
A SHORT SURVEY OF THE WORK OF COCHRAN-ORR-TEICHNER
ON KNOT CONCORDANCE

MARK POWELL

We present a survey of the advances of Cochran-Orr-Teichner on knot concordance, centred
around the results in their main paper [4]. These notes owe a lot to lectures of Kent Orr
which I attended in Heidelberg in December 2008 and to lecture notes of Peter Teichner
from San Diego in 2001 which I typed up.

1. Introduction

Definition 1.1. [8] An oriented knot K is a topologically slice knot if there is an oriented
embedded locally flat disk D2 ⊆ D4 whose boundary ∂D2 ⊂ ∂D4 = S3 is the knot K. Here
locally flat means locally homeomorphic to a standardly embedded R2 ⊆ R4.
Two knotsK1, K2 are concordant if there is an embedded locally flat annulus S1×I ⊂ S3×I

such that ∂(S1 × I) ⊆ S3 × I is the disjoint union of the knots K1 ⊔ −K2, where the knot
−K arises from K by reversing the orientation of the knot and of the ambient space S3: on
diagrams this latter means switching under crossings to over crossings and vice versa. The
set of concordance classes of knots form a group C under the operation of connected sum
with the identity element given by the class of slice knots. �

Fox and Milnor gave this definition in 1959 [8]; they were interested in removing singu-
larities of surfaces in a 4-manifold: a singularity is removable if the concordance class of its
link vanishes. They gave a condition which a slice knot satisfies, namely that its Alexander
polynomial factorises in the form f(t)f(t−1) for some f . One can also consider smoothly
slice knots and require that embeddings are smooth rather than just locally flat, but we will
consider topological manifolds and locally flat embeddings in these notes.
The first major progress in the study of the concordance group was in 1968 when Levine

[16], who was studying high-dimensional knots (Definition 1.2), defined an algebraic concor-

dance group, namely the Witt group of Seifert forms. The Seifert form is the linking form on
the first homology H1(F ) of a Seifert surface F , defined by pushing one of a pair of curves off
the surface slightly along a normal vector. A form is said to be algebraically null-concordant

if it is represented by a matrix congruent to one of the form:
(

0 A
B C

)
,

for block matrices A,B,C such that C = CT and A− BT is invertible.
1
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The idea is that if there is a half-basis of curves on F with self linking zero, it might be
possible to cut the Seifert surface along these curves and glue in discs, embedded in D4, so
as to construct a slice disc. This is called ambient surgery. This may be problematic as we
shall see below, but certainly a slice knot has an algebraically null-concordant Seifert form,
so we have an algebraic obstruction. Levine [16] and Stoltzfus [21] calculated the group of
Seifert forms to be isomorphic to:

⊕

∞

Z⊕
⊕

∞

Z2 ⊕
⊕

∞

Z4.

The infinite cyclic summands are detected by the Levine-Tristram ω-signatures.

Definition 1.2. An oriented m-dimensional knot K is an oriented, locally flat embedding
of Sm ⊂ Sm+2. An m-knot is topologically slice if there is an oriented, locally flat embedded
disk Dm+1 ⊆ Dm+3 whose boundary ∂Dm+1 ⊂ ∂Dm+3 = Sm+2 is the knot K. The group of
concordance classes of m-knots is denoted Cm. �

Every m-knot has a Seifert m+1-manifold F in Sm+2, with boundary the knot, and there
is a linking form on the middle dimensional homology of F defined as above which gives us
the Seifert form. We push the interior of F into Dm+3, and try to perform ambient surgery in
Dm+3 on the Seifert manifold to make it highly connected and therefore, by the h-cobordism
theorem, a disk Dm+1. In the case of even-dimensional knots there is no obstruction to this,
and we can always guarantee by general position that we can glue in embedded rather than
immersed discs when we try to do ambient surgery. Kervaire [14] showed that:

C2n ∼= 0.

For odd dimensional knots K : S2n−1 ⊂ S2n+1, the algebraic concordance class of the Seifert
form obstructs the possibility of embedding all of the surgery disks. Levine showed [16] for
odd high dimensional knots, with n ≥ 2, that:

C2n−1
≃
−→

⊕

∞

Z⊕
⊕

∞

Z2 ⊕
⊕

∞

Z4.

For high-dimensional knots we can always assume by surgery that the fundamental group
of the complement of a Seifert 2n-manifold pushed into D2n+2 is Z, and we can always
guarantee that we can glue in embedded discs, as long as the algebraic obstruction vanishes,
using the Whitney trick, when we try to do ambient surgery. An odd-dimensional knot in
high dimensions, so when n > 1, is slice if and only if it is algebraically null-concordant.
However when n = 1, our case of interest, the Whitney trick fails, this program does not
work and Levine’s map is only a surjection. Whenever we try to do surgery to kill an element
of the fundamental group of the complement of a Seifert surface in D4, we simultaneously
create another element of the fundamental group. In dimension four there is no guarantee
that disks can be embedded, only immersed, even if the linking form obstruction vanishes,
and attempts to remove intersection points create further problems with the fundamental
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group. These problems do not disappear in general unless, like Casson and Freedman ([1],
[9]), we can push them away to infinity. Obstructing concordance of knots in dimension 3
starts with the high-dimensional obstruction, but in contrast to the high-dimensional case,
this is only the first stage.
There is a more intrinsic version of the algebraic concordance obstruction. If we cut the

knot exterior
X := cl(S3 \ (K(S1)×D2))

open along a Seifert surface, and then glue infinitely many copies of X together along the
Seifert surface, we obtain a spaceX∞, the infinite cyclic or universal abelian cover of the knot
exterior, which is independent of the choice of Seifert surface. The Z[Z] module H1(X∞;Z) ∼=
H1(X ;Z[Z]), called the Alexander module, is therefore an invariant of the knot. It is a torsion
module (see [17]), and we can define the Blanchfield homology linking pairing

Bl : H1(X ;Z[Z])×H1(X ;Z[Z]) → Q(t)/Z[t, t−1]

as follows. For x, y ∈ C1(X∞;Z), find a z ∈ C2(X∞;Z) such that ∂z = p(t)x for some
Laurent polynomial p(t) ∈ Z[Z] = Z[t, t−1] where t generates the deck transformation group
of X∞ (taking p(t) = ∆K(t), the Alexander polynomial, will always work, for instance).
Then define:

Bl(x, y) =

∑∞

i=−∞
(z, yt−i)ti

p(t)
∈ Q(t)/Z[t, t−1]

where ( , ) is the Z-valued intersection pairing of chains in C2 and C1.
This is equivalent to defining the Blanchfield pairing via the isomorphisms:

H1(X ;Z[t, t−1])
≃
−→ H2(X ;Z[t, t−1])

≃
−→ H1(X ;Q(t)/Z[t, t−1])

≃
−→ HomZ[t,t−1](H1(X ;Z[t, t−1]),Q(t)/Z[t, t−1])

where the isomorphisms come from Poincaré duality, a connecting Bockstein homomorphism,
and a Universal Coefficient Spectral Sequence. The Blanchfield form arises from a Seifert
matrix V as follows (see Kearton [13]):

Bl(a, b) = aT (1− t)(tV − V T )−1b mod Z[Z].

Note that in order to invert the matrix it is necessary to pass to the field of fractions Q(t)
of Z[t, t−1]. The appearance of the factor (1− t) corresponds to the duality; it measures the
intersection of 2-chains and 1-chains in a certain handle decomposition which begins with
the Seifert surface: [12] page 158. For a slice knot, the Blanchfield form is metabolic; that
is, there is a submodule P ⊂ H1(X ;Z[Z]) such that P = P⊥.
The next stage was the seminal work of Casson and Gordon [2], who found algebraically

null-concordant knots which are not slice; they used the metaboliser of a linking form on a
k-fold branched covering of a knot to define representations of the fundamental group of a 4-
manifold whose boundary is MK , the result of zero-framed surgery on K, so that they could
calculate the signature of the twisted intersection form of the 4-manifold. They made use
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of the key observation that the vanishing of first-order linking information in a 3-manifold
controls the representations of the fundamental group which extend over a 4-manifold which
has the 3-manifold as boundary, which enables the construction of a second order intersection
form on the 4-manifold. For a slice disc complement the signatures of the intersection form
which Casson and Gordon defined vanish, yielding an obstruction theory.
In 1999, Cochran-Orr-Teichner defined an infinite filtration of the concordance group.

They understood that the Casson-Gordon invariants obstructed sliceness on a second level.
Recall the heuristic above that if the Seifert form is algebraically null concordant we can
attempt to surger along the curves with zero self-linking and try to create a slice disk.
Instead of being able to glue in disks, we can certainly glue in surfaces. We can then ask
whether these surfaces have sufficiently many curves with zero self linking: the Casson-
Gordon invariants obstruct, roughly speaking, the existence of these curves. The Cochran-
Orr-Teichner filtration essentially iterates this idea. It is defined by looking at successive
quotients of the derived series1 of the fundamental group, and constructing so-called higher
order Blanchfield forms to control which representations extend over their 4-manifolds. By
using the Blanchfield form on the infinite cyclic cover instead of the Q/Z valued linking
forms on the finite cyclic covers as in the Casson-Gordon type representations Cochran-
Orr-Teichner keep greater control on the fundamental group, which significantly improves
the power of their obstruction theory. Their representations map into fixed groups which
they call universally solvable groups, and the values of the representations depend for their
definitions on choices of the way in which the lower level obstructions vanish.
Finally, with this extra control on the fundamental group, extra technology is required to

extract invariants of the Witt classes of intersection forms. Cochran-Orr-Teichner use the
theory of L2-signatures to obtain signatures which capture their obstruction theory and are
able to show that their filtration is highly non-trivial.

2. The Geometric Filtration of the Knot Concordance group

Definition 2.1. We recall the definition of the zero-framed surgery along K in S3, MK :
attach a solid torus to the boundary of the knot exterior X = cl(S3 \ (K(S1)×D2)) in such
a way that the longitude of the knot bounds in the solid torus.

MK = X ∪S1×S1 D2 × S1.

The homology groups of MK are given by:

Hi(MK ;Z) ∼= Z for i = 0, 1, 2, 3;

and are 0 otherwise. H1(MK ;Z) is generated by a meridian of the knot, and H2(MK ;Z) is
generated by a Seifert surface for K capped off with a disc in D2 × S1. The fundamental

1For a group G, G(0) := G; the rest of the derived series is defined inductively by G(n+1) = [G(n), G(n)]
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group is given by:

π1(MK) ∼=
π1(X)

〈l〉

where l ∈ π1(S
1 × S1) ≤ π1(X) represents the zero-framed longitude of K. �

Cochran-Orr-Teichner [4] defined a geometric filtration of the knot concordance group
which revealed the depth of structure in C. The filtration is based on the following charac-
terisation of slice knots: notice that the exterior of a slice disc for a knot K is a 4-manifold
whose boundary is MK , since the extra D2 × S1 which is glued onto the knot exterior X is
the boundary of a regular neighbourhood of a slice disc.

Proposition 2.2. K is topologically slice if and only if MK bounds a topological 4-manifold
W such that

(i): i∗ : H1(MK ;Z)
≃
−→ H1(W ;Z) where i : MK →֒ W is the inclusion map;

(ii): H2(W ;Z) ∼= 0;
(iii): π1(W ) is normally generated by the meridian of the knot.

Proof. The exterior of a slice disc D, W := cl(D4 \ (D ×D2)), satisfies all the conditions of
the Proposition, as can be verified using Mayer-Vietoris and Seifert-Van Kampen arguments
on the decomposition of D4 into W and D × D2. Conversely, suppose we have a manifold
W which satisfies all the conditions of the Proposition. Glue in D2 × D2 to the D2 × S1

part of MK . This gives us a 4-manifold W ′ with H∗(W
′;Z) ∼= H∗(D

4;Z), π1(W
′) ∼= 0 and

∂W ′ = S3, so K is slice in W ′. We can then apply Freedman’s topological h-cobordism
theorem ([9]) to show that W ′ ≈ D4 and so K is in fact slice in D4. �

To filter the condition of sliceness with a geometric obstruction theory, Cochran-Orr-
Teichner look for 4-manifolds which could potentially be changed to make a slice disk exterior.
We start with a 4-manifold W with ∂W = MK which satisfies conditions (i) and (iii) of
Proposition 2.2 and perform homology surgery with respect to a circle; that is we aim to
perform surgery on embedded 2-spheres in W in order to kill H2(W ;Z) and obtain a Z-
homology circle. Typically classes in H2(W ;Z) will be represented by immersed spheres or
embedded surfaces of non-zero genus rather than by embedded spheres. We can measure how
close we are to being able to kill H2(W ;Z) by surgery by looking at the middle-dimensional
equivariant intersection form:

λ : H2(W ;Z[π1(W )])×H2(W ;Z[π1(W )]) → Z[π1(W )].

Using coefficients in π1(W ) allows us to detect surfaces and their intersections. The next
problem comes from the fact that there can be a large variation in π1(W ) for different choices
of W . In order to define an obstruction theory, Cochran-Orr-Teichner take representations
which factor through quotients by elements of the derived series to fixed groups Γn−1:

ρn−1 : π1(W ) →
π1(W )

π1(W )(n)
→ Γn−1.
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If there is an embedded surface N ⊆ W with π1(N)✂ π1(W )(n), called an (n)-surface, then
as far as the nth level intersection form

λn : H2(W ;Z[π1(W )/π1(W )(n)])×H2(W ;Z[π1(W )/π1(W )(n)]) → Z[π1(W )/π1(W )(n)]

can see we have an embedded sphere. Of course it may not actually be embedded, but in
this way Cochran-Orr-Teichner obtain calculable obstructions. For n = 1, this is essentially
the Cappell-Shaneson technique for obstructing the concordance of high-dimensional knots
Sm ⊆ Sm+2. We now give the definition of the Cochran-Orr-Teichner filtration:

Definition 2.3 ([4] Definition 1.2). A Lagrangian of a symmetric form λ on a free module
P is a submodule L ⊆ P of half-rank on which λ vanishes. For n ∈ N0 := N∪ {0}, let λn be
the intersection form, and µn the self-intersection form, on the middle dimensional homology
H2(W

(n);Z) ∼= H2(W ;Z[π1(W )/π1(W )(n)]) of the nth derived cover of a 4-manifold W , that
is the regular covering space W (n) corresponding to the subgroup π1(W )(n) ≤ π1(W ).

λn : H2(W ;Z[π1(W )/π1(W )(n)])×H2(W ;Z[π1(W )/π1(W )(n)]) → Z[π1(W )/π1(W )(n)]

An (n)-Lagrangian is a submodule ofH2(W ;Z[π1(W )/π1(W )(n)]), on which λn and µn vanish,
which maps via the covering map onto a Lagrangian of λ0.
We say that a knot K is (n)-solvable if MK bounds a spin 4-manifold W such that the

inclusion induces an isomorphism on first homology and such that W admits two dual (n)-
Lagrangians. This means that λn pairs the two Lagrangians together non-singularly and
their images freely generate H2(W ;Z).
We say that K is (n.5)-solvable if in addition one of the (n)-Lagrangians is an (n + 1)-

Lagrangian. �

Remark 2.4. This filtration of the knot concordance group relates strongly to geometric
filtrations using gropes and Whitney towers (see [4] Section 8 for more information), objects
which feature prominently in the theory of the classification of 4-manifolds (see e.g. [9]). A
slice knot is (n)-solvable for all n ∈ N0 by Proposition 2.2, and it is hoped, but not known
to be true, that if a knot is (n)-solvable for all n then it is topologically slice.
A knot is (0)-solvable if and only if its Arf invariant vanishes, and (0.5)-solvable if and

only if it is algebraically slice i.e. its Seifert form is null-concordant.
We ask for the 4-manifold to be spin so that the self-intersection forms µn can be well-

defined on homology classes of H2(W
(n);Z) - see Section 7 of [4]. The self-intersection form

is crucial in surgery theory for keeping track of the bundle data. The Cochran-Orr-Teichner
obstructions do not depend on it but it ought to be considered if one wishes to capture the
geometric (n)-solvability criteria as closely as possible.
The size of an (n)-Lagrangian is controlled only by its image under the map induced by

the covering map W (n) → W in H2(W ;Z); the intersection forms of W are typically singular
due to the presence of the boundary MK . The requirement roughly speaking is that we have
a Lagrangian of λn on the non-singular part of H2(W

(n);Z). We can see from the long exact
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sequence of a pair that the intersection form is non-singular on the part of H2(W
(n);Z) which

neither lies in the image under inclusion of H2(∂W
(n);Z) nor is Poincaré dual to a relative

class in H2(W
(n), ∂W (n);Z) which has non-zero boundary in H1(∂W

(n);Z). The existence of
a dual (n)-Lagrangian means that we have a non-singular part of sufficient size. The dual
(n)-Lagrangian maps to a dual Lagrangian of λ0, implying that the form λ0 is hyperbolic
on H2(W ;Z) (see Remark 7.6 of [4] for the required basis change), which is a necessary
condition if we wish to modify W by surgery into a homology circle.
Note that H2(W ;Z) is a free module since if it had torsion this would appear in H3(W ;Z)

by universal coefficients. However H3(W ;Z) is isomorphic to H1(W,MK ;Z) by Poincaré
duality, which is zero by the long exact sequence of a pair since the inclusion of the boundary
MK into W induces an isomorphism on first homology.
The dual classes are very important. When looking for a half basis of embedded spheres,

or perhaps just of (n)-surfaces, as candidates for surgery, or when looking for embedded
gropes, we can use the duals to remove unwanted intersections between surfaces by tubing
between an intersection point and the intersection of one of the surfaces with its dual - see
Section 8 of [4]. If we achieve a half basis of framed embedded spheres, when doing surgery
on a such a 2-sphere S2 × D2, and replacing it with D3 × S1, without the existence of
dual classes we would create new classes in H1(W ;Z). This would ruin the condition that

i∗ : H1(MK ;Z)
≃
−→ H1(W ;Z) is an isomorphism, which is necessary for a 4-manifold to be a

slice disc complement.

3. The Cochran-Orr-Teichner Obstruction Theory

We now describe the obstruction theory of Cochran-Orr-Teichner [4] which they use to
detect that certain knots are not (1.5)-solvable - and indeed that certain knots are not (n.5)-
solvable for any n ∈ N0, but we focus on (1.5)-solvability for the exposition. To define
their obstructions, Cochran-Orr-Teichner have representations ρ of the fundamental group
π1(MK) of MK which extend to representations of π1(W ) for (1)-solutions W :

π1(MK)
i∗

//

ρ
##●

●●
●●

●●
●●

π1(W )

ρ̃
||②②
②②
②②
②②
②

Γ

where ∂W = MK and

Γ = Γ1 := Z ⋉
Q(t)

Q[t, t−1]
,

their universally (1)-solvable or metabelian group. The representation:

ρ : π1(MK) → π1(MK)/π1(MK)
(2) → Z ⋉H1(MK ;Q[t, t−1]) → Z ⋉

Q(t)

Q[t, t−1]
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is given by:

g 7→ (n := φ(g), h := gt−φ(g)) 7→ (n,Bl(p, h)),

where φ : π1(MK) → Z is the abelianisation homomorphism and t is a preferred meridian
in π1(MK). Bl is the Blanchfield form defined fully below in Definition 3.1, and p is an
element of H1(MK ;Q[t, t−1]) chosen to lie in a metaboliser of the Blanchfield form so that
the representation extends over the 4-manifold W (see Theorem 3.2).

Definition 3.1. The rational Blanchfield form is the non-singular Hermitian pairing

Bl : H1(MK ;Q[Z])×H1(MK ;Q[Z]) →
Q(Z)

Q[Z]
=

Q(t)

Q[t, t−1]

which is defined by the sequence of isomorphisms:

H1(MK ;Q[Z])
≃
−→ H2(MK ;Q[Z])

≃
−→ H1(MK ;Q(Z)/Q[Z])

≃
−→ HomQ[Z](H1(MK ;Q[Z]),Q(Z)/Q[Z]).

The first isomorphism is Poincaré duality: this involves the involution on the group ring to
convert right modules to left modules. The second isomorphism is the inverse of a Bockstein
homomorphism: associated to the short exact sequence of coefficient groups:

0 → Q[t, t−1] → Q(t) →
Q(t)

Q[t, t−1]
→ 0

is a long exact sequence in cohomology

H1(MK ;Q(t)) → H1(MK ;Q(t)/Q[t, t−1])
β
−→ H2(MK ;Q[t, t−1]) → H2(MK ;Q(t)).

H1(MK ;Q[t, t−1]) is a torsion Q[t, t−1]-module, with the Alexander polynomial annihilating
the module. Q(t) is flat over Q[t, t−1], so

H1(MK ;Q(t)) ∼= Q(t)⊗Q[t,t−1] H1(MK ;Q[t, t−1]) ∼= 0.

Then on the one hand Universal Coefficients, since Q(t) is a field, and on the other hand
Poincaré duality shows that:

H1(MK ;Q(t)) ∼= HomQ(t)(H1(MK ;Q(t)),Q(t)) ∼= 0

and

H2(MK ;Q(t)) ∼= H1(MK ;Q(t)) ∼= 0,

which together imply that Bockstein homomorphism β is an isomorphism. The final isomor-
phism:

H1(MK ;Q(Z)/Q[Z])
≃
−→ HomQ[Z](H1(MK ;Q[Z]),Q(Z)/Q[Z])

is given by the Universal Coefficient theorem. This applies since Q[Z] is a Principal Ideal
Domain. To see that the map is an isomorphism we need to see that:

Ext1Q[Z](H1(MK ;Q[Z]),Q(Z)/Q[Z]) ∼= 0.
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Q(Z)/Q[Z] is a divisible Q[Z]-module, which implies that it is injective since Q[Z] is a PID
(see [20] I 6.10). We can calculate the Ext groups using the injective resolution of Q(Z)/Q[Z]
of length 0 (see [11] IV.8), which implies that

Extj
Q[Z](A,Q(Z)/Q[Z]) ∼= 0

for j ≥ 1 for any Q[Z]-module A; in particular this holds for A = H1(MK ;Q[Z]). So indeed
we have an isomorphism from the Universal Coefficient theorem as claimed and the rational
Blanchfield form is non-singular. For the improvements necessary to see that the Blanchfield
form is also non-singular with Z[Z] coefficients see [17].
We say that the Blanchfield pairing is metabolic if it has a metaboliser. A metaboliser for

the Blanchfield form is a submodule P ⊆ H1(MK ;Q[Z]) such that:

P = P⊥ := {v ∈ H1(MK ;Q[Z]) | Bl(v, w) = 0 for all w ∈ P}.

�

One of the key theorems of Cochran-Orr-Teichner in [4] is their Theorem 4.4. They show,
using duality, that the kernel of the inclusion induced map:

i∗ : H1(MK ;Q[Z]) → H1(W ;Q[Z]),

for (1)-solutions W , is a metaboliser for the Blanchfield form. This then implies that choices
of p ∈ H1(MK ;Q[Z]) control which representations of the form of ρ extend over the (1)-
solution, where p is in the definition of ρ. Choosing p ∈ P , where P is a metaboliser for the
Blanchfield form, is necessary for the representation to extend to π1(W ). This is very useful
for applications, since the Blanchfield form can be calculated explicitly for a given knot;
one method calculates the form in terms of a Seifert matrix. The philosophy is that linking
information in the 3-manifold controls intersection information in the 4-manifold. Note
that we require that the Blanchfield form is metabolic, i.e. that the first order obstruction
vanishes, in order for the representation ρ̃ and thence the second order obstruction to be
defined. We give the proof of the following lemma in full since it is a crucial argument.

Theorem 3.2 ([4] Theorem 4.4). Suppose MK is (1)-solvable via W . Then if we define:

P := ker(i∗ : H1(MK ;Q[Z]) → H1(W ;Q[Z])),

then the rational Blanchfield form Bl of MK is metabolic and in fact P = P⊥ with respect
to Bl.

Proof. Before proving the Theorem, Cochran-Orr-Teichner state in their Lemma 4.5, whose
proof we only sketch, that the sequence:

TH2(W,MK ;Q[Z])
∂
−→ H1(MK ;Q[Z])

i∗−→ H1(W ;Q[Z])
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is exact, where TH2 denotes the torsion part of the second homology. The idea is that the
(1)-Lagrangian and its duals generate the free part of H2(W ;Q[Z]). The existence of the
duals is used to show that the intersection form:

λ1 : H2(W ;Q[Z]) → HomQ[Z](H2(W ;Q[Z]),Q[Z])

is surjective. We consider those classes in H2(W,MK ;Q[Z]) which map to zero under the
composition of Poincaré duality and universal coefficients:

κ : H2(W,MK ;Q[Z])
≃
−→ H2(W ;Q[Z]) → HomQ[Z](H2(W ;Q[Z]),Q[Z]).

Since the first map is an isomorphism and the final group is free, of the same rank as
the free part of H2(W ;Q[Z]) (by the Universal coefficient theorem since Q[Z] is a PID),
the kernel of this composition is torsion. An element p of ker(i∗) lifts to a relative class
x ∈ H2(W ;MK ;Q[Z]). We can remove any part of this which comes from H2(W ;Q[Z])
without affecting the boundary of x. We simply remove the part of x which has non-zero
duality according to κ, which comes from H2(W ;Q[Z]) since λ1 is surjective. We are then
left with an element in the kernel of κ which is therefore torsion and whose boundary is still
p.
Using this, we construct a non-singular relative linking pairing on the 4-manifold with

boundary W .

βrel : TH2(W,MK ;Q[Z])×H1(W ;Q[Z]) → Q(Z)/Q[Z].

This is defined in a similar manner to the Blanchfield pairing on MK ; we use the composition
of isomorphisms:

TH2(W,MK ;Q[Z])
≃
−→ TH2(W ;Q[Z])

≃
−→ H1(W,Q(Z)/Q[Z])

≃
−→ HomQ[Z](H1(W ;Q[Z]),

Q(Z)

Q[Z]
)

where as before these are given by Poincaré duality, a Bockstein homomorphism, and the
Universal Coefficient theorem. To see that the second map is an isomorphism, as before we
have a long exact sequence with connecting homomorphism given by the Bockstein:

H1(W ;Q(Z)) → H1(W ;Q(Z)/Q[Z])
b
−→ H2(W ;Q[Z]) → H2(W ;Q(Z)).

Proposition 2.11 of [4] says here that H1(W ;Q(Z)) ∼= 0, while H2(W ;Q(Z)) is Q[Z]-torsion
free, so it follows that we have an isomorphism:

b−1 : TH2(W ;Q[Z])
≃
−→ H1(W,Q(Z)/Q[Z]).

The universal coefficients argument for the final map runs parallel to the corresponding
argument for MK in Definition 3.1.
We now make use of our non-singular pairings Bl and βrel in the following diagram: all

coefficients are taken to be Q[Z] and the functor •∧ is the Pontryagin dual:

•∧ := HomQ[Z](•,Q(Z)/Q[Z]).
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We have:

TH2(W,MK)
∂∗

//

βrel

��

H1(MK)

Bl

��

i∗
// H1(W )

βrel

��

H1(W )∧
i∧

// H1(MK)
∧ ∂∧

// TH2(W,MK)
∧.

The vertical maps are isomorphisms and the squares commute. We show that P := ker(i∗) ⊆
P⊥. Let x, y ∈ P . Then

i∗(x) = 0

so there is a w ∈ TH2(W,MK ;Q[Z]) such that ∂(w) = x. By commutativity of the diagram
above have that:

i∧ ◦ βrel(w) = Bl(∂(w)) = Bl(x).

But also:

i∧ ◦ βrel(w) = βrel(w) ◦ i∗

which implies that:

Bl(x) = βrel(w) ◦ i∗,

so

Bl(x, y) = Bl(x)(y) = βrel(w)(i∗(y)) = βrel(w)(0) = 0

since also y ∈ P . Therefore x ∈ P⊥ and P ⊆ P⊥.
We now show that P⊥ ⊆ P . Since P = ker(i∗) we have an induced monomorphism:

i∗ : H1(MK ;Q[Z])/P → H1(W ;Q[Z])

As in Definition 3.1, Q(Z)/Q[Z] is a divisible Q[Z]-module, so it is injective since Q[Z] is a
PID (see [20] I 6.10). This means that taking duals, we have that:

i∧ : H1(W ;Q[Z])∧ → (H1(MK ;Q[Z])/P )∧

is surjective. Let x ∈ P⊥, so by definition Bl(x, y) = 0 for all y ∈ P . Therefore we can lift
Bl(x) ∈ H1(MK ;Q[Z])∧ to an element of (H1(MK ;Q[Z])/P )∧ and therefore to an element of
H1(W ;Q[Z])∧ since i∧ is surjective. If Bl(x) ∈ im(i∧) then, since the vertical maps of our
diagram above are isomorphisms we see that x ∈ im(∂) which means x ∈ P by exactness of
the top row, so P⊥ ⊆ P as claimed. �

Theorem 3.6 of [4] then shows that the representations ρ : π1(MK) → Γ with p ∈ P extend
over W .
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Remark 3.3. Note that we deliberately work over the PID Q[Z] in the above argument,
and that this is vital for the deductions in several instances. There is always the problem in
knot concordance that we do not know that i∗ : π1(M) → π1(W ) is surjective. For ribbon
knot exteriors W , this is the case, but otherwise we cannot guarantee a surjection.
In the case that i∗ were surjective for (1)-solutions W , π1(W ) would be simply a quotient

of π1(M), and then there would be no need to localise coefficients; we would have that:

P := ker(i∗ : H1(MK ;Z[Z]) → H1(W ;Z[Z]))

is a metaboliser for the Blanchfield form on H1(MK ;Z[Z]). However, one main reason for
considering coefficients in Q[Z] is that there could conceivably be Z-torsion in H1(W ;Z[Z]),
in which case the best we could hope to show is that P ⊂ P⊥. In order to get a metaboliser
we need to introduce:

Q := {x ∈ H1(MK ;Z[Z]) |nx ∈ P for some n ∈ Z}.

Then Q = Q⊥ with respect to the Blanchfield form ([10] Proposition 2.7 , see also the work
of Letsche [15]). For the proof of Theorem 3.2 above however, this means we lose control
on the size of P ; the zero submodule also satisfies P ⊂ P⊥. If i∗ : π1(M) → π1(W ) is onto,
then as in [10] 6.3, there is no Z-torsion in H1(W ;Z[Z]). Since we only know this to be the
case for ribbon knots, Cochran-Orr-Teichner localise coefficients in order to get a Principal
Ideal Domain Q[Z]. Since it is intimately related to the ribbon-slice problem this problem
of Z-torsion is often also referred to as a ribbon-slice problem.

Now suppose that there is (1)-solution W . Then for each p ∈ P = ker(i∗) we have a
representation

ρ̃ : π1(W ) → Γ = Z ⋉
Q(Z)

Q[Z]
which enables us to define the intersection form:

λ1 : H2(W ;QΓ)×H2(W ;QΓ) → QΓ.

W is a manifold with boundary, so in general this will be a singular intersection form.
To define a non-singular form we localise coefficients: Cochran-Orr-Teichner use the non-
commutative Ore localisation to formally invert all the non-zero elements in QΓ to obtain a
skew-field K.

Definition 3.4. A ring A satisfies the Ore condition, which defines when a multiplicative
subset S of a non-commutative ring without zero-divisors can be formally inverted, if, given
s ∈ S and a ∈ A, there exists t ∈ S and b ∈ A such that at = sb. Then the Ore localisation
S−1A exists. If S = A−{0} then S−1A is a skew-field which we denote by K(A), or sometimes
just K if A is understood. �

See Chapter 2 of [20] for more details on the Ore condition. Ore localisation is flat so

H2(W ;K) ∼= K ⊗QΓ H2(W ;QΓ).
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The idea is that if the homology of the boundary MK vanishes with K coefficients, as is
proved in Section 2 of [4], then the intersection form on the middle homology of W becomes
non-singular, and we have defined an element in the Witt group of non-singular symmetric
forms over K. To explain how this gives us an obstruction, which does not depend on the
choice of 4-manifold, and how this obstruction lives in a group, we define L-groups and the
localisation exact sequence in L-theory.
A symmetric Poincaré complex (Definition 3.5) is an algebraic version of a closed manifold.

The symmetric structure is the chain level version of the Poincaré duality isomorphisms. A
symmetric Poincaré pair (Definition 3.7) is an algebraic version of a manifold with boundary,
such as a cobordism (Definition 3.8). The structure in a symmetric pair is the chain level
version of Poincaré-Lefschetz duality. A symmetric complex which is not Poincaré is another
equivalent way of considering a manifold with boundary - the boundary is represented by the
failure of the complex to be Poincaré. Given any manifold Mn with a choice of orientation
class [M ] ∈ Hn(M ;Z), or [M, ∂M ] ∈ Hn(M, ∂M ;Z) if the boundary is non-empty, there is
a natural way of extracting this algebraic data.

Definition 3.5 ([18] I). Let W be the standard free Z[Z2] resolution of Z, but without the
Z at the end, shown below. Geometrically it arises as the augmented chain complex of the
universal cover S∞ of the model for K(Z2, 1), namely RP∞, constructed as a CW complex
with a cell decomposition which has one cell in each dimension 0, 1, 2, ....

W : . . . → Z[Z2]
1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2]

1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2]

Given a f.g. projective chain complex C∗ over A define the symmetric Q-groups to be:

Qn(C, ε) := Hn(HomZ[Z2](W,Ct ⊗A C)) ∼= Hn(HomZ[Z2](W,HomA(C
−∗, C∗)))

since Ct ⊗A C ∼= HomA(C
−∗, C∗) via the slant chain isomorphism:

x⊗ y 7→ (f 7→ f(x)y);

we consider the two points of view to be interchangeable. An element ϕ of Qn(C, ε) can be
represented by a collection of A-module homomorphisms

{ϕs ∈ HomA(C
n−r+s, Cr) | r ∈ Z, s ≥ 0}

such that:

dCϕs + (−1)rϕsd
∗
C + (−1)n+s−1(ϕs−1 + (−1)sTεϕs−1) = 0: Cn−r+s−1 → Cr

where ϕ−1 = 0. The signs which appear here arise from a choice of convention on the
boundary maps. If we omit ε from the notation we take ε = 1, so that Qn(C) := Qn(C, 1).
A pair (C∗, ϕ), with ϕ ∈ Qn(C), is called a n-dimensional symmetric A-module chain

complex. It is called an n-dimensional symmetric Poincaré complex if the maps ϕ0 : C
n−r →
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Cr form a chain equivalence. In particular this implies that they induce isomorphisms (the
cap products) on homology:

ϕ0 : H
n−r(C)

≃
−→ Hr(C).

The symmetric structure is covariantly functorial with respect to chain maps. A chain map
f : C → C ′ induces a map2 f% : Qn(C) → Qn(C ′) given by

f%(ϕ)s = (f t ⊗A f)(ϕs) ∈ C ′t ⊗A C ′; or

ϕs 7→ fϕsf
∗.

A homotopy equivalence of n-dimensional symmetric complexes f : (C, ϕ) → (C ′, ϕ′) is a
chain equivalence f : C → C ′ such that f%(ϕ) = ϕ′. �

Definition 3.6 ([18] I). The algebraic mapping cone C (g) of a chain map g : C → D is the
chain complex given by:

dC (g) =

(
dD (−1)r−1g
0 dC

)
: C (g)r = Dr ⊕ Cr−1 → C (g)r−1 = Dr−1 ⊕ Cr−2.

�

Definition 3.7 ([18] I). The relative Q-groups of an A-module chain map f : C → D are
defined to be:

Qn+1(f) := Hn+1(HomZ[Z2](W,C (f t ⊗A f))).

An element (δϕ, ϕ) ∈ Qn+1(f) can be represented by a collection:

{(δϕs, ϕs) ∈ (Dt ⊗A D)n+s+1 ⊕ (Ct ⊗A C)n+s | s ≥ 0}

such that:

(d⊗(δϕs) + (−1)n+s(δϕs−1 + (−1)sTεδϕs−1) + (−1)nfϕsf
∗,

d⊗(ϕs) + (−1)n+s−1(ϕs−1 + (−1)sTεϕs−1)) = 0

∈ (Dt ⊗A D)n+s ⊕ (Ct ⊗ C)n+s−1

where as before δϕ−1 = 0 = ϕ−1. A chain map f : C → D together with an element
(δϕ, ϕ) ∈ Qn+1(f) is called a (n + 1)-dimensional symmetric pair. A chain map f together
with an element of Qn+1(f) is called an (n+ 1)-dimensional symmetric Poincaré pair if the
relative homology class3 (δϕ0, ϕ0) ∈ Hn+1(f

t ⊗A f) induces isomorphisms

Hn+1−r(D,C) := Hn+1−r(f)
≃
−→ Hr(D) (0 ≤ r ≤ n+ 1).

For a symmetric Poincaré pair corresponding to an (n+1)-dimensional manifold with bound-
ary, these are the isomorphisms of Poincaré-Lefschetz duality. �

2The upper indices here do not indicate contravariance; they are used to distinguish from the quadratic
structure, which is dual to the symmetric structure in a different way.

3The (co)homology groups of a chain map are defined to be the homology groups of the (dual of) the
algebraic mapping cone.
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Definition 3.8 ([18] I.3). Two n-dimensional ε-symmetric Poincaré f.g. projective A-module
chain complexes (C, ϕ) and (C ′, ϕ′) are cobordant if there is a (n+1)-dimensional ε-symmetric
Poincaré pair:

(f, f ′) : C ⊕ C ′ → D, (δϕ, ϕ⊕−ϕ′).

The equivalence classes of symmetric Poincaré chain complexes under the cobordism relation
form a group Ln(A, ε), with

(C, ϕ) + (C ′, ϕ′) = (C ⊕ C ′, ϕ⊕ ϕ′); −(C, ϕ) = (C,−ϕ).

As usual if we omit ε from the notation we assume that ε = 1. In the case n = 0, L0(A)
coincides with the Witt group of non-singular Hermitian forms over A. �

Note that an element of an L-group is in particular a symmetric Poincaré chain complex.
This means that the intersection forms of our 4-manifoldsW typically give elements of L0(K)
but not of L0(QΓ).

Definition 3.9 ([19] Chapter 3). The Localisation Exact Sequence in L-theory is given, for
a ring A and a multiplicative subset S which satisfies the Ore condition, as follows:

→ Ln(A) → Ln
S(S

−1A) → Ln(A, S) → Ln−1(A) → · · · .

The relative L-groups Ln(A, S) are defined to be the cobordism classes of (n−1)-dimensional
symmetric Poincaré chain complexes over A which become contractible over S−1A, where
the cobordisms are also required to be contractible over S−1A. For n = 1 this is equivalent
to the Witt group of S−1A/A valued linking forms on the torsion part of H0 of the chain
complex.
The decoration S on Ln

S(S
−1A) refers to a restriction on the class of modules involved in the

chain complex. Recall that, for a ring A, K0(A) is the Grothendieck group of isomorphism
classes of finitely generated projective modules over A. A ring homomorphism g : A → B
induces a morphism g : K0(A) → K0(B) via [P ] 7→ [B ⊗A P ]. The reduced K0-groups are

given by K̃0(A) := K0(A)/ im(K0(Z)). We define the subset

S := im(g : K̃0(A) → K̃0(S
−1A)) ⊂ K̃0(S

−1A).

We require that a chain complex (C, ϕ) ∈ Ln
S(S

−1A) satisfies:
∑

i

(−1)i[Ci] ∈ S ⊂ K̃0(S
−1A),

so that element (C, ϕ) ∈ Ln
S(S

−1A) is chain homotopic to S−1(D, φ) := (S−1A⊗A D, Id⊗φ)
for a chain complex D over A: D is symmetric over A but may not be Poincaré over A, so
may not lift to an element of Ln(A), as we shall see below.
The first map in the localisation sequence is given by considering a chain complex over

the ring A as a chain complex over S−1A, by tensoring up using the inclusion A → S−1A.
The effect of this is that some maps become invertible which previously were not; when
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n = 4, which is our primary case of interest, the boundary 3-dimensional chain complex,
if it has torsion homology modules, becomes contractible and the middle-dimensional in-
tersection form of the 4-dimensional chain complex C∗(W,MK ;K) becomes non-singular, so
that we have a 4-dimensional symmetric Poincaré complex. The symmetric chain complex
C∗(W,MK ;QΓ) does not typically lie in the image of this map, since its intersection form
only becomes non-singular after localisation.
The second map is the boundary construction: express all the maps of (C∗, ϕ) in terms

of A - this requires a choice of lattice in order to clear denominators (in a non-commutative
setting we require the Ore condition to hold to be sure we can clear denominators), so that we
have a symmetric but typically not Poincaré complex (C∗, ϕ) over A, and take the mapping
cone C (ϕ0 : C

4−∗ → C∗). This gives a 3-dimensional symmetric Poincaré chain complex
over A which becomes contractible over S−1A since ϕ0 is a chain equivalence over S−1A,
i.e. we have an element of L4(A, S). In our case we consider C∗ = C∗(W,MK ;QΓ) and the
boundary construction yields a complex which is chain equivalent to C∗(MK ;QΓ).
On the level of Witt groups, this map sends a Hermitian S-non-singular intersection form

(L, λ : L → L∗) to the linking form on coker λ : L → L∗ given by:

(x, y) 7→
x(z)

s

where x, y ∈ L∗, z ∈ L, sy = λ(z) ([19] pp. 242-243).
The third map is the forgetful map on the equivalence relation; it forgets the requirement

that the cobordisms be contractible over S−1A, simply asking for algebraic cobordisms over
A. �

It turns out that the obstruction theory of Cochran-Orr-Teichner detects the class of
C∗(MK ;QΓ) in L4(QΓ, S), where S := QΓ− {0}, so we have an invariant of the 3-manifold
MK which does not depend on the choice of 4-manifold. The chain complex C∗(MK ;K)
is contractible by the results of [4] Section 2. The first question we ask, corresponding to
(1)-solvability, is whether the chain complex of MK bounds over QΓ. Supposing that it does,
i.e. supposing that we have a (1)-solvable knot, we have a chain complex in:

ker(L4(QΓ, S) → L3(QΓ)),

so we can express the group detecting that there is no K-contractible null-cobordism of
C∗(MK ;QΓ) as

L4
S(K)/ im(L4(QΓ));

as noted above the intersection information of a 4-manifold is intimately related to the linking
information of its boundary 3-manifold.
The (1)-solutionW defines an element of L4

S(K) by taking the symmetric K-Poincaré chain
complex

C∗(W,MK ;K) = K ⊗QΓ C∗(W,MK ;QΓ).
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The image of L4(QΓ) represents the change corresponding to a different choice of 4-manifold
W : the obstruction defined must be independent of this choice. Since 2 is invertible in the
rings K and QΓ, we can do surgery below the middle dimension ([18] I 3.3 and 4.3) to see
that our invariant lives in

L0
S(K)

im(L0(QΓ))
.

Taking two choices of 4-manifold W,W ′ with boundary MK and gluing to form:

V := W ∪MK
−W ′

we obtain a 4-manifold whose image in L4(QΓ) ∼= L0(QΓ) gives the difference between
the Witt classes of the intersection forms of W and W ′, showing that the invariant in
L0
S(K)/ im(L0(QΓ)) is well-defined. If this invariant vanishes then we can hope that the knot

is slice or perhaps just (1.5)-solvable; more importantly if our class in L0
S(K)/ im(L0(QΓ))

does not vanish then it obstructs (1.5)-solvability and therefore in particular that the knot
can be slice.
The argument in [4], page 458, to show that the invariant is independent of the choice

of W , uses ZΓ here instead of QΓ. In this case it is unclear that surgery below the middle
dimension is possible on the chain complexes in symmetric L-theory: the argument could
be mended without taking rational coefficients by taking the quadratic complex of V in
L4(ZΓ). Surgery below the middle dimension is possible in quadratic L-theory ([18] I 4.3),
so that L4(ZΓ) ∼= L0(ZΓ) and we can then take a map L0(ZΓ) → L0(ZΓ) which forgets the
quadratic structure to obtain an element of L0(ZΓ) as claimed.

4. L2-signatures

There remains the not insignificant task of detecting non-zero elements in the Witt group
of Hermitian forms in L0(K). Cochran-Orr-Teichner use an L2-signature (see [4] Section 5
for details) to define a homomorphism

σ(2) : L0(K) → R

which detects the Witt class of the intersection form and therefore obstructs (1.5)-solvability
and therefore sliceness. The L2-signature agrees with the ordinary signature on Q-homology
on the image of L0(QΓ) so that we can have a well defined obstruction, the reduced L2-
signature:

σ(2)(W )− σ(W ),

where σ(W ) ∈ Z is the ordinary signature, for a (1)-solution W . We’ll attempt an outline
of the beautiful theory of L2-signatures next.
The L2-signature is a way of taking a signature when the coefficients are in a group ring.

We first make the inclusion:

QΓ →֒ CΓ.
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We then consider CΓ as a subset of B(l2Γ), the Hilbert space of square-summable sequences
indexed by the elements g ∈ Γ. We complete CΓ inside B(l2Γ) using pointwise convergence
and obtain the Von Neumann Algebra NΓ. We shall later include NΓ into the space UΓ of
unbounded operators affiliated to NΓ, the equivalent of Ore localisation for Von Neumann
algebras. For a (1)-solution W the intersection form

λ1 : H2(W ;K)×H2(W ;K) → K

yields a Hermitian operator on the Hilbert space (UΓ)m.
We define the signature for Hermitian operators λ on (NΓ)m which will then extend to

(UΓ)m. To define a signature we need notions of the dimensions of the positive and negative
eigenspaces of λ.
The functional calculus yields a correspondence between bounded measurable functions

on the spectrum spec(λ) of an operator λ:

f : spec(λ) → C

and bounded operators f(λ) on (NΓ)m, represented as m × m matrices with elements in
NΓ. Choosing the characteristic functions

p+, p− : spec(λ) ⊆ R → {0, 1} ⊂ C

of (0,∞) and (−∞, 0) (spec(λ) ⊆ R since λ is Hermitian) we obtain two Hermitian pro-
jection operators p+(λ), p−(λ). The completion to the Von Neumann algebra is necessary
for the functional calculus to be well defined on such Heaviside-type functions as p+, p−;
they are limits of polynomials so the fact that limits commute with the functional calculus
correspondence in Von Neumann algebras is crucial. For example, let pi be a sequence of
polynomials such that lim(pi) = p+. We have:

p+(λ) = (lim pi)(λ) = lim(pi(λ)) ∈ Mm(NΓ).

where pi(λ) makes immediate sense as we can evaluate polynomials on operators which live
in a C∗-algebra.
We can then use the Von Neumann Γ-trace to define the dimension of the ± eigenspaces

of λ. The Γ-trace of an operator a is defined to be:

trΓ(a) := 〈e(a), e〉l2Γ ∈ C,

using the l2Γ inner product, where e ∈ Γ ⊆ l2Γ is the identity element. This extends to
m × m matrices by taking the matrix trace, that is by summing over the Γ-traces of the
diagonal entries. Recall that for projection operators on finite dimensional vector spaces,
their trace is equal to the dimension of their image; the Γ-trace is a generalisation of this
concept.
We can now define the L2-signature of a Hermitian operator λ to be:

σ(2)(λ) := trΓ(p+(λ))− trΓ(p−(λ)) ∈ R.
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Hermitian projection operators a = a2 = a∗ have real traces since:

〈ea, e〉l2Γ = 〈ea2, e〉l2Γ = 〈ea, ea∗〉l2Γ = 〈ea, ea〉l2Γ ∈ R.

Furthermore we can include NΓ ⊂ UΓ, where UΓ is the space of unbounded operators
affiliated toNΓ. See Lemma 5.6 and the preamble to it of [4] for more details. The functional
calculus can be extended to unbounded operators, and it is a theorem that NΓ satisfies the
Ore condition, with S as the set of all nonzero divisors, and that this Ore localisation yields
UΓ.
The introduction of UΓ enables the definition of the L2-signature to be extended from

Hermitian forms over QΓn to those on Kn; H2(W ;QΓ) may not be free but H2(W ;K) is a
module over a skew-field so is a free module, so we can express

λ1 : H2(W ;K)×H2(W ;K) → K

as a matrix with entries in K, and use this to obtain the L2-signature. The reduced L2-
signature:

σ̃(2)(W ) := σ(2)(W )− σ(W ) ∈ R

gives a real number which is independent of the choice of W , so detects L0(K)/ im(L0(QΓ))
and obstructs the existence of a (1.5)-solution, provided we check all the metabolisers P of
the Blanchfield form and all of the representations which can arise from choices of p ∈ P .
Cochran-Orr-Teichner and Cochran-Harvey-Leidy ([4] Section 6, and [5], [6], [3]) are able
to use this obstruction and a satellite construction to find knots which are (n)-solvable but
which are not (n.5)-solvable for all n ∈ N. The beauty is that the L2-signature of these knots
can be calculated in a simple way by integrating the classical Levine-Tristram ω-signatures
of the companion or infection knot of the satellite construction as ω varies around the circle
(see [4] Lemma 5.4, [5] for more on this).

Theorem 4.1 ([5] Theorem 5.2). SupposeK is a 1.5 solvable knot whose Alexander polymo-
nial is not 1 and which admits a Seifert surface F of genus 1. Then there is a homologically
essential simple closed curve J , on F , that has self linking number zero, so corresponds to
a metaboliser of the Blanchfield form, and such that the integral of the Levine-Tristram
signature function of J vanishes.

As a great example, we can use this to recreate the original Casson-Gordon result that
the twist knots of Figure 1 are not slice. The zero-linking curves on Seifert surfaces for the
algebraically slice twist knots, which are those with 4k + 1 = n2 for some n ∈ N, are torus
knots. There exists a closed formula for the integral of the ω-signatures of the torus knots,
integrating over ω ∈ S1, written about by several people: see [7] for an excellent exposition.
The relevant L2-signatures of the torus knots are non-zero, proving once again that the only
twist knots which are slice are for k = 0, 2.
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k full twists

Figure 1. The kth Twist Knot
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