
AN INJECTIVITY THEOREM FOR CASSON-GORDON
TYPE REPRESENTATIONS RELATING TO THE

CONCORDANCE OF KNOTS AND LINKS

STEFAN FRIEDL AND MARK POWELL

Abstract. In the study of homology cobordisms, knot concor-
dance and link concordance, the following technical problem arises
frequently: let π be a group and let M → N be a homomorphism
between projective Z[π]-modules such that Zp⊗Z[π]M → Zp⊗Z[π]N
is injective; for which other right Z[π]-modules V is the induced
map V ⊗Z[π] M → V ⊗Z[π] N also injective? Our main theorem
gives a new criterion which combines and generalizes many previ-
ous results.

1. Introduction

Let π be a group. Throughout this paper we will assume that all
groups are finitely generated. We denote the augmentation map Z[π] →
Z by ε and we denote the composition of ε with the map Z → Zp =
Z/pZ by εp. We can then view Zp as a right Z[π]-module via the
augmentation map. We are interested in the following question. Let
M → N be a homomorphism between projective left Z[π]-modules
such that the induced map Z ⊗Z[π] M → Z ⊗Z[π] N is injective. For
which other right Z[π]-modules V is the induced map V ⊗Z[π] M →
V ⊗Z[π] N also injective? Finding such modules is a key ingredient
in the obstruction theory for homology cobordisms, knot concordance
and link concordance. We refer to [COT03, Proposition 2.10] and our
Section 4 for more information.
To state the previously known results and our main theorem we need

to introduce more notation. Let ϕ : π → H be a homomorphism to a
torsion-free abelian group, let Q be a field of characteristic zero and let
α : π → GL(k,Q) be a representation. Note that α and ϕ give rise to
a right Z[π]-module structure on Qk ⊗Q Q[H] = Q[H]k as follows:

Qk ⊗Q Q[H]× Z[π] → Qk ⊗Q Q[H]
(v ⊗ p, g) 7→ (v · α(g)⊗ p · ϕ(g)).

(Here, and throughout this paper we view Qk as row vectors.)
Given a prime p we say that a group is p-group if the order of the

group is a power of p. The following is a folklore theorem (see e.g.
[CF10, Lemma 3.2] for a proof).
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Theorem 1.1. Let π be a group, let p be a prime and let f : M → N
be a morphism of projective left Z[π]-modules such that

Id⊗f : Zp ⊗Z[π] M → Zp ⊗Z[π] N

is injective. Let ϕ : π → H be an epimorphism onto a torsion-free
abelian group and let α : π → GL(k,Q) be a representation, with Q a
field of characteristic zero. If α factors through a p-group, then

Id⊗f : Q[H]k ⊗Z[π] M → Q[H]k ⊗Z[π] N

is also injective.

This theorem (sometimes with the special case that H is the trivial
group) is at the heart of many results in link concordance. We refer
to the work of Cha, Friedl, Ko, Levine and Smolinski (see [Cha10],
[CF10], [Fri05], [CK99], [CK06], [Lev94], [Smo89]) for many instances
where the above theorem is implicitly or explicitly used.
Note though that the condition that the representation has to factor

through a p-group is quite restrictive. For example it is a consequence
of Stallings’ theorem [Sta65] that for a knot any such representation
necessarily factors through the abelianization. The following is now
our main theorem:

Main Theorem (Theorem 3.1). Let π be a group, let p be a prime
and let f : M → N be a morphism of projective left Z[π]-modules such
that

Id⊗f : Zp ⊗Z[π] M → Zp ⊗Z[π] N

is injective. Let ϕ : π → H be an epimorphism onto a torsion-free
abelian group and let α : π → GL(k,Q) be a representation, with Q a
field of characteristic zero. If α|ker(ϕ) factors through a p-group, then

Id⊗f : Q[H]k ⊗Z[π] M → Q[H]k ⊗Z[π] N

is also injective.

This theorem makes it possible to work with a considerably larger
class of representations than in Theorem 1.1. For example the ‘Casson-
Gordon type’ representations which appear in [Let00, Fri04, HKL10,
FV10] and which originate from the seminal paper by Casson and Gor-
don [CG86] satisfy the hypothesis of Theorem 3.1. Our theorem also
connects [Cha10, Theorem 3.2] to the Casson-Gordon setup. Note that
all of the above apply the theorem to the case that the rank of H is
one. In this case our result is closely related to the work of Letsche
[Let00, Propositions 3.3 and 3.9].
In our opinion the most interesting aspect of our theorem is that the

group H may have rank greater than one. This allows the possibility
of using representations of link complements of Casson-Gordon type,
i.e. representations which do not necessarily factor through nilpotent
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quotients of the link group. We will investigate this in a future paper:
for a preprint see [FP11].
The paper is organized as follows: Section 2 contains some prelim-

inary lemmas which are used in key places in the proof of the main
theorem, Section 3 contains the proof of the main theorem, and then
Section 4 uses the main theorem to reprove and generalize Casson and
Gordon’s Lemma 4 in [CG86].

Acknowledgment. This research was conducted while MP was a vis-
itor at the Max Planck Institute for Mathematics in Bonn, which he
would like to thank for its hospitality.
We would also like to thank the referee for helpful comments on an

earlier version.

2. Preliminaries

In this section we collect and prove various preliminary lemmas which
we will need in the proof of our main theorem.

2.1. Strebel’s class D(R).

Definition 2.1 (Strebel [Str74]). Suppose R is a commutative ring
with unity. We say that a group G lies in Strebel’s class D(R) if
whenever we have a morphism f : M → N of projective R[G]-modules
(not necessarily finitely generated) such that

IdR ⊗f : R⊗R[G] M → R⊗R[G] N

is injective, then f itself is injective. (Here we view R as an R[G]-
module via the augmentation ϵ : R[G] → R.) �
The following lemma was proved by Strebel [Str74] (see also [CO09,

Lemma 6.8]).

Lemma 2.2. Suppose G is a group admitting a subnormal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}
whose quotients Gi/Gi+1 are abelian and have no torsion coprime to p.
Then G is in D(Zp).

We will later need the following consequence of the previous lemma:

Lemma 2.3. Let π be a group. Let ϕ : π → H be an epimorphism
onto a torsion-free abelian group H and let α : π → GL(k,Q) be a
representation, for some field Q, such that α|kerϕ factors through a p-
group P ′. Let

Γ :=
π

ker(α× ϕ : π → GL(k,Q)×H)
.

Then Γ ∈ D(Zp).
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Proof. Γ admits a normal series

Γ = Γ0 =
π

ker(α× ϕ)
⊃ Γ1 =

ker(ϕ)

ker(α× ϕ)
⊃ Γ2 = {e}.

The quotient Γ0/Γ1
∼= im(ϕ) ∼= H and is free abelian. The quotient

Γ1/Γ2 = Γ1 is isomorphic to im(α|ker(ϕ)), which is a quotient of a sub-
group of the p-group P ′. Since every subgroup of a p-group is a p-group
by Lagrange’s theorem, every quotient is also a p-group. We therefore
have that Γ1 is a p-group. Any p-group is nilpotent, and its lower
central series gives a normal series of subgroups

Γ1 = P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pj = {e}

such that each quotient Pi/Pi+1 is an abelian p-group (See for example
[Asc94, Section 9]). Combining the two normal series we obtain

Γ = Γ0 ⊃ Γ1 = P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pj = {e}.

Therefore the conditions of Lemma 2.2 are satisfied and so Γ ∈ D(Zp).
�

2.2. A group theoretic lemma. The following lemma shows that,
roughly speaking the group Γ in Lemma 2.3 is ‘virtually a product
F × P ’, where F is a free abelian group and P is a p-group.

Lemma 2.4. Let Γ be a group which admits an epimorphism ϕ : Γ → H
to a free abelian group, such that the kernel is a p-group P . Then there
exists a finite index subgroup F of H and a monomorphism

Ψ: F × P → Γ

with the following properties:

(1) the injection is the identity on P ,
(2) the composition

F → F × P → Γ
ϕ−→ H

maps F isomorphically onto F ⊂ H,
(3) the image of Ψ is a finite index normal subgroup of Γ.

Remark 2.5. In the simplest case that H = Z, such as when we make
applications to knot concordance, Z is free and so Γ splits as

Γ = Z n P = ⟨t⟩n P.

To find a finite index normal subgroup which is a product, with the
properties in Lemma 2.4, define l := |Aut(P )|. Then

⟨tl⟩ × P ≤ ⟨t⟩n P

is a subgroup as required. Lemma 2.4 is an extension of this idea.
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Proof of Lemma 2.4. We consider the following homomorphism

φ : Γ → Aut(P )
g 7→ (h 7→ ghg−1).

We denote by Γ′ its kernel. Note that Γ′ ⊂ Γ is a normal subgroup of
finite index.
We denote by H ′ the image of ϕ restricted to Γ′. Note that the kernel

P ′ of ϕ restricted to Γ′ is the intersection of P with Γ′. Summarizing,
we have

Γ′ := ker(φ), H ′ := im(ϕ|Γ′) and P ′ := ker(ϕ|Γ′).

From the definition of φ it follows immediately that P ′ is precisely the
center of P . In particular P ′ is an abelian group. It now follows that
Γ′ fits into the following short exact sequence

1 → P ′ → Γ′ ϕ−→ H ′ → 0;

in particular Γ′ is metabelian. Note that by [Hal59, Theorem 1] any
(finitely generated) metabelian group is residually finite. (Recall that
a group π is called residually finite if for any non-trivial g ∈ π there
exists a homomorphism γ : π → G to a finite group G such that γ(g)
is non-trivial.) By applying the definition of residually finite to all
non-trivial elements of P ′ ⊂ Γ′ and by taking the direct product of the
resulting homomorphisms to finite groups we obtain a homomorphism
γ : Γ′ → G to a finite group G such that γ(g) is non-trivial for any
g ∈ P ′. We now write Γ′′ := ker{γ : Γ′ → G}. Note that by definition
Γ′′∩P ′ is trivial, which implies that the restriction of ϕ to Γ′′ is injective.
We also write F := ϕ(Γ′′). We summarize the various groups in the
following diagram

1 → P → Γ
ϕ−→ H → 0

∪ ∪ ∪
1 → P ′ → Γ′ ϕ−→ H ′ → 0

∪ ∪ ∪
1 → Γ′′ ϕ−→ F → 0.

We thus obtain an injective map F
ϕ|−1

Γ′′−−→ Γ′′ ⊂ Γ which we denote by
ψ. We now consider the following map:

Ψ: F × P → Γ
(f, p) 7→ ψ(f) · p.

We claim that this map has all the desired properties. First note that
this map is indeed a group homomorphism since for any f ∈ F we have

ψ(f) ∈ Γ′ = {g ∈ Γ | gpg−1 = p for all p ∈ P},
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i.e. the images of P and F commute in Γ. The map is furthermore
evidently the identity on P and the concatenation

F → F × P → Γ
ϕ−→ H

maps F isomorphically onto F ⊂ H.
Also note that Ψ is injective. Indeed, suppose we have a pair (f, p)

such that Ψ(f, p) is trivial. It follows that 0 = ϕ(Ψ(f, p)) = ϕ(ψ(f)p) =
f which implies that (f, p) = (0, p). But Ψ is clearly injective on P .
Finally note that

Ψ(F × P ) = ker{Γ ϕ−→ H → H/F}.

Indeed, it is clear that the left hand side is contained in the right hand

side. On the other hand, if g ∈ ker{Γ ϕ−→ H → H/F}, then ϕ(g) = f
for some f ∈ F and hence gψ(f−1) ∈ P , i.e. g = Ψ(ψ(f−1), p). It thus
follows that the image of Ψ is indeed a finite index normal subgroup of
Γ. �

We now state and prove a few more elementary lemmas which will
be useful in the proof of our main theorem.

Lemma 2.6. Let A be a group and let B ≤ A be a finite index subgroup
of index l, with right coset representatives {t0, t1, . . . , tl−1} ⊂ A so that
the quotient is B\A = {Bti | i = 0, 1, . . . , l − 1}. Then Z[A] is free as
a left Z[B]-module with basis T .

Proof. It is straightforward to verify that the following homomorphism
of left Z[B]-modules is an isomorphism:

Z[B]l
≃−→ Z[A]

(b0, . . . , bl−1) 7→ b0t0 + b1t1 + · · ·+ bl−1tl−1.

�

Let ϕ : Γ → H be an epimorphism onto a free abelian group and
let α : Γ → GL(k,Q) be a representation over a field such that α|kerϕ
factors through a p-group and such that ker(α×ϕ) is trivial. We apply
Lemma 2.4 and view the resulting group F × P as a subgroup of Γ.
Recall that P := kerϕ; then since ker(α×ϕ) is trivial, α|kerϕ is injective,
and so P is a p-group. We now have the following lemma.

Lemma 2.7. There exists an isomorphism of right Z[Γ]-modules

Qk ⊗Q Q[H] → (Qk ⊗Q Q[F ])⊗Z[F×P ] Z[Γ],

where the right Z[Γ]-module structure on Qk⊗QQ[H] is given by α⊗ϕ,
the right Z[F × P ]-module structure on Qk ⊗Q Q[F ] is given by α ⊗ ϕ
restricted to F×P , and the right Z[Γ]-structure on (Qk⊗QQ[F ])⊗Z[F×P ]

Z[Γ] is given by right multiplication.
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Proof. Consider the following map:

θ : Q[F ]k ⊗Z[F×P ] Z[Γ] → Q[H]k

(p1, . . . , pk)⊗ g 7→ (p1, . . . , pk) · g.
To see that this is well-defined, suppose that g ∈ Z[F × P ] ⊂ Z[Γ].
Then

θ ((p1, . . . , pk)⊗ gh) = (p1, . . . , pk) · gh
= (p1, . . . , pk) · g · h
= θ ((p1, . . . , pk) · g ⊗ h) .

It is clear that θ preserves the right Z[Γ]-module structure.
We pick representatives t0, . . . , tl−1 for (F × P )\Γ. Note that by

Lemma 2.6 Q[H] is free as a Q[F ]-module, with basis {ϕ(ti) | i =
0, . . . , l − 1}. We write xi := ϕ(ti). Given (h1, . . . , hk) ∈ Q[H]k, there
exist unique bij ∈ Q[F ] such that

(h1, . . . , hk) =

(
l−1∑
i=0

bi1xi, . . . ,
l−1∑
i=0

bikxi

)
.

Then define:

ρ : Q[H]k → Q[F ]k ⊗Z[F×P ] Z[Γ]
(h1, . . . , hk) 7→

∑l−1
i=0(bi1, . . . , bik)α(t

−1
i )⊗ ti.

It is straightforward to verify, that θ ◦ ρ is the identity, in particular
θ is surjective. Since θ is a Q[F ]-module homomorphism between free
Q[F ]-modules of rank k · [H : F ] = k · [Γ : (F ×P )] it now follows that
θ is in fact an isomorphism.
Alternatively one can easily show that ρ defines an inverse to θ.

�
2.3. Maschke’s Theorem. In order to show that after taking the
representation α⊗ϕ, we still have an injective map, we will need some
elementary representation theory.

Definition 2.8. We say that a right S-module M is semisimple if
every submodule is a direct summand.

Theorem 2.9 (Maschke, [Lan02] Theorem XVIII.1.2). Let G be a
finite group and F a field of characteristic zero. Then F[G], the group
algebra of G, is semisimple.

Corollary 2.10. Let F be a field of characteristic zero, let G be a finite
group and let V be a finitely generated right F[G]-module. Then V is
isomorphic to a direct summand of F[G]n for some n.

Proof. Since V is a finitely generated right F[G]-module there exists
an n ∈ N and an epimorphism ϕ : F[G]n → V . We denote by N
the kernel of this map. Note that F[G] is semisimple by Maschke’s
theorem. By [Lan02, Section XVII §2] a module is semisimple if and



8 STEFAN FRIEDL AND MARK POWELL

only if it is the sum of a family of simple modules. It follows that F[G]n
is also semisimple. In particular N is a direct summand of F[G]n, i.e.
F[G]n ∼= N ⊕ M for some F[G]-module M . It is straightforward to
verify that ϕ restricts to an isomorphism M → V . �

3. Proof of the Main Theorem

We are now in a position to prove our main theorem. For the reader’s
convenience we recall the statement:

Theorem 3.1. Let π be a group, let p be a prime and let f : M → N
be a morphism of projective left Z[π]-modules such that

Id⊗f : Zp ⊗Z[π] M → Zp ⊗Z[π] N

is injective. Let ϕ : π → H be an epimorphism onto a torsion-free
abelian group and let α : π → GL(k,Q) be a representation, with Q a
field of characteristic zero. If α|ker(ϕ) factors through a p-group, then

Id⊗f : Q[H]k ⊗Z[π] M → Q[H]k ⊗Z[π] N

is also injective.

We quickly summarize the key ideas of the proof:

(1) Using Lemmas 2.4, 2.6 and 2.7 we can reduce the proof of the
Theorem to the case that π = F × P and F = H.

(2) The group ring Z[F×P ] can be viewed as Z[F ][P ], i.e. the group
ring of the finite group P over the commutative ring Z[F ].

(3) The quotient field Q(F ) over Q[F ] is flat over Z[F ], we can thus
tensor up and it suffices to consider modules over Q(F )[P ].

(4) The conclusion then follows from an application of the results
of Strebel and of Maschke’s theorem.

We now move on to providing the full details of the argument.

Proof. We define Γ := π/ ker(α × ϕ). Let V be a right Z[π]-module
such that π → Aut(V ) factors through π → Γ, then we can view V
as a right module over Z[Γ] and we obtain the following commutative
diagram

V ⊗Z[π] M

��

f // V ⊗Z[π] N

��
V ⊗Z[Γ] (Z[Γ]⊗Z[π] M)

f // V ⊗Z[Γ] (Z[Γ]⊗Z[π] N).

The vertical maps are easily seen to be isomorphisms. Also note that
Z[Γ] ⊗Z[π] M and Z[Γ] ⊗Z[π] N are projective Z[Γ]-modules. Applying
these observations to V = Zp and V = Q[H]k now shows that without
loss of generality we can assume that Γ = π.
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Since Γ ∈ D(Zp) by Lemma 2.3, Definition 2.1 applies, and we have
that

Id⊗f : Zp ⊗Z M → Zp ⊗Z N

is injective. SinceM andN are Z-torsion free it follows that f : M → N
is also injective.
We now apply Lemma 2.4. By a slight abuse of notation we view the

resulting group F × P as a subgroup of Γ. By Lemma 2.6 we can now
also view M and N as projective left Z[F × P ] = Z[F ][P ]-modules.
In particular we can view M and N as Z[F ]-modules. We now write
M ′ = Q(F )[P ] ⊗Z[F×P ] M , N ′ = Q(F )[P ] ⊗Z[F×P ] N and we consider
the following commutative diagram:

M � � ///
� _

���

N� _

� ��
Q⊗Z M //

∼=
��

Q⊗Z N

∼=
��

Q[F ]⊗Z[F ] M //
� _

���

Q[F ]⊗Z[F ] N� _

� ��
Q(F )⊗Z[F ] M //

∼=
��

Q(F )⊗Z[F ] N

∼=
��

Q(F )[P ]⊗Z[F ][P ] M //

=

��

Q(F )[P ]⊗Z[F ][P ] N

=

��
M ′ // N ′.

The horizontal maps are induced by f and the vertical maps are the
canonical maps. The top horizontal map is injective by the preceding
discussion. Since Q is a field of characteristic zero, and so as an abelian
group is Z-torsion free, it is flat as a Z-module. Also note that Q(F ),
the quotient field of Q[F ], is flat as a Q[F ]-module. It follows that the
top and the third vertical maps are injective. The second vertical map
is clearly an isomorphism and the fourth is the identity map. It now
follows that the bottom horizontal map is also injective.
Now recall, as in Lemma 2.7, that V := Q[F ]k is a right Z[F × P ]-

module via the action induced by α ⊗ ϕ, and a Q[F ]-bimodule, with
the Q[F ] action commuting with the Z[F ×P ] action. Therefore V ′ :=
Q(F ) ⊗Q[F ] V is a right Q(F )[P ]-module. By Corollary 2.10, applied
with G = P, and F = Q(F ), there is an integer n ∈ N and a right
Q(F )[P ]-module W ′ such that

(V ′ ⊕W ′) ∼= Q(F )[P ]n

as right Q(F )[P ]-modules.
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We now consider the following commutative diagram:

(M ′)n �
� / // (N ′)n

Q(F )[P ]n ⊗Q(F )[P ] M
′ //

∼=

OO

Q(F )[P ]n ⊗Q(F )[P ] N
′

∼=

OO

(V ′ ⊕W ′)⊗Q(F )[P ] M
′ //

∼=

OO

(V ′ ⊕W ′)⊗Q(F )[P ] N
′

∼=

OO

V ′ ⊗Q(F )[P ] M
′ ⊕W ′ ⊗Q(F )[P ] M

′

∼=

OO

// V ′ ⊗Q(F )[P ] N
′ ⊕W ′ ⊗Q(F )[P ] N

′

∼=

OO

V ′ ⊗Q(F )[P ] M
′ //

?�

OOO

V ′ ⊗Q(F )[P ] N
′?�

OOO

V ′ ⊗Q(F )[P ] Q(F )[P ]⊗Z[F×P ] M //

=

OO

V ′ ⊗Q(F )[P ] Q(F )[P ]⊗Z[F×P ] N

=

OO

V ′ ⊗Z[F×P ] M //

∼=

OO

V ′ ⊗Z[F×P ] N

∼=

OO

Q(F )⊗Q[F ] V ⊗Z[F×P ] M //

=

OO

Q(F )⊗Q[F ] V ⊗Z[F×P ] N

=

OO

Q[F ]⊗Q[F ] V ⊗Z[F×P ] M //
?�

(∗)
OOO

Q[F ]⊗Q[F ] V ⊗Z[F×P ] N
?�

(∗)
OOO

V ⊗Z[F×P ] M //

∼=

OO

V ⊗Z[F×P ] N

∼=

OO

(Qk ⊗Q Q[F ])⊗Z[F×P ] Z[Γ]⊗Z[Γ] M //

∼=

OO

(Qk ⊗Q[F ])⊗Z[F×P ] Z[Γ]⊗Z[Γ] N

∼=

OO

(Qk ⊗Q Q[H])⊗Z[Γ] M //

∼=

OO

(Qk ⊗Q Q[H])⊗Z[Γ] N

∼=

OO

Q[H]k ⊗Z[Γ] M //

∼=

OO

Q[H]k ⊗Z[Γ] N

∼=

OO

The horizontal maps are induced by f and the vertical maps are the
canonical maps. Except for the second from bottom maps it is clear
from the definitions that these vertical maps are monomorphisms or
isomorphisms. It follows from Lemma 2.7 that the second bottom
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vertical maps are also isomorphisms. Note that the eighth vertical
map (∗) is injective since V ⊗Z[F×P ]M and V ⊗Z[F×P ]N are projective
Q[F ]-modules and Q(F ) is flat over Q[F ]. Since the top horizontal
map is injective it now follows also that the bottom horizontal map is
injective. This completes the proof of our main theorem.

�

4. Application to Concordance Obstructions

In this section we indicate what we see as an intended application of
Theorem 3.1. In the theory of knot concordance, both the knot exterior
and the exterior of a slice disk, should one exist, are Z-homology circles.
To define an obstruction theory one uses the idea of homology surgery.
That is, just as was done by Casson and Gordon [CG86], we take the
zero-framed surgery on a knotMK , and take its k-fold cyclic coverMk,
for some prime power k. Let ϕ : π1(MK) → Z be the abelianisation
and suppose we have a representation:

α′ : π1(Mk) → GL(1, Q),

for a fieldQ of characteristic zero, which factors through a p-group. The
Casson-Gordon obstructions first find a 4-manifold W whose bound-
ary is sMk for some integer s, over which the representation extends,
and then use the Witt class of the intersection form of W with coef-
ficients in Q(Z) to obstruct the possibility of choosing a W which is
the k-fold cover of a Z-homology circle. A vital lemma in construct-
ing this obstruction theory is to show that the twisted homology of a
chain complex vanishes with Q(Z)k coefficients when the Z-homology

vanishes, such as is the case for the relative chain complex C∗(Ỹ , S̃1),
when Y is a Z-homology circle.
The following proposition gives a more general result in this direc-

tion.

Proposition 4.1. Suppose that S, Y are finite CW-complexes such that
there is a map i : S → Y which induces an isomorphism

i∗ : H∗(S;Zp)
≃−→ H∗(Y ;Zp),

which, for example, is always the case if i induces a Z-homology equiva-
lence. Let ϕ : π1(Y ) → H be an epimorphism onto a torsion-free abelian
group H and let φ : H → A be an epimorphism onto a finite abelian
group. Let Yφ be the induced cover of Y , let ϕ′ : π1(Yφ) → H be the
restriction of ϕ, and let α′ : π1(Yφ) → GL(d,Q) be a d-dimensional rep-
resentation to a field Q of characteristic zero, such that α′ restricted to
the kernel of ϕ′ factors through a p-group. Define Sφ to be the pull-back
cover Sφ := i∗(Yφ). Then

i∗ : H∗(Sφ;Q(H)d)
≃−→ H∗(Yφ;Q(H)d)

is an isomorphism.
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The main applications are the cases S = S1 and Y = S3 \ νK
or Y a slice disk exterior, ϕ the epimorphism onto Z = ⟨t⟩, φ the
epimorphism onto Zk and α

′ : π1(Yφ) → Z/pr → GL(1, Q) a non-trivial
one-dimensional representation which factors through a cyclic p-group.
A direct calculation shows that H∗(Sφ;Q(t)) = 0, it then follows from
our proposition that H∗(Yφ;Q(H)) = 0 as well. Note though that this
conclusion can not be reached by considering Sφ and Yφ alone, since
the map H∗(Sφ;Zp) → H∗(Yφ;Zp) is not an isomorphism.
In a future application [FP11] we will consider the case where Y is

the exterior of a 2-component link with linking number one and S is
one of the two boundary tori.

Proof. By the long exact sequence in homology it suffices to show that
H∗(Yφ, Sφ;Q(H)d) = 0. In order to apply our main theorem we first
have to reformulate the problem.
We write k := |A|. Note that Z[π1(Y )] acts by right multiplication

on the kd-dimensional Q-vector space

Qk ⊗Z[π1(Yφ)] Z[π1(Y )].

We denote the resulting representation π1(Y ) → GL(kd,Q) by α. Note
that α restricted to the kernel of ϕ also factors through a p-group.
Furthermore note that α ⊗ ϕ now induces a representation π1(Y ) →
GL(kd,Q(H)).

Claim. We have H∗(Yφ, Sφ;Q(H)d) = H∗(Y, S;Q(H)kd).

Let Ỹφ be the universal cover of Yφ and let S̃φ := i∗(Ỹφ) be the
pull-back cover of Sφ. By definition,

C∗(Yφ, Sφ;Q(H)d) = Q(H)d ⊗Z[π1(Yφ)] C∗(Ỹφ, S̃φ),

where we use the representation α′ ⊗ ϕ′ to equip Q(H)d with a right
Z[π1(Yφ)]-module structure. Observe that Y and Yφ have the same

universal cover, and that this implies that the pull-back covers S̃ :=

i∗(Ỹ ) and S̃φ = i∗(Ỹφ) also coincide. Therefore

Q(H)d ⊗Z[π1(Yφ)] C∗(Ỹφ, S̃φ) = Q(H)d ⊗Z[π1(Yφ)] C∗(Ỹ , S̃),

which moreover is isomorphic to

Q(H)d ⊗Z[π1(Yφ)] Z[π1(Y )]⊗Z[π1(Y )] C∗(Ỹ , S̃).

It is now straightforward to verify that the map

(Qd ⊗Q Q(H))⊗Z[π1(Yφ)] Z[π1(Y )] → Qk ⊗Z[π1(Yφ)] Z[π1(Y )]⊗Q(H)
(v ⊗ h)⊗ g 7→ (v ⊗ g)⊗ hϕ(g)

induces an isomorphism of Z[π1(Y )]-right modules, with α⊗ ϕ used to
define the right Z[π1(Y )]-module structure on the latter module. The
claim now follows from the observation that

H∗(Q
k⊗Z[π1(Yφ)]Z[π1(Y )]⊗Q(H)⊗Z[π1(Y )]C∗(Ỹ , S̃)) ∼= H∗(Y, S;Q(H)kd).



INJECTIVITY FOR CASSON-GORDON TYPE REPRESENTATIONS 13

We now write

C̃∗ := Q(H)kd ⊗Z[π1(Y )] C∗(Ỹ , S̃).

By the claim it is enough to show that C̃∗ is acyclic. We now follow
a standard argument (see e.g. [COT03, Proposition 2.10]). Note that
chain complexes of finite CW complexes comprise finitely generated
free modules. Define

C∗ := C∗(Y, S;Zp).

Since i∗ : H∗(S;Zp)
≃−→ H∗(Y ;Zp), we see that H∗(Y, S;Zp) ∼= 0, which

implies that C∗(Y, S;Zp) is contractible, since it is a chain complex of
finitely generated free modules.
Let γ : Ci → Ci+1 be a chain contraction for C∗, so that dγi+γi−1d =

IdCi
. Since εp is surjective and all modules are free, there exists a lift

of γ,

γ̃ : Ci(Ỹ , S̃) → Ci+1(Ỹ , S̃)

as shown in the following diagram:

Ci(Ỹ , S̃)
γ̃ //______

εp

��

Ci+1(Ỹ , S̃)

εp

��
Ci

γ // Ci+1.

Now,

f := dγ̃ + γ̃d : Ci(Ỹ , S̃) → Ci(Ỹ , S̃)

is a homomorphism of free Z[π1(Y )]-modules whose augmentation εp(f)
is the identity and is therefore invertible. Note that f is also a chain
map, since

df − fd = d(dγ̃ + γ̃d)− (dγ̃ + γ̃d)d = dγ̃d− dγ̃d = 0.

Our Theorem 3.1 implies that

(α⊗ ϕ)(f) : C̃i → C̃i

is injective, and moreover as an injective morphism between vector
spaces of the same dimension is in fact an isomorphism. Thus, γ̃ is a
chain homotopy between the chain isomorphism (α⊗ϕ)(f) and the zero
map. Since a chain isomorphism induces an isomorphism of homology
groups, and chain homotopic chain maps induce the same maps on
homology, the proof is complete. �

The following corollary is Casson and Gordon’s Lemma 4 in [CG86].
One of our main motivations in writing this paper was to put this
lemma into context and to isolate the algebra involved in the proof of
the lemma. (We refer to [Let00, Proposition 3.3] for a related result.)



14 STEFAN FRIEDL AND MARK POWELL

Corollary 4.2. Let X be a connected infinite cyclic cover of a finite

complex Y . Let X̃ be a regular pr-fold covering of X, with p prime. If

H∗(Y ;Zp) ∼= H∗(S
1;Zp), then H∗(X̃;Q) is finite-dimensional.

Proof. Define

ϕ : π1(Y ) → π1(Y )/π1(X)
≃−→ ⟨t⟩.

Let S = S1. We can find a subcomplex S1 ⊂ Y which represents an
element in π1(Y ) which gets sent to 1 under the map ϕ. Note that this
S1 necessarily represents a generator of H1(Y ;Zp). Let i : S1 ↪→ Y be

the inclusion. Define Γ := π1(Y )/π1(X̃). The group Γ fits into a short
exact sequence

1 → P → Γ → ⟨t⟩ → 1,

where P := π1(X)/π1(X̃) is a p-group with |P | = pr. As in Lemma
2.4 and Remark 2.5, there is a finite index subgroup ⟨tl⟩×P ≤ Γ, such
that

⟨tl⟩ → ⟨tl⟩ × P → Γ
ϕ−→ ⟨t⟩

maps ⟨tl⟩ isomorphically onto its image. Define φ : ⟨t⟩ = Z → Z/lZ =:
A to be the quotient map. Let Yφ be the induced cover of Y , then we
have an epimorphism

π1(Yφ) → ⟨tl⟩ × P.

Then

ϕ′ : π1(Yφ) → ⟨tl⟩ × P → ⟨tl⟩ → ⟨t⟩

is the restriction of ϕ. Since π1(Yϕ) also projects to P , define

α′ : π1(Yϕ) → P → GL(pr,Q)

via the regular representation P → AutQ(Q[P ]): we take d := pr and
Q := Q.
We can then apply Proposition 4.1, to see that

H∗(S
1
φ;Q(t)d) ∼= H∗(Yφ;Q(t)d).

An elementary calculation shows that H∗(S
1
φ;Q(t)d) = 0. This implies

that:

H∗(Yφ;Q(t)d) ∼= 0,

which then implies, since Q(t) is flat over Q[t±1], that H∗(Yφ;Q[t±1]d)
is torsion over Q[t±1], i.e. finite dimensional over Q. The corollary now
follows from the observation that

H∗(Yφ;Q[t±1]d) ∼= H∗(Yφ;Q[P ][t±1]) ∼= H∗(X̃;Q).

�
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