ñ of N such
that A is a subsummand of H1(Ñ ;Z). (See also [Sun14, Remark 1.5].)

(H.15) In (C.22) we showed that if N is compact, irreducible, with vb1(N ;Z) ≥ 1,
then N is virtually Haken. (In (C.19) and (C.20) we also saw that π1(N) is
virtually locally indicable and virtually left-orderable.)

(H.16) It follows from [Lub96a, p. 444] that vb1(π;Z) ≥ 1 implies that π does not
have Property (τ).

If N is compact, orientable, aspherical, with empty or toroidal boundary,
then tracing through the arguments of Flowchart 1 and Flowchart 4 shows
that vb1(N) ≥ 1. It follows from [Lub96a, p. 444] that π1(N) does not have
Property (τ). This answers in particular the Lubotzky-Sarnak Conjecture in the
affirmative: there is no hyperbolic 3-manifold with fundamental group having
Property (τ). (See [Lub96a] and [Lac11] and also Section 4.9 for details.)

Every group which has Kazhdan’s Property (T ) also has Property (τ); see,
e.g., [Lub96a, p. 444] for details and [BdlHV08] for background on Prop-
erty (T ). Thus the fundamental group of a compact, orientable, aspherical
3-manifold with empty or toroidal boundary does not satisfy Kazhdan’s Prop-
erty (T ). This result was first obtained by Fujiwara [Fuj99].

(H.17) Agol [Ag08, Theorem 2.2] showed that RAAGs are virtually RFRS. It is clear
that a subgroup of a RFRS group is again RFRS. A close inspection of Agol’s
proof using [DJ00, Section 1] in fact implies that a RAAG is already RFRS.
We will not make use of this fact.
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(H.18) Let π be RFRS and g ∈ π. It follows easily from the definition that we can take
a finite-index subgroup π′ of π containing g such that g represents a non-trivial
element [g] in H ′ := H1(π′;Z)/torsion. Take a finite-index subgroup H ′′ of H ′

which contains [g] and such that [g] is a primitive element in H ′′. We then have
a morphism ϕ : H ′′ → Z such that ϕ([g]) = 1. The map

Ker{π′ → H ′/H ′′} → H ′′
ϕ−→ Z 17→g−−−→ 〈g〉

is a virtual retraction onto the cyclic group generated by g.
The above, together with the argument of (D.4) and (H.10), shows that

cyclic subgroups of virtually RFRS groups are separable. If we combine this
observation with (H.2), (H.3) and (H.4) we see that cyclic subgroups of compact,
orientable, prime 3-manifolds with empty or toroidal boundary which are not
closed graph manifolds are separable. This was proved earlier for all 3-manifolds
by E. Hamilton [Hamb01].

In contrast, in Proposition 5.4.7 we show that there exist Seifert fibered
manifolds, and also graph manifolds with non-trivial JSJ-decomposition, whose
fundamental group does not virtually retract onto all cyclic subgroups.

(H.19) Let π be an infinite torsion-free group which is not virtually abelian and which
retracts virtually onto its cyclic subgroups. An argument using the transfer
map shows vb1(π;Z) =∞. (See, e.g., [LoR08a, Theorem 2.14] for a proof.)

(H.20) Suppose N is compact, aspherical, with empty or toroidal boundary, such
that π1(N) is RFRS. Agol [Ag08, Theorem 5.1] showed that N is virtually
fibered. (See also [FKt14, Theorem 5.1].) In fact, Agol proved a more refined
statement. If φ ∈ H1(N ;Q) is a non-fibered class, then there exists a finite
solvable cover p : N ′ → N (in fact a cover which corresponds to one of the πi
in the definition of RFRS) such that p∗(φ) ∈ H1(N ′;Q) lies on the boundary
of a fibered cone of the Thurston norm ball of N ′. (We refer to [Thu86a] and
Section 5.4.3 for background on the Thurston norm and fibered cones.)

Let N be irreducible with empty or toroidal boundary, and assume N is not
a graph manifold. We show in Proposition 5.4.12 below that there exist finite
covers of N with arbitrarily many fibered faces; see also [Ag08, Theorem 7.2]
for the hyperbolic case.

Agol [Ag08, Theorem 6.1] also proved a corresponding theorem for 3-
manifolds with non-toroidal boundary. More precisely, if (N, γ) is a connected
taut sutured manifold such that π1(N) is virtually RFRS, then there exists a

finite-sheeted cover (Ñ , γ̃) of (N, γ) with a depth-one taut-oriented foliation.
See [Gab83a, Ag08, CdC03] for background and precise definitions.

Let N → S1 be a fibration with surface fiber Σ. We have a short exact
sequence

1→ Γ := π1(Σ)→ π = π1(N)→ Z = π1(S1)→ 1.

This sequence splits, so π is isomorphic to the semidirect product

Z nϕ Γ :=
〈
Γ, t | tgt−1 = ϕ(g), g ∈ Γ

〉
, for some ϕ ∈ Aut(Γ).

Let ϕ,ψ ∈ Aut(Γ). It is straightforward to show that there exists an isomor-
phism ZnϕΓ→ Znψ Γ commuting with the canonical projections to Z exactly
if there are h ∈ Γ, α ∈ Aut(Γ) with hϕ(g)h−1 = (α ◦ ψ ◦ α−1)(g) for all g ∈ Γ.
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In Section 7.4 below we will see that a ‘random’ closed, orientable 3-manifold
is a rational homology sphere, in particular not fibered. Dunfield–D. Thurs-
ton [DnTb06] also give evidence that a ‘random’ 3-manifold N with b1(N) = 1
is not fibered.

Finally, it follows from the combination of (H.4), (H.5), (H.17), and (H.20)
that non-positively curved graph manifolds (e.g., graph manifolds with non-
empty boundary, see [Leb95, Theorem 3.2]) are virtually fibered. Wang–
Yu [WY97, Theorem 0.1] proved directly that graph manifolds with non-empty
boundary are virtually fibered. (See also [Nemd96].) Svetlov [Sv04] proved
that non-positively curved graph manifolds are virtually fibered.

(H.21) Let C denote the smallest class of groups which contains all free groups, which
is closed under directed unions and which satisfies G ∈ C whenever G admits a
normal subgroup H ∈ C such that G/H is elementary amenable. By work of
Linnell [Lil93, Theorem 1.5] (see also [Lü02, Theorem 10.19]) any group in C
satisfies the Atiyah conjecture.

The fundamental group of an oriented compact surface with boundary is
free and thus lies in C. The fundamental group of an oriented closed surface
F 6= S2 lies in C since the kernel of any epimorphism π1(F )→ Z is free. Since
the fundamental group of a compact, orientable 3-manifold is the semidirect
product of Z with the fundamental group of a compact, oriented surface it
follows that such a group also lies in C. Finally, again by the above theorem
of Linnell the fundamental group of any virtually fibered compact 3-manifold
satisfies the Atiyah Conjecture.

(H.22) If π is a torsion-free group that satisfies the Atiyah Conjecture, then by [Lü02,
Lemma 10.15] the group ring C[π] is a domain, in particular Z[π] is a domain.

The Kaplansky Conjecture (see [Lü02, Conjecture 10.14] and [Lil98]) pre-
dicts more generally that the complex group ring of any torsion-free group is a
domain.

(H.23) The proof of [Scv14, Lemma 2.3] (see also [Ag11, Fak75]) implies that funda-
mental groups of compact, orientable surfaces have the torsion-free elementary-
amenable factorization property. It then follows from [Scv14, Lemma 2.4] that
fundamental groups of compact, orientable fibered 3-manifold have the torsion-
free elementary-amenable factorization property.

By [Scv14, Lemmas 2.1 and 2.2] and [Scv14, Corollary 2.6] virtual re-
tracts of a RAAG also have the torsion-free elementary-amenable factorization
property.

(H.24) It follows immediately from the definitions that a group that is residually fi-
nite and that has the torsion-free elementary-amenable factorization property
is residually torsion-free elementary-amenable.

(H.25) We say that a ring R has fully residually a property if given any finite collection
of elements a1, . . . , as ∈ R there exists a ring epimomorphism α : R → S to
a ring S with property P such that α(a1), . . . , α(ss) are all non-zero. It is
straightforward to see that a ring that is fully residually a domain is a domain.

Kropholler–Linnell–Moody [KLM88, Theorem 1.4] showed that the group
ring of a torsion-free elementary-amenable group is a domain. Let π be a group
that is residually torsion-free elementary-amenable. It is straightforward to see
that π is also fully residually torsion-free elementary-amenable. It follows easily
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from the above that Z[π] is fully residually a domain, hence a domain. (Simi-
larly, if π is locally indicable or left-orderable, then Z[π] is a domain by [RoZ98,
Proposition 6], [Lil93, Theorem 4.3], and [Hig40, Theorem 12]).

The combination of the above with the other results mentioned in the dia-
gram thus implies that the group ring of the fundamental group of a compact,
orientable, irreducible 3-manifold with empty or toroidal boundary that is not
a closed graph manifold is a domain.

If Γ is an amenable group, then Z[Γ] admits an Ore localization K(Γ). (See,
e.g., [Lü02, Section 8.2.1] for a survey on Ore localizations and see [Ta57]
and [DLMSY03, Corollary 6.3] for a proof of the statement.) If Z[Γ] is a
domain, then the natural morphism Z[Γ]→ K(Γ) is injective, and we can view
Z[Γ] as a subring of the skew field K(Γ), with K(Γ) flat over Z[Γ].

It follows from the above that the group ring of a residually torsion-free
elementary-amenable group is residually a ring that admits an Ore localization.
Morphisms from Z[π] to group rings with Ore localizations played a major
rôle in the work of Cochran–Orr–Teichner [COT03], Cochran [Coc04], Har-
vey [Har05] and also in [Fri07, FST15, FTi15].

(H.26) If N is fibered, then π1(N) is the semidirect product of Z with the fundamental
group of a compact surface, and so π1(N) is good by Propositions 3.5 and 3.6
of [GJZ08].

Let N be compact, orientable, irreducible, with empty or toroidal boundary.
Wilton–Zalesskii [WZ10, Corollary C] showed that if N is a graph manifold,
then π1(N) is good. It follows from (I.5), (H.2), (H.3), (H.5), (H.17) and
(H.20) that if N is not a graph manifold, then π1(N) is good. (For hyperbolic
3-manifolds this can be proved alternatively using the fact that right-angled
Artin groups are good, see [Lor08, Theorem 1.4] or [Ag14, Theorem 9.3], that
finite-index subgroups of good groups are good, see [GJZ08, Lemma 3.2], and
that retracts of good groups are good, see [Scv14, Lemma 2.4], together with
(I.5), (H.2), (H.6) and (H.7)).

Cavendish [Cav12, Section 3.5, Lemma 3.7.1], building on the results of
Wise, showed that the fundamental group of any compact 3-manifold is good.

We state two consequences of being good. First of all, if G is a good, residu-
ally finite group of finite cohomological dimension, then its profinite completion
is torsion-free [Red13, Corollary 7.6]. Secondly, any residually finite group G
that is good is in fact highly residually finite (also called super residually fi-
nite), i.e., any finite extension 1 → K → H → G → 1 of G by a residually
finite group K is again residually finite; see [Lor08, Proposition 2.14] and
also [Red13, Corollary 7.11].

(H.27) Suppose N is virtually fibered. Jaco–Evans [Ja80, p. 76] showed that π1(N)
does not have the f.g.i.p., unless π1(N) is virtually solvable.

Combining this result with the ones above and with work of Soma [Som92],
we obtain: SupposeN is compact, orientable, irreducible, with empty or toroidal
boundary. Then π1(N) has the f.g.i.p. if and only if π1(N) is finite or solvable.
Indeed, if π1(N) is finite or solvable, then π1(N) is virtually polycyclic and so
every subgroup is finitely generated. (See [Som92, Lemma 2] for details.) If
N is Seifert fibered and π1(N) is neither finite nor solvable, then π1(N) does
not have the f.g.i.p. (See again [Som92, Proposition 3] for details.) It follows
from the combination of (H.2), (H.5), (H.17), (H.20) and the above mentioned
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result of Jaco–Evans that if N is hyperbolic, then π1(N) does not have the
f.g.i.p. either. Finally, if N has non-trivial JSJ-decomposition, then by the
above already the fundamental group of a JSJ-component does not have the
f.g.i.p., hence π1(N) also does not have the f.g.i.p.

Examples of 3-manifolds with non-toroidal boundary having fundamental
group with the f.g.i.p. are given in [Hem85b, Theorem 1.3].

(H.28) If N is fibered, then π1(N) is a semidirect product of Z with the fundamental
group of a compact surface, and so π1(N) has Property FD by [LuSh04, Theo-
rem 2.8]. It follows from (I.6), (H.2), (H.3), (H.5), (H.17), and (H.20) that if N
is compact, orientable, irreducible, with empty or toroidal boundary, which is
not a closed graph manifold, then π1(N) has Property FD.

(H.29) Suppose N is fibered. Then there exists a compact surface Σ and a surjective
morphism π1(N) → Z whose kernel equals π1(Σ). If Σ has boundary, then
π1(Σ) is free, and if Σ is closed, then the kernel of any surjective morphism
π1(Σ)→ Z is a free group. In both cases we see that π1(N) is poly-free.

(H.30) Hermiller–Šunić [HeS07, Theorem A] showed that any RAAG is poly-free. It
is clear that any subgroup of a poly-free group is also poly-free.

(H.31) Hsu–Wise [HsW99, Corollary 3.6] showed that any RAAG is linear over Z.
(See also [DJ00, p. 231].) The idea of the proof is that any RAAG embeds in
a right angled Coxeter group, and these are known to be linear over Z (see for
example [Bou81, Chapitre V, §4, Section 4]).

(H.32) The lower central series (πn) of a group π is defined inductively via π1 := π and
πn+1 = [π, πn]. If π is a RAAG, then

⋂
n πn = {1}, and the successive quotients

πn/πn+1 are free abelian groups. This was proved by Duchamp–Krob [DK92,
pp. 387 and 389], see also [Dr83, Section III]. This implies that any RAAG
(and hence any subgroup of a RAAG) is residually torsion-free nilpotent.

(H.33) Gruenberg [Gru57, Theorem 2.1] showed that every torsion-free nilpotent group
is residually p for any prime p.

(H.34) Any group that is residually p for all primes p is characteristically potent; see
for example [BuM06, Proposition 2.2]. In particular such a group is weakly
characteristically potent. We refer to [ADL11, Section 10] for more information
and references on potent groups.

(H.35) Rhemtulla [Rh73] showed that a group that is residually p for infinitely many
primes p, is in fact bi-orderable.

The combination of (H.32) and (H.33) with the above result of Rhem-
tulla [Rh73] implies that RAAGs are bi-orderable. This result was also proved
directly by Duchamp–Thibon [DpT92]. This also follows from (H.32) and a
theorem of B. Neumann [Nema49, Theorem 3.1].

Boyer–Rolfsen–Wiest [BRW05, Question 1.10] asked whether fundamental
groups of compact, irreducible 3-manifold with empty or toroidal boundary are
virtually bi-orderable. Chasing through the flowchart we see that the question
has an affirmative answer for manifolds that are non-positively curved. By
Theorem 4.7.1 it thus remains to address the question for graph manifolds that
are not non-positively curved.

(H.36) Theorem 14.26 of [Wis12a] asserts that word-hyperbolic groups (in particular
fundamental groups of closed hyperbolic 3-manifolds, see Proposition 4.4.2)
which are virtually special are omnipotent.
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Wise observes in [Wis00, Corollary 3.15] that if π is an omnipotent, torsion-
free group and if g, h ∈ π are two elements with g not conjugate to h±1, then
there exists a morphism α from π to a finite group such that the orders of
α(g) and α(h) are different. This can be viewed as a strong form of conjugacy
separability for pairs of elements g, h with g not conjugate to h±1.

Wise states that a corresponding result holds in the cusped case [Wis12a,
Remark 14.27]. However, cusped hyperbolic manifolds in general do not satisfy
the definition of omnipotence given in (F.16). Indeed, it is easy to see that Z2 is
not omnipotent [Wis00, Remark 3.3], and also that a retract of an omnipotent
group is omnipotent. However, there are many examples of cusped hyperbolic
3-manifolds N such that π1(N) retracts onto a cusp subgroup (see, for instance,
(H.9)), so π1(N) is not omnipotent.

Most of the ‘green properties’ are either green by definition or for elementary reasons.
Furthermore, we already showed on page 58 that several group theoretic properties are
‘green’ It thus suffices to justify the following statements. Below we let π be a group.

(I.1) In Theorem 5.4.1 we show that the fundamental group of a compact, orientable,
irreducible 3-manifold with empty or toroidal boundary, which has a hereditar-
ily conjugacy separable subgroup of finite index, is also hereditarily conjugacy
separable.

(I.2) The same argument as in (D.4) shows that the fundamental group of a hyperbolic
3-manifold, having a finite-index subgroup which is GFERF, is GFERF.

(I.3) Long–Reid [LoR05, Proof of Theorem 4.1.4] (or [LoR08a, Proof of Theo-
rem 2.10]) showed that the ability to retract onto linear subgroups of π extends
to finite-index supergroups of π. We get the following conclusions:
(a) If a finite-index subgroup of π retracts onto cyclic subgroups, then π also

retracts onto cyclic subgroups (since cyclic subgroups are linear).
(b) If N is hyperbolic and has a finite cover N ′ such that π1(N ′) retracts onto

geometrically finite subgroups, then the above and linearity of π1(N) imply
that π1(N) also retracts onto geometrically finite subgroups.

(I.4) Suppose π is a torsion-free group that has a finite classifying space and which is
good. If π admits a finite index subgroup which has the torsion-free elementary-
amenable factorization property, then it follows from [FST15] (which builds
heavily on work of Linnell–Schick [LiS07]) that π also has the torsion-free
elementary-amenable factorization property.

By the discussion in (H.26) the fundamental group of any compact 3-manifold
is good. It thus follows from (C.2) and (C.3) and from the above that having the
torsion-free elementary-amenable factorization property is a ‘green property’ in
the sense of (G.4).

(I.5) It follows from [GJZ08, Lemma 3.2] that a group is good if it admits a finite-
index subgroup which is good.

(I.6) By [LuSh04, Corollary 2.5], a group with a finite-index subgroup which has
Property FD also has Property FD.

(I.7) Suppose we have a finite-index subgroup π′ of π that is weakly characteristically
potent; then π is also weakly characteristically potent. To see this, since sub-
groups of weakly characteristically potent groups are weakly characteristically
potent, we can assume that π′ is in fact a characteristic subgroup of π, by a
standard argument. Now let g ∈ π. Let k ∈ N, k ≥ 1, be minimal such that
gk ∈ π′. Since π′ is weakly characteristically potent there exists an r′ ∈ N such
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that for any n there exists a characteristic finite-index subgroup πn of π′ such
that gkπn has order r′n in π′/πn. Now we let r = r′k. Note that πn is a nor-
mal subgroup of π since πn ⊆ π′ is characteristic. Clearly grn = 1 ∈ π/πn.
Furthermore, if gm ∈ πn, then gm ∈ π′, hence m = km′, and thus m divides
rn = kr′n. Finally note that πn is characteristic in π since πn ⊆ π′ and π′ ⊆ π
are characteristic. This shows that π is weakly characteristically potent.

5.3. Additional results and implications

In this short section we give a list of further results and alternative arguments which
we left out of Flowchart 4. We let N be a 3-manifold and π be a group.

(J.1) Hamilton–Wilton–Zalesskii [HWZ13, Theorem 1.2] showed that if N is closed,
orientable, irreducible, such that the fundamental group of each JSJ piece of N
is conjugacy separable, then π1(N) is conjugacy separable. By doubling along
the boundary and appealing to Lemma 1.4.3, the same result holds for compact,
orientable, irreducible 3-manifolds with toroidal boundary.

It follows from (H.2), (H.6), (H.7), (H.8), and (I.1) that the fundamental
group of each hyperbolic 3-manifold is conjugacy separable. Also, the fun-
damental group of each compact, orientable Seifert fibered manifold is conju-
gacy separable; see [Mao07, AKT05, AKT10]. The aforementioned result
from [HWZ13] implies that the fundamental group of any compact, orientable,
irreducible 3-manifold with empty or toroidal boundary is conjugacy separable.

Finally note that the argument of [LyS77, Theorem IV.4.6] also shows that if
a finitely presented group π is conjugacy separable (see (F.2) for the definition),
then the conjugacy problem is solvable for π. The above results thus give another
solution to the Conjugacy Problem first solved by Préaux (see (C.33)).

(J.2) Droms [Dr87, Theorem 2] showed that a RAAG corresponding to a finite graphG
is the fundamental group of a 3-dimensional manifold if and only if each con-
nected component of G is either a tree or a triangle. Gordon [Gon04] (extend-
ing work of Brunner [Bru92] and Hermiller–Meier [HM99, Proposition 5.7])
furthermore determined which Artin groups appear as fundamental groups of
3-manifolds.

(J.3) Bridson [Brd13, Corollary 5.2] (see also [Kob12b, Proposition 1.3]) showed
that if π has a subgroup of finite index that embeds into a RAAG, then there
are infinitely many closed surfaces whose mapping class groups embed π. By the
above results this applies to fundamental groups of compact, closed, orientable,
irreducible 3-manifolds with empty or toroidal boundary which are not closed
graph manifolds. Thus ‘most’ 3-manifold groups can be viewed as subgroups of
mapping class groups.

(J.4) Suppose π is finitely generated. Given a proper subgroup Γ of π, we call (Γ, π)
a Grothendieck pair if the natural inclusion Γ ↪→ π induces an isomorphism of
profinite completions. One says that π is Grothendieck rigid if (π,Γ) is never a
Grothendieck pair for each finitely generated proper subgroup Γ of π.

Platonov and Tavgen′ exhibited a residually finite group which is not Gro-
thendieck rigid [PT86]. Answering a question of Grothendieck [Grk70, p. 384],
Bridson and Grunewald [BrGd04] gave an example of a Grothendieck pair (π,Γ)
where both π and Γ are residually finite and finitely presented.

If π is LERF, then π is Grothendieck rigid: if Γ is finitely generated and a
proper subgroup of π then the inclusion map Γ ↪→ π does not induce a surjection
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on profinite completions. It thus follows from the above (see in particular (C.12)
and (H.11)) that fundamental groups of Seifert fibered manifolds and hyperbolic
3-manifolds are Grothendieck rigid. This result was first obtained by Long and
Reid [LoR11]. Cavendish [Cav12, Proposition 3.7.1] used (H.26) to show that
the fundamental group of any closed prime 3-manifold is Grothendieck rigid.

(J.5) By (C.25), the fundamental groups of most compact 3-manifolds are not amen-
able. On the other hand, Theorems 4.2.2, 4.7.2, and 4.7.3, together with work
of Mizuta [Miz08, Theorem 3] and Guentner–Higson [GuH10] imply that the
fundamental group of each compact, irreducible 3-manifold which is not a closed
graph manifold is ‘weakly amenable.’ For closed hyperbolic 3-manifolds this also
follows from [Oza08].

(J.6) In [FN14] it is shown, building on the results of this section and on [Nag14,
Proposition 4.18], that if N 6= S3 is compact, orientable, irreducible 3-manifold
with empty or toroidal boundary, then there exists some unitary representa-
tion α : π1(N) → U(k) such that all corresponding twisted homology groups
Hα
∗ (N ;Ck) vanish.

(J.7) A group is free-by-cyclic if it is isomorphic to a semidirect product Zn F of the
infinite cyclic group Z with a finitely generated non-cyclic free group F . If F
is a free group on two generators, then any automorphism of F can be realized
topologically by an automorphism of a once-punctured torus (see, e.g., [LyS77,
Proposition 4.5]); in particular, ZnF is the fundamental group of a 3-manifold.
On the other hand, if F is a free group of rank greater ≥ 4, then for ‘most’
automorphisms of F this is not true; see, e.g., [Sta82, p. 22], [Ger83, Theo-
rem 3.9], [BeH92, Theorem 4.1]. The question to which extent properties of
fundamental groups of fibered 3-manifolds with boundary carry over to the more
general case of free-by-cyclic groups has been studied by many authors: [AlR12,
KR14, DKL12, DKL13, AHR13]. Hagen–Wise [HnW13, HnW14], using
work of Agol [Ag13], showed that if φ is an irreducible automorphism of a free
group F such that π = Z nφ F is word-hyperbolic, then π is virtually compact
special. Button [But13] used this result and work in [BF92, Brm00, But08,
But10] to show that all free-by-cyclic groups are large.

5.4. Proofs

In this section we collect the proofs of several statements that were mentioned in the
previous sections.

5.4.1. Conjugacy separability. Clearly a subgroup of a residually finite group
is itself residually finite, and it is also easy to prove that a group with a residually finite
subgroup of finite index is itself residually finite. In contrast, the property of conjugacy
separability (see (F.2)) is more delicate. Goryaga [Goa86] gave an example of a non-
conjugacy-separable group with a conjugacy separable subgroup of finite index. In the
other direction, Martino–Minasyan [MMn12, Theorem 1.1] constructed examples of
conjugacy separable groups with non-conjugacy-separable subgroups of finite index.

For this reason, one defines a group to be hereditarily conjugacy separable if every
finite-index subgroup is conjugacy separable. In the 3-manifold context, hereditary
conjugacy separability passes to finite-index supergroups:
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Theorem 5.4.1. Let N be a compact, orientable, irreducible 3-manifold with toroi-
dal boundary, and let π′ be a finite-index subgroup of π = π1(N). If π′ is hereditarily
conjugacy separable, then so is π.

The proof of this theorem is based on the following useful criterion due to Chagas–
Zalesskii [ChZ10, Proposition 2.1].

Proposition 5.4.2. Let π be a finitely generated group and π′ be a conjugacy sep-
arable normal subgroup of finite index of π. Let g ∈ π and m ≥ 1 with gm ∈ π′.
Suppose

(1) Cπ(gm) is conjugacy separable; and

(2) Ĉπ′(gm) = Cπ′(gm) = C
π̂′

(gm).

Then whenever h ∈ π is not conjugate to g, there is a morphism α from π to a finite
group such that α(g) is not conjugate to α(h).

To show Theorem 5.4.1, we may assume that N does not admit Sol geometry, as
polycyclic groups are known to be conjugacy separable by a theorem of Remeslen-
nikov [Rev69]. Furthermore, we may assume that π′ is normal, corresponding to a
regular covering map N ′ → N of finite degree. In particular, π′ is also the fundamen-
tal group of a compact, orientable, irreducible 3-manifold with toroidal boundary. We
summarize the structure of the centralizers of elements of π in the following proposition,
which is an immediate consequence of Theorems 2.5.1 and 2.5.2.

Proposition 5.4.3. Let N be a compact, orientable, irreducible 3-manifold with
toroidal boundary that does not admit Sol geometry, and let g ∈ π = π1(N), g 6= 1. Then
either Cπ(g) is free abelian or there is a Seifert fibered piece N ′ of the JSJ-decomposition
of N such that Cπ(g) is a subgroup of index at most two in π1(N ′).

Now we will prove three lemmas about centralizers. These enable us to apply the
result of Chagas–Zalesskii to finish the proof of Theorem 5.4.1. In all three lemmas, we
let N , π, and g be as in the preceding proposition.

Lemma 5.4.4. The centralizer Cπ(g) is conjugacy separable.

Proof. This is clear if Cπ(g) is free abelian. Otherwise, Cπ(g) is the fundamental
group of a Seifert fibered manifold and hence conjugacy separable by a theorem of
Martino [Mao07]. �

Let G be a group. Recall that we denote by Ĝ the profinite completion of G. (We
again refer to [RiZ10, Section 3.2] and [Win98, Section 1] for the definition and for

the main properties.) For a subgroup H of G, let H denote the closure of H in Ĝ.

Lemma 5.4.5. The canonical map Ĉπ(g)→ Cπ(g) is an isomorphism.

Proof. We need to prove that the profinite topology on π induces the full profinite
topology on Cπ(g). To this end, it is enough to prove that every finite-index subgroup H
of Cπ(g) is separable in π.

If Cπ(g) is free abelian, then so is H, so H is separable by the main theorem
of [Hamb01]. Therefore, suppose Cπ(g) is a subgroup of index at most two in π1(M),
where M is a Seifert fibered vertex space of N , so H is a subgroup of finite index
in π1(M). By (C.35), the group π induces the full profinite topology on π1(M),
and π1(M) is separable in π. It follows that H is separable in π. �
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The final condition is a direct consequence of Proposition 3.2 and Corollary 12.2
of [Min12], together with the hypothesis that π′ is hereditarily conjugacy separable.

Lemma 5.4.6. The inclusion Cπ(g)→ Cπ̂(g) is surjective.

Now we are in a position to prove Theorem 5.4.1.

Proof of Theorem 5.4.1. As mentioned earlier, we may assume that N does
not admit Sol geometry. Let π′ be a hereditarily conjugacy separable subgroup of
π = π1(N) of finite index. By replacing π′ with the intersection of its conjugates, we
may assume that π′ is normal. Let g, h ∈ π be non-conjugate and m ≥ 1 with gm ∈ π′.
By Lemma 5.4.4, Cπ(gm) is conjugacy separable. Let N ′ be a finite-sheeted covering
of N with π′ = π1(N ′). Lemma 5.4.5 applied to π′ in place of π shows that the first
equality in condition (2) of Proposition 5.4.2 holds, and Lemma 5.4.6 shows that the
second equality holds. Proposition 5.4.2 now yields a morphism α from π to a finite
group such that α(g), α(h) are non-conjugate. Thus π is conjugacy separable. �

5.4.2. Non-virtually-fibered graph manifolds and retractions onto cyclic
subgroups. There exist Seifert fibered manifolds which are not virtually fibered, and
also graph manifolds with non-trivial JSJ-decomposition which are not virtually fibered
(see, e.g., [LuW93, p. 86] and [Nemd96, Theorem D]). The following proposition
shows that such examples also have the property that their fundamental groups do not
virtually retract onto cyclic subgroups.

Proposition 5.4.7. Let N be a non-spherical graph manifold. If N is not virtually
fibered, then π1(N) has a cyclic subgroup onto which it does not virtually retract.

Proof. We show the contrapositive: Suppose that π1(N) virtually retracts onto
all its cyclic subgroups; we will prove that N is virtually fibered. By the last re-
mark in (C.10) the manifold N is finitely covered by a 3-manifold each of whose JSJ-
components is an S1-bundle over a surface. We can therefore without loss of generality
assume that N itself is already of that form.

We first consider the case that N is a Seifert fibered manifold, i.e., that N is an
S1-bundle over a surface Σ. As mentioned in Section 1.5, the assumption that N is non-
spherical implies that the regular fiber generates an infinite cyclic subgroup of π1(N).
It is well known, and straightforward to see, that if π1(N) retracts onto this infinite
cyclic subgroup, then N is a product S1 × Σ; in particular, N is fibered.

Now we consider the case that N has a non-trivial JSJ-decomposition. We denote
the JSJ-components of N by M1, . . . ,Mn. By hypothesis, each Mi is an S1-bundle over
a surface with non-empty boundary, so each Mi is in fact a product. We denote by fi
the Seifert fiber of Mi; each fi generates an infinite cyclic subgroup of π1(N).

Since π1(N) virtually retracts onto cyclic subgroups, for each i we can find a finite-

sheeted covering space Ñi of N such that π̃i = π1(Ñi) retracts onto 〈fi〉. In particular,

the image of fi in H1(Ñi;Z)/torsion is non-zero. Let Ñ be a regular finite-sheeted cover

of N that covers every Ñi. (For instance, π1(Ñ) could be the intersection of all the
conjugates of

⋂n
i=1 π̃i.)

Let f̃ be a Seifert fiber of a JSJ-component of Ñ . Up to the action of the deck group

of Ñ → N , f̃ covers the lift of some fi in Ñi. Thus f̃ is non-zero in H1(Ñ ;Z)/torsion. So

we can take a group morphism φ : H1(Ñ ;Z)→ Z which is non-trivial on the Seifert fibers

of all JSJ-components of Ñ . Since each JSJ-component is a product, the restriction of φ
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to each JSJ-component of Ñ is a fibered class. By [EN85, Theorem 4.2], we conclude

that Ñ fibers over S1. �

5.4.3. (Fibered) faces of the Thurston norm ball of finite covers. In this
subsection we let N be a compact, orientable 3–manifold. Recall that we say that
φ ∈ H1(N ;R) is fibered if φ can be represented by a non-degenerate closed 1-form. The
Thurston norm of φ ∈ H1(N ;Z) is defined as

‖φ‖T = min
{
χ−(Σ) : Σ ⊆ N properly embedded surface dual to φ

}
.

Here, given a surface Σ with connected components Σ1, . . . ,Σn, we define χ−(Σ) =∑n
i=1 max{−χ(Σi), 0}. Thurston [Thu86a, Theorems 2 and 5] (see also [Kap01, Chap-

ter 2], [CdC03, Chapter 10], and [Oe86, p. 259]) proved the following results:

(1) ‖−‖T is a seminorm on H1(N ;Z) which can be extended to a seminorm, also
denoted by ‖−‖T , on H1(N ;R).

(2) The norm ball BN :=
{
φ ∈ H1(N ;R) : ‖φ‖T ≤ 1

}
is a finite-sided rational

polytope.
(3) There exist open top-dimensional faces F1, . . . , Fm of BN such that{

φ ∈ H1(N ;R) : φ fibered
}

=
m⋃
i=1

R>0Fi.

These faces are called the fibered faces of BN and the cones on these faces are
called the fibered cones of BN .

In general the Thurston norm is degenerate, e.g., for 3-manifolds with homologically
essential tori. On the other hand the Thurston norm of a hyperbolic 3-manifold is non-
degenerate, since a hyperbolic 3-manifold admits no homologically essential surfaces of
non-negative Euler characteristic.

We start out with the following fact.

Proposition 5.4.8. Let p : N ′ → N be a finite cover. Then φ ∈ H1(N ;R) is fibered
if and only if p∗φ ∈ H1(N ′;R) is fibered. Moreover,

‖p∗φ‖T = [N ′ : N ] · ‖φ‖T for any class φ ∈ H1(N ;R).

In particular, the map p∗ : H1(N ;R)→ H1(N ′;R) is, up to a scale factor, an isometry,
and it maps fibered cones into fibered cones.

Proof. The first statement for rational cohomology classes is an immediate conse-
quence of Stallings’ Fibration Theorem (see [Sta62] and (L.9)), and the second state-
ment follows from work of Gabai [Gab83a, Corollary 6.13]. (See also [Pes93] for an
alternative proof.) The first statement for real classes is now an immediate consequence
of the the above two facts and general facts on fibered cones of 3-manifolds. �

Now we can prove the following proposition.

Proposition 5.4.9. Suppose N is irreducible with empty or toroidal boundary,
and N is not a graph manifold. Then for each n, there is a finite cover of N whose
Thurston norm ball has at least n faces.

If N is closed and hyperbolic, then the proposition relies on the Virtually Compact
Special Theorem (Theorem 4.2.2). In the other cases it follows from the work of Cooper–
Long–Reid [CLR97] and classical facts on the Thurston norm.
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Proof. We first suppose that N is hyperbolic. It follows from (H.2), (H.6), (H.13),
and (C.17) that N admits a finite cover N ′ with b1(N ′) ≥ n. Since the Thurston norm
of a hyperbolic 3-manifold is non-degenerate it follows that BN ′ has at least n+1 faces.

Now we suppose that N is not hyperbolic. By hypothesis of the proposition, we
can take a hyperbolic JSJ-component X of N which is hyperbolic and which necessarily
has non-empty boundary. It follows from [CLR97, Theorem 1.3] (see also (C.15))
that π1(X) is large. Hence by (C.17) we can take a finite cover X ′ of X with non-
peripheral homology of rank at least n.

A standard argument using (C.35) shows that we can take a finite cover N ′ of N
which has a hyperbolic JSJ-component Y covering X ′. An elementary argument also
shows that Y has non-peripheral homology of rank ≥ n. We consider the natural
morphism p : H2(Y ;R)→ H2(Y, ∂Y ;R) and set V := Im p. Using Poincaré Duality, the
Universal Coefficient Theorem and the information on the non-peripheral homology, we
see that dim(V ) ≥ n.

Now we consider the natural morphism q : H2(Y ;R) → H2(N ′, ∂N ′;R) and set
W := Im q. Since p is the composition of q and the restriction map H2(N ′, ∂N ′;R) →
H2(Y, ∂Y ;R), we see that dimW ≥ dimV ≥ n. Since N is hyperbolic, it follows that the
Thurston norm of Y is non-degenerate, in particular non-degenerate on V . By [EN85,
Proposition 3.5] the Thurston norm of p∗φ in Y agrees with the Thurston norm of q∗φ
in N ′. Thus the Thurston norm of N ′ is non-degenerate on W ; in particular, BN ′ has
at least n+ 1 faces. �

We say that φ ∈ H1(N ;R) is quasi-fibered if φ lies on the closure of a fibered
cone of the Thurston norm ball of N . Now we can formulate Agol’s Virtually Fibered
Theorem [Ag08, Theorem 5.1].

Theorem 5.4.10 (Agol). Suppose N is irreducible with empty or toroidal boundary
such that π1(N) is virtually RFRS. Then for each φ ∈ H1(N ;R) there exists a finite
cover p : N ′ → N such that p∗φ is quasi-fibered.

The following is now a straightforward consequence of Agol’s theorem.

Proposition 5.4.11. Suppose N is irreducible with empty or toroidal boundary.
Suppose BN has n faces, π1(N) is virtually RFRS, and N is not a graph manifold.
Then there exists a finite cover N ′ of N such that BN ′ has at least n fibered faces.

The proof of the proposition is precisely that of [Ag08, Theorem 7.2]. We therefore
give just a very quick outline of the proof. We pick classes φi (i = 1, . . . , n) in H1(N ;R)
which lie in n faces. For i = 1, . . . , n we then apply Theorem 5.4.10 to the class φi and
we obtain a finite cover N ′i → N such that for each i, the pull-back of φi is quasi-fibered.

Denote by p : N ′ → N the cover corresponding to
⋂
i π1(N ′i). It follows from Propo-

sition 5.4.8 that pull-backs of quasi-fibered classes are quasi-fibered, and that pull-backs
of BN lie on faces of BN ′ . Thus p∗φ1, . . . , p

∗φn lie on closures of fibered faces of N ′,
so N ′ has at least n fibered faces. �

It is a natural question to ask in how many different ways a (virtually) fibered
3-manifold (virtually) fibers. We recall the following facts:

(1) If φ ∈ H1(N ;Z) is a fibered class, then by [EdL83, Lemma 5.1] there exists,
up to isotopy, a unique surface bundle representing φ.

(2) It follows from the description of fibered cones on p. 97 that being fibered is an
open condition in H1(N ;R). We refer to [Nemd79] and [BNS87, Theorem A]
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for a group-theoretic proof for classes in H1(N ;Q), to [To69] and [Nemb76]
for earlier results and to [HLMA06] for an explicit discussion for a particular
example. If b1(N) ≥ 2 and if the Thurston norm is not identically zero, then a
basic Thurston norm argument shows that N admits fibrations with connected
fibers of arbitrarily large genus. (See, e.g., [But07, Theorem 4.2] for details).

A deeper question is whether a 3-manifold admits (virtually) many distinct fibered faces.
The following proposition is an immediate consequence of Propositions 5.4.9 and 5.4.11
together with (H.2), (H.3), (H.5), and (H.17).

Proposition 5.4.12. Suppose N is irreducible with empty or toroidal boundary,
and N is not a graph manifold. Then for each n, N has a finite cover whose Thurston
norm ball has at least n fibered faces.

Remarks.

(1) Suppose N is irreducible with empty or toroidal boundary such that π1(N)
is virtually RFRS but not virtually abelian. According to [Ag08, Theo-
rem 7.2], N has finite covers with arbitrarily many faces in the Thurston norm
ball. At this level of generality the statement does not hold. As an example
consider the product manifold N = S1 × Σ where Σ is a compact, orientable
surface. Any finite cover of N is again a product. It is well known (see,
e.g. [McM02]) that the Thurston norm ball of such a product manifold has
just two faces.

(2) It would be interesting to find criteria which decide whether a given graph
manifold has virtually arbitrarily many faces in the Thurston norm ball.





CHAPTER 6

Subgroups of 3-manifold groups

In this chapter we collect properties of finitely generated infinite-index subgroups of
3-manifold groups in a flowchart (Flowchart 5), which can be found on p. 103. The
organization is similar to previous chapters. Section 6.1 contains the definitions of
the properties discussed in the flowchart, Section 6.2 contains the justifications for
the implications in the flowchart, and Section 6.3 lists some additional material not
contained in the flowchart. Since the studies of 3-manifold groups and of their subgroups
are closely intertwined, the content of this chapter partly overlaps with the results
mentioned in the previous chapters.

6.1. Definitions and Conventions

Most of the definitions required for understanding Flowchart 5 have been introduced in
the previous chapters. Therefore we need to introduce only the following new definitions.
We let N be a 3-manifold and π be a group.

(K.1) Let X be a connected subspace of N and Γ be a subgroup of π1(N). We say
that Γ is carried by X if Γ ⊆ Im{π1(X)→ π1(N)} (up to conjugation).

(K.2) Suppose π is finitely generated, and let Γ be a finitely generated subgroup
of π. We say that the membership problem is solvable for Γ if for all genera-
tors g1, . . . , gn for π there exists an algorithm which can determine whether or
not an input word in g1, . . . , gn defines an element of Γ. We refer to [CZi93,
Section D.1.1.9] and to [AFW13] for more about this concept.

(K.3) Let Σ ⊆ N be a connected compact surface. We call Σ a semifiber if N is the
union of two twisted I-bundles over the non-orientable surface Σ along their S0-
bundles. (In the literature usually the surface given by the S0-bundle is referred
to as a ‘semifiber.’) Note that if Σ is a semifiber, then N has a double cover p
such that p−1(Σ) consists of two components, each of which is a surface fiber.

(K.4) Let Γ be a subgroup of π. The notion of the width of Γ in π was defined
in [GMRS98] as follows. First we say that g1, . . . , gn ∈ π are essentially distinct
(with respect to Γ) if Γgi 6= Γgj whenever i 6= j. Conjugates of Γ by essentially
distinct elements are called essentially distinct conjugates. Then the width of Γ
in π is defined as the maximal n ∈ N∪{∞} such that there exists a collection of n
essentially distinct conjugates of Γ with the property that the intersection of any
two elements of the collection is infinite. The width of Γ is 1 if Γ is malnormal.
If Γ is normal and infinite, then the width of Γ equals its index.

(K.5) Let Γ be a subgroup of π. The commensurator subgroup of Γ is

Commπ(Γ) :=
{
g ∈ π : Γ ∩ gΓg−1 has finite index in Γ

}
.

(K.6) Let P be a property of subgroups of a given group. A subgroup Γ of π is
virtually P (in π) if π admits a (not necessarily normal) subgroup π′ of finite
index which contains Γ and such that Γ, viewed as subgroup of π′, satisfies P.

101
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As in Flowcharts 1 and 4 we use the convention that if an arrows splits into several
arrows, then exactly one of the possible conclusions holds. Furthermore, if an arrow is
decorated with a condition, then the conclusion holds if that condition is satisfied.

6.2. Justifications

In Flowchart 5 we put several restrictions on the 3-manifold N which we consider.
Below, in the justifications for the arrows in Flowchart 5, we will only assume that N is
connected, without any other blanket restrictions on N . Before we give the justifications
we point out that only (L.15) depends on the Virtually Compact Special Theorem.

(L.1) It follows from the Sphere Theorem (see Theorem 1.3.2) that each compact, irre-
ducible 3-manifold with empty or toroidal boundary, whose fundamental group
has a non-trivial finite subgroup, is spherical. See (C.3) for details.

(L.2) Suppose N is compact and let Γ be a finitely generated subgroup of π = π1(N).
Then Γ either
(a) is virtually solvable, or
(b) contains a non-cyclic free subgroup.
(In other words, π satisfies the ‘Tits Alternative.’) Indeed, by Scott’s Core
Theorem (C.5) applied to the covering of N corresponding to Γ, there exists a
compact 3-manifold M with π1(M) = Γ. It follows easily from Theorem 1.2.1,
Lemma 1.4.2, Lemma 1.11.2, combined with (C.24) and (C.26), that if π1(M) is
not virtually solvable, then it contains a non-cyclic free subgroup.

(L.3) Scott [Sco73b] proved that any finitely generated 3-manifold group is also finitely
presented. See (C.5) for more information.

(L.4) Suppose N is compact, orientable, irreducible, with empty or toroidal boundary.
Let Γ be an abelian subgroup of π1(N). It follows from Theorems 2.5.1 and 2.5.2,
or alternatively from the remark after the proof of Theorem 1.11.1 and the Core
Theorem (C.5), that Γ is either cyclic, Γ ∼= Z2, or Γ ∼= Z3. In the latter case it
follows from the discussion in Section 1.11 that N is the 3-torus and that Γ is a
finite-index subgroup of π1(N).

(L.5) Suppose N is compact, orientable, irreducible, with empty or toroidal boundary,
and let Γ be a subgroup of π1(N) isomorphic to Z2. Then there exists a singular
map f : T → N , where T is the 2-torus, such that f∗(π1(T )) = Γ. It follows
from the Characteristic Pair Theorem 1.7.7 that Γ is carried by a characteristic
submanifold.

The above statement is also known as the ‘Torus Theorem.’ It was an-
nounced by Waldhausen [Wan69]; the first proof was given by Feustel [Feu76a,
p. 29], [Feu76b, p. 56]. We refer to [Cal14a, Theorem 5.1] for a proof due to
Casson and to [Wan69, CF76, Milb84, Sco80, Sco84] for information on the
closely related ‘Annulus Theorem.’ Both theorems can be viewed as predecessors
of the Characteristic Pair Theorem.

(L.6) Suppose N is compact, orientable, with empty or toroidal boundary. Let M be a
characteristic submanifold of N and Γ be a finitely generated subgroup of π1(M).
Then Γ is separable in π1(M) by Scott’s Theorem [Sco78, Theorem 4.1] (see
also (C.12)), and π1(M) is separable in π1(N) by Wilton–Zalesskii [WZ10,
Theorem A] (see also (C.35)). It follows that Γ is separable in π1(N). The
same argument also generalizes to hyperbolic JSJ-components with LERF fun-
damental groups. More precisely, if M is a hyperbolic JSJ-component of N such
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that π1(M) is LERF and if Γ is a finitely generated subgroup of π1(M), then Γ
is separable in π1(N).

(L.7) E. Hamilton [Hamb01] showed that the fundamental group of any compact,
orientable 3-manifold N is abelian subgroup separable. In particular, any cyclic
subgroup of π1(N) is separable. See also (C.32) for more information.

It follows from (H.18) that if π1(N) is virtually RFRS, then every infinite
cyclic subgroup Γ of π1(N) is a virtual retract of π1(N); by (L.17), this gives
another proof that Γ is separable.

(L.8) The argument of [LyS77, Theorem IV.4.6] can be used to show that if Γ is
a finitely generated separable subgroup of a finitely presented group, then the
membership problem for Γ is solvable.

In [FrW13] it is shown, building on the Virtually Compact Special Theorem
and work of Kapovich–Miasnikov–Weidmann [KMW05], that the membership
problem is in fact solvable for any finitely generated subgroup of fundamental
groups of any compact 3-manifold.

(L.9) Suppose N is compact and orientable, and let Γ be a normal finitely generated
non-trivial subgroup of π1(N) of infinite index. Work of Hempel–Jaco [HJ72,
Theorem 3], the resolution of the Poincaré Conjecture, Theorem 2.5.5, and (L.3)
imply that one of the following conclusions hold:
(a) N is Seifert fibered and Γ is a subgroup of the Seifert fiber subgroup, or
(b) N fibers over S1 with surface fiber Σ and Γ is a finite-index subgroup of

π1(Σ), or
(c) N is the union of two twisted I-bundles over a compact connected (necessar-

ily non-orientable) surface Σ, which meet in the corresponding S0-bundles,
and Γ is a finite-index subgroup of π1(Σ).

In particular, if Γ = Ker(φ) for some morphism φ : π1(N) → Z, then φ = p∗
for some surface bundle p : N → S1. This special case was first proved by
Stallings [Sta62] and is known as Stallings’ Fibration Theorem. Generalizations
to subnormal groups were formulated and proved by Elkalla [El84, Theorem 3.7]
and Bieri–Hillman [BiH91].

Recall that the normalizer of a subgroup Γ of a group π is the subgroup

Nπ(Γ) := {g ∈ π : gΓg−1 = Γ}

of π. Now suppose N is compact, orientable, and irreducible, and let Σ ⊆ N be
a closed 2-sided incompressible orientable non-fiber surface. Heil [Hei81, p. 147]
showed that π1(Σ) is its own normalizer in π1(N) unless Σ bounds in N a twisted
I-bundle over a closed (necessarily non-orientable) surface. (See also [Hei71,
Swp75, Ein76a] and [HeR84].) An extension to the case of properly embedded
incompressible surfaces was proved by Heil–Rakovec [HeR84, Theorem 3.7].
Moreover, Heil [Hei81, p. 148] showed that if M ⊆ int(N) is a compact π1-
injective submanifold, then π1(M) is its own normalizer in π1(N) unless M ∼=
Σ× I for some surface Σ. This generalizes earlier work by Eisner [Ein77a].

(L.10) Let N be compact, and let Γ be a normal subgroup of π1(N) which is also a
finite-index subgroup of π1(Σ), where Σ is a surface fiber of a surface bundle
N → S1. We identify π1(N) with Z n π1(Σ). Since Γ is normal, we have a

subgroup π̃ := Z n Γ of Z n π1(Σ) = π1(N). Denote by Ñ the finite cover of N

corresponding to π̃. It is clear that Γ is a surface fiber subgroup of Ñ .
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(L.11) Suppose N is compact, orientable, with empty or toroidal boundary, and let Σ be
a fiber of a surface bundle N → S1. Then π1(N) ∼= Znπ1(Σ), and π1(Σ) ⊆ π1(N)
is therefore separable. From this it follows easily that every virtual surface fiber
subgroup of a 3-manifold group is separable.

(L.12) Suppose N is compact, orientable, with empty or toroidal boundary, and let Σ be
a fiber of a surface bundle N → S1. Then π1(N) ∼= Znπ1(Σ) where 1 ∈ Z acts by
some Φ ∈ Aut(π1(Σ)). Let Γ be a finite-index subgroup of π1(Σ). Because π1(Σ)
is finitely generated, there are only finitely many subgroups of index [π1(Σ) : Γ],
and so Φn(Γ) = Γ for some n. Now π̃ := nZ n Γ is a subgroup of finite index
in π1(N) such that π̃ ∩ π1(Σ) = Γ. This shows that π induces the full profinite
topology on the surface fiber subgroup π1(Σ). It follows easily that π also induces
the full profinite topology on any virtual surface fiber subgroup.

(L.13) Suppose N is hyperbolic. The Subgroup Tameness Theorem (Theorem 4.1.2)
asserts that if Γ is a finitely generated subgroup of π1(N), then Γ is either
geometrically finite or a virtual surface fiber subgroup. See (L.14), (L.15), (L.19),
(L.23) for other formulations of this fundamental dichotomy.

(L.14) Let N be a hyperbolic 3-manifold and let Γ be a geometrically finite subgroup of
π = π1(N) of infinite index. Then Γ has finite index in Commπ(Γ). See [Cay08,
Theorem 8.7] for a proof (and also [KaS96] and [Ar01, Theorem 2]), and [Ar01,
Section 5] for more results in this direction. If Γ is a virtual surface fiber subgroup
of π, then Commπ(Γ) is easily seen to be a finite-index subgroup of π, so Γ has
infinite index in its commensurator. The commensurator thus gives another way
to formulate the dichotomy of (L.13).

(L.15) Let N be a hyperbolic 3-manifold and Γ be a geometrically finite subgroup
of π = π1(N). In (H.9) we saw that it follows from the Virtually Compact Special
Theorem that Γ is a virtual retract of π. On the other hand, it is straightforward
to see that if Γ is a virtual surface fiber subgroup of π and if the monodromy of
the surface bundle does not have finite order, then Γ is not a virtual retract of π.
We thus obtain one more way to formulate the dichotomy of (L.13).

(L.16) It is easy to prove that every group induces the full profinite topology on each
of its virtual retracts.

(L.17) Let π be a residually finite group (e.g., a 3-manifold group, see (C.29)). Every
virtual retract of π is also separable in π. See (H.10) for details.

(L.18) Suppose N is hyperbolic. As observed in Proposition 4.4.2, if N is closed then
π = π1(N) is word-hyperbolic, and a subgroup of π is geometrically finite if and
only if it is quasi-convex. (See [Swp93, Theorem 1.1 and Proposition 1.3] and
also [KaS96, Theorem 2].) If N has toroidal boundary, then π is not word-
hyperbolic, but it is hyperbolic relative to its collection of peripheral subgroups.
By [Hr10, Corollary 1.3], a subgroup of π is geometrically finite if and only if it is
relatively quasi-convex. The reader is referred to [Hr10] for thorough treatments
of the various definitions of relative hyperbolicity and of relative quasi-convexity,
as well as proofs of their equivalence.

(L.19) Suppose N is hyperbolic, and let Γ be subgroup of π = π1(N). Suppose first
that Γ is a geometrically finite subgroup of π. By (L.18) this means that Γ is
a relatively quasi-convex subgroup of π. The main result of [GMRS98] shows
that the width of Γ is finite when N is closed (so π is word-hyperbolic by Propo-
sition 4.4.2); this also holds in general, by [HrW09]. If, on the other hand, Γ is
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a virtual surface fiber subgroup of N , then the width of Γ is infinite. The width
thus gives another way to formulate the dichotomy of (L.13).

(L.20) Suppose N is hyperbolic with boundary components T1, . . . , Tn, and let Γ be a
geometrically finite subgroup of π = π1(N). It follows from (L.18) and [Hr10,
Theorem 9.1] that Γ is hyperbolic relative to a set P of Γ-conjugacy class repre-
sentatives for the following collection of subgroups of π:{

Γ ∩ gπ1(Ti)g
−1 : g ∈ π, i = 1, . . . , n, and Γ ∩ gπ1(Ti)g

−1 6= {1}
}
.

All elements of P are isomorphic to either Z or Z2. In fact, it follows from [Osi06,
Theorem 2.40] that Γ is hyperbolic relative to those elements of P isomorphic
to Z2. In particular, if all elements of P are cyclic, then Γ is word-hyperbolic.

The fundamental group of a surface of negative Euler characteristic is also
word-hyperbolic. It follows from (L.21), (L.13), and the above discussion that
any finitely generated subgroup of the fundamental group of a closed hyperbolic
3-manifold is word-hyperbolic.

(L.21) Let Γ be a virtual surface fiber subgroup in an aspherical 3-manifold. Then Γ is
torsion-free by (C.3) and contains a finite-index subgroup which is a free group or
a surface group. It follows from [Sta68b, (0.2)] (see also [Sta68a, Theorem 3])
and [EcM80, Corollary 2] that Γ is a free group or a surface group.

Groves, Manning and Wilton [GMW12, Theorem 5.1] combined Geometriza-
tion, Mostow Rigidity, the Convergence Group Theorem of Casson–Jungreis–
Gabai, and a theorem of Zimmerman [Zim82], to prove an extension of this
result to 3-manifold groups: a torsion-free group is the fundamental group of a
closed, irreducible 3-manifold if it is virtually the fundamental group of a closed,
irreducible 3-manifold.

(L.22) Suppose N is compact, orientable, irreducible, and let Γ be a subgroup of infinite
index of π1(N). The argument of the proof of [How82, Theorem 6.1] shows that
b1(Γ) ≥ 1. See also (C.19).

(L.23) Each surface fiber subgroup corresponding to a surface bundle p : N → S1 is the
kernel of the map p∗ : π1(N) → π1(S1) = Z. It follows immediately from the
definition that a virtual surface fiber subgroup is virtually normal.

(L.24) Let Γ be a subgroup of a torsion-free group π and suppose that Γ is separable
and has finite width. Let g1, . . . , gn ∈ π be a maximal collection of essentially
distinct elements of π \Γ such that Γ∩Γgi is infinite for all i. Let π′ be a finite-
index subgroup of π that contains Γ but none of the gi. Then Γ is easily seen to
be malnormal in π′; in particular, Γ is virtually malnormal in π.

If we combine this fact with (L.15), (L.17), and (L.19) we see that any geo-
metrically finite subgroup of the fundamental group of a hyperbolic 3-manifold is
virtually malnormal. (In the closed case, this is [Mac13, Lemma 2.3].) Thus to-
gether with (L.22), the dichotomy for subgroups of hyperbolic 3-manifold groups
can also be rephrased in terms of being virtually (mal)normal.

6.3. Additional results and implications

We conclude this chapter with a few more results and references about subgroups of
3-manifold groups.

(M.1) A group is called locally free if every finitely generated subgroup is free. It
follows from (L.4) that if N is a compact, orientable, irreducible 3-manifold with
empty or toroidal boundary, then every abelian locally free subgroup of π1(N)
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is free. On the other hand Anderson [Ana02, Theorem 4.1] and Kent [Ken04,
Theorem 1] gave examples of hyperbolic 3-manifolds which contain non-abelian
subgroups which are locally free but not free.

(M.2) Suppose N is compact and orientable, and let φ : π1(N) → Z be a surjective
morphism. By (L.9), φ is either induced by the projection of a surface bundle
or Ker(φ) is not finitely generated. This dichotomy can be strengthened in several
ways: if φ is not induced by the projection of a surface bundle, then:
(a) Ker(φ) admits uncountably many subgroups of finite index. (See [FV14,

Theorem 5.2], [SiW09a] and [SiW09b, Theorem 3.4].)
(b) The pair (π1(N), φ) has ‘positive rank gradient.’ (See [DFV14, Theo-

rem 1.1] and [DeB13, Theorem 0.1].)
(c) Ker(φ) has a finite-index subgroup which is not normally generated by

finitely many elements. (See [DFV14, Theorem 5.1].)
(d) If N has non-empty toroidal boundary and if the restriction of φ to the

fundamental group of each boundary component is non-trivial, then Ker(φ)
is not locally free. (See [FF98, Theorem 3].)

(e) The pair (π1(N), φ) cannot be represented by an ascending HNN-extension
nor a descending HNN-extension. Here, given any group π and any surjec-
tive morphism α : π → Z we say that the pair (π, α) is represented by an
ascending HNN-extension if there exists an isomorphism

g : π
∼=−→ 〈A, t | tAt−1 = γ(A)〉

where A is finitely generated, γ : A→ A is injective and where (φ◦g−1)(t) =
1 and (φ ◦ g−1)(a) = 0 for all a ∈ A. We define the notion that (π, α) is
represented by a descending HNN-extension by considering t−1At instead of
tAt−1.

Let us explain the last statement in more detail. Let π be a group. Bieri–
Neumann–Strebel introduced an invariant Σ(π), which by definition is a certain
subset of the sphere S(π) :=

(
H1(π;R) \ {0})/R>0

)
. This invariant Σ(π) is

usually referred to as the Bieri–Neumann–Strebel invariant or the geometric
invariant of π. It follows from [BNS87, Proposition 4.3] that if φ ∈ H1(π;Z) =
Hom(π,Z) is primitive, then φ ∈ Σ(π) if and only if (π, φ) is represented by an
ascending HNN-extension. It follows from [BNS87, Theorem E] (together with
the resolution of the Poincaré Conjecture) that if N is a compact 3-manifold,
then Σ(π1(N)) equals the image of the fibered cones in H1(π;R) \ {0} under the
natural mapH1(π;R)\{0})→ S(π). (We refer to Section 5.4.3 for background on
fibered cones.) In particular Σ(π1(N)) is symmetric (see [BNS87, Corollary F]),
which in turn implies, using the aforementioned [BNS87, Proposition 4.3], the
above statement (e).

(M.3) Let Γ be a finitely generated subgroup of a group π. We say Γ is tight in π
if for any g ∈ π there exists an n such that gn ∈ Γ. Clearly a finite-index
subgroup of π is tight. Let N be a hyperbolic 3-manifold. It follows from
the Subgroup Tameness Theorem 4.1.2 that any tight subgroup of π1(N) has
finite index. For N with non-trivial toroidal boundary, this was first shown by
Canary [Cay94, Theorem 6.2].

(M.4) Suppose N is compact, orientable, with no spherical boundary components.
Let Σ be an incompressible connected subsurface of ∂N . If π1(Σ) has finite
index in π1(N), then by [Hem76, Theorem 10.5]:
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(a) N is a solid torus, or
(b) there is a homeomorphism f : N → Σ× [0, 1] with f(Σ) = Σ× {0}, or
(c) N is a twisted I-bundle over a (necessarily non-orientable) surface with Σ

the associated S0-bundle.
More generally, if Γ is a finite-index subgroup of π1(N) isomorphic to the fun-
damental group of a closed surface, then N is an I-bundle over a closed surface,
by [Hem76, Theorem 10.6]. (See also [Broa66, Theorem 3.1], and see [BT74]
for an extension to the case of non-compact N .)

(M.5) Suppose N is compact, and let Σ be a connected compact proper subsurface
of ∂N such that χ(Σ) ≥ χ(N) and π1(Σ) → π1(N) is surjective. It follows

from [BrC65, Theorem 1] that Σ and ∂N \ Σ are strong deformation retracts
of N .

(M.6) Suppose N is compact, orientable, irreducible, and let Σ 6= S2 be a closed incom-
pressible surface in N . If Γ is a subgroup of π1(N) containing π1(Σ), and Γ is iso-
morphic to the fundamental group of a closed orientable surface, then π1(Σ) = Γ,
by [Ja71, Theorem 6]. (See also [Feu70, Feu72b, Hei69b, Hei70] and [Sco74,
Lemma 3.5].)

(M.7) Let N be compact and Γ be a finitely generated subgroup of π = π1(N). But-
ton [But07, Theorem 4.1] showed that if t ∈ π with tΓt−1 ⊆ Γ, then tΓt−1 = Γ.
If N is hyperbolic and f is an automorphism of π with f(Γ) ⊆ Γ, then f(Γ) = Γ;
this follows easily from the above result of Button and the fact that Out(π) is
finite (see Section 2.4).

(M.8) Moon [Moo05, p. 18] showed that if N is geometric and Γ a finitely generated
subgroup of π1(N) of infinite index which has a subgroup G with G 6= {1},
G 6∼= Z, which is normal in π, then Γ is commensurable to a virtual surface fiber
group. (Recall that subgroups A, B of a group π are called commensurable if
A∩B has finite index in both A and B.) In the hyperbolic case this can be seen
as a consequence of (L.13) and (L.23). Moon also shows that this conclusion
holds for certain non-geometric 3-manifolds.

(M.9) We denote by K(N) the set of all isomorphism classes of knot groups of N . Here
a knot group of N is the fundamental group of N \νJ where J ⊆ N is a connected
1-dimensional submanifold of N . Let N1, N2 be orientable compact 3-manifolds
whose boundaries contain no 2-spheres. Jaco–Myers and Row (see [Row79,
Corollary 1], [JM79, Theorem 6.1], and [Mye82, Theorem 8.1]) showed that N1

and N2 are diffeomorphic if and only if K(N1) = K(N2). Earlier work is in [Fo52,
p. 455], [Bry60, p. 181] and [Con70].

(M.10) Soma [Som91] proved various results on the intersections of conjugates of virtual
surface fiber subgroups.

(M.11) We refer to [WW94, WY99] and [BGHM10, Section 7] for results on finite-
index subgroups of 3-manifold groups.



CHAPTER 7

Open Questions

The resolution of Thurston’s questions marks a watershed in the study of 3-manifolds.
In this final chapter we discuss some remaining open questions about their fundamental
groups.

We have loosely organized these questions into five categories. First, we recall some
well-known conjectures, such as the conjectures by Wall and Cannon (Section 7.1.1),
the Simple Loop Conjecture (Section 7.1.2), and conjectures about knot groups (Sec-
tion 7.1.3) and ribbon groups (Section 7.1.4). We then turn to questions motivated
by the work of Agol, Kahn, Markovic, Wise, and others, discussed in the previous
chapters, concerning separable subgroups in 3-manifold groups (Section 7.2.1) and
properties of fundamental groups of 3-manifolds which are not non-positively curved
(Section 7.2.2). Next, we ask for characterizations of those 3-manifolds with certain
group-theoretic features: linearity (Section 7.3.1), residual simplicity (Section 7.3.2),
potence (Section 7.3.3), left-orderability (Section 7.3.4), biautomaticity (Section 7.3.6),
and the PQL property (Section 7.3.7); at that point we also discuss profinite comple-
tions (Section 7.3.5) of 3-manifold groups. Section 7.4 deals with fundamental groups
of random 3-manifolds. Finally, in Sections 7.5.1, 7.5.2, and 7.5.3 we formulate some
questions about finite covers of 3-manifolds.

7.1. Some classical conjectures

7.1.1. Poincaré duality groups and the Cannon Conjecture. It is natural
to ask whether there is an intrinsic, group-theoretic characterization of fundamental
groups of (closed) 3-manifolds. Johnson–Wall [JW72] introduced the notion of an
n-dimensional Poincaré duality group (usually just referred to as a PDn-group). The
fundamental group of any closed, orientable, aspherical n-manifold is a PDn-group. Now
suppose that π is a PDn-group. If n = 1 or n = 2, then π is the fundamental group of
a closed, orientable, aspherical n-manifold. (The case n = 2 was proved by Eckmann,
Linnell and Müller [EcM80, EcL83, Ecn94, Ecn95, Ecn97].) Davis [Davb98, The-
orem C] showed that for any n ≥ 4 there is a finitely generated PDn-group which is
not finitely presented and hence is not the fundamental group of an aspherical closed
n-manifold. But the following conjecture of Wall is still open.

Conjecture 7.1.1 (Wall Conjecture). Let n ≥ 3. Every finitely presentable PDn-
group is the fundamental group of a closed, orientable, aspherical n-manifold.

This conjecture has been studied over many years and a summary of all the results
so far exceeds the scope of this book. We refer to [Tho95, Davb00, Hil11] for some
surveys and to [BiH91, Cas04, Cas07, Cr00, Cr07, Davb00, DuS00, Hil85,
Hil87, Hil06, Hil12, Hil11, Kr90b, SSw07, Tho84, Tho95, Tur90, Wala04] for
more information on the case n = 3 of the Wall Conjecture and for known results.

109
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The Geometrization Theorem implies that the fundamental group of a closed, ori-
entable, aspherical non-hyperbolic 3-manifold contains a subgroup isomorphic to Z2,
and so the fundamental group of a closed, aspherical 3-manifold N is word-hyperbolic if
and only if N is hyperbolic. It is therefore natural to ask which word-hyperbolic groups
are PD3 groups. Bestvina [Bea96, Remark 2.9], extending earlier work of Bestvina–
Mess [BeM91], characterized hyperbolic PD3 groups in terms of their Gromov bound-
aries. (See [BrH99, Section III.H.PW12] for the definition of the Gromov boundary of
a word-hyperbolic group.) He proved that a word-hyperbolic group π is PD3 if and only
if its Gromov boundary ∂π is homeomorphic to S2. Thus for word-hyperbolic groups
the Wall Conjecture is equivalent to the following conjecture of Cannon.

Conjecture 7.1.2 (Cannon Conjecture). If the boundary of a word-hyperbolic
group π is homeomorphic to S2, then π acts properly discontinuously and cocompactly
on H3 with finite kernel.

This conjecture, which is the 3-dimensional analogue of the 2-dimensional results by
Casson–Jungreis [CJ94] and Gabai [Gab92] stated in the remark after Theorem 2.5.5,
was first set out in [CaS98, Conjecture 5.1] and goes back to earlier work in [Can94]
(see also [Man07, p. 97]). We refer to [Bok06, Section 5] and [BeK02, Section 9] for a
detailed discussion of the conjecture and to [CFP99], [CFP01], [BoK05] and [Rus10]
for some positive evidence. Markovic [Mac13, Theorem 1.1] (see also [Hai13, Corol-
lary 1.5]) showed that Agol’s Theorem (see [Ag13] and Theorem 4.6.2) gives a new
approach to the Cannon Conjecture.

We finally point out that a high-dimensional analogue to the Cannon Conjecture
was proved by Bartels, Lück and Weinberger: if π is a word-hyperbolic group whose
boundary is homeomorphic to Sn−1 with n ≥ 6, then π is the fundamental group of an
aspherical closed n-dimensional manifold; see [BLW10, Theorem A].

7.1.2. The Simple Loop Conjecture. Let f : Σ → N be an embedding of a
closed, orientable surface into a compact 3-manifold. It is a consequence of the Loop
Theorem that if the induced group morphism f∗ : π1(Σ)→ π1(N) is not injective, then
the kernel of f∗ contains an essential simple closed loop on Σ. (See Theorem 1.3.1
and [Sco74, Corollary 3.1].) The Simple Loop Conjecture (see, e.g., [Kir97, Prob-
lem 3.96]) posits that the same conclusion holds for any map of an orientable surface
to a compact, orientable 3-manifold:

Conjecture 7.1.3 (Simple Loop Conjecture). Let f : Σ → N be a map from a
closed, orientable surface to a compact, orientable 3-manifold. If f∗ : π1(Σ)→ π1(N) is
not injective, then the kernel of f∗ contains an essential simple closed loop on Σ.

Conjecture 7.1.3 was proved for graph manifolds by Rubinstein–Wang [RuW98,
Theorem 3.1], extending earlier work of Gabai [Gab85, Theorem 2.1] and Hass [Has87,
Theorem 2]. Usadi [Us93] showed that an equivariant generalization of the conjec-
ture does not hold. Minsky [Miy00, Question 5.3] asked whether the conclusion of
the conjecture also holds if the target is replaced by SL(2,C). This was answered
in the negative by Louder [Lou14, Theorem 2] and Cooper–Manning [CoM11]; see
also [Cal13a], [Mnnb14, Theorem 1.2], and [But12, Section 7].

7.1.3. Knot groups. An n-knot group is the fundamental group of a knot exterior
Sn \ νJ , where J is an (n − 2)-sphere smoothly embedded in Sn and νJ is a tubular
neighborhood of J in Sn. Every n-knot group π has the following properties:
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(1) π is finitely presented,
(2) the abelianization of π is isomorphic to Z,
(3) H2(π) = 0,
(4) the group π has weight 1.

Here a group π is said to be of weight 1 if it admits a normal generator, i.e., if there
exists a g ∈ π such that the smallest normal subgroup containing g equals π.

The first three properties are straightforward consequences of elementary algebraic
topology and Alexander duality, the fourth property follows from the fact that a merid-
ian is a normal generator. Kervaire [Ker65] showed that for n ≥ 5 these conditions
in fact characterize n-knot groups. This is not true in the case that n = 4, see,
e.g., [Hil77, Lev78, Hil89], and it is not true if n = 3. In the latter case a straightfor-
ward example is given by the Baumslag-Solitar group BS(1), see Section 7.1.4. More
subtle examples for n = 3 are given by Rosebrock; see [Bue93, Ros94].

Now we restrict ourselves to the case n = 3. In particular we henceforth refer to a
3-knot group as a knot group. The following question, which is related to the discussion
in Section 7.1.1, naturally arises.

Question 7.1.4. Is there a group-theoretic characterization of knot groups?

Knot groups have been studied intensively since the very beginning of 3-manifold
topology. They serve partly as a laboratory for the general study of 3-manifold groups,
but of course there are also results and questions specific to knot groups. We refer
to [Neh65, Neh74] for a summary of some early work, to [GA75, Joh80, JL89] for
results on homomorphic images of knot groups, and to [Str74, Eim00, KrM04, AL12]
for further results. Below we discuss several open questions about knot groups.

If N is obtained by Dehn surgery along a knot J ⊆ S3, then the image of the
meridian of J is a normal generator of π1(N), i.e., π1(N) has weight 1. The converse
does not hold, i.e., there exist closed 3-manifolds N such that π1(N) has weight 1, but
which are not obtained by Dehn surgery along a knot in S3. For example, if N = P1#P2

is the connected sum of two copies of the Poincaré homology sphere P , then π1(N) is
normally generated by a1a2, where a1 ∈ π1(P1) is an element of order 3 and a2 ∈ π1(P2)
is an element of order 5. On the other hand it follows from [GLu89, Corollary 3.1]
that N cannot be obtained from Dehn surgery along a knot in S3. Further reducible
examples are also given by Boyer [Boy86, p. 104]. Boyer–Lines [BoL90, Theorem 5.6]
respectively Doig [Doi12], Hoffman–Walsh [HW13, Theorem 4.4], Hom–Karakurt–
Lidman [HKL14, Theorem 1.1] and Marengon [Mar14, Theorem 3] also provided
3-manifolds N such that

(1) N is a rational homology sphere with non-trivial cyclic first homology,
(2) π1(N) has weight one,
(3) N is Seifert fibered respectively hyperbolic,
(4) N is not Dehn surgery along a knot in S3.

Auckly [Auc93, Auc97] gave examples of hyperbolic integral homology spheres which
are not the result of Dehn surgery along a knot in S3, but it is not known whether their
fundamental groups have weight 1. The known obstructions to being Dehn surgery along
a knot in S3 mostly apply to rational homology spheres. In particular the following
question is still open.

Question 7.1.5. Let N be a closed, orientable, irreducible 3-manifold such that
b1(N) = 1 and π1(N) has weight 1. Is N the result of Dehn surgery along a knot in S3?
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Another question concerning fundamental groups of knot complements is the fol-
lowing, due to Cappell–Shaneson (see [Kir97, Problem 1.11]).

Question 7.1.6. Let J ⊆ S3 be a knot such that π1(S3 \ νJ) is generated by n-
meridional generators. Is J an n-bridge knot?

The case n = 1 is a consequence of the Loop Theorem and the case n = 2 follows
from work of Boileau and Zimmermann [BoZi89, Corollary 3.3] together with the
Orbifold Geometrization Theorem [BMP03, BLP05]. An affirmative answer is also
known for torus knots [RsZ87], pretzel knots [BoZ85, Cor13], and many satellite
knots [CH14]. Bleiler [Kir97, Problem 1.73] suggested a generalization to knots in
general 3-manifolds and gave positive evidence for it [BJ04], but results of Li [Lia13,
Theorem 1.1] can be used to show that Bleiler’s conjecture is false in general.

The following question also concerns the relationship between generators of the
fundamental group and the topology of a knot complement.

Question 7.1.7. Let J ⊆ S3 be a knot such that π1(S3 \ νJ) is generated by two
elements. Is J a tunnel number one knot?

Here a knot is said to have tunnel number one if there exists a properly embedded
arc A in S3 \ νJ such that S3 \ ν(J ∪ A) is a handlebody. Some evidence towards this
conjecture is given in [Ble94, BJ04] and [BW05, Corollary 7].

If J ⊆ S3 is a knot, then any meridian normally generates π = π1(S3 \ νJ). An
element g ∈ π is called a pseudo-meridian of J if g normally generates π but if there
is no automorphism of π which sends g to a meridian. Examples of pseudo-meridians
were first given by Tsau [Ts85, Theorem 3.11]. Silver–Whitten–Williams [SWW10,
Corollary 1.3] showed that every non-trivial hyperbolic 2-bridge knot, every torus knot,
and every hyperbolic knot with unknotting number one admits a pseudo-meridian. The
following conjecture was proposed in [SWW10, Conjecture 3.3].

Question 7.1.8. Does every non-trivial knot in S3 have a pseudo-meridian?

We also refer to work of Suzuki [Suz13] which suggests that knot groups have in
general many pseudo-meridians.

Two knots J1 and J2 in S3 are called commensurable if the exteriors S3 \ νJ1 and
S3\νJ2 admit finite covers which are diffeomorphic. All torus knots are commensurable,
but hyperbolic knots tend to be commensurable to few other knots. For example,
by [Red91, MaM08, ReW08] many hyperbolic knots are only commensurable to
itself. By [ReW08, Hof10] there are hyperbolic knots which are commensurable to
two other knots. The following conjecture was formulated in [ReW08].

Conjecture 7.1.9. Every hyperbolic knot is commensurable to at most two other
knots.

This conjecture has been verified by Boileau–Boyer–Cebanu–Walsh [BBCW12] for
all hyperbolic knots with ‘no hidden symmetry.’ It is conjectured [NeR92, BBCW12]
that the two dodecahedral knots of [AiR99a] are the only hyperbolic knots with hidden
symmetries. See [Wah11, Pao13, Fri13] for more information on commensurability
of knots.
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7.1.4. Ribbon groups. A group π with H1(π;Z) ∼= Z is a ribbon group if it has
a Wirtinger presentation of deficiency 1, i.e., a presentation〈

g1, . . . , gn+1 | gε1σ(1)g1g
−ε1
σ(1)g

−1
2 , . . . , gεkσ(n)gng

−εn
σ(n)g

−1
n+1

〉
where σ : {1, . . . , n} → {1, . . . , n+ 1} is a map and εi = ±1 for i = 1, . . . , n. The name
comes from the fact these groups are precisely the fundamental groups of ribbon disk
complements in D4. (See [FTe05, Theorem 2.1] or [Hil02, p. 22].)

It is well known that if π is a knot group (i.e., π = π1(S3 \ νJ) where J ⊆ S3

is a knot), then π is a ribbon group. (See, e.g., [Rol90, p. 57].) Knot groups are
fundamental groups of irreducible 3-manifolds with non-trivial toroidal boundary; in
particular they are coherent by (C.5), they have a 2-dimensional Eilenberg–Mac Lane
space by (C.1), and they are virtually special by Theorems 4.2.2, 4.7.2 and 4.7.3.

On the other hand not all ribbon groups are 3-manifold groups, let alone knot
groups. For example, for any m the Baumslag–Solitar group

BS(m) = 〈a, b | bamb−1 = am+1〉 = 〈a, b | amba−m = ba〉

is a ribbon group but not a knot group. Indeed, following [Kul05, p. 129], we see that
with x = ba and g = g−1, the group BS(m) is isomorphic to〈

x, b, b1, . . . , bm−1 | (bx)b(bx) = b1, . . . , (bx)bm−1(bx) = x
〉

=〈
x, b, b1, . . . , bm−1 | xbx = bb1b, . . . , xbm−1x = bxb

〉
=〈

x, b, b1, . . . , bm−1, a1, . . . , am | xbx = a1 = bb1b, . . . , xbm−1x = am = bxb
〉
,

which is a ribbon group. The group BS(1) is isomorphic to the solvable group Z n
Z[1/2], which is not a 3-manifold group by Theorem 1.11.1. It is shown in [BaS62,
Theorem 1] that BS(m) is not Hopfian if m ≥ 2, which by (C.29) and (C.30) also implies
that BS(m) is not a 3-manifold group. (See also [Shn01, Theorem 1] and [JS79,
Theorem VI.2.1].) More examples of ribbon groups which are not knot groups are
in [Ros94, Theorem 3].

We thus see that ribbon groups, which from the point of view of group presentations
look like a mild generalization of knot groups, can exhibit very different behavior. It
is an interesting question whether the ‘good properties’ of knot groups or the ‘bad
properties’ of the Baumslag–Solitar groups BS(m) (for m ≥ 2) are prevalent among
ribbon groups.

Very little is known about the general properties of ribbon groups. In particular,
the following question is still open.

Question 7.1.10. Is the canonical 2-complex corresponding to a Wirtinger presen-
tation of deficiency 1 of a ribbon group an Eilenberg–Mac Lane space?

An affirmative answer to this question would be an important step towards deter-
mining which knots bound ribbon disks; see [FTe05, p. 2136f] for details. Howie gave
a positive answer to this question for certain (e.g., locally indicable) ribbon groups.
(See [How82, Theorem 5.2] and [How85, Section 10].) We refer the reader to [IK01,
HuR01, HaR03, Ivb05, Bed11, HaR12] for further work.

We conclude this section with a conjecture due to Whitehead [Whd41b].

Conjecture 7.1.11 (Whitehead). Each subcomplex of an aspherical 2-complex is
also aspherical.
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A proof of the Whitehead Conjecture would give an affirmative answer to Ques-
tion 7.1.10. Indeed, starting with the canonical 2-complex corresponding to a Wirtinger
presentation of deficiency 1 for a ribbon group, the 2-complex obtained by attaching a 2-
cell to any of the generators is easily seen to be aspherical. We refer to [Bog93, Ros07]
for survey articles on the Whitehead Conjecture and to [BeB97, Theorem 8.7] for some
negative evidence.

7.2. Questions motivated by the work of Agol, Kahn, Markovic, and Wise

7.2.1. Separable subgroups in 3-manifolds with non-trivial JSJ-decompo-
sition. Let N be a compact, orientable, irreducible 3-manifold with empty or toroidal
boundary. By the Virtually Compact Special Theorem 4.2.2, we know that if N is
hyperbolic then π1(N) is in fact virtually compact special. Together with the Tameness
Theorem of Agol and Calegari–Gabai and work of Haglund this implies that π1(N)
is LERF.

The picture is considerably more complicated for non-hyperbolic 3-manifolds. Nib-
lo–Wise [NW01, Theorem 4.2] showed that the fundamental group of a graph man-
ifold N is LERF if and only if N is geometric. (See also the discussion in (H.11).)
Liu [Liu14] gave more examples of 3-manifold groups which are not LERF. The follow-
ing conjecture is a slight variation on [Liu14, Conjecture 1.5].

Conjecture 7.2.1. Let N be a compact, orientable, irreducible 3-manifold with
empty or toroidal boundary. If N has a non-trivial JSJ-decomposition, then π1(N) is
not LERF.

(In an earlier version of this survey that appeared on the arXiv we had conjectured
that if N is a compact, orientable, irreducible 3-manifold with empty or toroidal bound-
ary such that no torus of the JSJ-decomposition bounds a Seifert fibered 3-manifold on
both sides, then π1(N) is LERF. This conjecture was disproved by Liu [Liu14, p. 3].)

Note that π1(N) being virtually compact special is in general not enough to deduce
that π1(N) is LERF. Indeed, there exist graph manifolds with fundamental groups that
are compact special but not LERF; for instance, the non-LERF link group exhibited
in [NW01, Theorem 1.3] is a right-angled Artin group.

Despite the general failure of LERF, certain families of subgroups are known to be
separable. Let N be a compact 3-manifold.

(1) Suppose N is orientable, irreducible, with (not necessarily toroidal) boundary.
Let X be a connected, incompressible subsurface of ∂N . Long–Niblo [LoN91,
Theorem 1] showed that π1(X) is separable in π1(N).

(2) Hamilton proved that any abelian subgroup of π1(N) is separable; see (C.32).
(3) Hamilton [Hamb03] gave examples of free 2-generator subgroups in non-

geometric 3-manifolds which are separable.
(4) Suppose N is orientable and irreducible, with empty or toroidal boundary.

Then N is efficient, by (C.35). By (C.12) and (H.11) the fundamental group
of any JSJ piece is LERF, and it follows that any subgroup of π1(N) carried
by a JSJ piece is separable.

(5) For an arbitrary N , Przytycki–Wise [PW14b, Theorem 1.1] showed that a
subgroup of π1(N) given by an incompressible properly embedded surface is
separable in π1(N). (This generalizes earlier work of Long–Niblo [LoN91,
Theorem 1].)
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(6) Long–Reid [LoR01, Theorem 1.2] showed that the fundamental group of
the double D of the exterior of the figure-8 knot is GFERF. More precisely,
they found a faithful representation of π1(D) into the isometry group of 4-
dimensional hyperbolic space, and showed that the subgroups which are geo-
metrically finite with respect to this representation are separable.

To bring order to this menagerie of examples, it would be desirable to exhibit some
large, intrinsically defined class of subgroups of general 3-manifold groups which are
separable. In the remainder of this subsection, we propose the class of fully relatively
quasi-convex subgroups (see below) as a candidate.

We work in the context of relatively hyperbolic groups. The following theorem
follows quickly from [Dah03, Theorem 0.1]. (See also [BiW13, Corollary E].)

Theorem 7.2.2. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary. Let M1, . . . ,Mk be the maximal graph manifold pieces of the
JSJ-decomposition of N , let S1, . . . , Sl be the tori in the boundary of N that adjoin
a hyperbolic piece and let T1, . . . , Tm be the tori in the JSJ-decomposition of M that
separate two (not necessarily distinct) hyperbolic components of the JSJ-decomposition.
The fundamental group of N is hyperbolic relative to the set of parabolic subgroups

{Hi} = {π1(Mp)} ∪ {π1(Sq)} ∪ {π1(Tr)} .

In the case where N is a graph manifold, the theorem makes the vacuous assertion
that π1N is hyperbolic relative to itself.

There is a notion of a relatively quasi-convex subgroup of a relatively hyperbolic
group; see (H.9) and the references mentioned there for more details. A subgroup Γ of
a group π, relatively hyperbolic relative to {Hi}, is called fully relatively quasi-convex
if it is relatively quasi-convex and, moreover, for each i, the subgroup Γ ∩Hi of Hi is
trivial or of finite index.

Conjecture 7.2.3. Let N be a compact, orientable, non-positively curved 3-mani-
fold with empty or toroidal boundary. If Γ is a subgroup of π = π1(N) that is fully
relatively quasi-convex with respect to the natural relatively hyperbolic structure on π,
then Γ is a virtual retract of π; in particular, Γ is separable.

An earlier version of this book that appeared on the arXiv noted that Conjec-
ture 7.2.3 would follow if the fundamental group of every compact, non-positively curved
3-manifold with empty or toroidal boundary were virtually compact special, and asked
if this holds. Hagen–Przytycki answered this question completely by showing that, on
the contrary, the fundamental group of such a manifold is usually not virtually compact
special [HaP13]; see also (H.4) above.

7.2.2. Non-non-positively curved 3-manifolds. The preceding chapters show
that a clear picture of the properties of aspherical non-positively curved 3-manifolds is
emerging. The ‘last frontier,’ oddly enough, seems to be the study of 3-manifolds which
are not non-positively curved.

It is interesting to note that solvable fundamental groups of 3-manifolds in some
sense have ‘worse’ properties than fundamental groups of hyperbolic 3-manifolds. In
fact, in contrast to the picture we developed in Flowchart 4 for hyperbolic 3-manifold
groups, we have the following lemma:

Lemma 7.2.4. Let N be a Sol-manifold and π = π1(N). Then π
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(1) is not virtually RFRS,
(2) is not virtually special,
(3) has no finite-index subgroup which is residually p for all primes p, and
(4) does not virtually retract onto all its cyclic subgroups.

The first statement was shown by Agol [Ag08, p. 271], the second is an immediate
consequence of the first statement and (H.17), the third is proved in [AF11, Proposi-
tion 1.3], and the fourth statement follows easily from the fact that any finite cover N ′

of a Sol-manifold is a Sol-manifold again and so b1(N ′) ≤ 1, contradicting (H.19).

We summarize some known properties in the following theorem.

Theorem 7.2.5. Let N be a compact, orientable, aspherical 3-manifold with empty
or toroidal boundary which does not admit a non-positively curved metric. Then

(1) N is a closed graph manifold;
(2) π1(N) is conjugacy separable; and
(3) for any prime p, the group π1(N) is virtually residually p.

The first statement was proved by Leeb [Leb95, Theorems 3.2 and 3.3] and the
other two statements are known to hold for fundamental groups of all graph manifolds
by [WZ10, Theorem D] and [AF13], respectively.

We saw in Lemma 7.2.4 and Proposition 5.4.7 that there are many desirable prop-
erties which are not shared by fundamental groups of Sol-manifolds and some graph
manifolds. Also, recall that there are graph manifolds which are not virtually fibered
(cf. (H.4)). We can nonetheless pose the following question.

Questions 7.2.6. Let N be a compact, orientable, aspherical 3-manifold with empty
or toroidal boundary which doesn’t admit a non-positively curved metric.

(1) Is π := π1(N) linear over C?
(2) Is π linear over Z?
(3) If π is not solvable, does it have a finite-index subgroup which is residually p

for any prime p?
(4) Is π virtually bi-orderable?
(5) Does π satisfy the Atiyah Conjecture?
(6) Is the group ring Z[π] a domain?

7.3. Further group-theoretic properties

Throughout this section we let N be a compact 3-manifold.

7.3.1. Linear representations of 3-manifold groups. As we explained in Sec-
tion 5, we now know that the fundamental groups of most compact 3-manifolds are
linear. It is natural to ask what is the minimal dimension of a faithful representation for
a given 3-manifold group. For example, Thurston [Kir97, Problem 3.33] asked whether
every finitely generated 3-manifold group has a faithful representation in GL(4,R). This
question was partly motivated by the study of projective structures on 3-manifolds, since
a projective structure on a 3-manifold naturally gives rise to a (not necessarily faithful)
representation of its fundamental group in PGL(4,R). See [CLT06, CLT07, HeP11]
for more about projective structures on 3-manifolds, and [CoG12] for a proof that
RP 3#RP 3 does not admit a projective structure.
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Thurston’s question was answered in the negative by Button [But14, Corollary 5.2].
More precisely, Button found a closed graph manifold whose fundamental group admits
no faithful representation in GL(4,K) for any field K.

One of the main themes which emerges from this book is that fundamental groups
of closed graph manifolds are at times less well behaved than fundamental groups of
compact, orientable, irreducible 3-manifolds which are not closed graph manifolds (e.g.,
which have a hyperbolic JSJ-component). We can therefore ask:

Question 7.3.1.

(1) Suppose that N is orientable, irreducible, and not a closed graph manifold.
Does π1(N) admit a faithful representation in GL(4,R)?

(2) Does there exist an n such that the fundamental group of any compact 3-
manifold group has a faithful representation in GL(n,R)?

Note, however, that we do not even know whether there is an n such that the
fundamental group of any Seifert fibered manifold embeds in GL(n,R); see (C.11).

We remark that Lubotzky [Lu88] characterized group-theoretically the finitely gen-
erated virtually residually p groups which embed into GL(n,K) for some n and some
field K of characteristic 0. On general grounds (Theorem of  Los-Tarski [Ho93, Corol-
lary 6.5.3]), for each n there also exists an intrinsic characterization of those groups
which embed into GL(n,K) for some field K of characteristic 0. Since the Compact-
ness Theorem of first-order logic is invoked in the proof, we don’t have much information
about the nature of this characterization; for n = 1 it can be worked out explicitly, see,
e.g., [Weh73, Theorem 2.2 (i)]. Unfortunately, these abstract results seem of little help
in tackling part (2) of the question above.

The following was conjectured by Luo [Luo12, Conjecture 1].

Conjecture 7.3.2. Given any g ∈ π1(N), g 6= 1, there exists a finite commutative
ring R and a morphism α : π1(N)→ SL(2, R) such that α(g) 6= 1.

So far we only discussed faithful representations over Z or over fields of charac-
teristic 0. Now we turn to representations over fields of non-zero characteristic. As
we had mentioned in (C.11), it follows from the Auslander–Swan Theorem [Weh73,
Theorem 2.5] that fundamental groups of Sol-manifolds are linear over Z. On the other
hand, by [Weh73, p. 21] the fundamental groups of Sol-manifolds do not admit faithful
representations over fields of non-zero characteristic.

Question 7.3.3. Does the fundamental group of any hyperbolic 3-manifold admit a
faithful representation over a field of non-zero characteristic?

7.3.2. 3-manifold groups which are residually simple. Long–Reid [LoR98,
Corollary 1.3] showed that the fundamental group of any hyperbolic 3-manifold is resid-
ually simple. On the other hand, there are examples of 3-manifold groups which are
not residually simple:

(1) certain finite fundamental groups like Z/4Z,
(2) non-abelian solvable groups, like fundamental groups of non-trivial torus bun-

dles, and
(3) non-abelian groups with non-trivial center, i.e., infinite non-abelian fundamen-

tal groups of Seifert fibered manifolds.
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We are not aware of any other examples of 3-manifold groups which are not residually
finite simple. We therefore pose the following question:

Question 7.3.4. Suppose N is orientable, irreducible, with empty or toroidal bound-
ary. If N is not geometric, is π1(N) residually finite simple?

7.3.3. Potence. A group π is called potent if for any g ∈ π \ {1} and any n there
exists a morphism α from π onto a finite group such that α(g) has order n. As we saw
above, many 3-manifold groups are virtually potent. It is also straightforward to see
that fundamental groups of fibered 3-manifolds are potent. Also, Shalen [Shn12] proved
that if π be the fundamental group of a hyperbolic 3-manifold and n ≥ 3, then there
are finitely many conjugacy classes C1, . . . , Cm in π such that for any g 6∈ C1 ∪ · · · ∪Cm
there exists a morphism α from π1(N) onto a finite group such that α(g) has order n.

The following question naturally arises:

Question 7.3.5. Suppose N is orientable and aspherical, with empty or toroidal
boundary. Is π1(N) potent?

7.3.4. Left-orderability. Suppose N is orientable, irreducible, with empty or
toroidal boundary. By (C.19) and (C.20) above, if b1(N) ≥ 1, then π1(N) is left-
orderable. (See also [BRW05, Theorem 1.1] for a different approach.) On the other
hand there is presently no good criterion for determining whether π1(N) is left-orderable
if b1(N) = 0, i.e., if N is a rational homology sphere. Before we formulate the subse-
quent conjecture we recall that a rational homology sphere N is called an L-space if

the total rank of its Heegaard Floer homology ĤF (N) equals |H1(N ;Z)|. We refer to
the foundational papers of Ozsváth–Szabó [OzS04a, OzS04b] for details on Heegaard
Floer homology and to [OzS05] for the definition of L-spaces.

The following was formulated by Boyer–Gordon–Watson [BGW13, Conjecture 3]:

Conjecture 7.3.6. Suppose that N is an irreducible rational homology sphere.
Then π1(N) is left-orderable if and only if N is not an L-space.

See [BGW13] for some background. We refer to the papers [Pet09, BGW13,
CyW13, CyW11, CLW13, LiW14, ClT13, LeL12, Ter13, Gre11, HaTe14b,
HaTe12, HaTe14a, Tra13a, MTe13, BoB13, It13, DJRZ13, Nak13, BoC14,
IT14, GLid14, CGHV14] for evidence towards an affirmative answer, for examples of
non left-orderable fundamental groups, and for relations of these notions to the existence
of taut foliations. We also refer to [DPT05, Hu13, Tra13b] for more results on the
left-orderability of fundamental groups of rational homology spheres.

A link between left-orderability and L-spaces is given by the (non-) existence of
certain foliations on 3-manifolds. See [CD03, Section 7] and [RSS03, RoS10] for the
interaction between left-orderability and foliations. Ozsváth–Szabó [OzS04c, Theo-
rem 1.4], on the other hand, proved that no L-space has a co-orientable taut foliation.
An affirmative answer to Conjecture 7.3.6 would thus imply that the fundamental group
of a rational homology sphere admitting a co-orientable taut foliation is left-orderable.
The following theorem can be seen as positive evidence for the conjecture.

Theorem 7.3.7. The fundamental group of each irreducible Z-homology sphere
which admits a co-orientable taut foliation is left-orderable.
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This theorem follows from [BoB13, Lemma 0.4] together with the proof that the
second statement of [BoB13, Corollary 0.3] implies the third statement. This theorem
was first proved in the Seifert fibered case by [BRW05, Corollary 3.12], the hyperbolic
case also follows from [CD03, Theorems 6.3 and 7.2], and the graph manifold case was
first proved in [CLW13, Theorem 1].

7.3.5. Finite quotients of 3-manifold groups. As before, we denote by π̂ the
profinite completion of a group π. It is natural to ask to what degree a residually
finite group is determined by its profinite completion. This question goes back to
Grothendieck [Grk70] and it is studied in the general group-theoretic context in detail
in [Pil74, GPS80, GZ11]. We start out the discussion of 3-manifold groups with the
following theorem.

Theorem 7.3.8. Let π and Γ be finitely generated groups. The following are equiv-
alent:

(1) there exists an isomorphism π̂ → Γ̂ of topological groups;

(2) there exists an isomorphism π̂ → Γ̂ of groups;
(3) the set of isomorphism classes of finite quotients of π is the same as the set of

isomorphism classes of finite quotients of Γ.

The implications (1) ⇒ (2) and (1) ⇒ (3) are obvious. Nikolov–Segal [NiS03,
NiS07] showed (2) ⇒ (1). See [DFPR82] and [RiZ10, Corollary 3.2.8] for a proof
of (3) ⇒ (1).

We denote by G3 the set of isomorphism classes [Γ] of fundamental groups Γ of
compact, orientable 3-manifolds. Inspired by [GZ11, p. 132], given a group π, we call

g3(π) :=
{

[Γ] ∈ G3 : π̂ ∼= Γ̂
}

the 3-manifold genus of π. We say that the 3-manifold genus of π is trivial if g3(π)
consists of one element; that is, if Γ is the fundamental group of a compact 3-manifold

with π̂ ∼= Γ̂, then π ∼= Γ. Which 3-manifold groups π have non-trivial 3-manifold genus?
Funar [Fun13, Corollary 1.4], building on [Ste72, p. 3], and also Hempel [Hem14]
gave examples of fundamental groups of Sol-manifolds and of Seifert fibered manifolds
that have non-trivial 3-manifold genus. As of now these are the only known examples
of 3-manifold groups with non-trivial 3-manifold genus.

We propose the following conjecture, which is a variation on [LoR11, p. 481]
and [CFW10, Remark 3.7].

Conjecture 7.3.9. The fundamental group of a hyperbolic 3-manifold with empty
or toroidal boundary has trivial 3-manifold genus.

The results and calculations in [Eim07, Section 2D] and [FV07, FV13, Lin01,
BF15] give some positive evidence for the conjecture. Further evidence is given by
Wilton-Zalesskii [WZ14, Theorem A] who showed that the 3-manifold genus of a closed
hyperbolic 3-manifold contains only fundamental groups of hyperbolic 3-manifolds. A
proof of the conjecture, together with the equivalence of (1) and (3) in Theorem 7.3.8,
would give an alternative solution to the isomorphism problem for hyperbolic 3-manifold
groups. We also expect many other 3-manifold groups to have trivial 3-manifold genus.

Note that there are infinite classes of finitely presented groups which have the same
profinite completion; see, e.g., [Pil74]. We nonetheless propose that this does not hold
for 3-manifold groups. More precisely, we propose the following conjecture.
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Conjecture 7.3.10. The 3-manifold genus of a fundamental group of a compact
3-manifold is finite.

Fundamental groups of Sol-manifolds are virtually polycyclic. So from [GPS80,
p. 155] it follows that the conjecture holds for fundamental groups of Sol-manifolds.
Also, Hempel’s examples [Hem14] seem to be consistent with the conjecture.

As mentioned in (J.4), Cavendish used the fact that 3-manifold groups are good in
the sense of Serre (see (H.26)) to show that fundamental groups of compact 3-manifolds
are Grothendieck rigid. In fact, one can deduce more.

Proposition 7.3.11. Let N1, N2 be compact, aspherical 3-manifolds, where N1 is
closed and N2 has non-empty boundary. Then

π̂1(N1) � π̂1(N2) .

Proof. Because π1(N1) and π1(N2) are both good,

H3(π̂1(Ni);Z2) ∼= H3(π1(Ni);Z2) for i = 1, 2.

But
H3(π1(N1);Z2) ∼= H3(N1;Z2) ∼= Z2

whereas
H3(π1(N2);Z2) ∼= H3(N2;Z2) ∼= 0,

so the profinite completions of π1(N1) and of π1(N2) cannot be isomorphic. �

7.3.6. Biautomaticity. The reader is referred to [ECHLPT92] for the defini-
tions of automatic and biautomatic structures on groups. The original formulations
of these definitions, by Thurston and others, were strongly motivated by attempts to
understand the fundamental groups of 3-manifolds using computers. Automatic groups
have quadratic Dehn function, and as a result it follows that fundamental groups of Nil-
and Sol-manifolds are not automatic. However, Epstein–Cannon–Holt–Levy–Paterson–
Thurston [ECHLPT92, Theorem 12.4.6] proved the following theorem.

Theorem 7.3.12. If N is orientable, irreducible, with empty or toroidal boundary,
then π1(N) has an automatic structure.

However, the following question remains open.

Question 7.3.13. Suppose N is orientable, irreducible, with empty or toroidal
boundary, and does not admit Nil or Sol geometry. Is π1(N) biautomatic?

7.3.7. Stable commutator length. Let π be a group. The commutator subgroup
[π, π] of π is the subgroup of π that is generated by commutators [g, h] = ghg−1h−1

(g, h ∈ π). Each element g of [π, π] is a product [g1, h1] · · · [gn, hn] (gi, hi ∈ π) of
commutators; the commutator length cl(g) is the minimal number n of commutators
which are needed to express g in this way. The stable commutator length of an element
g ∈ [π, π] is then defined as

scl(g) := lim
n→∞

1

n
cl(gn).

The function scl yields a seminorm BH
1 → R≥0 on a certain real vector space BH

1 . This
seminorm, also denoted by scl, is a norm if π is word-hyperbolic; see [CK10, Cal09a].

The vector space BH
1 is defined as the tensor product of a certain rational vector

space with R. It thus makes sense to ask whether scl is a rational seminorm. A group is
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said to have the PQL property if scl is a piecewise rational linear seminorm on BH
1 . Not

all groups have the PQL property: Zhuang [Zhu08] exhibited finitely presented groups
such that scl is not rational. On the other hand, Calegari [Cal09b, Theorem 3.11]
showed that fundamental groups of Seifert fibered 3-manifolds with non-empty bound-
ary have the PQL property. (See also [Sus13].) Calegari [Cal09b, Question 3.13] poses
the following question.

Question 7.3.14. Does every 3-manifold group have the PQL property?

In fact, it is not even known whether fundamental groups of closed surfaces have
the PQL property.

7.4. Random 3-manifolds

It is natural to ask, what properties does a ‘random’ (or ‘generic’) 3-manifold have? For
example, is a ‘random’ closed 3-manifold N a rational homology sphere (i.e., satisfies
b1(N) = 0)? Is it hyperbolic? Is it Haken?

There are several reasonable interpretations of the vague phrase ‘a random 3-
manifold.’ The basic idea is always a variation on the following: First one describes
the set of homeomorphism classes of 3-manifolds as an exhaustion by a family {Mn} of
finite sets; then, given a property of 3-manifolds P one says that a random 3-manifold
has Property P if in the limit the ratio of manifolds in Mn satisfying P goes to one. As
we will see, the different ways of constructing 3-manifolds give rise to different imple-
mentations of the above strategy.

7.4.1. The Heegaard splitting model. From (C.4) recall that every closed 3-
manifold N has a Heegaard splitting, i.e., a closed surface in N which splits N into
two handlebodies. Let Σ be a surface. We let M(Σ) be the mapping class group of Σ,
that is, the group of isotopy classes of orientation preserving self-diffeomorphisms of Σ.
Given ϕ ∈M(Σ) we denote by Hg ∪ϕHg the result of gluing two copies of the standard
genus g handlebody along the boundary via a representative of ϕ. The homeomorphism
type of Hg ∪ϕ Hg does not depend on the choice of the representative.

The group M(Σ) is finitely generated; see [FaM12, Theorem 4.1]. Given a finite
generating set S for M(Σ) and an element ϕ ∈M(Σ), we denote by lS(ϕ) the minimal
length of ϕ as a word in S ∪ S−1. We denote by BS(n) := #{ϕ ∈ M(Σ) : lS(ϕ) ≤ n}
the n-ball in M(Σ) with respect to lS . Given a property P of 3-manifolds we say that
in the Heegaard splitting model a random 3-manifold has property P if for any closed
surface Σ of genus g ≥ 2 and for any finite generating set S of M(Σ) we have

lim
n→∞

#{ϕ ∈ BS(n) : Hg ∪ϕ Hg has property P}
#BS(n)

= 1.

The work of Maher [Mah10a, Theorem 1.1] together with that of Hempel [Hem01]
and Kobayashi [Koi88] and the Geometrization Theorem implies that in the Heegaard
splitting model a random 3-manifold is hyperbolic. (See also [LMW14, Theorem 2].)
Furthermore, Dunfield–Thurston [DnTb06, Corollary 8.5] showed that in the Heegaard
splitting model a random 3-manifold is a rational homology sphere. (See also Kowal-
ski [Kow08, Section 6.2], [Kow], Sarnak [Sar12, p. 4], and Ma [Ma12, Corollary 1.2]
for extensions and related results.)

The following conjecture is due to Rivin [Riv14, Conjecture 11.9].

Question 7.4.1. In the Heegaard splitting model a random 3-manifold is not Haken.
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The following conjecture is due to Dunfield [Dun14].

Conjecture 7.4.2. In the Heegaard splitting model a random 3-manifold

(1) is not an L-space,
(2) has left-orderable fundamental group,
(3) admits a taut foliation, and
(4) admits a tight contact structure.

(See [CdC00] for the definition of a taut foliation and [Gei08] for the definition of
a tight contact structure.)

7.4.2. Dehn surgery on links. Another approach to constructing 3-manifold is
to start out from knots and links in S3. Links can for example be described by closures
of braids. In such a model Ma [Ma14] showed that a random link is hyperbolic. (On the
other hand, in other models a random link turns out to be a satellite link [Jun94].) Now
let L = L1∪· · ·∪Lm be an m-component link and r1, . . . , rm ∈ Q. Denote by µi, λi the
meridian respectively longitude of Li. Let S3

r1,...,rm(L) be the result of (r1, . . . , rm)-Dehn
surgery on L. More precisely, for ri = pi

qi
with coprime pi, qi ∈ Z, qi 6= 0 consider

S3
r1,...,rm(L) = (S3 \ νL) ∪

m⋃
i=1

S1 ×D2
i where ∂D2

i gets glued to piµi + qiλi.

Lickorish [Lic62] and Wallace [Wac60] showed that any closed 3-manifold is obtained
by Dehn surgery on a link. There are various ways for giving an exhaustion of the set
of isotopy classes of links by finite sets, e.g., by considering isotopy classes of links with
an upper bound on the crossing number. Together with bounds on the Dehn surgery
coefficients one obtains an exhaustion of all closed 3-manifolds and thus a concept of
random 3-manifold. In this model, a random 3-manifold clearly is a rational homology
sphere, but it is much harder to answer other questions about random 3-manifolds. The
difficulty here is that ‘crossing number’ is a combinatorial notion and arguably not very
natural in this context.

Nonetheless there are again good reasons to believe that Dehn surgeries ‘generically’
produce hyperbolic 3-manifolds. For example, Lackenby–Meyerhoff [LaM13] showed
that if N is a hyperbolic 3-manifold with one boundary component (e.g., the exterior
of a knot), then there exist at most 10 Dehn fillings of N that are not hyperbolic.
(The bound of 10 is attained by the exterior of the figure-8 knot.) This result comes
at the end of a long list of results starting with Thurston’s Hyperbolic Dehn Surgery
Theorem [Thu79] and work of many others [Ag00, Ag10a, BGZ01, BCSZ08, FP07,
BlH96, Lac00, Ter06, HoK05, Tay13]; see also the surveys [Boy02, Gon98].

It is much less clear whether Dehn surgeries generically give rise to Haken 3-
manifolds. On the one hand, if a knot exterior contains a closed incompressible surface,
then for almost all Dehn fillings the resulting manifold is Haken [Wu92]. There exist
many knots whose exterior contains a closed incompressible surface. (See, e.g., [FiM00,
LMo99] and [Thp97, Corollary 3].) However, work of Hatcher [Hat82] together
with [CJR82, Men84], [HaTh85, Theorem 2(b)], [FlH82, Theorem 1.1], [Lop92,
Theorem A], and [Lop93, Theorem A] shows that almost all Dehn fillings of many
knot exteriors and 3-manifolds with toroidal boundary are non-Haken.

7.4.3. Branched covers along links. Knots and links also give rise to closed
3-manifolds via branched covers. In fact, Alexander [Ale20, Fei86] showed that any
closed 3-manifold is the branched cover of S3 along a link. (See also [Hin74], [Mon74,
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Mon83] and [Rol90, Theorem G.1] for more precise statements.) But as for Dehn
surgery along links, a corresponding notion of a ‘random 3-manifold’ is not very natural.
We do point out though that there is strong evidence that ‘most’ closed 3-manifolds
arising that way are again hyperbolic. For example, if J is a hyperbolic knot, then any n-
fold branched cover of S3 along J with n ≥ 3 is hyperbolic again. This is a consequence
of the Orbifold Geometrization Theorem [Thu82a, BP01, BLP01, BLP05, BMP03,
CHK00] and work of Dunbar [Dub88a, Dub88b]; see [CHK00, Corollary 1.26].

7.4.4. Betti number vs. fiberedness for random 3-manifolds. We have just
seen that in reasonable models a random 3-manifold is a rational homology sphere,
hence it is in particular not fibered. The following question asks whether the Betti
number is the only reason which prevents a random 3-manifold from being fibered.

Question 7.4.3. Given an appropriate model of random 3-manifolds (with empty
or with toroidal boundary), is a 3-manifold with b1 ≥ 1 fibered?

The work of Dunfield–D. Thurston [DnTa06] gives strong evidence that the answer
is no for ‘random tunnel number one manifolds.’

7.4.5. Random fibered 3-manifolds. Now we turn to the study of random
fibered 3-manifolds. Recall that a surface Σ and an element ϕ ∈ M(Σ) gives rise
to a corresponding mapping torus. In the above model of a ‘random 3-manifold in the
Heegaard splitting model’ we now replace ‘gluings of handlebodies’ by mapping tori,
and we obtain the notion of a ‘random fibered 3-manifold.’

It follows from the work of Maher [Mah11, Theorem 1.1] and Rivin [Riv08, The-
orem 8.2], and the geometrization of fibered 3-manifolds (Section 1.9), that a random
fibered 3-manifold is hyperbolic. We refer to the work of Maher [Mah10b, Mah12],
Rivin [Riv12, Section 8] and [Riv08, Riv09, Riv10], Lubotzky–Meiri [LMe11],
Atalan–Korkmaz [AK10], as well as Malestein–Souto [MlS13], [Cau13, CWi13],
and [Sis11b] for alternative proofs, more precise statements, and related results. More-
over, we refer to [Riv14] for a wealth of further results on random fibered 3-manifolds.

Above we have seen that in the Heegaard splitting model a random 3-manifold is a
rational homology sphere, that is, its first Betti number is as small as possible. The first
Betti number of a fibered 3-manifold is ≥ 1, and Rivin [Riv14, Theorem 4.1] showed
that a random fibered 3-manifold N in fact satisfies b1(N) = 1.

The last question of the question can be viewed as a variation on Conjecture 7.4.1.

Question 7.4.4. Does a random fibered 3-manifold have an incompressible surface
which is not the fiber of a fiber bundle?

By [FlH82] the answer is ‘yes’ if we restrict ourselves to fibered 3-manifolds where
the fiber is a once-punctured torus.

7.5. Finite covers of 3-manifolds

7.5.1. Homology of finite regular covers and the volume of 3-manifolds.
Let N be a compact, orientable, aspherical 3-manifold with empty or toroidal boundary.
We saw in (C.37) that for any cofinal regular tower {Ñn} of N we have

lim
n→∞

b1(Ñn;Z)

[Ñn : N ]
= 0.

It is natural to ask about the limit behavior of other ‘measures of complexity’ of groups
and spaces for cofinal regular towers of N . In particular we ask the following question:
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Question 7.5.1. Let N and {Ñn} be as above.

(1) Does the equality

lim
n→∞

b1(Ñn;Fp)
[Ñn : N ]

= 0

hold for any prime p?
(2) If (1) is answered affirmatively, then does the following hold?

lim inf
n→∞

rank(π1(Ñn))

[Ñn : N ]
= 0.

Note that it is not even clear that the first limit exists. The second limit is called the
rank gradient and was first studied by Lackenby [Lac05]. The first question is a particu-
lar case of [EL14, Question 1.5] and the second question is asked in [KaN12]. It follows
from [KaN12, Proposition 2.1] and [AJZN11, Theorem 4] together with [Pas13, The-
orems 1.4 and 1.5] that (1) and (2) hold for graph manifolds, and that to answer the
general case it is enough to answer (1) and (2) for hyperbolic 3-manifolds. It follows
from [BGLS10, Theorem 1.5] that there exists a C > 0 such that the rank gradient is
≤ C for any hyperbolic 3-manifold.

Arguably the most interesting question is about the growth rate of the size of the
torsion homology of finite covers. The following question has been raised by several
authors (see, e.g., [BV13], [Lü02, Question 13.73], [Lü13, Conjecture 1.12], [Lü15,
Conjecture 10.1], and [Le14b, Conjecture 1]).

Question 7.5.2. Let N be a compact, orientable, irreducible 3-manifold with empty
or toroidal boundary, and denote by vol(N) the sum of the volumes of the hyperbolic

JSJ-components of N . Does there exist a cofinal regular tower {Ñn} of N such that

lim
n→∞

1

[Ñn : N ]
ln |TorH1(Ñn;Z)| = 1

6π
vol(N) ?

More optimistically, does this equality hold for any cofinal regular tower {Ñn} of N?

In the following remarks we let N be as in the preceding question.

(1) A good motivation to this question is given in the introduction of [BD13].
There the authors summarize and add to the evidence towards an affirmative
answer for arithmetic hyperbolic 3-manifolds (see also [BSV14] for further
evidence), and they also give some evidence that the answer might be negative
for general hyperbolic 3-manifolds.

(2) Le [Le14b, Theorem 1] showed that given any cofinal regular tower {Ñn} of
N we have the inequality

lim
n→∞

1

[Ñn : N ]
ln |TorH1(Ñn;Z)| ≤ 1

6π
vol(N),

which would in particular imply that the left hand side is zero for graph man-
ifolds. The details of the proof have not appeared yet.

(3) We refer to [ACCS96], [ACS06, Theorem 1.1], [Shn07],[CuS08, Proposi-
tion 10.1], [CDS09, Theorem 6.7], [DeS09, Theorem 1.2], [ACS10, Theo-
rem 9.6], [CuS11, Theorem 1.2], and [Riv14, Section 9] for results relating
the homology of a hyperbolic 3-manifold to its hyperbolic volume.
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(4) An attractive approach to this question is the result of Lück–Schick [LüS99,
Theorem 0.7] that vol(N) can be expressed in terms of a certain L2–torsion
of N . By [LiZ06, Equation 8.2] and [Lü02, Lemma 13.53] the L2–torsion
corresponding to the abelianization corresponds to the Mahler measure of the
Alexander polynomial. The relationship between the Mahler measure of the
Alexander polynomial and the growth of torsion homology in finite abelian
covers is explored by Silver–Williams [SiW02a, Theorem 2.1], [SiW02b] (ex-
tending earlier work in [Gon72, CwS78, Ril90, GoS91]), Kitano–Morifuji–
Takasawa [KMT03], Le [Le14a], and Raimbault [Rai12a, Theorem 0.2].

(5) It follows from Gabai–Meyerhoff–Milley [GMM09, Corollary 1.3], [Mie09,
Theorem 1.3] that for hyperbolic N we have vol(N) > 0.942. (See also [Ada87,
Theorem 3], [Ada88], [CaM01], [GMM10], and [Ag10b, Theorem 3.6].)

An affirmative answer to the question above would imply that the order of torsion in
the homology of a hyperbolic 3-manifold grows exponentially by going to finite covers.
A first step towards this conjecture is to show that any hyperbolic 3-manifold admits a
finite cover with non-trivial torsion in its homology. This was shown by Sun [Sun13,
Theorem 1.5] for closed hyperbolic 3-manifolds. (See also (H.14).) The following ques-
tion is still open. (See [Sun13, Question 1.7].)

Question 7.5.3. Let N be a hyperbolic 3-manifold with non-trivial toroidal bound-
ary. Does N have a finite cover Ñ with TorH1(Ñ ;Z) 6= 0?

It is also interesting to study the behavior of the Fp-Betti numbers in finite covers
and the number of generators of the first homology group in finite covers. Little seems to
be known about these two problems; but see [LLS11] for some partial results regarding
the former problem. One intriguing question is whether, for any compact 3-manifold N ,

lim
Ñ

b1(Ñ ;Fp)
[Ñ : N ]

= lim
Ñ

b1(Ñ ;Z)

[Ñ : N ]
.

We also refer to [Lac11] for further questions on Fp-Betti numbers in finite covers.
Given a compact 3-manifold N , the behavior of the homology in a cofinal regular

tower {Ñn} can depend on the particular choice of {Ñn}. For example, F. Calegari–
Dunfield [CD06, Theorem 1] together with Boston–Ellenberg [BE06] showed that there

exists a closed hyperbolic 3-manifold N and a cofinal regular tower {Ñn} of N such that

b1(Ñn) = 0 for any n; on the other hand we know by (H.14) that vb1(N) > 0. Another
instance of this phenomenon can be seen in [LLuR08, Theorem 1.2].

7.5.2. Ranks of finite-index subgroups. The rank rk(π) of a finitely generated
group π is defined as the minimal number of generators of π. Reid [Red92, p. 212]

exhibited a closed hyperbolic 3-manifold N with a finite cover Ñ such that rk(π1(Ñ)) =
rk(π1(N))−1. Examples of Seifert fibered manifolds with this property are in [NuR11].

It is still unknown whether the rank can drop by more than 1 while going to a finite
cover. The following was formulated by Shalen [Shn07, Conjecture 4.2].

Conjecture 7.5.4. If N is a hyperbolic 3–manifold, then for any finite cover Ñ
of N we have rk(π1(Ñ)) ≥ rk(π1(N))− 1.

It follows from a transfer argument that if Γ is a finite-index subgroup of a finitely
generated group π, then b1(Γ) ≥ b1(π). More subtle evidence towards the conjecture is
given by [ACS06, Corollary 7.3] which states that the rank of Fp-homology of a closed
orientable 3-manifold can decrease by at most 1 by going to a finite cover.
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7.5.3. (Non-) Fibered faces in finite covers of 3-manifolds. By Proposi-
tion 5.4.12, every irreducible 3-manifold which is not a graph manifold has finite covers
with an arbitrarily large number of fibered faces (in the Thurston norm ball). We
conclude this book with the following two questions on virtual (non-) fiberedness:

Question 7.5.5. Does every compact, irreducible non-positively curved 3-manifold
with empty or toroidal boundary have a finite cover such that all faces of the Thurston
norm ball are fibered?

Let N be a 3-manifold with vb1(N) ≥ 2 which is not finitely covered by a torus bun-
dle. Then N has a finite cover N ′ with non-vanishing Thurston norm and b1(N ′) ≥ 2,
and H1(N ′;R) contains a non-zero class which is not fibered, by [Thu86a, Theorem 5].

Surprisingly, though, the following question is still open.

Question 7.5.6. Does every compact, orientable, irreducible 3-manifold which is
not a graph manifold admit a finite cover such that at least one top-dimensional face of
the Thurston norm ball is not fibered?
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[GW87] F. González-Acuña, W. Whitten, Imbeddings of knot groups in knot groups, in: Geom-

etry and Topology, pp. 147–156, Lecture Notes in Pure and Applied Mathematics, vol.
105, Marcel Dekker, Inc., New York, 1987.



BIBLIOGRAPHY 145
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[Hil87] , Three-dimensional Poincaré duality groups which are extensions, Math. Z. 195
(1987), 89–92.

[Hil89] , 2-Knots and their Groups, Australian Mathematical Society Lecture Series,
vol. 5, Cambridge University Press, Cambridge, 1989.

[Hil02] , Algebraic Invariants of Links, Series on Knots and Everything, vol. 32, World
Scientific Publishing Co., Inc., River Edge, NJ, 2002.

[Hil06] , Centralizers and normalizers of subgroups of PD3-groups and open PD3-
groups, J. Pure Appl. Algebra 204 (2006), no. 2, 244–257.

[Hil11] , Some questions on subgroups of 3-dimensional Poincaré duality groups, manu-
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[Mil04] , The Poincaré conjecture one hundred years later, in the Collected Papers of
John Milnor. IV: Homotopy, homology and manifolds. Edited by John McCleary. Prov-
idence, RI: American Mathematical Society (AMS). (2009).

[Min12] A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and its
applications, Groups Geom. Dyn. 6 (2012), 335–388.

[MO13] A. Minasyan, D. Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann.,
to appear.

[Miy94] Y. Minsky, On Thurston’s ending lamination conjecture, in: Low-Dimensional Topology,
pp. 109–122, Conference Proceedings and Lecture Notes in Geometry and Topology, vol.
III, International Press, Cambridge, MA, 1994.

[Miy00] , Short geodesics and end invariants, in: Fukuso rikigakkei to sho kanren bunya
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[Nis40] V. L. Nisneviĉ, Über Gruppen, die durch Matrizen über einem kommutativen Feld
isomorph darstellbar sind, Mat. Sbornik (N.S.) 8 (50) (1940), 395–403.
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[OzS04a] P. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. (2) 159 (2004), 1159–1245.

[OzS04b] , Holomorphic disks and topological invariants for closed three-manifolds, Ann.
of Math. (2) 159 (2004), 1027–1158.

[OzS04c] , Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334.
[OzS05] , On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6,

1281–1300.
[PP12] D. Panov and A. Petrunin, Telescopic actions, Geom. Funct. Anal. 22 (2012), 1814–

1831.
[Pao13] L. Paoluzzi, The notion of commensurability in group theory and geometry, RIMS
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degré un, thèse, Orsay, 1987.

[Sil96] D. Silver, Nontorus knot groups are hyper-Hopfian, Bull. London Math. Soc. 28 (1996),
no. 1, 4–6.

[SWW10] D. Silver, W. Whitten, S. Williams, Knot groups with many killers, Bull. Austr. Math.
Soc. 81 (2010), 507–513.

[SiW02a] D. Silver, S. Williams, Mahler measure, links and homology growth, Topology 41 (2002),
no. 5, 979–991.

[SiW02b] , Torsion numbers of augmented groups with applications to knots and links,
Enseign. Math. (2) 48 (2002), no. 3-4, 317–343.

[SiW09a] , Nonfibered knots and representation shifts, in: Algebraic Topology—Old and
New, pp. 101–107, Banach Center Publications, vol. 85, Polish Academy of Sciences,
Institute of Mathematics, Warsaw, 2009.

[SiW09b] , Twisted Alexander Polynomials and Representation Shifts, Bull. London Math.
Soc. 41 (2009), 535–540.

[Sim76a] J. Simon, Roots and centralizers of peripheral elements in knot groups, Math. Ann. 222
(1976), no. 3, 205–209.

[Sim76b] , On the problems of determining knots by their complements and knot comple-
ments by their groups, Proc. Amer. Math. Soc. 57 (1976), no. 1, 140–142.

[Sim80] , How many knots have the same group?, Proc. Amer. Math. Soc. 80 (1980), no.
1, 162–166.

[Sis11a] A. Sisto, 3-manifold groups have unique asymptotic cones, preprint, 2011.
[Sis11b] , Contracting elements and random walks, preprint, arXiv:1112.2666, 2011.
[Som91] T. Soma, Virtual fibre groups in 3-manifold groups, J. London Math. Soc. (2) 43 (1991),

no. 2, 337–354.
[Som92] , 3-manifold groups with the finitely generated intersection property, Trans.

Amer. Math. Soc. 331 (1992), no. 2, 761–769.
[Som06a] , Existence of ruled wrappings in hyperbolic 3-manifolds, Geom. Top. 10 (2006),

1173–1184.
[Som06b] , Scott’s rigidity theorem for Seifert fibered spaces; revisited, Trans. Amer. Math.

Soc. 358 (2006), no. 9, 4057–4070.
[Som10] , Geometric approach to Ending Lamination Conjecture, preprint, 2010.
[Sou08] J. Souto, The rank of the fundamental group of certain hyperbolic 3-manifolds fibering

over the circle, in: The Zieschang Gedenkschrift, pp. 505–518, Geometry & Topology
Monographs, vol. 14, Geometry & Topology Publications, Coventry, 2008.



170 BIBLIOGRAPHY

[Sp49] E. Specker, Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigen-
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Philosophie, pp. 241–250, Publikationen des Henri-Poincaré-Archivs, Akademie Verlag,
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BIBLIOGRAPHY 173

[Vo13a] , Lens spaces in dimension 3: a history, Bulletin of the manifold atlas (2013)
http://www.boma.mpim-bonn.mpg.de/data/38print.pdf
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characteristic, 19

subspace
quasi-convex, 70

surface
boundary parallel, 31
essential, 53
homologically essential, 52
in a 3-manifold, 42

geometrically finite, 64
non-fiber, 42
separable, 42
separating, 42

incompressible, 10
semifiber, 101

surface group, 64
quasi-Fuchsian, 64, 73

surface self-diffeomorphism
periodic, 25
pseudo-Anosov, 25
reducible, 25

theorems
Agol’s Virtually Compact Special Theorem,

73
Agol’s Virtually Fibered Criterion, 87
Agol’s Virtually Fibered Theorem, 98
Baum–Connes Conjecture, 57
Canary’s Covering Theorem, 64
Characteristic Pair Theorem, 19
Dehn’s Lemma, 10
Elliptization Theorem, 18
Ending Lamination Theorem, 17
Epstein’s Theorem, 14
Farrell–Jones Conjecture, 57
Geometric Decomposition Theorem, 21
Geometrization Theorem, 19
Gromov’s Link Condition, 66
Haglund–Hsu–Wise’s Malnormal Special

Combination Theorem, 72
Hyperbolization Theorem, 18
JSJ-Decomposition Theorem, 14
Kahn-Markovic Theorem, 73
Kaplansky Conjecture, 57
Kneser Conjecture, 30
Lickorish-Wallace Theorem, 61
Loop Theorem, 10
Malnormal Special Combination Theorem,

72
Malnormal Special Quotient Theorem, 72
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Moise’s Theorem, 8
Nielsen–Thurston Classification Theorem,

25
Orbifold Geometrization Theorem, 19
Poincaré Conjecture, 18
Prime Decomposition Theorem, 9
Rigidity Theorem, 17
Scott’s Core Theorem, 47
Sphere Theorem, 10
Stallings’ Theorem, 50
Subgroup Tameness Theorem, 64
Surface Subgroup Conjecture, 73
Tameness Theorem, 63
Tits Alternative, 54
Torus Theorem, 102
Virtual Compact Special Theorem, 73
Virtually Compact Special Theorem, 65
Virtually Fibered Theorem, 98
Wise’s Malnormal Special Quotient

Theorem, 72
Wise’s Quasi-Convex Hierarchy Theorem, 71

Thurston norm
definition, 97
fibered cone, 97
fibered face, 97
norm ball, 97

topological space
aspherical, 42
Eilenberg–Mac Lane space, 42

torus bundle, 13, 25
twisted double of K2 ×̃ I, 13
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