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Abstract

This is an outline of the proof of Whitney’s first embedding theorem which states that every n-dimensional
differentiable manifold can be embedded in R2n+1 as a closed subset. Although the proof of this theorem has
been considerably simplified since it was first published in 1936, this presentation follows closely the steps
outlined in [1] which in turn is inspired from Whitney’s original proof.

1 Introduction
We will start by listing some definitions and recalling few well known elementary facts from measure theory and
from the theory of topology of smooth manifolds.

1.1 Definition
We define the n-cube Cn (x, r) centred at x with edge length r as the cartesian product of n open intervals (a, b)
of length r centred at x. One can think of Cn (x, r) as being the generalization of the usual 3-dimensional cube.
The Lebesgue measure of an n-dimensional cube is defined as its volume in the usual way and it is equal to rn.

1.2 Definition
We say that a subset A ∈ Rn has Lebesgue measure zero if for any ε > 0 there exists a countable collection of
n-cubes which covers A

A ⊂
⋃
j

Cn (xj , rj)

such that ∑
j

rnj < ε
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1.3 Lemma
If f : U ⊂ Rn −→ Rn is a smooth function and A ⊂ U is an open subset with measure zero, then its image f (A)
has measure zero as well.
To see this, take an n-cube C ⊂ C ⊂ U ; then A∩C ⊂ C =⇒ m (A ∩ C) = 0 from properties of Lebesgue measure.
So this intersection can be covered by a countable family of n-cubes whose total volume is arbitrarily small

A ∩ C ⊂
∞⋃
i=1

Cn (xi, ri) ;
∑
j

rnj < ε

Since f is smooth, its first partial derivatives are bounded on the compact set C. Let

b = max
x∈C, i,j

∣∣∣∣( ∂fi∂xj

)
x

∣∣∣∣
Then by the mean value theorem we get

‖f (x)− f (y)‖ ≤
(
n2b2

)1/2 ‖x− y‖ = nb ‖x− y‖

This means the image of of an n-cube of radius r is contained in an n-cube of radius nbr. Then for any ε > 0,
by covering A ∩ C with a countable number of n-cubes Cnk

(
xk, ε/2

k
)
, the image f (A ∩ C) has measure zero.

Repeat the same argument for the countable covering of A and the result follows.
The corollary below will use the fact that any k-subspace Rk ⊂ Rn for k < n, has measure zero. This is due to
the fact that for any ε > 0 the subspace Rk can be covered with a countable number of n-cubes with all edges
of length 1 except for one edge along a dimension outside of Rk which will have length equal to ε/2m. Then the
volume of each n-cube is ε/2m and their total volume is

∞∑
m=1

ε/2m = ε

1.4 Corollary
Given n < p, let U be an open subset of Rn, and f : U ⊂ Rn −→ Rp be a smooth map. Then the image of U
under f has measure zero.

Proof. Consider the map
g : U × Rp−n π→ U

f→ Rp

where π is the natural projection map. Then g is a smooth map since it is a composition of two smooth maps.
Since U ∼= U ×{0} ⊂ U ×Rp−n has measure zero then f (U) = g (U × {0}) also has measure zero by the previous
lemma.

1.5 Corollary
If f : Nn −→ Mm is a smooth math of manifolds of degree n and m respectively, and if n < m the f (Nn) has
measure zero in Mm.

1.6 Lemma
Let M (p, n) denote the set of all real p × n matrices with the product topology Rpn, and Mk (p, n) ⊂ M (p, n)
denote the subset of matrices with rank k. Then Mk (p, n) has dimension k (p+ n− k) as a submanifold.
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2 Whitney’s First Embedding Theorem
Every n-dimensional differentiable manifold can be embedded in R2n+1 as a closed subset.

To prove this theorem, we will first establish some sort of a hierarchy of maps. We will show that under
certain conditions any smooth function between two manifolds can be arbitrarily approximated by an immersion,
which in turn can be arbitrarily approximated by an injective immersion. The latter, then can be approximated
by embedding. We begin by the following theorem,

2.1 Theorem
Let f : U ⊂ Rn −→ Rp be a smooth map with 2n ≤ p. Then for any ε > 0 there exists a p× n matrix A = (aij)
such that

1. |aij | < ε

2. The map g : U ⊂ Rn −→ Rp defined by g (x) = f (x) +Ax is an immersion.

Proof. We need to show that there exists a matrix A such that |aij | < ε and

rank (Dg (x)) = rank (Df (x) +A) = n

Given any ε > 0, let Λ = {Ap×n : |aij | < ε}. Then the measure m (Λ) > 0 since m ((−ε, ε)) = 2ε > 0 and thus
m (Λ) = (2ε)

p×n
> 0.

g (x) = f (x) +Ax =⇒ Dg (x) = Df (x) +A. Consider the subset Ω ⊂ Λ such that

Ω = {A ∈ Λ : A = B −Df (x) ; rank (B) < n}

We will show that Ω has measure zero which will then imply the existence of the desired matrix A. To do so, we
consider the

Fk : Mk (p, n)× U −→M (p, n) ; Fk (B, x) = B −Df (x)

where rank (B) < n. Notice that dim (Mk (p, n)× U) = k (p+ n− k) + n. If we let φ (k) = k (p+ n− k) + n,
then φ′ (k) = −2k + p+ n > 0 since 2k < 2n ≤ p. So φ is increasing. Then

k ≤ n− 1 =⇒ k (p+ n− k) ≤ (n− 1) (p+ n− (n− 1))

= (2n− p) + pn− 1

< pn

= dim (M (p, n))

By corollary 1.5, m (Fk (Mk (p, n)× U)) = 0. The existence of the matrix A follows"’

We can restate the preceding theorem using the notion of δ-approximations which we define as follows:

2.2 Definition
Let X be a topological space and (Y, d) be a metric space with metric d. We say that a function g : X −→ (Y, d)
is a δ-approximation of a function f : X −→ (Y, d) if for any ε > 0, there exists a function δ : X −→ (0, ε) such
that

d (f (x) , g (s)) < δ (x) ∀x ∈ X

Then the previous theorem states that for any n-dimensional manifold M and a smooth function f : M −→ Rp
where 2n ≤ p, we can find an immersion g : M −→ Rp which is a δ-approximation to f . In fact, more can be
said. If rank (f) = n on some closed subset N ⊂ M , then g can be chosen to be homotopic to f relative to N .
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The proof of this last statement is rather tedious and is therefore omited here. The full proof is given in[1] for
the interested reader.
We have thus far encountered the first bound on the dimension of the Euclidean space in which a manifold
can be immersed. As we have seen above, this limitation is due to considerations related to measure theory.
The next limitation will appear when we seek to make the above immersion injective. The proof relies on the
fact that immersions are local embeddings, that is for each x ∈ M there exists a neighborhood Ux on which
the immersion is an embedding. By covering the manifold with such neighborhoods and taking a locally finite
countable refinement, one can use induction to construct the desired function from cut-off fuctions. Similarly,
one can choose such a function to be regularly homotopic to the immersion relative to some closed set. We will
formally state this result in the lemma below and once again refer the reader to [1] for the proof.

2.3 Lemma
Let f : M −→ Rp be an immersion of an n-dimensional manifold M , with 2n < p. Then there exists an injective
immersion g which is a δ-approximation of f . Moreover, if f is injective on some open subset of a closed set
N ∈M , g can be chosen to be regularly homotopic to f relative to N .

2.4 Definition
Let f : M −→ Rp be a continuous function. We define the limit set of f , L (f) by

L (f) =
{
y ∈ Rp : y = lim

n→∞
f(xn) for some sequence with no limit points in M

}
2.5 Lemma
Let M be an n-dimensional manifold and f : M −→ Rn be an injective immersion. Then

1. The range f (M) is closed in Rn if and only if L (f) ⊂ f (M), and

2. f is an embedding if and only if L (f) ∩ f (M) = ∅.

Proof. 1. (=⇒) Suppose f (M) is closed. Let y = limn→∞ f(xn) with {xn} ∈M being a sequence in M with
no limit points. Then f (M) closed implies limn→∞ f(xn) ∈ f (M). So L (f) ⊂ f (M).

2. (⇐=) Let y ∈ f (M). Then y must be a limit to some sequence y = limn→∞ f(xn).
If {xn} has a converging subsequence xnk

−→ c, then f (c) = y and so y ∈ f (M) and hence f (M) is closed.
Otherwise (ie: if {xn} has no converging subsequences), then y ∈ L (f) which is in f (M) by assumption.
Hence f (M) is closed.

3. (=⇒) Let f be an embedding and assume that y ∈ L (f) ∩ f (M). Then y = limn→∞ f(xn) for some
sequence {xn} ∈ M . But f is an embedding =⇒ xn −→ f−1 (y) = c which is a contradiction since
y ∈ L (y) and thhus {xn} cannot converge. So no such y exists: L (f) ∩ f (M) = ∅.
(⇐=) Let f (xn) −→ y be a sequence in M converging to y. Then xn −→ c for some c ∈M because if {xn}
has no limit point then y would necessarily lie in L (f) and thus in L (f) ∩ f (M) which by assumption is
empty. Also, note that the possiblity of {xn} having two distinct converging subsequences is excluded by
virtue of injectivity of f . This completes the proof.
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2.6 Remark
Note that in order for an injective immersion f : M −→ Rn to be an embedding with a closed image, both
L (f) ⊂ f (M) and L (f) ∩ f (M) = ∅ must be satisfied, in which case L (f) is necessarily empty.

We now state one more known fact about smooth manifolds. Detailed proof can be found in [2].

2.7 Lemma
Let M be an n-dimensional manifold. Then any open covering

⋃
α

{(Uα, ψα)} ⊃ M admits a countable, locally

finite refinement {Vj , hj} such that

1. hj (Vj) = Cn (3)

2. M =
⋃
j

Wj where Wj = h−1j (Cn (1)) and has compact closure.

Moreover, for each Wj there exists a smooth function φj : M −→ Rn which satifies the following

1. φj (x) = 1 for all x ∈Wj ,

2. 0 < φj (x) < 1 for all x ∈ h−1j
(
Cn (2)− Cn (1)

)
, and

3. φj (x) = 0 for all x ∈ Rn − Cn (2).

Such a function is called a cut-off function.

2.8 Lemma
Let M be an n-maifold. Then for any integer p > 0 there exists a smooth map f : M −→ Rp with L (f) = ∅.

Proof. Take a collection of cut-off functions {φj} associated with the covering {Vj , hj} as in lemma 2.7. Define
the function f : M −→ Rn by

f (x) =
∑
j

jφj (x)

This function is well-defined because the covering is locally finite, so there are only finitely many cut-off functions
which don’t vanish at x. Since φj are smooth for all j, then f is smooth. To show that L (f) = ∅, we take a
sequence {xn} ∈M with no limit points. Then for any k > 0 there exists a positive integer n > 0 such that

xn /∈W1 ∪W2 · · · ∪Wk

For if not, then there exists a k such that

xn ∈
k⋃
j=1

Wj ∀n ∈ N

But this would lead to a contradiction since
k⋃
j=1

Wj is compact and so the sequence {xn} must admit a converging

subsequence which cannot happen by assumption. Therefore xn ∈Wi for some i > k. But the this means

f (xn) =
∑
j

φj (xn) ≥ iφi (xn) = i > k

This argument shows that if a sequence {xn} does not have a limit point, then the corresponding sequence f (xn)
diverges to infinity. Hence L (f) = ∅.
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2.9 Remark
If g : M −→ R2n+1 is a smooth function with L (g) = ∅ and if f : M −→ R2n+1 is an injective immersion which is
a δ-approximation of g, then L (f) = ∅ To see this, take a sequence {xn} ∈M which has no limit points. Assume
y = lim

n→∞
f (xn) exists. Since L (g) = ∅, there exists ε > 0 and N > 0 such that ‖g (xn)− y‖ ≥ ε for all n > N .

But then if we choose δ : M −→ R+ such that δ (ε/2), we get a contradiction since if lim
n→∞

f (xn) = y then

‖f (xn)− g (xn)‖ < ε =⇒ ε > lim
n→∞

‖f (xn)− g (xn)‖ = ‖y − g (xn)‖ > ε

We now have acquired the necessary tools to prove the main theorem of this presentation

Proof. There exists a smooth function f :−→ R2n+1 with L (f) = ∅. For any ε > 0 let δ : M −→ R+ such that
δ (x) = ε (constant). Then there exists an immersion g : M −→ R2n+1 which is a δ-approximation of f . Then
there exists an injective immersion h : M −→ R2n+1 which is a δ-approximation of g with L (h) = ∅. Hence h is
an embedding and h (M) is closed.
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