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SIMPLY-CONNECTED 4-MANIFOLDS  
WITH A GIVEN BOUNDARY  

STEVEN BOYER 

ABSTRACT. Let M be a closed, oriented, connected 3-manifold. For each 
bilinear, symmetric pairing ( Z n ,  L ) ,  our goal is to calculate the set V L ( M )  
of all oriented homeomorphism types of compact, 1-connected, oriented 4- 
manifolds with boundary M and intersection pairing isomorphic to ( Z n ,  L ) .  

For each pair ( Z n ,  L )  which presents H * ( M ) ,we construct a double coset 
space B i ( M )  and a function c i :  V L ( M )  + B i ( M ) .  The set B i ( M )  is the 
quotient of the group of all link-pairing preserving isomorphisms of the torsion 
subgroup of H1 ( M )  by two naturally occuring subgroups. 

When ( Z n ,  L )  is an even pairing, we construct another double coset space 
B ~ ( M ) ,a function C L :  V L ( M ) + B L ( M )  and a projection p2: B L ( M )  -+ 

B i ( M ) such that p 2  . C L  = c i .  
Our main result states that when ( Z n ,  L )  is even the function C L  is injective, 

as is the function c: x A :  V L ( M )  -+ B ~ ( M )x Z / 2  when ( Z n ,  L )  is odd. Here 
A is a Kirby-Siebenmann obstruction to smoothing. It follows that the sets 
V L ( M )are finite and of an order bounded above by a constant depending 
only on H1 ( M ) .  We also show that when H i  ( M ;  Q) 0 and ( Z n ,  L )  is even, 
c i  = p 2  . C L  is injective. 

It seems likely that via the functions c i  x A and C L ,  the sets B ; ( M )  x Z / 2  
and B L ( M )  calculate V L ( M )when ( Z n ,  L )  is respectively odd and even. We 
verify this in several cases, most notably when Hi  ( M )  is free abelian. 

The results above are based on a theorem which gives necessary and 
sufficient conditions for the existence of a homeomorphism between two 1- 
connected 4-manifolds extending a given homeomorphism of their boundaries. 

The theory developed is then applied to show that there is an m > 0, 
depending only on H 1 ( M ) , such that for any self-homeomorphism f of M ,  
f m  extends to a self-homeomorphism of any 1-connected, compact 4-manifold 
with boundary M .  

Introduction. In M. Freedman's fundamental paper [Fr],he- classified closed, 
simply-connected, oriented 4-manifolds up to orientation preserving homeomor- 
phism. He showed that modulo the Kirby-Siebenmann invariant, these manifolds 
are in bijective correspondence through their intersection pairings with the set of 
unimodular, bilinear, symmetric pairings over Z (see Theorem (1.5) of [Fr]and 
Corollary (2.2.3) of [Q]) .In this paper we begin a classification of simply connected 
4-manifolds with connected boundary. Our results with regard to this problem 
are based on a theorem which gives necessary and sufficient conditions for the ex- 
istence of a homeomorphism between 1-connected 4-manifolds extending a given 
homeomorphism of their boundaries. 
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Throughout this paper, M will denote a fixed closed, oriented, connected 3-
manifold. For each symmetric bilinear form L: Zn x Zn -+ Z, consider the set 
VL(M) of all oriented homeomorphism types of compact, 1-connected, oriented 4-
manifolds with (oriented) boundary M and whose intersection pairing is isomorphic 
to (Zn,L). 

In general VL(M) will be empty unless (Zn,L) presents H,(M) (51). When M 
is a homology 3-sphere, this occurs if and only if L is unimodular and in the case 
L is unimodular, one may combine Theorems (1.4') and (1.5) of [Fr]to show that 

L is even,
IVL(M)I = { :: L is odd. 

Further, when L is odd the two manifolds are distinguished by their Kirby-Sieben-
mann invariants. 

To describe our results, let At(M) denote the group of link pairing preserving 
isomorphisms of TI (M),  the torsion subgroup of H1(M).  We let A'+ (M)  denote the 
group of orientation preserving homeomorphisms of M and H$(M) the subgroup 
of At(M) induced by elements of X+(M). When (Zn,L) presents H,(M), there 
is another naturally occurring subgroup A i ( M )  C At(M) and we form the set 
B i ( M )  of double cosets 

Let V be a 4-manifold with boundary and A(V) E Z/2 the Kirby-Siebenmann 
obstruction to extending the product smooth structure on dV x R across V x R. 

( 0 . 1 )  THEOREM.Suppose (Zn,L) presents H, (M)  and V is  a 4-manifold rep-
resenting a class in VL(M) with A: (Zn,L) -+ (H2(V),.) a n  isometry. T h e n  there 
is  a function c i :  VL(M) + B i ( M )  which associates t o  the class of V the double 
coset H$ (M)d(h ) iA i(M). 

W h e n  L is  a n  odd pairing, the function CE = c i  x A: VL(M) -+ B i ( M )  x Z/2 
is  injective. 

When L is an even form presenting H,(M), the function C i  may not be a 
monomorphism. To deal with this situation, we shall consider the quadratic en-
hancements of the link pairing on M and use these to define a group A(M) 
A(M) x S(Spin(M)), A(M) being a certain group of equivalences of H,(M) and 
S(Spin(M)) the symmetric group on the set of spin structures of M.  

As before there are subgroups H+(M) and A L ( ~ )of A(M) and we shall consider 
the double coset space 

There is a natural projection p2: BL(M) -+ B i ( M ) .  
Now the presentation (Zn,L) of H,(M) determines a set of spin structures, 

SpinL(M),which turns out to be an orbit of the action of 

on Spin(M). 
For ( a ,n)  E A(M), let (a,n )  denotes its equivalence class in B L  (M). 
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(0 .2 )  THEOREM.Suppose (Zn,L) is  a n  even pairing presenting H, (M). T h e n  
there is  a n  injective function CIL:VL(M) -+ BL(M) such that p:! o CIL = ctL. Further, 
for each ( a ,n)  E A ( M ) ,there is  a subgroup X+(M, a) c X+(M) which acts o n  the 
left of n(SpinL(M)) and for which there is  a bijection 

Now that when H1(M;Q )  E 0, I1(M) E 0. Thus if (Zn,L) is an even presen-
tation of H,(M),  ISpinL(M)I = 1: From Theorems (0.1) and (0.2) we immediately 
deduce, 

( 0 . 3 )  COROLLARY.If H1(M;Q )  2 0, the functions c i  and Ci are injective 
when  L i s  respectively even and odd. 

More generally, the two theorems show, 
( 0 . 4 )  COROLLARY.For each symmetric ,  bilinear form (Zn,L), the set VL(M) 

is  finite. 
It is natural to ask whether or not the functions tLand C i  are bijections. The 

work of Freedman alluded to earlier shows that this is indeed the case when M is 
a homology 3-sphere. It seems reasonable to expect this to hold in general and in 
$5 we verify it in several cases, most notably when Tl (M)  = 0. 

( 0 . 5 )  PROPOSITION.Suppose (Zn,L) presents H,(M) where H,(M) is  free 
abelian. T h e n  CE (respectively t L )  is  a bijection when  L is  odd (respectively even) .  

More precisely, if L i s  odd, the correspondence A:VL(M) -+ Z/2 is  bijective. If L 
is  even, the correspondence $61,)o tL :VL(M) -+ Spin(M)/X+(M) is  bijective. 

Next we ask under what general conditions on M can we be assured that modulo 
the Kirby-Siebenmann invariant, a compact, 1-connected, oriented 4-manifold with 
boundary M is determined by its bilinear form. Clearly this is just asking when 
IBi(M)I = 1 (respectively I B L ( M ) I= 1) when L is odd (respectively even). It 
is possible to construct many specific examples of such manifolds. The following 
result presents a general criterion for when it will occur. 

( 0 . 6 )  PROPOSITION.Suppose Tl(M) E Z/r  where r = 1,2,4,pn or 2pn, 
p a n  odd prime. T h e n  if (Zn,L) presents H,(M), IBE(M)I = 1. W h e n  L is  
even BL(M) = SpinL(M)/X+(M).  I n  particular, if X+ (M)  acts transitively o n  
SpinL(M), I B L ( M ) I= 1. 

Our main technical result is a theorem which gives necessary and sufficient con-
ditions for extending certain elements of X+(M) to homeomorphisms between 1-
connected 4-manifolds bounded by M .  

More precisely let Vl and V2 be compact, 1-connected, oriented 4-manifolds with 
boundary M and suppose f E X+ (M).  

There are two obstructions to extending f to a homeomorphism F:Vl + V:!. 
The first is to find an isometry A: (H2(V1),.) -+ (H2(V2),.) for which the following 
diagram commutes. 
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Here A* is the adjoint of A with respect to the identification of H2(V,,M )  with 
Hom(H2(&),Z) (i = 1,2) arising from Lefschetz duality. 

We shall call such a pair (f,  A) a morphism and denote it symbolically as (f,  A): Vl 
-+ v2. 

The second obstruction encountered is to realize a given morphism (f ,  A) geomet-
rically. That is, to find a homeomorphism F :  Vl -,V2 such that ( f ,  A) = (FIM, F,). 
In this paper we shall concentrate on the second obstruction, though we do make 
some analysis and comments on the first (see Proposition (1.6) and Remark (1.13)). 

( 0 . 7 )  THEOREM.If (f ,  A): Vl -+ V2 is a morphism, there is an obstruction 
class O(f ,  A) E I1(M)  such that for (f ,  A) to be realized geometrically, it is necessary 
and suficient that A(V1) 5 A(V2) (mod2) and O(f, A) = 0. 

If (H2(V1),.) is even, then O(f ,A) = 0 implies A(Vl) - A(V2). 

The next result lists more information concerning the obstructions O(f, A).  

( 0 .8 ) PROPOSITION.Let (f ,  A): Vl -+ V2 be a given morphism. Then 
(i) if H l (M;  Q )  S 0, O(f, A) = 0; 
(ii) if L is odd and y E I1(M) is arbitrary, there is another morphism (f ,  A'): Vl 

+V2 for which O(f ,  A') = y. In particular, there is a A' with O(f ,  A') = 0; 
(iii) if L is even, then. O(f, A) depends only upon f .  Indeed O(f, A) = 0 if and 

only if the manifold V = Vl Uf (-V2) is spin. 

( 0 . 9 )  COROLLARY.Given a morphism (f,  A): Vl -+ V2, where A(Vl) - A(V2), 
then f extends to a homeomorphism F:Vl -+ V2 as long as H l (M)  is finite or the 
intersection pairing on Vl is odd. If this pairing is even, f may not extend. 

An example of a nongeometrically realizable morphism is given in the discussion 
following Proposition (4.1). 

The following theorem is an application of all the theory developed above. 

( 0 . 1 0 )  THEOREM.Let M be a closed, connected, oriented 3-manifold. Then 
there is an integer m > 0 depending only on H1(M) such that given any f E X+(M) 
and any compact, 1-connected 4-manifold V with boundary M ,  f m  extends to a self-
homeomorphism of V. 

Note that if the mapping class group of M is finite then Theorem (0.10) is 
obvious. Examples such as M = S1 x S1 x S1 show that this is not always the 
case. 

Several words of acknowledgment are due at this point. 
A special case of Theorem (0.7) was proved and used in the author's doctoral 

dissertation (Theorem (4.3) of [B])written under the supervision of Professor P. J. 
Kahn at Cornell University. The approach used there and in this paper is based on 
a method of C. T. C. Wall for constructing h-cobordisms between 1-connected 4-
manifolds [Wl] .  He works with the case M = S3 ,though his analysis goes through 
verbatim when M is a homology 3-sphere. Our contribution is in dealing with a 
general (oriented) 3-manifold. 

Another approach to Theorem (0.7) is through the use of surgery theory. The 
idea would be to first attempt to extend a given f E X+(M) to a homotopy equiv-
alence f": Vl + V2 and then to try and replace f" by a homeomorphism (see the 
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proof of Theorem (1.5) of [Fr]for instance). In unpublished work [Mo],  John Mor- 
gan studied the problem of extending homotopy equivalences across 1-connected 
4-manifolds and proved, amongst other things, a homotopy version of Theorem 
(0.7). Part (ii) of Proposition (0.8) is based on ideas from this work. The author 
would like to thank R. Kirby who informed him of Morgan's results upon receipt 
of an earlier version of this paper. 

We would also like to  point out that in independent work [V], Pierre Vogel has 
announced certain classification and realization results for bounded 1-connected, 
4-dimensional Poincarit complexes and manifolds. 

We thank Andrew Nicas for pointing out and discussing the relevance of qua- 
dratic enhancements of the link pairing when (Zn,  L) is even. 

Finally we would like to acknowledge the hospitality of both Cambridge Univer- 
sity and the University of Toronto during the preparation of this work. 

The paper is organized in the following fashion. $1provides the algebraic back- 
ground necessary for the analysis of VL(M) when L is odd. In $52 and 3, spin 
structures on manifolds and the quadratic enhancements of the link pairing on 
T l ( M)  are introduced and used to provide the algebraic structure needed when L 
is even. $4 contains the proof of Theorem (0.7) and in $5 the theory previously 
developed is applied to  prove Theorems (0.1) and (0.2). 

1. We shall assume throughout that all manifolds are compact, oriented and that 
the symbol "S"implies the existence of an orientation preserving homeomorphism. 
Boundaries of manifolds will have the orientation corresponding to the boundary 
of the fundamental class of the manifold they bound. 

As in the introduction, M will denote a closed, connected 3-manifold and T l (M )  
the torsion subgroup of H1(M). Any endomorphism of H1(M),  4 say, induces 
an endomorphism of T l (M)  by restriction, which we shall write as @: Tl(M)  + 
Tl(M).  The link pairing on T l (M)  will be denoted lM:Tl(M) x T l (M)  + Q/Z.  

A bilinear form space is a pair (Zn,  L) where L: Zn x Zn + Z is a symmetric bi- 
linear pairing. For instance, if V is a 4-manifold, the intersection pairing (H2(V),  .) 
is such a pairing and we shall call these forms geometric. 

A form (Zn,  L) is said to be even if L(E, E) = 0 (mod2) for each E E Zn and odd 
otherwise. 

An isometry of bilinear form spaces is an isomorphism of the underlying groups 
which preserves the pairings. 

If A is an abelian group, A* will denote the dual group Hom(A, Z).  
( 1 . 1 )  DEFINITION.A bilinear f o r m  space (Zn,  L) presents H,(M)  if there is  

a n  exact sequence 

such that  
(i) if ad(L)(Ei)= miqi ( i= 1,2)  where mlm2 # 0, then  

(ii) if p E H 2 ( M )  and 7 E [Zn]*,then  d(7)  .P = v(h(P)) .  
For instance if M is the boundary of a 4-manifold V, then it is well known that 

(H2 (V), .) presents H, ( M )  (see $3 of [G,L] ) . 
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( 1 . 2 )  DEFINITION.An automorphism of H , ( M )  is a  air of isomorphisms 
Q. = ( c Y ~ , ( Y ~ ) ,  =a i : H i ( M )+ H i ( M )  (i 1,2) ,  such that 

(i) if vl,v2 E T l ( M ) ,  then l ~ ( f f l ( v l ) ,  ffl(v2)) -- 1 ~ ( ~ 1 , ~ 2 ) ;  
(ii) if v E H 1 ( M )  and /3 E H 2 ( M ) ,  then a l ( v ) .  an(@) = ve/3.A ( M )  will denote 

the group of all automorphisms. 

Clearly any homeomorphism f E U+(M) induces an element f ,  E A ( M )  and 
we let H + ( M )  be the subgroup of A ( M )  consisting of all such automorphisms of 
H ,  ( M ) .  

By an algebraic morphism between two presentations ( Z n ,  L i )  ( i  = 1,2)  of 
H , ( M ) ,  we shall mean a commutative diagram 

0 -+ H 2 ( M )  3 Zn [Zn]*3 H l ( M )  + 0 
az i A 1 r A* 1~ 

0 + H 2 ( M )  9 Zn ad*) [Zn]*3 H I  ( M )  + 0 

where A is an isometry. If both ( Z n ,  L 1 )  and ( Z n ,  L 2 )  are geometric and ( a l ,  a2)  E 
H + ( M ) we shall call the algebraic morphism simply a morphism. Such a diagram 
will be called a geometric morphism if A is induced by a homeomorphism of the 
two manifolds. 

Note that the isometry A determines completely the algebraic morphism and so 
in particular we shall write ( a l ,  a n )  = d(A) .  As A preserves the pairings one may 
check that d ( A ) E A ( M ) .  

( 1 . 3 )  DEFINITION.Given a presentation ( Z n ,  L )  of H , ( M ) ,  let A L ( M )  be the 
subgroup of A ( M )  given by 

A L ( M )= {d(A) lA  a  (self) isometry of ( Z n ,  L ) ) .  

In general, A L ( M ) is not a normal subgroup of A ( M ) .  
Define 

B L ( M )= H+(M) \A( M) /AL(M ) .  
The goal of the rest of this section is to better understand the quotients 
A ( M ) / A L ( M )and B L ( M ) .It turns out that they are determined by torsion infor- 
mation associated to ( Z n ,  L )  in a way which we describe now. 

Given a presentation ( Z n ,  L )  of H , ( M ) ,  there is an induced presentation of 
( T l ( M ) ,  l M )  (in the sense of $7 of [ W 2 ] )as follows. 

Set K ( L ) = ker(ad(L))and let n:Zn + Z n / K ( L ) be the projection. L induces 
a nonsingular pairing Lt on Z n / K ( L )by the formula 

It can be shown that there is a commutative diagram 

where both rows are exact. The link pairing lM may be calculated from the top 
row by a formula similar to that in Definition ( l . l ) ( i ) .  
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( 1 . 4 )  DEFINITION.Let A t ( M )  be the set of lM-preserving isomorphism of 
T l ( M ) ,  A; the subgroup consisting of those elements induced by isometries of 
( Z n / K ( L ) ,L t )  and H $ ( M )  = {f t I f E X+(M) )  c A t ( M ) .  

There is a restriction homomorphism t :A ( M )  -,At ( M )  given by t ( a )  = a:. It 
may be verified that t ( A 1 ( M ) )G A i ( M )  and clearly t ( H + ( M ) )= H $ ( M ) .  Thus 
t induces functions 

(i) t1:A ( M ) I A L ( M )-+ A t ( M ) / A i ( M ) ;  
(ii) t2:B L ( M )-,B i ( M )  = H $ ( M ) \ A t ( M ) / A i ( M ) .  

We shall show that both t l  and t2 are bijective. 
( 1 . 5 )  LEMMA. The functions t , t l  and t:! are epimorphisms. 
PROOF. It suffices to show t is surjective. To that end let a: E A t ( M )  and 

extend atl arbitrarily to an isomorphism a l :H1( M )-,H1( M ) .  There is an induced 
isomorphism H 1 ( M ) / T l ( M )-+ H1( M ) / T l ( M )and we take a2 to be the inverse of 
its adjoint under the identification of H1( M )with [ H I( M ) / T l(M)] '  resulting from 
Poincark duality. It is not hard to check that ( a l ,an)  E A ( M )  and t (a1 ,a2)  = 
at,. 

( 1 . 6 )  PROPOSITION.Let a E A ( M ) .  Then a E A L ( M )  * atl E A i ( M ) .  
The proof of Proposition (1.6) will take up the rest of this section. Before 

proceeding to it we list various consequences. 
( 1 . 7 )  COROLLARY.The function t l :A ( M ) / A L ( M )-, At ( M ) / A i ( M )is bi-

jective. 
PROOF.Simply combine Lemmas (1.5) and (1.6). 
( 1 . 8 )  COROLLARY.There is an integer m > 0 depending only on T I( M )  such 

that am  E A L ( M )  for each a E A ( M ) .  
PROOF.Let m be an exponent for the group of isomorphisms of T I( M ) .  Then for 

any a E A ( M ) , t ( a m )= (atl)m= 1 E A i ( M ) .  Thus am E A L ( M )by Proposition 
(1.6). 

( 1 . 9 )  COROLLARY.Suppose T I( M )  E Z / r  where r = 1 ,2 ,4 ,pn or 2pn, p an 
odd prime. Then A L ( M )= A ( M ) .  

PROOF.When T l ( M )is cyclic of order r ,  A t ( M )  = {ulu2 = 1 )  c Z / r .  But for 
the values of r listed in the hypotheses, u2 = 1 (modr) implies u = A1 (modr). 
Thus At ( M )  = {f1).  Now multiplication by +1 is an isometry of ( Z n / K ( L ) ,L t ) ,  
from which we see that A i ( M )  = At ( M ) .  Corollary (1.7) now shows A L ( M )  = 
A ( M ) .  

( 1 . 1 0 )  COROLLARY.The function t2 :B L ( M )-+ B i ( M )  is bijective. 
PROOF.As t2  is surjective (Lemma (1.5)),we need only prove it is 1-1. 
Let a ,  p E A ( M )  be such that t 2( ( a ) )= t 2( ( p ) )(here ( ) denotes equivalence 

class in B L ( M ) ) .Then there is a homeomorphism f E X+(M) such that 

By Proposition (1.6),a- l  o f;l o p  E A L ( M ) .  Thus ( a )= ( P )  and so t2 is injective. 
We are therefore done. 
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Now to the proof of Proposition (1.6). We need only show that a; E AtL(M) 
implies a EAL(M).  Assume then that we are given a commutative diagram 

where At is an isometry of Lt. 
Let 4: Zn/K(L) -+ Zn be an arbitrary splitting of n and note that we may define 

an isometry A of (Zn,L) as in the diagram: 

(1 .11 )  LEMMA. d(A) = (al+$,  a2) where $: (Hl(M),TI(M)) -+(Ti(M),0). 
PROOF.That d(A)2 = a2 follows readily from the definition of A. 
To show $:H1(M) +Tl(M) (11, = d(A)l - a'),  let v E Hl (M)  and P E H2(M) 

be arbitrary. Now 

= v .p - v .P since d(A),a E A(M) 

But as p E H2(M) was arbitrary, we are forced to conclude $(v) E Tl(M).  Thus 
image($) 2 TI (M) as claimed. 

Finally we show 11, vanishes on Tl(M). Now the identity n o A = At o n implies 
that A* o n* = n* o At'. Hence, if i: TI (M)  -+ HI(M) is the inclusion, 

al  o i0 at = i 0 atl o a t  = i o  d t  o (At*)-' = d on*  0 (At*)-' 

= d o A*-' O K *  = a (n ) l  o a O T *  = d(A)l o i o  at. 
As d t  is surjective, we conclude a1 o i = d(A) o i. Thus $(Ti (M))  = (0). 

This completes the proof of the lemma. 
The next lemma will show us how to alter A to construct an isometry A' of 

(Zn,L) with d(A1)= a .  
( 1 .12 )  LEMMA.Let y: Zn/K(L) -+ H2(M) be an arbitrary homomorphism 

and set A' = A + h o y o n.  Then 
(i) A' is an isometry of (Zn,L); 
(ii) d(A')2 = a 2 ;  
(iii) d ( ~ ) ; '  = d(A);l + d o n* o y* o p, where p:H1(M)  - Hl(M)/Tl (M) is 

the projection. 
PROOF. We prove only (iii), the other two conclusions being straightforward. 
Poincark duality allows us to identify H1(M)/Tl(M) with H2(M)*and under 

this identification, h* = p o d .  Thus A'* = A* +n* o y* o p o d .  Then 
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The identity (iii) follows by noting that d is surjective. 
To choose the appropriate y, use Lemma (1.11) to see that a;' - d(h);l: 

(HI(M),TI(M))  -+ (TI(M),0). Thus we may construct a commutative diagram 

The numbers adjacent to several of the arrows refer to the order in which the 
corresponding homomorphisms are constructed. 

Let y: Zn/K(L) -,H2(M) be the adjoint of 3. If A' is the associated isometry 
of (Zn,L), as in Lemma (1.12), then 

d(A')rl  = d ( A ) l l  + d o ~ * o y * o pby Lemma (1.12)(iii) 
= d ( A ) r l +  (a;l - d(A);l) = 

Hence d(A1)1= a1 and so cr = d(A') E AL(M)  as claimed. The proof of Proposition 
(1.6) is complete. 

(1.13) REMARK.A more complete analysis of the quotient A(M)/AL(M) would 
involve plocal information. That is, the pairing (Zn/K(L),Lt) would be tensored 
with Z,, the padic integers, and then the plocal analogues of At(M),  A i ( M )  
and their quotient determined. Presumably there is some sort of local to global 
correspondence which provides a complete set of invariants for A(M)/AL(M). 

2. In this section we review some material on spin structures and the quadratic 
enhancements of the link pairing, l M .  

Let ( be a principal STop(n)-bundle (n 2 3) over a connected complex X, 
(:STop(n) 5 E ( ( )5 X .  

( 2 . 1 )  DEFINITION.A spin structure o n  ( is  a class a E H1(E(() ;212) which 
restricts t o  a generator of  H1(STop(n);212) 2 212. The  set of all spin structures 
o n  [ will be denoted Spin((). 

It follows from the Serre spectral sequence that ( admits a spin structure if and 
only if the sequence 

is exact. Notice that a spin structure on E is just a splitting of this sequence from 
the right-hand side, that is a splitting of i*. 

Let o E Spin(<)and x E H1(X; 212). The formula 

defines an effective, transitive action of H1(X; 212) on Spin(E). For o l ,  0 2  E 
Spin([), let 

d(al,u2) = x E H1(x;212) if x . a1 = a 2 .  
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(2.2) REMARK.There is an analogous theory of spin structures on principal 
SO(n)-bundles [Mi]. If ( is such a bundle, with (0 the associated principal STop(n)-
bundle, the inclusion E([) -+ E([o) induces an equivalence of the H1(X;212)-sets 
Spin(() and Spin((0). Thus these two notions of spin structures on ( coincide and 
may be identified. 

Now suppose that X is a manifold with rx the principal STop(n)-bundle associ-
ated to the stable topological tangent bundle of X .  

( 2 . 3 )  DEFINITION.B y  a spin structure o n  X ,  we shall m e a n  a spin structure 
o n  7%.T h e  set Spin(r,) will be denoted simply by Spin(X). 

There is a left-action of X+(X) on Spin(X). Each f E X+(X) determines a 
bundle map (up to bundle isotopy) 

E(7,) 3 E(.r,) 
.r1 1.r 

fX - X 
and so we may define 

f# = ( Df *)-l :  Spin(X) -+ Spin(X). 
( 2 . 4 )  PROPOSITION.For a n y  f E X+ (X), a E Spin(X) and x E H1(x;2/2), 

x .f # ( 4  = f # ( f * ( ~ ). a ) .  
It is worth mentioning that isotopic homeomorphisms induce the same permuta-

tion of Spin(X). This observation allows one to calculate the action of f E X+ (M)  
on Spin(M) from the action of some diffeomorphism isotopic to f on the stable 
SO(n) spin structures of M.  

Through the use of Wu's formula (see [Wu] for the absolute case and $7 of [K] 
for the relative version) it can be shown that a (1-connected) 4-manifold V admits a 
spin structure if and only if (H2(V),.) is an even pairing. If there is a spin structure 
on V, it is necessarily unique. 

( 2 . 5 )  DEFINITION.Let V be a 1-connected 4-manifold with boundary M and 
even intersection pairing. T h e  spin structure a v  E Spin(M) i s  defined t o  be the 
restriction t o  M of the unique spin structure o n  V. 

Turning things around, we can ask what the obstruction to extending a given 
spin structure a E Spin(M) across a 1-connected 4-manifold V with boundary M 
is. There is a commutative diagram 

( 2 . 6 )  DEFINITION.The  relative Stiefel- Whi tney  class w2(V,M ;  a ) ,  is  the ele-
m e n t  (r*)- l  o SE(a) E H2(V,M ;  212). 

Our terminology is justified because, through the identification of Spin(M) with 
vertical homotopy classes of sections of TM*, M*  = M\{*), (see alternate Defini-
tion 2 in [Mi]),w2(V,M ;  a) is precisely the second relative Stiefel-Whitney class 
associated to a (see [K]). 
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It  can be shown that if j: (V,4) -+(V,M )  is the inclusion, then jtw2(V, M ;  a )  = 
w2(V) for each o E Spin(M). 

( 2 . 7 )  LEMMA. The  function w2(V,M):Spin(M) -+ H ~ ( v ,M;Z /2 )  satisfies 
the following: 

(i) image(w2(V,MI)  = (j*)-'(wz(V)); 
(ii) a class w E H2(v ,M ;  212) lies in image(w2(V, M ) )  i f  and only if (w,j* (0)= 

E . E (mod 2) for each E E H2(V); 
(iii) if x E H'(M; 212) and a E Spin(M), then  

T h u s  w2(V,M )  is  injective; 
(iv) w2(V,M ;  a )  = 0 if and only if (Hz(V), .) is  even and a = ov  . 
We omit the proof of this lemma as most of it follows in a straightforward fashion 

from what has been done previously. We do mention though that to  prove (ii) one 
needs (i) together with Wu's formula. 

It will be convenient for us to deal with the function y: Spin(M) -+ H2(V;212) 
dual to w2(V,M) .  That is, 

Dv:  H2(V,M ;  212) -+H2(V;212) being the Lefschetz duality isomorphism. 
The function y has a more elegant formulation as the composition 

where the function Spin(M) -+ R:~ '"~~"(V)associates the singular spin manifold 
"Mu -+ V" to a E Spin(M). 

Let DM: H1(M;  212) -+ H2(M;212) be the Poincar6 isomorphism and h: M -+ 
V the inclusion. The next lemma is an easy consequence of Lemma (2.7). 

( 2 . 8 )  LEMMA. T h e  function y: Spin(M) -+ H2(V; 212) satisfies: 
(i) a class E E H2(V;212) lies in image(?) i f  and only i f  E .  (1 = . E l  (mod 2) 

for each E l  E H2(V); 
(ii) for x E H1(M;212) and a E Spin(M), 

I n  particular, y is  injective. 

( 2 . 9 )  LEMMA. Let Vl and V2 be two 1-connected 4-manifolds with boundary 
M and A a n  isometry of their intersection pairings. T h e n  there i s  a permutation 
nA of  Spin(M) such that  

(i) y a ( n ~ ( a ) )= (a)),  a E Spin(M); 
(ii) nA(d(A); (x) . a )  = x . nA(a)  for each x E H1(M;  212) and a E Spin(M). 
PROOF.As A is an isometry, we can use Lemma (2.8)(i) to see that A(image(y1)) 

= image(y2). As 7 2  is injective (Lemma (2.8)(ii)), we may define n~ = y;' o A o yl . 
Evidently (i) holds. 

To prove (ii), we first note that the composition DM o d(A); o DG' defines 
an isomorphism of H2(M;212) which we denote (through abuse of notation) as 
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d (h )z l .  It can be checked that Ao hl, = ha, od(A)2. Then for any x E H1(M;212) 
and a E Spin(M), 

= y a ( n ~ ( a ) )+ h2* 0 DM(x)= ~ 2 ( a : .T A ( ~ ) ) .  
As 7 2  is injective, identity (ii) follows. 

We close this section with a short discussion of the quadratic functions related 
to l M .  

To each a E Spin(M), there is an associated quadratic enhancement of l M  (see 
'$4 of [Ta]),that is a function q,: TI (M)  -+Q/Z satisfying 

(i) qa (21 f ~ 2 )= qa (21) f ~0(22) f L M  (21,2 2 )  21 22 E Tl (M);  
(ii) q,(mz) = m2q,(z), z E TI (M) and m E Z. 

Moreover, any function q: Tl (M) + Q/Z satisfying these two equations is of the 
form q = q, for some spin structure a (see Corollary (4.3) of [Ta]). 

Now for any x E H1(M;Z/2), a E Spin(M) and z E Tl(M),  

where (x,z) is defined to be 4 when (x,z) = 1(mod 2) and zero otherwise. Thus, 
if I1(M) is the image of H1(M) in H1(M;212) under (mod2) reduction, we have 

( 2 . 1 0 )  LEMMA.q,, =q,, i f a n d o n l y i f d ( a l , a 2 ) E 1 1 ( M ) .  
( 2 . 11 )  PROPOSITION.An even bilinear form space (Zn,L) presenting H, (M)  

determines a subset SpinL(M) of Spin(M) of the form SpinL(M)= I1(M) . a for 
some spin structure a on M .  

PROOF. Let ( E Zn and mv = ad(L)(() for some 77 E [Zn]*and m # 0. As 
(Zn,L) presents H,(M), it can be verified that the formula 

determines a quadratic enhancement of l M .  Set 

According to Lemma (2.10), SpinL(M)is precisely an orbit of the I1(M)-action on 
Spin(M). This completes the proof. 

(2.12) REMARK. (i) Let M = dV where V is a 1-connected 4-manifold. If 
( E H2(V)with j,(() = mq, 77 E H2(V,M) and m # 0, then it can be argued using 
the geometric description of q, that 

If V is actually a spin manifold, then Lemma (2.7)(iv) shows that SpinL(M) = 
I1(M) .a v  . 

(ii) The identity 
( W ~ ( V ~ , M ; T A ( ~ ) ) , V )(w2(Vl,M;o),A*(r])), 

r] E H2(V,M) ,  together with (11.3) imply that for any a E Spin(M) and z E Tl(M),  
(11.4) qrA(,)(a(A)l(z))G qo(z). 
(Compare Lemma (3.1)(iv).) 
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3. This section provides the more detailed structure necessary to the under-
standing of VL(M) when L is even. We shall assume then that all forms (Zn,L) 
are even, present H, (M)  and that we have fixed some UL E SpinL(M)  such that 
UL = uv whenever (Zn,L) = (H2(V),.), V a 1-connected 4-manifold with bound-
ary M .  

Define y ~ :Spin(M) -+ Zn 8Z/2 by the formulua yL(x .oL) = h(DM(x)).Here 
h: Hz(M;212) -+ Zn 8Z/2 is the homomorphism adjoint to ( 8 8  1): [Zn]*8Z/2 -+ 

H1(M;ZI2). 
When (Zn,L) is geometric, y~ coincides with the function y defined in '$2. In 

general, it satisfies the appropriate analogue of Lemma (2.8). 

( 3 . 1 )  LEMMA.Let A: (Zn,L1) -+ (Zn,L2) be an isometry of even bilinear form 
spaces presenting H,(M).  Then there is a permutation n ~ :Spin(M) -+ Spin(M) 
such that 

(i) y ~ ~ ( n * ( a ) )= A(yLl(a)). In particular n~ agrees with the permutation of 
Lemma (2.9) when (Zn,L1) and (Zn,La) are geometric; 

(ii) n~ (UL,) = UL, ; 
(iii) nA(d(A);(x) .a )  = x . nA(a), where x E H1(M;212) and a E Spin(M); 
(iv) q,*(u)(d(A)l(z)) = qu(z) for z E Tl(M),  E Spin(M). 

PROOF.Proceed as in Lemma (2.9) to construct a n~ satisfying (i) and (iii). It 
is easily checked that nA(aL,)= UL, so (ii) holds. 

Finally for (iv), use the fact that A is an isometry together with (ii) and the 
definitions of qULland q,,, (Proposition (2.11)) to see that the equation holds for 
a = U L ~ .The general case follows from this, part (iii) and equation (11.2). 

We use the material above to enhance the group A(M). Fix a presentation 
(Zn,L) of H,(M) and let S(Spin(M)) denote the symmetric group on Spin(M). 

( 3 . 2 )  DEFINITION.The group A(M) is the set of all pairs ( a , n )  E A ( M )  x 
S(Spin(M)) such that 

(i) n(a;(x) . a )  = x . n(a)  for each x E H1(M; Z/2), a E Spin(M); 
(ii) q,(,) (a l (z ) )  = q,(z) for each z E Tl(M) and a E Spin(M). 

For any (1,n)  E A(M), it follows from Lemma (2.10) that n(a)  = y . a for some 
y E I 1 ( M ) ,  Conversely, any such pair (1,y) E A(M). Thus we have an embedding 
I1(M) -+ A(M) whose image is easily verified to be normal. 

Let p: A(M) -+ A(M) be the projection. 

( 3 . 3 )  LEMMA. There is an exact sequence 

PROOF.The only thing left to prove is that p is surjective. But for a E A(M), 
the function q,, . a;' is a quadratic enhancement of lM. Thus there is some 
o E Spin(M) with q, = q,, . a;'. Define n E S(Spin(M)) by the formula 

It is readily checked that (a,n)  E A(M). Thus p is surjective. 
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Define subgroups A L ( ~ )and H+(M) of A(M) by setting 

AL(M) = {(d(A),nA)IA an isometry of (Zn ,L)); 
H+(M) = {(f*lfd l f  E X+(M)). 

That AL(M)C_ A(M) is Lemma (3.1). That H+(M) C A(M) is a consequence of 
Proposition (2.4) and the geometric description of q, (see $4 of [Ta]). 

Clearly p(AL(M)) = AL(M) and p ( ~ + ( ~ ) )= H+(M).  Thus if BL(M) = 
&(M)\A(M)/A~(M),  the projection p:A(M) -+ A(M) induces a function pl: 
B ~ ( M )-'BL(M).  It is possible to identify precisely the fibers of pl. To that end, 
let a E A(M) and define a subgroup X+(M,a )  of X+(M) by 

The symbol "( )" will denote equivalence class in both BL(M) and BL(M). 

( 3 . 4 )  PROPOSITION.For any ( a , n )  E A(M), the action of X+(M,a) on 
Spin(M) preserves n(SpinL(M)). Further, there is a bijection 

Before proving this proposition we derive a few of its consequences. The first we 
look at gives a bound on the size of the fibers of pl.  

Consider f E X+(M) with f, = i l .  As pl(f,, f#) = p l ( f  1, l),we may apply 
Lemma (3.3) to see that f# = y for some y E I1(M). Thus we may consider 
J = { f # l  f, = f1) as a subset of I1(M).  It is not hard to verify that J is actually 
a subgroup of I1(M). 

( 3 . 5 )  COROLLARY.For any a E A(M), lp;'((a))l I 2b1(M) / I~ l .  

PROOF.Choose n E S(Spin(M))such that (a ,n) E A(M). Now clearly {f 1 f, = 
i 1 )  C_ U+(M,a) so that 

(3 .6 )  COROLLARY.If H1(M; Q) r 0, then pl: BL(M) -+ BL(M) is a bijec-
tion. 

(3 .7 )  COROLLARY.If Tl(M) = 0, then BL(M) % Spin(M)/X+(M). 
PROOF.If Tl (M) = 0 then 
(i) Spin,(M) = Spin(M); 
(ii) AL(M) = A(M) (by Corollary (1.7)). 
Thus I BL(M)I = 1 and X+ (M, a )  = X+ (M) for each a E A(M). In particular, 

PROOFOF PROPOSITION(3.4). First we show X+(M, a )  acts on n(SpinL(M)). 
For f E X+ (M,a ) ,  there is an isometry A of (Zn, L) such that f, = ad(A)a-l. 

According to Lemma (3.3), there is a y E I1(M) such that f# = y .n o  nA o n-'. 
As nA(SpinL(M))= SpinL(M) (Lemma (3.1)), it is evident that f# preserves 
n(Spin,(M)). 

Tentatively define 
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by the formula 
~L(,,,)(Y.4 0 ~ ) )= (a ,Y . n ) ,  

where the bar denotes the equivalence class of y n(aL).  
To see this is well defined, let f E U+ ( I M ,a )  and suppose y2 . n(aL) = 

f#(yl + n(aL)). Choose an isometry A such that f, = a o d(A-') o a-l. Then 
a = f, o a o d(A) and so there is some y E I1(M) with 

From Lemma (3.l)(ii),nA(aL)= UL,  hence evaluating (111.1) at UL shows y = 0. 
Then (a ,y1 . n) = ( a ,y2 .n) which implies is well defined. 

That is onto is a straightforward consequence of Lemma (3.3). 
Finally, $(,,,I is 1-1essentially by the definition of BL(M). 
The proof is now complete. 
We close this section by remarking that as in the analysis of BL(M),  B ~ ( M )  

may be calculated from certain torsion information. Indeed let 

at(^) = {(a;, n)l there is some (a ,n) E A(M) restricting to (a:, n)); 
A i ( M )  = {(d(A)i,nA)lA is an isometry of (Zn,L)); 

H: = {(f,",f#)lf  E X+(M)); 
B;(M) = A:(M)\At(M)/Ai(M). 

As in $1,it can be shown that A(M)/AL(M) r At(M)/Ai(M) and BL(M) 
BE( M ) .  

4. Throughout this section VI and V2 will be two 1-connected 4-manifolds with 
boundary M and (f ,  A): Vl -+ V2 a fixed morphism. As f, = d(A), (2.9)(ii), (2.10) 
and (2.12)(ii) show there is a class O(f ,  A) E I' (M) such that f#  = O(f ,  A) . nA. 
(Compare Lemma (3.3).) 

( 4 . 1) PROPOSITION.The class B(f, A) satisfies the following conditions. 
(i) Let a E Spin(M) and 62: H'(M; 212) -+ H2(V2,iZI; 212) be the coboundary. 

Then 
& O ( f ,  A) = ~ 2 ( V 2 ,M; f#(o)) - ~ 2 ( V 2 ,M;  ~ A ( U ) ) :  

(ii) If (g, Q):V2 -+ V3 is another morphism, then 

O(g 0 f ,Q 0 A) = O(g,Q) + (g-l)*O(f, A). 
(iii) O(f-', A-') = f*O(f, A). 
(iv) If Vl = V2, there is an m > 0 depending only on bl(M) = dimZ12(11(M)) 

such that O(f m,  Am) = 0. 
(v) If (H2(K), .) is even (i= 1,2), then 

Hence O(f ,  A) depends only on f .  
(vi) If (H2(K), . )is even (i= 1,2) and O(f,A) = 0, then A(V1) = A(V2). 
PROOF.For any a E Spin(M), O(f, A) = d(f# (a),nA(o)).The identity (i) now 

follows from Lemma (2.7)(iii). 
Conclusions (ii) and (iii) are ready consequences of Proposition (2.4). 
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To deduce (iv), choose m = 2ml, ml = IGl(bl (M),Z/2)1. Then [f* lI1(M)Iml = 
1 and therefore by (ii), 

For the identity in (v), use Lemma (3.l)(ii) to see nA(ovl)= ov, . The result is 
then obvious. 

Finally we prove (vi). Now according to (v), 6(f, A) = 0 implies f#(uvl) = avz. 
Then for any smoothable spin, 4-manifold V with boundary M and a v  = uv,, 

fconsideration of the mapping cylinder of the composition M -+M -+ V shows that 

Here p(M): Spin(M) -+ Z/16 is the Rohlin function [Ka]. But using Theorem 
(13.1) of [S],it can be shown that 

A(&) = $ [signature & - p(M; uv, )] (mod 2). 

Thus A(V1) = A(V2) as claimed. 
This completes the proof of Proposition (4.1). 
Our goal in this section is to prove that %(f,A)is precisely the obstruction 

to realizing (f ,  A) geometrically by a homeomorphism F:Vl -+ V2. That there 
is an obstruction is readily seen by taking Vl = V2 = B2 x S2 and choosing 
f E U+(S1x S2)  to be the clutching diffeomorphism giving the twisted S2-bundle 
over S2,S2;S2. Evidently f, E AL(S1x S2)  so that f extends to some morphism 
(f ,  A): B2 x S2-+ B2 x S2.If f were to extend to a homeomorphism of B2 x S2, 
then it is not hard to argue that S2;S2 = S2x S2 .  AS this is certainly false, there 
is no such extension. 

Define V = VI Uf (-V2) and note that V is a closed, 1-connected 4-manifold 
which, by Novikov additivity (Proposition (7.1) of [A,S]),has signature zero. Fur-
ther, if A(V) E H4(V;212) 2 Z/2 is the Kirby-Siebenmann obstruction to smooth-
ing V, then 

(IV.1) 
where A(Vl) are A(V2) are defined as in the introduction. 

The commutative diagram, Diagram (IV.2) below, names most of the homomor-
phisms used in this section. It is based on the following diagram of inclusions: 

The central column and both rows of (IV.2) are exact. 
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Finally, for any homomorphism Q: A -t B of abelian groups, G ( @ )will be the 
subgroup of A $ B corresponding to the graph of Q: 

( 4 . 2 )  PROPOSITION. The morphism (f ,  A) is realized geometrically by a home- 
omorphism F:Vl + V2 if and only if A(V1) = A(V2) and there is a maximal 
isotropic subgroup J C H2(V) such that 

(i) i*(G(-A)) G J; 
(ii) d ( J )  = H1(M). 

PROOF. If f extends to a homeomorphism F :  VI -t V2 realizing A, then clearly 
A(Vl) E A(V2). 

For the rest let J = image(H2(Vl, M)  -+ H2(V)) under the "doubling" home- 
omorphism given by F. This homeomorphism sends the class of a relative cycle 
z E Z2(V1, M )  to the class in H2(V) represented by the absolute cycle z - F#(z). 
One readily verifies that J has the desired properties. 

On the other hand, assume that A(Vl) - A(V2) and that there is a subgroup 
J C H2(V) as in the hypotheses. Now from equation (IV.l) we have A(V) - 0, 
and therefore V is a stably smoothable, 1-connected Cmanifold with signature 
zero. Using Freedman's classification theorem (Theorem (1.5) of [Fr]and Corollary 
(2.2.3) of [Q]) ,we conclude there is an n > 0 such that 

In either instance, V bounds a 5-manifold W which is the boundary connected sum 
of n D3-bundles over S2. Note that W 2 ~ .Vy=, s2.AS in Theorem (2) of [ W l ] ,  
we may replace W by another 5-manifold Wl with dW1 = V, W1 2 VyZl S2and 
J = ker(H2(V)-t H2(W1)). We shall show that the triple (W1 ;Vl, V2) is a relative 
h-cobordism. Thus by the 5-dimensional relative h-cobordism theorem (Theorem 
(2.1.1) of [Q]) ,f extends to  a homeomorphism F :  Vl -+ V2. 

Now Vl IIV2 N W1' IIVy=l S2 SO to prove that the inclusion & -t W is a 
homotopy equivalence it suffices to show that H2(&) + H2(W1) (i= 1,2).  TO that 
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end consider the commutative diagram 

Both row and column are exact. 
Now by assumption, dlJ is surjective and a quick diagram chase shows that 4 

is also. Thus if E E H2(W1),there are elements Ei E H2(K) (2 = 1,2) such that 
E = 4(E1, E2). But as i,(G(-A)) G J = Ker(j*), 

Thus 

Clearly this implies that E E image(H2(K) -+ Hz(W1)) ( i  = 1,2), and as E was 
chosen arbitrarily, both homomorphisms H2(K)  + H2(W1) are surjective. As 
noted above, this means that f extends to a homeomorphism F :  Vl +V2. 

Finally, to see that F, = A, let 42 = 41H2(K)(i= 1,2). Evidently F, = c $ ~ ~ o 4 ~ ,  
which, as G(-A) c ker(4), is precisely A. 

The proof is now complete. 
Our goal now is to translate the conditions of Proposition (4.2) into the ones 

occurring in the statement of Theorem (0.7). Before doing this, we need a refor-
mulation of the invariant O(f, A) in the terms of homology data from the manifold 
v .  

( 4 . 3 )  LEMMA.Let ,u E H2(V) be such that k*(,u)E G(-A*). Then 

PROOF.Let k*:H2(Vl,M ;  212) $ H2(V2,M ;  212) +H2(V;212) be adjoint to 
k,. Then as V is formed by gluing Vl to V2 by f ,  if a E Spin(M), 
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Hence if q E H2(V2,M )  is chosen so that k, (p) = (-A* (q),q),  

p .p = (w2(V),p) by WU'Sformula- (k*(wz(Vt,M;a),wz(Vz,M;f#(o))),~)- ( ( ~ 2 ( V l ,M ; a ) ,wz(V2, M;  f#(fl))), (-A*(77), 7)) 
= (~2 (V1 ,M ; a ) ,-As(q)) + (w2(V2,M;f # ( a ) ) , ~ )- (w2(V1,M ;  ~ A ( U ) ) ,-7) + (~2(V2,M ;  f# (a ) ) ,7)  by Lemma (2.9)(i) 
= (s28(f ,  A),q)  by Lemma (4.1)(i)- @(f,A),  82(7>> 
= (8(f ,  A), f, o d(p)) see Diagram (IV.2). 

PROOFOF THEOREM( 0 . 7 ) .  Assume first of all that the morphism ( f ,  A) is 
realized geometrically by a homeomorphism F:Vl -+ V2. Clearly A(V1) = A(V2). 
To show that 8(f ,A) - 0, it suffices to prove that f# = r ~ ,. TO that end let 
o E Spin(M). Using the definition of the functions w2(V,,M )  (i = 1,2) it can be 
shown that w2(V2,M ;  f#(a))  = (F*)-lw2(Vl,M ;  a ) .  Hence, 

TF.(U) = 7;' 0 F* oyl (0)  
0 F*0 Dvl (wz(V1,M ;  a ) )= 72 
o Dv2 o (F*)-'(w2(vl, M ;  a ) )  as F has degree 1,= 72 

-l 0 Dvz(w2(V2,M ;  f # ( 4 ) )= 72 
= f#(o) by the identity (11.1). 

Thus f# = r ~ ,and so 8(f ,A) = 0 as claimed. 
To prove the converse we shall show that the hypothesis 8(f,A) - 0 implies 

there is a maximal isotropic subgroup J of H2(V) such that i,(G(-A)) C J and 
d ( J )  = HI (M).  The desired conclusion will then follow from Proposition (4.2). 

The subgroup J will be built as the sum of two isotropic subgroups J1 and J2 
of H2(V) which satisfy 

(i) i,(G(-A)) c J1,d(J1) = Tt(M) and 

(ii) the composition J 2  '4 HI(M) +HI (M)/Tl (M)  is an isomorphism; 
(iii) Jl nJ2= (0) and J1. J 2  = (0). 
Assuming we have found such subgroups, we let J be the smallest direct sum-

mand of H2(V) containing J1+ J2.As rank(H2(V))= 2 rank(H2(Vl)), J is evi-
dently the desired subgroup of H2(V) and the proof will be complete. 

CONSTRUCTIONOF J1. Let J1 be the smallest direct summand of H2(V) 
containing i,(G(-A)). Now i,(G(-A)) is isotropic in H2(V), as A is an isometry. 
Thus J1is also. 

Next we prove d(J1) = Tl(M). If p E J1,there is an integer m > 0 such that 
mp E i,(G(-A)). But then md(p) = 0, as d o i, = 0. Hence d(p)  E Tl(M) which 
shows d(J1) & Tl (M). 

To derive the opposite inclusion, let v E TI (M).  
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( 4 . 4 )  LEMMA. There is a classp E H2(V) withd(p) = v and k,(p) E G(-A*). 
PROOF. Fix any q E H2(V2,M )  such that d2(q) = f*(v). Now as (f ,A) 

is a morphism, G(-A*) c image(k,) (see Diagram (IV.2)), so we may choose a 
p E H2(V) for which k, (p) = (-A* (q),q).  Further, 

d(p)  = f;' o d2 o pr2 o k*(p) see Diagram (IV.2) 
= f,-I 0 82(q) 
= v by choice of q. 

Choose p as in the lemma and set k,(p) = (-A*(q), q).  Now since v E Tl(M), 
we may find an m > 0 and E E H2(V1) such that jl. (E) = -mA* (7). Then 
kt o i*( E l  -A(()) = m(-A* (q),q)  (see Diagram (IV.2)) and thus 
(IV.3) i*(E,-A*(E)) = m p  + h*(P) 
for some /3 E H2(M).  

( 4 . 5 )  LEMMA. The class is divisible by m in H2(M).  
We delay the demonstration of this lemma till the end of the proof of Theorem 

(0.7). Assuming it, we see from equation (IV.3) that p + h,(P/m) E J1. Then 
= d(p) = d(p  + h*(P/m)). 

Thus v E d(J1)  and as v was chosen arbitrarily, we conclude 8(J1)  = Tl(M).  
Finally, to calculate rank(J1), note 

Thus 
rank(J1) = rank(i,(G(-A))) = rank(G(-A)) - rank(ker(i,)) 

= rank(H2(Vl)) - rank(H1(M)).  
CONSTRUCTIONOF J 2 .  Set Fl(M) = HI (M)/Tl (M) and choose vl ,v2, . . . ,v, 

E Hl (M)  which project to a basis of this group. By Lemma (4.4), there are classes 
p:,pb,. . .p& E H2(V) such that 

(i) 8(pi) = vi, 1 5 i 5 m, 
(ii) k,(pi) E G(-A*), 15 i 5 m. 

Let Dl ,  P2,. . . ,Pm E H2(M) be the basis dual to vl,  . . . ,v,. That is Pi .vj  = 6ij. 
Set pi = h,(Pi) (1 5 i < m) and note that - -

(i) P i .  Pj = 0, 1 5  i,j 5 m; 
(ii) p i e p >= 6ij1 1 5  i,j < m. 

Define 
m 

p = p - ( p  p ) ,  15 i < m, 
j=i+l 

and observe that k,(py) = k,(pa) E G(-A*). Thus for each i, 

py . py G e(j,A)(j, o d(pr ) )  by Lemma (4.3) 
~ O ( m o d 2 )  as O(j,A)=O. 

Thus we may form 
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Now it can be checked that pi .p j  = 0 (1 < i,j < m), d(pi)  = vi (1 < i < m), and 
k,(pi) E G(-A*). Thus if we set J 2  = Span(pl,p2,.  .. ,pm) CH2(V), 

(i) J 2  is isotropic; 
ai J2(ii) the composition J2-H1(M) -,Ft (M) is an isomorphism; 

(iii) k, (J2) G G(-A*). 
Thus J2satisfies the desired properties. 
PROOFTHAT Jl n J2= 0 AND J1.J2= 0. That Jl n J2= 0, simply observe 

that under the composition 

H2(V) 2Hi(M)  --+ Fi(M),  
J1maps to zero while J2maps monomorphically. 

To see that J1. J2= 0, choose pi E Ji (i  = 1,2) .  Kow by the const,ruction 
of J1 and J2,we may choose an integer m > 0, and elements ( E H2(Vl) and 
7 E H2(V2, M) such that mpt = i,([, -A(()), k, (p2) = (-Ae(?), 7). Then 

As p t ,  p2 were arbitrary, J1. J2= 0. 
To complete the demonstration of Theorem (0.7), we must prove Lemma (4.5). 
PROOF OF LEMMA(4 .5 ) .  It suffices to show that j3 . v - 0 (mod m) for each 

v E H1(M). But from the properties of J2,for any such v there is some p' E J2 
with d(pl)  - v E TI (M). Then 

as i,([, -A(())  E J1.Thus Lemma (4.5) follows. 
PROOFOF THEOREM(0 .10) .  According to Corollary (1.8), there is an integer 

m l  > 0 depending only on Tl(M) such that for any 1-connected 4-manifold V with 
boundary M and f E U+ (M)  there is a morphism (f m l ,  A): V 4 V. 

According to Proposition (4.1)(iv), there is an ma > 0 depending only on HI(M) 
such that B(f "'"2, Amz) = 0. By Theorem (0.7), f "'"2 extends to a homeomor-
phism F:V -+ V. 

We complete this section by proving Proposition (0.8). 
PROOFOF PROPOSITION( 0 . 8 ) .  (i) When H1(M;Q) 2 0, I1(M) r 0. Thus 

as %(f,A)E I1(M),  8(f,A) = 0. 
(ii) This statement requires more work. First note that if 4:H2(V1,M )  -+ 

H2(M)is an arbitrary homomorphism then setting 11'= A+h2*o4ojl,, (f ,A'): Vl + 
V2 is a morphism. To calculate 8(f ,A'), set 

Now by the definition of 71: Spin(M) -+ Hz(Vl ;Z/2) ($2) and Lemma (2.7)(i), it 
can be shown that jl, (yl(a))= Dv,(w2(Vl)) for any a E Spin(M). Then 

Hence 6(f,A1) = B(f,A) +y(4). 
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Next choose a basis E l ,  t 2 , .. . ,Infor Hz(V1) with ti,tz,.. . ,ti the associated 
dual basis of Hz(Vl ,M). The Wu formula implies that 

n 

Dvl(w2(v~)).x ( b  . E ) t I  (mod2). 
i=1 

Hence n 

~ ( m )= x ( b .  c ) D ~ ~ ( G ) .  
i=1 

Now suppose we have chosen the basis tl,. . . ,tnso that ti.ti = 1 (mod 2) if and 
only if i = 1. Then y(4) = D&'C#J(E,*).Hence if y E I1(M) is given, choose any 4 so 
that DG' . .(ti) = y. The associated morphism (f ,  At) has O(f ,At) = O(f, A) + y. 
Evidently this suffices to deduce (ii). 

(iii) That O(f, A) is independent of A and is given by d(f# (uvl),uv,) is precisely 
Proposition (4.l)(v). As V admits a spin structure if and only if f#(avl) = av,, 
we are done. 

5. In this final section we prove Theorems (0.1) and (0.2) as well as Propositions 
(0.5) and (0.6). 

Fix a bilinear form space (Zn,L) which presents H,(M) and suppose V is a 1-
connected 4-manifold with boundary M and A: (Zn,L) + (H2(V),.) an isometry. 

(5 .1 )  LEMMA.(i) The double coset H+(M)B(A)AL(M)E BL(M) depends 
only upon the class of V in VL(M). 

(ii) If L is even, the double coset H + ( M ) ( ~ ( A ) , T ~ ) A ~ ( M )depends only upon 
the class of V. 

PROOF.Let Vl be another 1-connected 4manifold with boundary M and s u p  
pose there is a homeomorphism F : V  -+ Vl. Let 9 :  (Zn,L) -+ (H2(V1),.)be an 
arbitrary isometry. Then with f = FIM, 

This proves the first part of the lemma. 
To prove the second part, note that Theorem (0.7) shows O(f, F,) = 0. Hence 

f#  = TF, and therefore 

This equality implies the desired result. 
We shall denote the class of V in VL(M)by [V]. Lemma (5.1) shows that there 

is a well-defined function 

where A: (Zn,L) -+ (H2(V),.) is an isometry. 
Similarly when L is even there is a function 

Evidently if pl: BL(M) +BL(M) is the natural projection (see 53), then pl o c ^ ~= 
CL. 
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(5 .2 )  LEMMA. (i) If Vl and V2 represent classes in VL(M)) then cL([Vl])= 
CL([V~])if and only if there is a morphism (f,  A): Vl -+ V2. 

(ii) If L is even, then tL([V1])= tL([V2])if and only if there is a morphism 
(f,  A):Vl -+ V2 with B(f, A) = 0. 

PROOF.Choose isometries Qi: (Zn,L) -+ (H2(T/z),.) ( i  = 1,2). 
If c ~ ( [ V l ] )= cL([V2]),then there is some f E X+(M) and an isometry F of 

(Zn,L) such that 
d(Q2) = f*0 d(Q1) 0 d m .  

The pair ( f ,  Q2 o o Or1)  is the desired morphism between Vl and V2. 
Conversely, if ( f ,  A):Vl -+ V2 is a morphism, then 

d(Q2)= f, o d(Ql)  0 d ( Q r l  o A-I o Q2), 
from which it is apparent that cL([Vl])= cL([V2]).This proves the first part of 
Lemma (5.2). 

The second part follows by an argument essentially the same as that above so 
we omit it. 

PROOFOF THEOREMS(0.1) AND (0.2). Define c; to be the composite 

VL(M) 3 BL(M) 3 B i ( M )  
(see $1for the definition of t2). Combining Corollary (1.10), Lemma (5.2) and 
Corollary (0.9) shows that when L is odd, 

C i  = CL x A: VL(M) -+ B i ( M )  x Z/2 
is injective. This proves Theorem (0.1). 

Now assume that L is even. Combining Lemma (5.2) with Theorem (0.7) shows 
that tLis injective. 

Finally, let p2 denote the composite 

BL(M) 3 B ~ ( M )3 B ~ ( M ) .  
By Corollary (1.10), t2  is bijective. Thus the desired bijection between 
P;1(p2((a, T))) and 7r(SpinL(M))/U+(M,a )  is assured by Proposition (3.4). This 
completes the proof of Theorem (0.2). 

PROOF OF PROPOSITION(0.6) .  That IBi(M)I = 1 is Corollaries (1.9) and 
(1.10). 

Now assume L is even. As IBi(M)I = 1,Theorem (0.2) provides an injection 
46tl)0 tL: VL(M) + S P ~ ~ L ( M ) / U + ( M ,1). 

But using Proposition (1.6) it is easy to check that X+(M, 1) = X+(M). The result 
follows. 

We close the paper by working out several instances in which both C i  and 2~ 
are bijections. 

We start by detailing a construction which will be used in both situations. 
Suppose A is an integrally framed link in M such that surgery along A yields 

a homology 3-sphere C(A). If W(A) is the contractible 4-manifold with boundary 
C(A), we may construct a 1-connected 4-manifold by setting 
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Thus V(A) is the trace of the surgery along A together with W (A). 
Note that BV(A) = M and that by turning the 2-handles upside-down, V(A) -. 

v\qIls 2 .  
We also remark that 

w .1 )  A(V(A)) 5 A(W(A)) = p(C(A)) (mod 2). 
PROOF OF PROPOSITION ( 0 . 5 ) .  Suppose (M) E Zn. We shall concentrate 

first of all on constructing 4-manifolds with form (Zn, 0). 
Let K = K1 UK2U. .  .UKn be a (smoothly) embedded link in M such that the 

classes of K1, K2 , .. .,Kn form a basis for HI (M).  Let 
n 

be a fixed (closed) tubular neighbourhood of K and set Mo = M\T(K). 
Now using duality and excision, it can be shown that Hl(Mo) E Zn, while 

H2(Mo) 2 Zn-l. Plugging these groups into the long exact sequence of the pair 
(M, Mo) implies that the inclusion Mo -+ M induces an isomorphism H1(Mo) 5 
H1 (M). Hence, there is a basis for HI(Mo) consisting of longitudes of K1, K2, .  . . , 
Kn. Further, the meridians to these curves are null-homologous in Mo. Thus we 
see that any integral surgery along K yields a homology 3-sphere. 

For each b E (0, l j n ,  we may const,ruct an integrally framed link Ab whose 
underlying link is K and whose ith framing curve (see $9G of [Rlfj)is given by 

Form V(Ab) as in the discussion prior to the beginning of this proof. As V(Ab) = 
Vy=, S2and H1(M) E Zn, it is not hard to argue that (H2(V(Ab)), .) 2 (Zn, 0). 

We note that if a b  E Spin(M) is the unique spin structure extending over V(Ab), 
then 

To see this suppose bl ,  b2 are distinct elements of (0, lIn. Then there is an 
i E {1,2,. . .,n) for which Ibl(i) - b2(i)l = 1. But then by the construction of 
V(Abl) ( j  = 1,2), a b ,  will not extend over the j t h  2-handle of V(Ab,). Thus 
a b ,  # a b ,  and a counting argument shows (V.2) holds. 

Now to the proof of Proposition (0.5) proper. 
Let (Zm, L) be an arbitrary form presenting H, (M).  Then (Zm, L) splits or- 

thogonally as (Zn, 0) $ (Zm-n, L1) where (Zm-n, L1) is a unimodular form which 
is odd if and only if (Zm, L) is. 

First assume that L is odd. According to Freedman (Theorem (1.5) of [Fr]), 
there are 1-connected 4-manifolds Vi and V. such that 

(i) d(V{) LZ d(V4) % S3; 
(ii) (H2(K1),.) 2 (Zm-n, L1) (i= 1,2); 
(iii) A(Vi) $ A(V.). 
Let Vo be any 1-connected Cmanifold with boundary M and intersection form 

(Zn, 0), as constructed above. Then if 



SIMPLY-CONNECTED 4-MANIFOLDS 355 

we have that d(Vi) E M ,  (H2(Vi),.) E (Zm,L), while A(V1) $ A(V2). Thus 
A: VL(M) + Z/2 is bijective as claimed. 

When L is even, Freedman's work shows there is a unique 4-manifold V{ with 
boundary S3and form (Zm-", L1). Taking the boundary connected sum of V{ with 
the manifolds V(Ab),b E (0, l In,  previously constructed, provides us with mani-
folds Vl(b), b E (0, l In,  each having boundary M and form (Zm,L). Further, by 
(V.2), Spin(M) = E (0, l I n ) .  Finally, from Corollary (1.7) and Theorem 
(0.2), it now follows that the composition o fL:VL(M) 4 Spin(M)/U+(M) 
is a bijection. 

This completes the proof of Proposition (0.5). 
(5.3) REMARKS.(i) Let M = #:=, S1 x S2,n 2 0. It is well known that 

U+(M) acts transitively on Spin(M). Thus 

2, L is odd, 
1, L is even. 

Further, when L is odd, the two manifolds are distinguished by their Kirby-Sieben-
mann invariants. 

(ii) It seems likely that a construction similar to that in the last proposition will 
show that irnage(c^L)= p;l(image(cL)) when L is even. 

Our next example shows that C i  and tLmay be bijections when Tl (M)  (0). 
(5.4) EXAMPLE.Suppose that H,(M) is presented by the form (Z,L) where 

L(n,m) = rnm, r # 0. We shall show that when r is odd, C i :  VL(M) -+ B i ( M )  x 
Z/2 is bijective, as c;: VL(M) + B i ( M )  is when r is even. 

Now a quick calculation shows that H1(M)  = TI(M)  2 Zlr .  Evidently then, 

Note that A(M) is abelian so that 

inherits a transitive action from A(M): 

We remark that AL(M) = (611, but H+(M)  can be an arbitrary subgroup of 
A(M),  depending on M .  

We state the following lemma without proof. 

( 5 . 5 )  LEMMA.Let K be a (smooth) simple closed curve in M representing a 
class a E H l ( M ) .  For there to be an integral surgery along K yielding a homology 
3-sphere, it is necessary and suficient that lM(a ,a )  -= 6 l l r .  Further, if l ~ ( a ,a) e 
6 l / r  where r is odd, there are knots K1 and K2  in M representing a and integral 
surgeries along K1 and K2 such that the associated homology 3-spheres have distinct 
p-invariants. 

Now as H, (M)  is presented by (Z,L), there is an a E H1(M) such that l ~ ( a ,a)- - l / r .  For each u E A(M), let Ku be a closed curve representing u a  and A, a 
framing of Ku which gives a homology 3-sphere. 
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If V(A,) is the 1-connected 4-manifold constructed in the discussion prior to the 
proof of Provosition (0.5), then 

(i) dV(Au) = M; 
(ii) (Hz(V(Au)), .) 2 (Z, L). 

(When Irl 5 2, care must be taken in the choice of integral surgery so as to ensure 
(ii).) It  can also be checked that if q E H2(V(A,), M )  S Z is a generator, then 
dq = h a .  Using this observation we can construct isometries h(u): (Z, L) -i 
(H2(V(Au)),.) for which d(A(u) . A(l)-l)l = u. But then, from the action of 
A(M) on BZ(M) (V.3) we see 

As u was arbitrary, c i  is onto. This together with Theorem (0.2) implies that 
ctL:VL(M) -iB; is bijective when r is even. 

Finally, when r is odd, use Lemma (5.5) with identity (V.1) to deduce the bijec- 
tivity of C i :VL(M) + BE(M) x 212. 

(5.6) REMARKS.(i) Suppose M is the lens space L(r, 8). It is well known that 

H: (L(r, 3)) = {f s2$ 1 (mod r), { 1 ,8 s2 = 1 (mod r )  
(see Chapter V of [C]for instance). Thus 

t M At(M)/{fl}, s2$ 1 (mod r )  ,"(IM) - BL( - { At ( M ) {  8 , s2= 1 (modr). 
where At(M) = {ulu2 = 1) C Zlr .  

(ii) When r is even, it is natural to ask how random A: VL(M) + Z/2 is. By 
(V.l), A(V(A,)) - p(C(Au)), and arguing as in [Fu]it is possible to show that 
p(C(A,,)) = p(C(A,,)) as long as ulu2 - 1 (mod2r). This though is the only 
restriction as enough examples may be constructed using the results in [Tu]. 
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