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Abstract

I give a proof of the Borsuk-Ulam Theorem which I claim is a simplified version of the proof
given in Bredon [1], using chain complexes explicitly rather than homology. Of course this
is a matter of taste, and the mathematical content is identical, but in my opinion this proof
highlights precisely where and how the contradiction arises.

1 Statements and Preliminaries

Theorem 1.1 (Borsuk-Ulam). Let f : Sn → R
n be a continuous map for n ∈ N. Then there exists

a point x ∈ Sn such that f(x) = f(−x) ( cf. Theorem 20.2 of Bredon [1]).

Lemma 1.2. Let φ : Sn → Sm be a continuous map which is equivariant with respect to the
antipodal maps on Sn and Sm. Then n ≤ m. ( cf. Theorems 20.1, 20.6 of Bredon [1].)

Proof of Theorem 1.1 assuming Lemma 1.2. Suppose not. That is suppose that f : Sn → R
n such

that f(x) 6= f(−x) for all x ∈ Sn. Then define

φ : Sn → Sn−1 by:

x 7→
f(x) − f(−x)

‖f(x) − f(−x)‖
.

This satisfies φ(−x) = −φ(x) i.e. φ is continuous and equivariant with respect to the antipodal
maps which contradicts Lemma 1.2 ⇒⇐.

Prior to giving a proof of Lemma 1.2, we explain the main ingredient, namely a Z[Z2]-module
chain complex of Sr, which arises by considering it as the universal covering space of RP

r.

Proposition 1.3. There exists a cell decomposition of Sr with two cells in each dimension 0, . . . , r
with Sr−1 ⊂ Sr embedded as the equator. There is a Z2

∼= 〈T |T 2 = 1 〉 action corresponding to the
antipodal map which transposes the two cells in each dimension. With respect to this decomposition
the Z2-equivariant cellular chain complex

W [0, r] := C∗(R̃P
r; Z) = C∗(RP

r; Z[Z2])
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of Sr can be written as:

0 → Z[Z2] ∼= Wr
1+(−1)rT
−−−−−−→ Z[Z2] ∼= Wr−1

1+(−1)r−1T
−−−−−−−−→ . . .

. . . → Z[Z2] ∼= Wi
1+(−1)iT
−−−−−−→ Z[Z2] ∼= Wi−1 → . . .

. . . → Z[Z2] ∼= W2
1+T
−−−→ Z[Z2] ∼= W1

1−T
−−−→ Z[Z2] ∼= W0 → 0.

That is:

Wi
∼=

{
Z[Z2] i = 0, 1, . . . , r

0 otherwise

∂i : Wi → Wi−1; ∂i(x) = (1 + (−1)iT )(x).

Proof. To construct such a cell decomposition, begin with two 0-cells, which gives us S0. Attach
two 1-cells, both with one end at each 0-cell, to give us S1. Next, attaching two 2-cells with a
map of degree 1 gives a 2-sphere S2. The process iterates: each sphere Sr−1 can be embedded as
the equator in the sphere Sr. It then bounds the two hemispheres on either side, both of which
are homeomorphic to disks Dr, and therefore to r-cells. As claimed, the antipodal map sends one
hemisphere to the other, inducing a Z2-action on the set of cells, and a Z[Z2]-action on the cellular
chain complex. The cellular chain complex, if considered as Z-modules, would have two summands
in each dimension, one for each cell. However, in view of the Z2-action we can abbreviate this
to a single Z[Z2] summand. Here is the cellular chain complex of S2 as Z-modules, derived by
considering the attaching of each cell with an orientation:

0 → Z ⊕ Z ∼= W2


 1 1

1 1




−−−−−−−→ Z ⊕ Z ∼= W1


 1 −1

−1 1




−−−−−−−−−−→ Z ⊕ Z ∼= W0 → 0.

Translating this to Z[Z2]-modules gives:

0 → Z[Z2] ∼= W2
1+T
−−−→ Z[Z2] ∼= W1

1−T
−−−→ Z[Z2] ∼= W0 → 0,

which, when extended to the left as far as required gives the desired chain complex. As ever one
should check that this really is a chain complex. Z[Z2] is commutative so there is only one check:

(1 − T )(1 + T ) = 1 − T + T − T 2 = 1 − 1 = 0.

2 Proof of Lemma 1.2

We will now proceed to give the proof of the lemma, which we restate here:
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Lemma 2.1. Let φ : Sn → Sm be a continuous map which is equivariant with respect to the
antipodal maps on Sn and Sm. Then n ≤ m.

Proof. We suppose for a contradiction that n > m. By Cellular Approximation (see e.g. Theorem
4.8 of Hatcher [2]), we can assume that φ is cellular, which is to say that the k-skeleton of the
domain is mapped into the k-skeleton of the codomain: φ((Sn)(k)) ⊂ (Sm)(k), for all k. This, and
the equivariance of φ implies that φ induces a Z[Z2]-module chain map φ∗ : W [0, n] → W [0,m].

To define the map φ∗ : W [0, n]i → W [0,m]i using degrees, take regular points y1 and y2, one in
each i-cell of Sm, and count the number of points with sign of the inverse image sets φ−1(y1) and
φ−1(y2) which live in one of the i-cells of Sn. As in the proof of Theorem 20.6 of Bredon [1] we
can assume the map to be smooth in order to use transversality. Since φ is Z2-equivariant, it is
sufficient to discover the induced map φ∗ on a generator of Z[Z2] - that is on just one of the i-cells
of Sn.

To see that this works consider the composition, for i > 0:

Si (Id,0)
−−−→

(Sn)(i)

(Sn)(i−1)
= Si ∨ Si φ(i)

−−→
(Sm)(i)

(Sm)(i−1)
= Si ∨ Si (c,0) or (0,c)

−−−−−−−−→ Si

where (Id, 0) is the inclusion into one of the wedge summands and c is the collapse map which
collapses one of the wedge summands to a point. The choice of the final map gives two maps
overall, from Si to Si. The degrees of these two maps, given by the orders with sign of the inverse
image sets described above, yield the coefficients of 1 and T in φ∗.

The derivation above needs modifying for i = 0. φ∗ : W [0, n]0 → W [0,m]0 as above. Here we
have take one hemisphere of S0, a single point D0, and consider the map:

D0 φ|
D0

−−−→ S0 (c,0) or (0,c)
−−−−−−−−→ D0.

The possible maps which arise as this pair of maps (given by the choice of two maps S0 → D0) are
(± Id and 0) or (0 and ± Id), which in the algebraic world are the Z[Z2] module homomorphisms
±1 and ±T . The sign choices correspond to orientations. This restriction of possibilities, which
comes about from the fact that a geometric map must send a single point to a single point, and
not to zero points and not to two points, will be used to derive our contradiction in due course.

Now since the argument from now on will only involve parity, to simplify the argument we only
consider the coefficients modulo 2. Our ring is now Z2[Z2] = {0, 1, T, 1 + T} as a set. We therefore
have the following chain map φ∗ : W [0, n] → W [0,m]:

Z2[Z2]
(1+T )·

//

φn
∗

��

. . . // Z2[Z2]
(1+T )·

//

φ
m+1
∗

��

Z2[Z2]
(1+T )·

//

φm
∗

��

Z2[Z2]
(1+T )·

//

φ
m−1
∗

��

. . .
(1+T )·

// Z2[Z2]

φ0
∗

��

0 // . . . // 0 // Z2[Z2]
(1+T )·

// Z2[Z2]
(1+T )·

// . . . // Z2[Z2].
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Since this is a chain map, the diagram commutes. From the square:

Z2[Z2]
(1+T )·

//

φ
m+1
∗

��

Z2[Z2]

φm
∗

��

0 // Z2[Z2]

we have that
0 = φm

∗ ◦ (1 + T ) · .

As φ is Z2-equivariant recall that φ∗ is a Z2[Z2]-module homomorphism, so it suffices to obtain
φm
∗ (1). Suppose φm

∗ (1) = a + bT . Then

0 = 0 + 0T = (a + bT )(1 + T ) = (a + b) + (a + b)T ∈ Z2[Z2],

so that a = b mod 2. Therefore
φm
∗ = 0 · or (1 + T ) · .

Next, consider the next square to the right:

Z2[Z2]
(1+T )·

//

φm
∗

��

Z2[Z2]

φ
m−1
∗

��

Z2[Z2]
(1+T )·

// Z2[Z2]

Since
(1 + T )(1 + T ) = 2 + 2T = 0 ∈ Z2[Z2],

in either instance of the map φm
∗ , we have that

0 = φm−1
∗ ◦ (1 + T ) · .

The same argument applies once more to show that

φm−1
∗ = 0 · or (1 + T ) · .

The argument then iterates thus, so that by induction we deduce that:

φ0
∗ = 0 · or (1 + T )·

which produces our desired contradiction; recall from above that the only possible homomorphisms
which can arise as induced maps on the zero chains, from a geometric map, are 1· and T ·.

⇒⇐
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Remark 2.2. A similarly phrased proof of the Brouwer fixed point theorem involves a much simpler
algebraic argument: the work is in showing, in the absence of a fixed point, the existence of a retract
r : Dn → Sn−1, that is a continuous map which is identity on Sn−1. This would induce a chain
map r∗ : Dn → Sn−1 as follows:

Z
1

//

��

Z //

r∗=1

��

0 //

��

. . . // 0 //

��

Z

r∗=1
��

0 // Z // 0 // . . . // 0 // Z,

for which the failure of the left hand square to commute yields the contradiction.

Remark 2.3. In order to better parallel the proof in the previous remark, and in Bredon [1],
perhaps the induction could run from right to left instead of from left to right: starting with the
fact that the rightmost map φ0

∗ is 1 or T , use commutativity to show that φm
∗ is 1 or T so that the

failure of the square

Z2[Z2]
(1+T )·

//

φ
m+1
∗

��

Z2[Z2]

φm
∗

=1 or T

��

0 // Z2[Z2]

to commute yields the desired contradiction. I conjecture that it would be desirable to associate
an integral to each passage around this square, perhaps with one of them requiring m applications
of Stoke’s theorem to get to the far right. ??

Remark 2.4. The chain complex W (of S∞, the direct limit of the W [0, r]) is of great importance
in topology; in the first instance in the construction of the Steenrod Squares, and thence for the
definition of the Stiefel-Whitney classes, through to its significance in the symmetric and quadratic
constructions in the Algebraic Theory of Surgery [3].
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