Tk JOHNS HOPKINS

UNIVERSITY PRESS

Finding a Boundary for an Open Manifold
Author(s): W. Browder, J. Levine and G. R. Livesay

Source: American Journal of Mathematics, Oct., 1965, Vol. 87, No. 4 (Oct., 1965), pp.
1017-1028

Published by: The Johns Hopkins University Press

Stable URL: http://www.jstor.com/stable/2373259

REFERENCES
Linked refere JSTOR for this 3

597seq=1&cid=pdf-
reference#references_tab_contents
ou may need to Iog in to JSTOR 1o access the linked references.

icle:

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and
extend access to American Journal of Mathematics

JSTOR

This content downloaded from
195.37.209.180 on Mon, 25 Jan 2021 10:04:18 UTC
All use subject to https://about.jstor.org/terms


http://www.jstor.com/stable/2373259
http://www.jstor.com/stable/2373259?seq=1&cid=pdf-reference#references_tab_contents
http://www.jstor.com/stable/2373259?seq=1&cid=pdf-reference#references_tab_contents

FINDING A BOUNDARY FOR AN OPEN MANIFOLD.

By W. BrowpEr, J. LeviNgk and G. R. Livesay.*®

Given an open manifold, when is it the interior of a compact manifold
with boundary? We consider the case of piecewise linear (combinatorial)
or smooth manifolds W of dimension = 6 and we give necessary and sufficient
conditions on the homology of W and homotopy at « (see §1) so that W
is isomorphic (i. e., combinatorially equivalent or diffeomorphic) to the interior
of a compact manifold with 1-connected boundary (Theorem 1). As a conse-
quence we get an h-cobordism theorem for certain types of open manifolds
of dimension =6 (Corollary to Theorem 2). We are indebted to E. H.
Connell for suggesting the latter theorem and the possibility of deducing it
from the first.

All manifolds will be piecewise linear or smooth and isomorphic will
mean either combinatorially equivalent or diffeomorphic.

1. Statement of results. A space X is said to be 1-connected at oo
if for any compact ¢' C X there is a compact D, C C D C X such that ¥ — D
is 1-connected.

THEOREM 1. Let W be an open manifold of dimension =6. Then W
is isomorphic to the interior of a compact manifold U with 1-conmected
boundary «f and only if the homology Hy (W) is finitely generated and W
is 1-connected at . Further such a U is unique up to isomorphism.

Actually the proof given here could be modified slightly so that the
condition of 1-connected at o could be weakened to W having a finite
number of ends, each of which is 1-connected (see [8]).

Theorem 1 can be considered as a partial generalization of the result of
Stallings [9] that contractible open manifolds of dimension =5 which are
1-connected at co are isomorphic to R” (the interior of the n-ball).

Two connected manifolds M;, M, (not necessarily closed) are called h-
cobordant if there is a manifold with boundary V, with 8V — M, U (— M,),
and such that each component M; of 4V is a deformation retract of V.
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1018 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

THuEOREM 2. Let M,, M, satisfy the hypothesis of Theorem 1, and let
V be an h-cobordism between them which is 1-connected at oo. If M, M,
are the compact bounded manifolds produced by Theorem 1, then M, and M,
are h-cobordant, i.e., there is a compact manifold with boundary V such
that 8V — M, U U U M ,, where U 1is an h-cobordism between 8M, and 01 ,,
and such that the inclusions M; C V are homotopy equivalence, i=1,2.

CoroLLARY. Let M, M,, V be as above, and in addition = M, =mx M,
=0. Then M, ts isomorphic with M,.

2. Uniqueness of the boundary.

THEOREM 3. Let U, and U, be compact n-manifolds with 1-connected
boundaries, U, embedded in interior U, and the inclusion of U, in U,
induces homology isomorphism. Suppose also that V is 1-connected, where
V =U,—interior U,. Then V s an h-cobordism between 90U, and 90U ,.

Proof. The map (V,0U,) C (U, U,) is an excision so that Hy(V,aU,)
= H, (U,, U,) =0 since the inclusion induces homology isomorphism between
U, and U,. Since V, 0U,, 8U, are 1-connected it follows that 90U, and V
are homotopy equivalent by the theorem of J. H. C. Whitehead and it follows
that V and 9U. are homotopy equivalent similarly, using relative Poincaré
duality.

CoroLrLaRY. If W=1interior U,=intertor U,, 0U,, 0U, 1-connected,
then 80U, is h-cobordant to 0U,.

Actually the corollary holds in more generality without the assumption
of 1-connectedness.

3. Proof of Theorem 1.

Prorostirion 4. Let W be as in Theorem 1. Then given a compact sel
(' there is a conmected manifold U with boundary U C W, U 1-connected,
C Canterior U, such that the inclusion induces a homology isomorphism.

Before we prove this, we will indicate how Theorem 1 follows from the
proposition.

Proof of Theorem 1. Let C; C €, C- - - C W be a sequence of compact

sets such that W— U Ci, and W—0C; is 1-connected. By Proposition 4

we may find compact manlfolds with boundary U, such that U; D U;, U C,, aU;
1-connected and U; C W induces homology isomorphism. Then U I/; D U C;
=W, s0o UU;=W. Set Vi=U;,—U;. Now V;C W—C,, which is 1-
connected, 8V, =0U;,, U 8U,;. which are 1-connected, so that it follows from
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BOUNDARY FOR OPEN MANIFOLD. 1019

van Kampen’s theorem that = (W — C;) = free product of m (U;— C;), . (V;)
and =, (W—"U,,). Since = (W—C;) is trivial, it follows that =,(V,) is
trivial. By Theorem 3, V; is an h-cobordism between 4U; and 98U, and
since 8U; is 1-connected and has dimension =5, it follows from the h-
cobordism theorem of Smale [7] (which has been proved in the piecewise
linear case by Stallings) that U, — U, is isomorphic to 8U; X I. Hence, it
follows that each U, is isomorphic to U, and W=U U, is isomorphic to
interior of U,, which completes the proof of Theorem 1.

Now we outline the proof of Proposition 4.

Since H, (W) is finitely generated we may find a compact set ¢ C W
such that H,.(C’) maps onto H,(W). Hence for any subset O such that
¢"CcOCW, H,(O) maps onto H,(W). We shall show (Lemma 6) that
we can find a compact manifold with boundary U C W such that (1) CU ¢’
C interior U, (2) 60U is 1l-connected, and (3) W—U is 1-connected. Set
V = closure W —U.

Consider the commutative diagram with exact rows:

I 0 7
—>Hk+1(T/V) ———)Hkﬂ(W', U) ——)Hk(U) —_— Hk(W) -

g2 , gs ¥ 91 , gz
J 7
> Hy (V) —— Hyo (V,0U) ——— Hy (0U ) ——— Hy (V) —.

Now (V.,8U) C (W,U) is an excision so that g; is an isomorphism. Hence
¢+ onto implies 7" onto since j==0 implies /=0. Similarly " mono implies
7 mono, since ¢’ =0 implies §==0. Since ¢ is onto by construction, ¢ is onto,
and it suffices to make ¢ mono in order to make ¢ an isomorphism.

Now the manifold U obtained from Lemma 5 may in fact have too much
homology above dimension 1, so that dU will also, and ker " will be non-zero.
Therefore we shall show how to enlarge U to a larger U’ such that the kernel
from H,(U’) to H,(W) is smaller. One way in which to do this is to add
handles to U along dU to kill some of the excess homology of U, i.e. find
DEx Dk C V, D¥ X DvEN U =8kt X Dv* C U, 8%* X 0 representing an
element x€ H;,(0U) which goes to O in Hy,(V), and take U’
= U U D¥ X D"k,

Assuming H;(8U) — H;(V) is mono (hence isomorphism) for 1 < k—1,
and onto for 1="%k—1, and since 90U and V are 1-connected, the relative
Hurewicz Theorem implies that = (V,8U) = Hx(V,0U) and we get a com-
mutative diagram

This content downloaded from
195.37.209.180 on Mon, 25 Jan 2021 10:04:18 UTC
All use subject to https://about.jstor.org/terms



1020 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

0-—>1rk(V, BU) —)wk_l(ﬂU) ——)‘71'10.1(17) -0

o~

1:/

0> Hy(V,0U0) ——> Hyy (0U) ——> Hp 't (V) =0
so that ker’ is represented by spherical homology classes in the lowest dimen-
sion. Ifk—1<3(n—1), n=dim W, then one may deduce from a general
position argument that an element z € ker? C H;,(0U) is represented by an
embedded 8** C aU and using either general position or Whitney’s embedding
theorem that it bounds an embedded D* C V, from which we may get a
handle. In case {(n—1)=k—1<n—3, we may obtain the handles
differently, using Smale’s theory of handle bodies (see [7]). At the very
last stage, k¥ — 1 =mn—3, still another technique must be used, which is not
obviously the same as attaching % dimensional handles.
We give the details in the next sections.

4. Proof of Proposition 4; codimensions > 3. In this section, we will
prove a weaker form of Proposition 4.

ProrosiTIiON 5. Let W be an open manifold of dimension n =86,
1-connected at oo and with H, (W) finitely generated. Then given a compact
CCWand k=n—3, there is a compact manifold with boundary U, with
U and W—U 1-connected, C C interior of U, and «f i: U—>W 1s the
wmclusion, then iy: Hi(U) — Hy (W) is an isomorphism for ¢ <k, and onto
for all <.

Proposition 4 is the same but without restriction on k.

Lemma 6. If W is a mantfold of dimension =5 which is 1-connected
at oo and giwen compact C C W, then there exists a compact manifold U
with 1-connected boundary with C C interior of U and such that W—U is
1-connected.

(Note that this shows that if W is 1-connected at oo of dimension

=5, then =, (W) is finitely generated, since by Van Kampen’s theorem
(W) == (U).)

Proof of Lemma 6. Let D be compact, C C D C W such that W—D
is 1-connected. We may find a compact manifold with boundary U’ with
D C interior U’. This follows in the differentiable case by choosing a proper
function f, with f(D) =0, f=0 and letting U’=f*([0,¢]) where ¢ is a
regular value of f. In the piecewise linear case, D lies in a finite subcomplex
K of W and we take U’ to be a regular neighborhood of K in W. By taking
connected sums along the boundary of the different components of U’, we
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BOUNDARY FOR OPEN MANIFOLD. 1021

may assume U’ is connected. Then U’ divides W into two parts, U’ and
W—U’, and U’ is connected. Since W is 0-connected at oo it follows that
all but one of the components of W— U’ are compact. Define U” to be the
union of U’ and all the compact components of W—U’. Since W is con-
nected each such component meets U’, so that U” is connected and W—U"
is connected. Then the components of 4U” may be joined by disjoint arcs
in W—U"”. We let U”=U"U (closed neighborhood of these arcs) and it
follows that U”” and 9U”” are connected.
Now Lemma 6 follows from:

LemMMA 7. Let M» be a closed submanifold of W™, n = 4, and suppose
that = (W) =0 and = (M) 1is finitely generated. Then we can do surgery
on M inside W to get M’ with = (M’) =0. In particular we can find R-disks,
Dz, - -, D2 CW with DN M =8t = boundary of D, meeting M trans-
versally, such that MU D, U- - -U Dy 1s simply connected, so that the sur-
geries corresponding to Sy',- - -, Sy produce a simply connected manifold.

For a proof see [1, Lemma 3.1].

As indicated in §3, since H,(W) is finitely generated we may find
a compact ¢” C W such that H,(C’) maps onto H,(W), so that for
¢’COCW, H,(O) maps onto H,(W). Then applying Lemma 6, we may
find U; C W with 90U, 1-connected and C'U C” C interior of U,, and W —U,
1-connected.

Also as indicated in § 3, we may kill the kernel of H;(0U,) — H:(V1)
where 7, = closure of W — U, and this will kill the kernel of Hy(U,) — H{(W).
Since aU, and V, are 1-connected the Hurewicz theorem tells us that every
element @€ H,(dU,) is represented by a map f: S2— 98U, and if t;«x=0
in Hy(Vy), 4,: 80U, — V, then f is homotopic to a constant in V,. Since
dimension U, =n-—1=5, it follows from general position that f is homo-
topic to an embedding g of S% C 9U,, and if n > 6, g extends to an embedding
g: D*CVy, §|8*=yg, and §D* meets 0U, transversally in g(82). If n=6,
the existence of §: D®*— 7V, with the required properties follows from
Whitney’s embedding theorem [11] or from the result of Irwin [4]. Now
for a generator of kernel 4,+ take such a 3-disk D3, and define U,” =regular
neighborhood of U; U D® in W. This can be made smooth using a theorem
of Hirsch [3], or one can define U,” = U, U D* X D** and round the corners
in an appropriate way, where D? X D"-* is a neighborhood of D® in 1/,. Now
W —U," is homotopy equivalent to 7, — D?, and since D® is of codimension
=3. it follows that W-—U," is still 1l-connected. Similarly V, N U,
=9U,U D® so V,NU, is 1l-connected, and since U, =V, N U,/— D3,
it follows that aU,’ is 1-connected. Since #D? is a generator z of kernel 1,s,
10 90U, — V,, it follows that kernel 4,+’ = kernel 4,4/ (2), so that continuing
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1022 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

in this way we will finally arrive at U, D U, such that i,.: H,(U,) = H,(W)
is an isomorphism, with 4U, and V, = closure W —U, still 1-connected.
We will need the following (cf. [6; Lemma 1]).

Lemma 8. Let X be an n-manifold with boundary 6X =M UN, M, N,
X all 1-connected, n = 6. Suppose m(X, M) =0 for 2=k =r—1<n—4.
Then any element w € H,.. (X, M) can be represented by an embedded handle
Drt X Dnrt C X, meeting 0X normally in 8™ X Dt C M.

Proof. We give the proof in the smooth case using the handle body
theory of Smale and for the combinatorial situation we confine ourselves to
remarking that the analogous facts are true in that case, as has been shown
by Stallings.

Now a theorem of Smale [7; 6.5] says that under our hypotheses,
A has a handle decomposition X — U X, where X, , =1/ X I and

i=r-1
X1=Xj,1 U Hlj u- .- Uqu, Hij=Dj X D"_j, H«ij n Hk1=0, 1.7576,
HiNnX; =81 XDiCoX;,— (M X0).

Since X is the homotopy type of X, , with some j-dimensional disks attached,
it follows that h;: Hy(X;) — Hyx(X) is an isomorphism for k < j and onto
for k=7, so that h;: Hy(X;, M) — H (X, M) is iso for k < j and onto for
k—j4. Hence there is a w’ € H,, (X1, M) such that f 0" = w.

Consider the exact sequence

L
i Hr+1 (Xr, ]l[) '_>Hr+1 (Xr+1; M) —_—> Hr+1 (X1'+1; X?)

]
—— H, (X, M)—- - -.

Since X, =M |JU D", Hpy (X,, M) =0, so Hy (X0, M) is mapped iso-
morphically by k, onto the kernel 9 C H,,; (X, X,). Let y=kaw'.

Now Hy,: (X1, X,) 1s a free abelian group with generators repre-
sented by the relative homology classes of the “core” of each handle, i.e.
(DX 0,8 X 0) C (H™,0H™). Smale [7] has shown (see also Wallace
[10]) that if we are given any basis for H,.;(X,.., X,) that we may find
a set of handles in X, attached to X, so that X,,,—X,U (these handles)
and the cores of the new handles yield the given basis for Hyy (X, Xy
Hence we may assume that there is a handle such that y — mz, 2 representing
the core of one of the handles of X,,;. But if the core is of codimension >1,
which is the case here, any multiple of its homology is represented by a handle
also. If the handle is D' X Dnr1, then we may embed in it m disjoint
disks of the form Dy=D"* X ty C D1 X D*r-1 where t, are m disjoint
points of D»r-'.  Since the codimension is > 1, 4Dy do not separate
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BOUNDARY FOR OPEN MANIFOLD. 1023

87X D, so that we may join the So"=0a8Do™' by tubes S X I in
87 X D"t s0 as to form the connected sum of the Sq7, and the Dy’s can be
connected by tubes D7 X I in D X D*"* to form the connected sum along
the boundaries of the Do, with the proper orientation. The picture gives an
indication of the process:

D, D,

(Two igloos connected by a tunnel might be an appropriate title.)

Then this disc and its normal bundle is D™ X D1 and its core has the
desired homology class y € Hyy (Xri, X,), (see [6; Lemma 17). However,
it is attached to 90X, rather than M X 1 C 4.X,_;, so it remains to show that it
can be chosen to miss the handles of X, and thus be attached to M X 1.

Now if the attaching sphere §” X 0 of this handle does not meet the
transverse spheres s X 8% 1 of the handles of index r in 0.X,, then it may
be moved off these handles down to M X 1 by an isotopy of X,., so that the
image would be the handle we need. For Dr X §n-r-1 —g W gn-r-1 may be de-
formed by an isotopy into a neighborhood of S~ X §»--* in §X, — Sr-1 X Dr-r,

If the intersection number of S* X 0 and s X 8§71 is 0 then since > 2
and n—r—1 <n—3, it follows from Whitney’s theorem [11] that we may
change S" X 0 by an isotopy to miss s X §*". But if Y€ Hpy (Xpir, Xy)
is the homotopy class of the core of the handle D X D1, then oy — 3 ahy,
where /; is the homology class of the r handles which generate H.(X,, M)
and ; is the intersection number of §7 X 0 and the transverse sphere s X gjnr-t
of the j-th handle of X,. Since 9y =0, all the intersection numbers are Zero
and there is an isotopy of X,., which takes D' X Dnr1 into a handle
attached to 9X,. This completes the proof of Lemma 8.

Lemma 9. Assume Proposition 5 for k=n—3, so that gwen compact
C one can find Uy, C W, Uy compact manifold with boundary, 8U;, and
Vie= closure (W —Uy) 1-connected, O C interior Uy, and s : H {(Ux) —> H (W)
isomorphism for j <k, onto for all j. Then if w€ (kernel i), there is U,/
containing Uy in its interior with all the above properties, such that 75’ (2) =0
in Hy(Uy'), j/: Uy CUy. Hence, if y¢ Hi (W, Uy), dy=x€ Hp(Uy,),
there is Uy’ D U;, as above with l/y=0 in H,,(W,U),

v: (W,Us) C (W,Uy).
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1024 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

Proof. Given x € (kernel 7x+)z, there is a compact set D D Uy such that
jsx=0, j: Uy C D. By Proposition 5, for k¥ =n—3 we can find Uy’ with
all the required properties and D C interior U;’. Then since j,oz=0 in
H.(D), j/c=1tp+jex =0 in H,(Uy).

Let X = closure of U’ — Uy, X C V and consider the diagram (U = Uy,
U =U)

0 =1 il
Hy(0U) —— Hypps (V,00) ——> Hyoa (W, U) ——— H,(U)
qs
he ) L iy
a, = a/

Hi(X) e Hpn (V, X) ——> Hyn (W, U') —— H,,(U").

Note that 4, 4, #, # are mono. Hence if dy — a € Hy(U) and j,/(z) =0
it follows that k,y =0 proving the lemma.
Note that also 74dg,*(z) =0 in Hy(X). Hence we get:

LemMA 10. With the hypothesis of Lemma 9, for and 2z € Hy.,, (V,0U)
there is compact manifold with boundary X CV, 0X =0U U N such thal
by (02) = 0 in Hy(X).

Now we prove Proposition 5 by induction, having proved it for k= 3.
Let Uy be a manifold with the required properties for & <n—3, we would
like to produce one with the properties for k4 1. By Lemma 10 for
any € (kernel 1y«);, C Hy(Uy) we may find y€ Hy(0U:) with lyy=u,
1: 90U, C Uy and a Uy = Uy U X so that hey=0 in H3(X), and y = —=w,
w€ Hyy (X,005). Then by Lemma 8 we can find a handle Dt ¢ Dnt C X
attached to U, which represents w, so that y goes to 0 in §U; U D*+ XX Dk,
Let Uy =U,U D¥t X Dv¥*1, Then if 4: U, C W,

(kernel 7y« ) == (kernel 4+ ) /()

and we continue until we have made the kernel 0. This completes the proof
of Proposition 5.

5. Proof of Proposition 4; conclusion. By Proposition 5 we may
assume that given C' we can find a compact manifold U C W with U 1-con-
nected, V —closure (W —1U) 1-connected, C' C interior U and 4,: H;(U)
— H;(W) an isomorphism for ¢ < n—3, onto for all <. From the diagram

5 i
0= Hy (W, U) ———s Hy(U) —s——>H,;(%V) -0

= | ¢« 9x '

4

]
0> Hyon (V, 017) ———> Hy(3U) ———3 Hy (V) = 0
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BOUNDARY FOR OPEN MANIFOLD. 1025

where ¢: (V,0U) C (W,U) is an excision, we see that kernel i, = kernel j,,.
Since U is 1-connected H,.(0U) = H*(0U) =0, so that

His (W, U) = Hyoy (V, 0U) — 0

for k=£n—3 and H,,(W,U) is free.

We can find a compact set D, U C D C W such that ips(keriy) =0,
ip: U— D is inclusion. Let U’ be a compact manifold with boundary with
UU D C interior U’, and satisfying all the conditions of Proposition 5, as
above with U. Then hy(keriy) =0, h: U— U’ is inclusion. It follows
from the diagram

s
0>H, ,(W,U) > Hp3(U) ——>Hy s (W) >0
Py hy 1
iy ,
0> H, ,(W,U')>H,3(U)——>H,3(W)—>0
that hy (H,2(W,U)) =0. Set V’=closure (W—U"), M =9U, N =3U",
X =closure (U’—U) so that 6 X=MUN; let Iy: M—> X, Iy: N> X,
r: X—V be inclusions. Then, since

q: (V,M)— (W,U) and q:(V,X)—> (W,U)

are excisions, the diagram

—~

Hyo(V, M) ——— H, (W, T)

hy by

Hyo(V,X) ——— H, (W, U")

shows that h,=0. Since H,,(V,X) and H,.,(V,M) are free, and
Hi(V,X)=Hi(V,M) =0 for is%n—2, this implies that k*=0, k*:
H*(V,X)— H»2(V,M).

Consider the diagram with exact rows:

0« H"*(V, M) e—— H"3(M) e—— Hr*(V) 0
i L™ 1
5
0 H"2(V,X) ¢——H*3(X) e——H"3(V) <0
h* Iy*

y \
0« H"2(V/,N) e—— H"3(N) «——H"3(V") 0.
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1026 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

Since h* =0 and H**(V,X) is free, we can find o: H*2(V,X) - H"3(X)
such that ly*oa=0 and doa=1 on H"2%(V,X). Since the inclusion
R:(V,N)— (V,X) is an excision,

B=Iy*oaoh1: H»=2(V’',N)— H*3¥(N)
is defined, and & o 3 =1 on H**(V’,N). Further image 8 C Iy*(kernel [y*).

LeMMA 11. Nupy send Iy* (kernel Iy*)" %1 isomorphically onto
(kernel lyy)x.

Proof. We have the commutative diagram with exact rows (see [2]):

I* b
> 1 (X) > H# (5X) ——> (X, 0X) —
Ny Yy N
0 Uy

— Hpy (X,0X) —— Hp(0X) —— Hp(X)—

where 1: 8X C X, v€ H,(X,0X) is the fundamental class,

H,(0X) =Hy(N) + Ho (M), p=0v=py—pu, L= 1Ixe— luy, etc.
Then (I*H"*(X)) N p= (kernelly);. Since Na|H*(N)=Nuy and
Na|H*(M) =N pa, it follows that (I*H"**(X)) " H*(N) is mapped
isomorphically by N py onto (kernell,) ™ H;(N). But since I* = Iy* —Iy™,
*Hn*1(X) N Hy(N) = Iy*(kernel Iy*)"**, and

(kernel I,) ® H*(N) = (kernel lny)s,

similarly, which proves the lemma.

Tt follows that A — (image 8) N py is a free direct summand of H.(XN),
contained in (kernel ly.).. Now it follows from van Kampen’s Theorem that
X is l-connected, for V=XU V', XNV’=N and V, V’, and N are all
1-connected. Then it follows from the Hurewicz Theorem that 4 consists
of spherical cycles in NV which are null homotopic in X. By an argument
already used in §4 we may find 3-handles D;® X D™*® in X whose boun-
daries 82 X D73 C N are such that their homology classes are a basis for
A CH,(N)=m(N). If we exchange these handles from X to ¥V’ (i.e.
add them to V’), we will obtain new manifolds ¥ = X —interior of the
handles, V = V’U (handles), N=V NX. T=TXU V. Now, since 4 is a
free direct summand of H,(XN), and H,(N) =H,(V’) for k<n—3, if
n > 6, we find easily that H;(N) = H;(N) for j%£2 or n—3, H(V) =H;(V")
for j542, and Hy(N) =H,(N)/A=H,(V)/red =H,(V), and 7,: I{;(N)
— H;(V) is still an isomorphism for j < n—3, onto for all j. For n=6,
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BOUNDARY FOR OPEN MANIFOLD. 1027

the argument that H,(N) =H,(N)/A is slightly more difficult, but it
follows easily from [5; Lemma 5.6]. Now by the same arguments which
applied to (V,0U), we have that H"2(V,N) is free, H;i(V,N) =0 for
1% n—2, and we have the exact sequence

0« H»2(V,N) « H™3(N) « H"3(V) «0.

By Poincaré duality H**(N) == H**(N)/A’, where A’ = gH"*(V’,N). But
Hm3(V)=H"3*(V’") (n=6, s0 n—3 >?), so that it follows that H"3(XN)
and Hm3(V) are isomorphic groups. Since they are finitely generated and
H"2(V,N) is free, it follows that H"2(V,N) =0, so that H;(V,N) =0
for all +«. It follows by excision, if C=UUX, H(W,T7) =0 for all i,
U D U DC, so that Proposition 4 is proved.

6. The h-cobordism theorem.

We now proceed to prove Theorem 2.

Recall V is 1-connected at o, 0V =M, U M,, M,, M, 1-connected at oo.
M, and M, are deformation retracts of V, and H,(M,) (and hence H, (M,)
and H,(V)) is finitely generated.

By Theorem 1, M, and M, are isomorphic to interiors of i,, I ,, compact
manifolds with boundary. By taking a contraction of #; which embeds I,
in M;=interior M,; we may consider #;C M;C V. Using the product
structure in a neighborhood of 9V, we get embeddings of ;X [0,1] C V,
with M;X [0,1] N9V = i, X 0= M;. Joining i, X 1 to #,X 1 by an
arc in interior V— |J #;X [0,1], and thickening the arc, we get a

1=1,2
compact manifold U with 8V =M,U WU i, where oW —=01,U 011,,
0U NGV = M, U M, Then using the same techniques which proved Theorem
1, we may enlarge U to V C V, with V isomorphic to interior V, adding
things only along interior W C 94U, so that oV — #,U WU if,, oW
=0M,UdM, WNOV=01,U9i,. From the diagram

fy——s

— =

My—— 7V

it follows that the inclusions #;— V are homotopy equivalences, since the
other maps are. It remains to show that W is an h-cobordism between 417,
and 017 ,.

Now by the Poincaré duality theorem, with two pieces of boundary (see
[2]), we have

H*(V, M) = Hy(V, MU W)
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1028 W. BROWDER, J. LEVINE AND G. R. LIVESAY.

which is 0 since #;— ¥V is a homotopy equivalence. Hence if
ik I _
Hy (M) ——> Hy (MU W) —— H(V),
J#ty 1s an isomorphism, j, is an isomorphism, so that i, is an isomorphism.
Hence 0=H,(#;U W, ;) = H,(W,0M;), by excision, and since W and
0 ; are 1-connected, W is an h-cobordism.
The corollary follows by results of Smale [7].

PRINCETON UNIVERSITY AND INSTITUTE FOR ADVANCED STUDY,
CAMBRIDGE UNIVERSITY,
CORNELL UNIVERSITY AND INSTITUTE FOR ADVANCED STUDY.
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