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Abstract. Based on results of Kreck, we show that closed, connected 4-

manifolds up to connected sum with copies of the complex projective plane
are classified in terms of the fundamental group, the orientation character

and an extension class involving the second homotopy group. For fundamen-

tal groups that are torsion free or have one end, we reduce this further to a
classification in terms of the homotopy 2-type.

1. Introduction

We give an explicit, algebraic classification of closed, connected 4-manifolds up
to connected sum with copies of the complex projective plane CP2.

After the great success of Thurston’s geometrisation of 3-manifolds, the clas-
sification of closed 4-manifolds remains one of the most exciting open problems
in topology. The exactness of the surgery sequence and the s-cobordism theo-
rem are known for topological 4-manifolds with good fundamental groups, a class
of groups that includes all solvable groups [FT95FT95, KQ00KQ00]. However, a homeo-
morphism classification is only known for closed 4-manifolds with trivial [Fre82Fre82],
cyclic [FQ90FQ90, Kre99Kre99, HK93HK93] or Baumslag-Solitar [HKT09HKT09] fundamental group.

For smooth 4-manifolds, gauge theory provides obstructions even to once hoped-
for foundational results like simply connected surgery and h-cobordism, which hold
in all higher dimensions. There is no proposed diffeomorphism classification in sight,
indeed understanding homotopy 4-spheres is beyond us at present. Most of the
invariants derived from gauge theory depend on an orientation and do not change

under connected sum with CP2
, but the differences dissolve under connected sum

with CP2. This suggests considering 4-manifolds up to CP2-stable diffeomorphism.
In Section 1.11.1 we spell out all the details, and discuss some history, but first

we would like to state our main result. The 2-type of a connected manifold M
consists of its 1-type (π1(M), w1(M)) together with the second homotopy group
π2(M) and the k-invariant k(M) ∈ H3(π1(M);π2(M)) that classifies the second
Postnikov stage of M via a fibration K(π2(M), 2)→ P2(M)→ K(π1(M), 1).

Theorem A. Two closed, connected, smooth 4-manifolds with 1-type (π,w) are
CP2-stably diffeomorphic if and only if their 2-types (π,w, π2, k) are stably isomor-
phic, provided π is

(i) torsion-free; or
(ii) infinite with one end; or

(iii) finite with H4(π;Zw) annihilated by 4 or 6.
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Definition 1.41.4 discusses the notion of a stable isomorphism of 2-types. Condition
(iiiiii) is satisfied for all (π,w) with π finite and w : π → {±1} nontrivial on the centre
of π, as explained in Remark 1.51.5. A curious consequence of Theorem AA is worth
pointing out.

Corollary 1.1. Let M1, M2 be two 4-manifolds with fundamental group π as in
Theorem AA. If M1 and M2 have stably isomorphic 2-types then the equivariant
intersection forms on π2(Mi) become isometric after stabilisation by standard forms
(±1).

In the simply connected case, this follows from the classification of odd indef-
inite forms by their rank and signature, since for two given simply connected 4-
manifolds, the rank and signatures of their intersection forms can be equalised by
CP2-stabilisation. For general fundamental groups, the underlying module does
not algebraically determine the intersection form up to stabilisation, but Theo-
rem AA says that equivariant intersection forms of 4-manifolds with the appropriate
fundamental group are controlled in this way.

1.1. Definitions of various notions of stability. The connected sum of a smooth
4-manifold M with CP2 depends on a choice of embedding D4 ↪→M , where isotopic
embeddings yield diffeomorphic connected sums. A complex chart gives a preferred
choice of isotopy class of embeddings D4 ⊂ C2 ↪→ CP2. We will assume that the
manifolds we consider are connected unless stated otherwise. If M admits an ori-
entation o, there are two distinct isotopy classes of embeddings D4 ↪→ M , exactly
one of which is orientation preserving. So we obtain two manifolds (M, o)#CP2

and (M,−o)#CP2 ∼= (M, o)#CP2
that in general are not diffeomorphic. On the

other hand if M is not orientable, we can isotope an embedding D4 ↪→ M around
an orientation reversing loop to see that there is an essentially unique connected
sum M#CP2.

While our theorems are stated for unoriented 4-manifolds, we will often make
some choice of a (twisted) fundamental class of M , but for our results the specific
choice will not matter as we will usually factor out by the effect of this choice.

A 1-type (π,w) consists of a group π and a homomorphism w : π → {±1}. A
connected manifold M has 1-type (π,w) if there is a map c : M → Bπ such that
c∗ : π1(M)→ π1(Bπ) = π is an isomorphism and w◦c∗ : π1(M)→ {±1} determines
the first Stiefel-Whitney class w1(M) ∈ H1(M ;Z/2) ∼= Hom(π1(M),Z/2). All our
results are based on the following theorem.

Theorem 1.2 (Kreck [Kre99Kre99]). Two closed, connected, smooth 4-manifolds M1 and
M2 are CP2-stably diffeomorphic if and only if they have the same 1-type (π,w) and
the images of some choices of (twisted) fundamental classes (c1)∗[M1] and (c2)∗[M2]
coincide in H4(π;Zw)/±Aut(π).

The map induced on homology by the classifying map c : M → Bπ sends the
(twisted) fundamental class [M ] ∈ H4(M ;Zw1(M)) to H4(π;Zw). Here the coeffi-
cients are twisted using the orientation characters w1(M) and w to give Zw1(M) and
Zw respectively. The quotient by Aut(π) takes care of the different choices of iden-
tifications c∗ of the fundamental groups with π, and the sign ± removes dependency
on the choice of fundamental class. In particular, within a 1-type (π,w) such that
H4(π;Zw) = 0, there is a single CP2-stable diffeomorphism class. Kreck’s result
also implies that if M1 and M2 are homotopy equivalent then they are CP2-stable
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diffeomorphic. We will give a self-contained proof of Theorem 1.21.2 in Section 22, that
proceeds by simplifying a handle decomposition.

Remark 1.3. Kreck’s theorem, as well as our results, also hold for topological
4-manifolds, with the additional condition that the Kirby-Siebenmann invariants
ks(Mi) ∈ Z/2 coincide for i = 1, 2 cf. [Tei92Tei92, Chapter 5]. A topological 4-manifold
M has a smooth structure CP2-stably if and only if ks(M) = 0. Using the ex-
istence of simply-connected closed 4-manifolds with non-trivial Kirby-Siebenmann
invariant, one can quickly deduce the topological result from the smooth one. See
Section 1.51.5 for more details. We therefore focus on the smooth category from now
on.

A connected sum with CP2 changes the second homotopy group by adding a free
summand π2(M#CP2) ∼= π2(M)⊕Λ, where here and throughout the paper we write
[Λ := Z[π1(M)] ∼= Z[π] for the group ring. The k-invariant k(M) ∈ H3(π;π2(M))
maps via (k(M), 0) to k(M#CP2) under the composition

H3(π;π2(M)) −→ H3(π;π2(M))⊕H3(π; Λ)
∼=−→ H3(π;π2(M#CP2)).

Definition 1.4. A stable isomorphism of 2-types is a pair (ϕ1, ϕ2) consisting of an
isomorphism ϕ1 : π1(M1)→ π1(M2) with ϕ∗1(w1(M2)) = w1(M1), together with an
isomorphism, for some r, s ∈ N0,

ϕ2 : π2(M1)⊕ Λr
∼=−→ π2(M2)⊕ Λs satisfying ϕ2(g · x) = ϕ1(g) · ϕ2(x)

for all g ∈ π1(M1) and for all x ∈ π2(M1) ⊕ Λr. We also require that (ϕ1, ϕ2)
preserves k-invariants in the sense that

(ϕ−1
1 , ϕ2) : H3(π1(M1);π2(M1)⊕ Λr) −→ H3(π1(M2);π2(M2)⊕ Λs)

(k(M1), 0) 7→ (k(M2), 0).

Remark 1.5. Observe that, by design, a CP2-stable diffeomorphism induces a
stable isomorphism of 2-types, so the ‘only if’ direction of Theorem AA holds for all
groups. In addition, for an arbitrary fundamental group π, the stable CP2-stable
diffeomorphism class represented by those manifolds with c∗[M ] = 0 ∈ H4(π;Zw)
is always detected by the stable isomorphism class of their 2-type (π,w, π2, k), cf.
Corollary 7.27.2.

Condition (iiiiii) in Theorem AA is satisfied for all (π,w) with π finite and w non-
trivial on the centre of π. To see this, apply [Bro82Bro82, Proposition III.8.1] for some
element g in the centre of π with w(g) nontrivial, to show that multiplication by
−1 acts as the identity. Hence every nontrivial element in H4(π;Zw) has order two.

1.2. Necessity of assumptions. Next we present examples of groups demon-
strating that hypotheses of Theorem AA are necessary. The details are given in Sec-
tion 9.19.1. We consider a class of infinite groups with two ends, namely π = Z×Z/p,
and orientable 4-manifolds, so w = 0. In this case the 2-type does not determine
the CP2-stable diffeomorphism classification, as the following example shows.

Example 1.6. Let Lp1,q1 and Lp2,q2 be two 3-dimensional lens spaces, which are
closed, oriented 3-manifolds with cyclic fundamental group Z/pi and universal cov-
ering S3. Assume that pi ≥ 2 and 1 ≤ qi < pi. The 4-manifolds Mi := S1 × Lpi,qi ,
i = 1, 2 have π2(Mi) = {0}. Whence their 2-types are stably isomorphic if and only
if π1(Lp1,q1) ∼= π1(Lp2,q2), that is if and only if p1 = p2. However, we will show
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that the 4-manifolds M1 and M2 are CP2-stably diffeomorphic if and only if Lp1,q1

and Lp2,q2 are homotopy equivalent.
It is a classical result that there are homotopically inequivalent lens spaces with

the same fundamental group. In fact it was shown by J.H.C. Whitehead that Lp,q1
and Lp,q2 are homotopy equivalent if and only if their Q/Z-valued linking forms
are isometric. See Section 9.19.1 for more details and precise references.

We do not know an example of a finite group π for which the conclusion of
Theorem AA does not hold. Thus the following question remains open.

Question 1.7. Does the conclusion of Theorem AA hold for all finite groups?

In [KT19KT19], the first and third authors showed that for 4-manifolds with finite
fundamental group, if one adds the data of the stable class of the equivariant
intersection form to the 2-type, then the CP2-stable class is determined.

1.3. Is the k-invariant required? In Section 88, we will show that while The-
orem AA applies, the k-invariant is not needed for the CP2-stable classification of
4-manifolds M with fundamental group π, where π is also the fundamental group
of some closed aspherical 4-manifold. A good example of such a 4-manifold is the
4-torus, with fundamental group π = Z4. More generally a surface bundle over
a surface, with neither surface equal to S2 nor RP2, is an aspherical 4-manifold.
We know from Theorem 1.21.2 that the CP2-stable equivalence classes are in bijec-
tion with N0 because H4(π;Zw) ∼= Z, but it is not obvious how to compute this
invariant from a given 4-manifold M .

We will show in Theorem 8.18.1 that in this case the stable isomorphism type of the
Λ-module π2(M) determines the CP2-stable diffeomorphism class of M . Assuming
moreover that H1(π;Z) 6= 0, we will show in Theorem 8.28.2 that the highest tor-
sion in the abelian group of twisted co-invariants Zw ⊗Λ π2(M) detects this stable
isomorphism class in almost all cases.

On the other hand, there are many cases where Theorem AA applies and the k-
invariant is indeed required, as the next example shows. This example also leverages
the homotopy classification of lens spaces.

Example 1.8. For the following class of 4-manifolds, the k-invariant is required in
the CP2-stable classification. Let Σ be an aspherical 3-manifold. Consider a lens
space Lp,q with fundamental group Z/p and form the 4-manifold M(Lp,q,Σ) :=
S1 × (Lp,q#Σ) with fundamental group π = Z× (Z/p ∗ π1(Σ)).

We will show in Section 9.29.2 that these groups have one end and hence our
Theorem AA applies, so the 2-type determines the CP2-stable classification. Similarly
to Example 1.61.6, we will show that two 4-manifolds of the form M(Lp,q,Σ) are CP2-
stably diffeomorphic if and only if the involved lens spaces are homotopy equivalent.
However, the Λ-modules π2(M(Lp,q,Σ)) will be shown to depend only on p. Since
there are homotopically inequivalent lens spaces with the same fundamental group,
we deduce that the stable isomorphism class of π2(M(Lp,q,Σ)) is a weaker invariant
than the full 2-type (π, 0, π2, k).

1.4. Extension classes and the proof of Theorem AA. In order to prove The-
orem AA, we will translate the image of the fundamental class c∗[M ] ∈ H4(π;Zw)
completely into algebra.

Let (C∗, d∗) and (C ′∗, d
′
∗) be free resolution of Z as a Λ-module with Ci and

C ′i finitely generated for i = 0, 1, 2. See Lemma 5.85.8 for an explanation of the



CP2-STABLE CLASSIFICATION OF 4-MANIFOLDS 5

naturality in the following proposition. Note that d
′,2
w is the dual of d′2 twisted by

the orientation character w, see Section 33 for our conventions.

Proposition 1.9. There is a natural isomorphism

ψ(C∗, C
′
∗) : H4(π;Zw)

∼=−→ Ext1
Λ

(
coker d′,2w , ker d2

)
.

As always, M is a closed, connected, smooth 4-manifold together with a 2-
equivalence c : M → Bπ such that c∗(w) = w1M . We choose a (twisted) fundamen-
tal class and a handle decomposition ofM and consider the chain complex (CM∗ , d

M
∗ )

of left Λ-modules, freely generated by the handles in the universal cover M̃ . Note

that by the Hurewicz theorem, π2(M) ∼= H2(M̃) ∼= ker d2/ im d3. Let M \ be M

with the dual handle decomposition and denote its Λ-chain complex by (C\∗, d
\
∗).

Then by Poincaré duality C∗\,w
∼= CM∗ . In particular, coker d2

\,w
∼= coker d3 and we

will use this isomorphism implicitly in Proposition 1.101.10 below. Note that picking
the other orientation of M changes this isomorphism by a sign. Thus in the next
proposition the image of c∗[M ] in Ext1

Λ(coker d3, ker d2) is independent of the choice
of [M ].

Proposition 1.10. Let D∗ be a free resolution of Z starting with Di = CMi for

i = 0, 1, 2 and let D′∗ be a free resolution of Z starting with D′i = C\i for i = 0, 1, 2.
The isomorphism Ψ(D∗, D

′
∗) from Proposition 1.91.9 sends c∗[M ] to the extension

0→ ker d2
(i,−p)T−−−−−→ C2 ⊕ ker d2/ im d3

(p′,i′)−−−−→ coker d3 → 0

where i, i′ are the inclusions and p, p′ are the projections. In particular, c∗[M ] = 0
if and only if this extension is trivial, and hence π2(M) is stably isomorphic to the
direct sum ker d2 ⊕ coker d3.

Proposition 1.101.10 is a generalisation of [HK88HK88, Proposition 2.4], where the the-
orem was proven for oriented manifolds with finite fundamental groups. The
fact that π2(M) fits into such an extension for general groups was shown by
Hambleton in [Ham09Ham09]. The above proposition implies the following, because
c∗[M ] ∈ H4(π;Zw) determines the CP2-stable diffeomorphism type by Theorem 1.21.2.

Theorem 1.11. Two closed, connected, smooth 4-manifolds M1 and M2 with 1-
type (π,w) are CP2-stably diffeomorphic if and only if the extension classes deter-
mining π2(M1) and π2(M2) coincide in

Ext1
Λ(coker d2

w, ker d2) ∼= H4(π;Zw)

modulo the action of ±Aut(π).

This result translates the H4(π;Zw) invariant into algebra for all groups. There
is a version of Theorem 1.111.11 where we do not need to divide out by Aut(π): there
is a stable diffeomorphism over π if the extension classes agree (up to sign) for a

specific choice of identifications π1(Mi)
∼=−→ π.

In Section 66 and Section 77, we will derive Theorem AA from Theorem 1.111.11. Since
two isomorphic extensions yield stably isomorphic second homotopy groups, we seek
a kind of converse by adding the datum of the k-invariant. In the purely algebraic
Section 66, given a 1-cocycle f : C1

w → ker d2 representing an extension class in
Ext1

Λ(coker d2
w, ker d2), we construct a Λ-module chain complex Cf by attaching

(trivial) 2-chain and (non-trivial) 3-chains to C2 → C1 → C0. We show that Θ: f 7→
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Cf gives a well-defined map from our extension group Ext1
Λ(coker d2

w, ker d2) to
stable isomorphism classes in a category sCh2(π) of chain complexes over Λ = Zπ
that are the algebraic analogue of the 2-type. Moreover, if f is the extension
class coming from a 4-manifold M , then Θ(f) = Cf agrees in sCh2(π) with the
stable class determined by the chain complex of P2(M) of M . Recall that P2(M) is
determined by 2-type of M , which includes the k-invariant. In Theorem 6.36.3 we then
show that the stable class of Cf detects our extension class modulo the action of the
automorphisms of coker d2

w. That is, Θ induces an injective map on the quotient of
the extensions by the automorphisms of coker d2

w. Finally, in Lemma 6.56.5 we analyse
the action of such automorphisms on the extension group Ext1

Λ(coker d2
w, ker d2) and

show that under the assumptions of Theorem AA, the automorphisms can change
the extension class at most by a sign. Since our manifolds are unoriented, the sign
ambiguity is already present, so Theorem AA follows.

1.5. Additional remarks.

Topological manifolds. Further to Remark 1.31.3, Theorem 1.21.2, and our results, in
particular Theorem AA and Theorem 1.111.11 hold for closed, connected topological
4-manifolds Mi, with the additional assumption that the Kirby-Siebenmann in-
variants ks(Mi) ∈ Z/2 are equal. Here is the proof, which is well-known to the
experts.

Let M1 and M2 be two closed, connected, topological 4-manifolds, with ks(M1) =
ks(M2), and suppose that the conditions of one of the three theorems mentioned
above are satisfied. Note that all the conditions involve algebraic topological in-
variants, so are category independent. As explained in [FNOP19FNOP19, Section 8], it
follows from Kirby-Siebenmann [KS77KS77, pp. 321–2] and Freedman-Quinn [FQ90FQ90,
Sections 8.6] that a 4-manifold M admits a smooth structure S2×S2-stably if and
only if ks(M) = 0. Since S2 × S2 and S4 are CP2-stably diffeomorphic, we deduce
that there exists a smooth structure on M CP2-stably if and only if ks(M) = 0.
To apply this, if necessary connect sum both M1 and M2 with the Chern mani-
fold ∗CP2 with nontrivial Kirby-Siebenmann invariant [FQ90FQ90, Section 10.4], not-
ing that ks is additive [FQ90FQ90, Section 10.2B], [FNOP19FNOP19, Section 8], to obtain a
CP2-stably smoothable pair. Then the smooth result applies, so that the mani-
folds are CP2-stably diffeomorphic. Now add another copy of ∗CP2 to both: by
the classification of simply-connected 4-manifolds [FQ90FQ90, Theorem 10.1] we have
∗CP2#∗CP2 ≈ CP2#CP2, so this returns us to the original CP2-stable homeomor-
phism classes, which we now know coincide.

Multiplicative Invariants. Consider an invariant I of closed, oriented 4-manifolds
valued in some commutative monoid, that is multiplicative under connected sum

and invertible on CP2 and CP2
. For example, the generalised dichromatic invariant

of [BB17BB17], I(M) ∈ C, is such an invariant.
It follows from Theorem 1.21.2 that every such invariant is determined by the

fundamental group π1(M), the image of the fundamental class in H4(π;Z), its
signature σ(M) and its Euler characteristic χ(M). More precisely, given a second
manifold N with the same fundamental group and c∗[N ] = c∗[M ] ∈ H4(π;Z), one
has

I(N) = I(M) · I
(
CP2

)∆χ+∆σ
2 · I

(
CP2)∆χ−∆σ

2 ,
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where ∆σ := σ(N) − σ(M) and ∆χ := χ(N) − χ(M). For example, for every
manifold N with fundamental group Z we have

I(N) = I(S1 × S3) · I(CP2)
χ(N)+σ(N)

2 · I(CP2
)
χ(N)−σ(N)

2 .

For the generalised dichromatic invariant, the values on CP2, CP2
and S1 × S3 are

calculated in [BB17BB17, Sections 3.4 and 6.2.1]. Moreover, in the cases that Theorem AA
holds, any invariant as above is equivalently determined by the 2-type, the signature
and the Euler characteristic. See [Reu20Reu20] for a comprehensive extension of this
discussion.

Appearance of CP2-stable diffeomorphisms in the literature. Manifolds up to CP2-
stable diffeomorphism are also considered by Khan and Smith in [KS19KS19]. There
the existence of incompressible embeddings of 3-manifolds corresponding to amal-
gamated products of the fundamental group is studied. Note that Khan and Smith
use the term bistable instead of CP2-stable.

Relation to the symmetric signature. We also note that the proofs of Sections 55
and 66 comprise homological algebra, combined with Poincaré duality to stably
identify coker(d3) with coker d2

\,w, during the passage from Proposition 1.91.9 to The-
orem 1.111.11. The proofs could therefore be carried out if one only retained the
symmetric signature in L4(Λ, w) of the 4-manifold [Ran80aRan80a, Ran80bRan80b], that is the
chain cobordism class of a Λ-module handle chain complex of M together with
chain-level Poincaré duality structure.

Organisation of the paper. Section 22 gives a self-contained proof of Kreck’s Theo-
rem 1.21.2. After establishing conventions for homology and cohomology with twisted
coefficients in Section 33, we present an extended Hopf sequence in Section 44, and
use this to give a short proof of Theorem AA in a special case.

Section 55 proves Propositions 1.91.9 and 1.101.10, which together express the fourth
homology invariant of Theorem 1.21.2 in terms of an extension class involving π2(M).
Section 66 refines this in terms of the 2-type for certain groups. This is applied in
the proof of Theorem AA in Section 77.

We then give a further refinement in Section 88: in the special case that π is the
fundamental group of some aspherical 4-manifold, the CP2-stable classification is
determined by the stable isomorphism class of π2(M), and if in addition H1(π;Z) 6=
0 then the classification can essentially be read off from Zw ⊗Λ π2(M).

Finally, Section 99 discusses the examples mentioned in Sections 1.21.2 and 1.31.3,
showing first that the hypotheses of Theorem AA are in general necessary and then
showing that for many fundamental groups falling within the purview of Theorem AA,
knowledge of the stable isomorphism class of π2(M) does not suffice and the k-
invariant is required.
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2. CP2-stable classification

Let (π,w) be a 1-type, that is a finitely presented group π together with a
homomorphism w : π → Z/2. Let ξ : BSO × Bπ → BO be a fibration that classi-
fies the stable vector bundle obtained as the direct sum of the orientation double
cover BSO → BO and the line bundle L : Bπ → BO(1) classified by w. Let
Ω4(π,w) := Ω4(ξ) denote the bordism group of closed 4-manifolds M equipped
with a ξ-structure, namely a lift ν̃ : M → BSO × Bπ of the stable normal bundle
ν : M → BO along ξ, modulo cobordisms with the analogous structure extending
the ξ-structure on the boundary.

Lemma 2.1. The map Ω4(π,w)→ H0(π;Zw)×H4(π;Zw) given by sending [M, ν̃]
to the pair

(
σ(M), (p2 ◦ ν̃)∗([M ])

)
is an isomorphism. Here if M is orientable

(w = 0), H0(π;Zw) ∼= Z and σ(M) ∈ Z is the signature. If w is nontrivial,
then H0(π;Zw) ∼= Z/2 and σ(M) ∈ Z/2 denotes the Euler characteristic mod 2.
We use [M ] ∈ H4(M ;Zw) ∼= Z for the fundamental class of M determined by
ν̃ : M → BSO ×Bπ.

Proof. By the Pontryagin-Thom construction, the bordism group Ω4(π,w) is iso-
morphic to π5(MSO∧Th(L)), where Th(L) is the Thom space corresponding to the
real line bundle L and MSO is the oriented Thom spectrum. Shift perspective to
think of π5(MSO∧Th(L)) as the generalised reduced homology group π5(MSO∧−)

of Th(L), isomorphic to the group Ω̃SO5 (Th(L)) of reduced 5-dimensional oriented
bordism over Th(L). The Atiyah-Hirzebruch spectral sequence gives an exact se-
quence

0 −→ H1(Th(L);Z) −→ Ω̃SO5 (Th(L)) −→ H5(Th(L);Z) −→ 0

because in the range 0 ≤ i ≤ 4 we have that ΩSOi
∼= Z for i = 0, 4 and zero other-

wise. Since w1(L) = w, the Thom isomorphism theorem [Rud98Rud98, Theorem IV.5.7],
[Lüc02Lüc02, Theorem 3.31] shows that

H1(Th(L);Z) ∼= H0(π;Zw) and H5(Th(L);Z) ∼= H4(π;Zw).

Using this the above short exact sequence translates to

0 −→ H0(π;Zw) −→ Ω4(π,w) −→ H4(π;Zw) −→ 0.

In the orientable case w = 0, the group H0(π;Zw) ∼= H0(π; ΩSO4 ) ∼= ΩSO4
∼= Z, while

in the nonorientable case w 6= 0, we have H0(π;Zw) ∼= H0(π; (ΩSO4 )w) ∼= Z ⊗Λ

(ΩSO4 )w ∼= Z/2. In both cases, the image of the inclusion H0(π;Zw)→ Ω4(π,w) is
generated by [CP2] with trivial map to Bπ.

To see that the short exact sequence splits, use that the signature is an additive
invariant of oriented bordism, that the Euler characteristic mod 2 is an additive
bordism invariant, and that both the signature and the Euler characteristic mod 2
of CP2 equal 1.

That the Euler characteristic mod 2 is indeed a bordism invariant of closed 4-
manifolds can be seen as follows. It suffices to show that every 4-manifold that
bounds a 5-manifold has even Euler characteristic. By Poincaré duality, a closed
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5-manifold has vanishing Euler characteristic. Now let M be the boundary of a 5-
manifold W , and consider the Euler characteristic of the closed 5-manifold W∪MW .
We have 0 = χ(W ∪M W ) = 2χ(W )− χ(M), hence χ(M) = 2χ(W ) is even. �

By surgery below the middle dimension, any bordism class can be represented
by (M, ν̃) where the second component of ν̃, namely c := p2 ◦ ν̃, is a 2-equivalence,

inducing an isomorphism c∗ : π1(M)
∼=−→ π. Note also that the first component of

ν̃ is an orientation of the bundle ν(M) ⊕ c∗(L) over M , and hence all the circles
required in our surgeries have trivial, hence orientable, normal bundle.

Theorem 2.2. Let (Mi, ν̃i), for i = 1, 2, be 4-manifolds with the same 1-type (π,w)
and assume that the resulting classifying maps ci : Mi → Bπ are 2-equivalences
for i = 1, 2. If (M1, ν̃1) and (M2, ν̃2) are ξ-cobordant then there is a CP2-stable
diffeomorphism

M1#r CP2#r̄ CP2 ∼= M2#sCP2#s̄ CP2
, for some r, r̄, s, s̄ ∈ N0,

inducing the isomorphism (c2)−1
∗ ◦ (c1)∗ on fundamental groups and preserving the

orientations on ν(Mi)⊕ (ci)
∗(L).

Remark 2.3. In the orientable case (w = 0) we have r − r̄ = s − s̄, since the
signatures of M1 and M2 coincide. For non-orientable Mi (w 6= 0), as discussed
in the introduction the connected sum operation is well-defined without choosing
a local orientation, and there is no difference between connected sum with CP2

and with CP2
. As a consequence, when w 6= 0 we can write the conclusion with

r̄ = 0 = s̄. We then must have r ≡ s mod 2, since the mod 2 Euler characteristics
of M1 and M2 coincide.

Before proving Theorem 2.22.2, we explain how Theorem 1.21.2 from the introduction
follows from Theorem 2.22.2.

Proof of Theorem 1.21.2. Suppose that we are given two closed, connected 4-manifolds
M1,M2 and 2-equivalences ci : Mi → Bπ with (ci)

∗(w) = w1(Mi), for i = 1, 2, such
that for some choices of fundamental classes, (c1)∗[M1] = (c2)∗[M2] up to ±Aut(π).
Change c1 and the sign of [M1], or equivalently, the orientation of ν(M1)⊕(c1)∗(L),
so that the images of the fundamental classes coincide. If necessary, add copies

of CP2 or CP2
to M1 until the signatures (or the Euler characteristics mod 2, as

appropriate) agree. By Lemma 2.12.1, the resulting ξ-manifolds (M1, ν̃1) and (M2, ν̃2),
are ξ-bordant, and hence by Theorem 2.22.2 they are CP2-stably diffeomorphic.

For the converse, for a 4-manifold M define a map f : M#CP2 →M that crushes
CP2 \ D̊4 to a point. The map f is degree one. The classifying map c : M#CP2 →
Bπ factors through f since any map CP2 → Bπ is null homotopic. Therefore
c∗[M#CP2] = c∗[M ] ∈ H4(π;Zw). �

Proof of Theorem 2.22.2. Let (W, ν̃) be a compact 5-dimensional ξ-bordism between
the two ξ-manifolds (M1, ν̃1) and (M2, ν̃2). By surgery below the middle dimension
on W , we can arrange that p2 ◦ ν̃ : W → Bπ is a 2-equivalence and hence that both
inclusions Mi ↪→ W , i = 1, 2, are isomorphisms on fundamental groups. To make
sure that the normal bundles to the circles we surger are trivial (so orientable), we
use that ν̃ pulls back w to the first Stiefel-Whitney class of W , and that we perform
surgery on circles representing elements of π1(W ) that become null homotopic in
Bπ.
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Pick an ordered Morse function on W , together with a gradient-like vector field,
and consider the resulting handle decomposition: W is built from M1 × [0, 1] by
attaching k-handles for k = 0, 1, 2, 3, 4, 5, in that order. The resulting upper bound-
ary is M2. Since Mi and W are connected, we can cancel the 0- and 5-handles.
Since the inclusions Mi ↪→ W induce epimorphisms on fundamental groups, we
can also cancel the 1- and 4-handles. Both these handle cancelling manoeuvres
are well-known and used in the first steps of the proof of the s-cobordism theorem
e.g. [Wal16Wal16, Proposition 5.5.1]. No Whitney moves are required, so this handle
cancelling also works in the 5-dimensional cobordism setting. We are left with 2-
and 3-handles only.

Next, injectivity of π1(M1)→ π1(W ) shows that the 2-handles are attached triv-
ially toM1, noting that homotopy implies isotopy for circles in a 4-manifold [Hud72Hud72].
Similarly, the 3-handles are attached trivially to M2. As a consequence, the mid-
dle level M ⊂ W between the 2- and the 3-handles is diffeomorphic to both the
outcome of 1-surgeries on M1 along trivial circles and the outcome of 1-surgeries
on M2 on trivial circles. A 1-surgery on a trivial circle changes Mi by con-
nected sum with an oriented S2-bundle over S2. There are two such bundles since
π1(Diff(S2)) = π1(O(3)) = Z/2. The twisted bundle occurs if and only if the
twisted framing of the normal bundle to the trivial circle is used for the surgery.
One can prove, for example using Kirby’s handle calculus, that after connected

sum with CP2 both S2 × S2 and S2×̃S2 become diffeomorphic to CP2#CP2
#CP2

[Kir89Kir89, Corollaries 4.2 and 4.3], [GS99GS99, p. 151].
The conclusions on the fundamental groups and relative orientations follow be-

cause these aspects are controlled through the ξ-structure of the bordism. �

Remark 2.4. Even the null bordant class exhibits interesting behaviour. A stan-
dard construction of a 4-manifold with a given fundamental group π and orientation
character w takes the boundary of some 5-dimensional manifold thickening N(K)
of a 2-complex K with π1(K) = π and w1(N(K)) = w. This is the same as dou-
bling a suitable 4-dimensional thickening of K along its boundary. By construction
WK := ∂N(K) is null-bordant over Bπ for any choice of K. Thus by Theorem 2.22.2
the CP2-stable diffeomorphism class of WK only depends on the 1-type (π,w), and
not on the precise choices of K and N(K).

We end this section by outlining Kreck’s original argument [Kre99Kre99, Thm. C]. The
normal 1-type of a manifold is determined by the data (π,w1, w2). After adding
one copy of CP2, the universal covering becomes non-spin and then the fibration
ξ : BSO × Bπ → BO is the normal 1-type. After adding more copies of CP2 to
M1 or M2 until their signatures agree, our hypothesis gives a bordism between
M1 and M2 over this normal 1-type. By subtraction of copies of S2 × D3 tubed
to the boundary, a cobordism can be improved to an s-cobordism, after allowing
connected sums of the boundary with copies of S2 × S2. Therefore by the stable
s-cobordism theorem [Qui83Qui83], the bordism class of a 4-manifold in Ω4(ξ) determines
the diffeomorphism class up to further stabilisations with S2 × S2. As remarked
above, if necessary we may add one more CP2 to convert all the S2×S2 summands

to connected sums of copies of CP2 and CP2
.
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3. Conventions

Let π be a group and write Λ := Zπ for the group ring. For a homomorphism
w : π → Z/2, write Λw for the abelian group Λ considered as a (Λ,Λ)-bimodule, via
the usual left action, and with the right action twisted with w, so that for r ∈ Λ
and g ∈ π we have r · g = (−1)w(g)rg. Note that Λ and Λw are isomorphic as left
or right modules, but not as bimodules.

Let R be a ring with involution and let N be an (R,Λ)-bimodule. We define
another (R,Λ)-bimodule Nw := N ⊗Λ Λw. This is canonically isomorphic to the
same left R-module N with the right Λ action twisted with w. We consider Λ as a
ring with involution using the untwisted involution determined by g 7→ g−1.

For a CW-complex X, or a manifold with a handle decomposition, write π :=
π1(X). We always assume that X is connected and comes with a single 0-cell,

respectively 0-handle. The cellular or handle chain complex C∗(X̃) ∼= C∗(X; Λ)

consists of left Λ-modules. Here we pick a base point in order to identify C∗(X̃)
with C∗(X; Λ).

Define the homology of X with coefficients in N as the left R-module

H∗(X;N) := H∗(N ⊗Λ C∗(X; Λ)).

Define the cohomology of X with coefficients in N as the left R-module

H∗(X;N) := H∗
(

HomΛ(C∗(X; Λ), N)
)
,

converting the chain complex into a right Λ module using involution on Λ, taking
Hom of right Λ-modules, and using the left R-module structure of N for the R-
module structure of the outcome.

Given a chain complex C∗ over a ring with involution R, consisting of left R-
modules, the cochain complex C∗ := HomR(C∗, R) consists naturally of right mod-
ules. Unless explicitly mentioned otherwise, we always convert such a cochain
complex into left modules using the involution on R, that is r · c = cr.

We will consider closed manifolds to always be connected and smooth unless oth-
erwise explicitly mentioned, and typically of dimension four. For an n-dimensional
closed manifold M with a handle decomposition, write M \ for the dual han-
dle decomposition. The handle chain complex C∗(M ; Λ) satisfies C∗(M

\; Λ) ∼=
Λw ⊗Λ C

n−∗(M ; Λ). That is, the handle chain complex associated to the dual de-
composition is equal to the cochain complex of the original decomposition defined
using the twisted involution. Let di : Ci(M ; Λ) → Ci−1(M ; Λ) be a differential in
the chain complex. For emphasis, we write

diw := IdΛw ⊗di : Ci−1 → Ci

to indicate the differentials of the cochain complex obtained using the twisting,
which coincide with the differentials of the dual handle decomposition.

A popular choice for coefficient module N will be Zw, the abelian group Z
considered as a (Z,Λ)-bimodule via the usual left action, and with the right action
of g ∈ π given by multiplication by (−1)w(g). An n-dimensional closed manifold
M , with fundamental group π and orientation character w : π → Z/2, has a twisted
fundamental class [M ] ∈ Hn(M ;Zw).

Remark 3.1. Observe that the orientation double cover M̂ is canonically oriented.
Nevertheless in our context there is still a choice of fundamental class to be made.
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This arises from the fact that the identification Hn(M̂ ;Z) ∼= Hn(M ;Z[Z/2]) re-

quires a choice of base point. The orientation class of M̂ maps to either 1 − T or
T − 1 times the sum of the top dimensional handles/cells of M . Evaluating the
generator T ∈ Z/2 to −1 yields a homomorphism Hn(M ;Z[Z/2]) → Hn(M ;Zw)

with the image of [M̂ ] equal to ±2[M ]. We see that although the double cover
is canonically oriented, the twisted fundamental class obtained by this procedure
depends on a choice of base point, so there is a choice required.

Twisted Poincaré duality says that taking the cap product with a fundamental
class [M ] ∈ Hn(M ;Zw) gives rise to an isomorphism

− ∩ [M ] : Hn−r(M ;Nw) −→ Hr(M ;N)

for any r and any coefficient bimodule N . Since Nww ∼= N , applying this to Nw

yields the other twisted Poincaré duality isomorphism

− ∩ [M ] : Hn−r(M ;N) −→ Hr(M ;Nw).

4. An extended Hopf sequence

We present an exact sequence, extending the well-known Hopf sequence, for
groups π that satisfy H1(π; Λ) = 0, where Λ := Zπ.

Recall from Section 33 that an orientation character w : π → Z/2 endows Zw :=
Z ⊗Λ Λw with a (Z,Λ)-bimodule structure. The Zw-twisted homology of a space

X with π1(X) = π is defined as the homology of the chain complex Zw ⊗Λ C∗(X̃).
In the upcoming theorem, write π2(M)w := π2(M) ⊗Λ Λw, where we consider

π2(M) as a Λ-right module using the involution given by g 7→ g−1. Then π2(M)w is
a (Z,Λ)-bimodule, so we can use it as the coefficients in homology as in Section 33.

Theorem 4.1. Let M be a closed 4-manifold with classifying map c : M → Bπ
and orientation character w : π → Z/2. If H1(π; Λ) = 0 there is an exact sequence

H4(M ;Zw)
c∗−−→ H4(π;Zw)

∂−→ H1(π;π2(M)w)

−→H3(M ;Zw)
c∗−−→ H3(π;Zw)

∂−→ H0(π;π2(M)w)

−→H2(M ;Zw)
c∗−−→ H2(π;Zw) −→ 0.

Moreover, the maps ∂ only depend on the 2-type (π,w, π2(M), k(M)).

Remark 4.2. When replacing M by it’s Postnikov 2-type, the sequence in Theo-
rem 4.14.1 remains exact even without the assumption that H1(π;Zπ) = 0 by [McC01McC01,
Theorem 8bis.27]. The proof of Theorem 4.14.1 is essentially the same but we repeat
it here for the reader’s convenience.

Proof. The Leray-Serre spectral sequence applied to the fibration M̃ → M → Bπ
with homology theory H∗(−;Zw) has second page

E2
p,q = Hp(Bπ;Hq(M̃ ;Zw)) = Hp(Bπ;Hq(M̃ ;Z)⊗Λ Λw).

Here we consider Hq(M̃ ;Z) as a right Λ-module and the fact that M̃ is simply
connected means that the w-twisting can be taken outside the homology. The
spectral sequence converges to Hp+q(M ;Zw).

First, H1(M̃ ;Z) = 0, and

H3(M̃ ;Z) ∼= H3(M ; Λ) ∼= H1(M ; Λw) ∼= H1(M ; Λ) ∼= H1(π; Λ) = 0.
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Thus the q = 1 and q = 3 rows of the E2 page vanish. Since H0(M̃ ;Z) ∼= Z,
the q = 0 row coincides with the group homology E2

p,0 = Hp(π;Zw). We can

write H2(M̃ ;Z) ∼= π2(M̃) ∼= π2(M) by the Hurewicz theorem, and the long exact
sequence in homotopy groups associated to the fibration above. Therefore the q = 2
row reads as

E2
p,2 = Hp(π;π2(M)w).

Since the q = 1 and q = 3 lines vanish, the d2 differentials with domains of
degree q ≤ 2 vanish, so we can turn to the E3 page. We have d3 differentials

d3
3,0 : H3(π;Zw) −→ H0(π;π2(M)w),

d3
4,0 : H4(π;Zw) −→ H1(π;π2(M)w).

It is now a standard procedure to obtain the long exact sequence from the spectral
sequence, whose highlights we elucidate. On the 2-line, the terms on the E∞ page
yield a short exact sequence

0 −→ coker(d3
3,0) −→ H2(M ;Zw) −→ H2(π;Zw) −→ 0.

On the 3-line, similar considerations give rise to a short exact sequence

0 −→ coker d3
4,0 −→ H3(M ;Zw) −→ ker d3

3,0 −→ 0.

Finally the 4-line gives rise to a surjection

H4(M ;Zw) −→ ker d3
4,0 −→ 0.

Splice these together to yield the desired long exact sequence.
It remains to argue that the d3 differentials in the Leray-Serre spectral sequence

only depend on the k-invariant of M . To see this, consider the map of fibrations

M̃ //

��

M //

��

K(π, 1)

=

��
K(π2(M), 2) // P2(M) // K(π, 1)

induced by the 3-equivalence from M to its second Postnikov section P2(M). It

induces a map of the spectral sequences, and since the map M̃ → K(π2(M), 2)
is an isomorphism on homology in degrees 0, 1 and 2, it follows that the two d3

differentials in the long exact sequences can be identified. Therefore, they only
depend on P2(M), or equivalently, on (π1(M), π2(M), k(M)). �

Corollary 4.3. Suppose that H1(π; Λ) = 0 and that M is a closed 4-manifold with
1-type (π,w). Then the subgroup generated by c∗[M ] ∈ H4(π;Zw) only depends on
the 2-type (π,w, π2(M), k(M)).

Proof. The subgroup generated by c∗[M ] is precisely the image of c∗ : H4(M ;Zw)→
H4(π;Zw). By Theorem 4.14.1 the image of c∗ is the same as the kernel of the map
∂ : H4(π;Zw)→ H1(π;π2(M)w). Since the latter only depends on the 2-type of M ,
so does the image of c∗. �

In particular, if H4(π;Zw) is torsion-free and H1(π; Λ) = 0, then since the sub-
group generated by c∗[M ] determines c∗[M ] up to sign, Corollary 4.34.3 implies that
the 2-type of M suffices to determine its CP2-stable diffeomorphism class. Since a
group with one end has H1(π; Λ), this proves the special case of Theorem AA (iiii),
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if in addition we assume that H4(π;Zw) is torsion-free. We will also make use of
Corollary 4.34.3 to deduce Theorem AA (iiiiii), but we postpone this discussion until the
end of Section 77, so that we can collect the facts needed to prove Theorem AA in
one place.

5. Computing fourth homology as an extension

In this section we prove Proposition 1.101.10, relating the CP2-stable classification
to the stable isomorphism class of the second homotopy group as an extension.

Definition 5.1. For a ring R, we say that two R-modules P and Q are stably
isomorphic, and write P∼=sQ, if there exist non-negative integers p and q such that
P ⊕Rp ∼= Q⊕Rq.

First we will construct an isomorphism using a closed 4-manifold M with funda-
mental group π and later recast it in terms of homological algebra to show that it
is independent of M . We will use the following description of the extension group.

Remark 5.2. Let R be a ring and let N,M be R-modules. Recall that Ext1
R(M,N)

can be described as follows, see e.g. [HS71HS71, Chapter IV.7]. Choose a projective
resolution

· · · −→ P2
p2−−→ P1

p1−−→ P0 −→M −→ 0

of M and consider the induced dual sequence

0 −→ HomR(M,N) −→ HomR(P0, N)
(p1)∗−−−→ HomR(P1, N)

(p2)∗−−−→ HomR(P2, N)

Then there is a natural isomorphism

θ : Ext1
R(M,N)→ H1(HomR(P∗, N)).

This isomorphism is given as follows: for an extension 0 → N → E → M → 0,

choose a lift P0 →M to a map P0 → E and note that the composition P1
p1−→ P0 →

E factors through a map P1 → N . This element in HomR(P1, N) is a 1-cocycle
and represents the image of the extension E in H1(HomR(P∗, N)). Its homology
class does not depend on the choice of lift.

Let Λ = Zπ, and let (D∗, d
D
∗ ) be a free resolution of Z as a Λ-module, where

π acts trivially. Standard dimension shifting [Bro82Bro82, Chapter III.7] gives an iso-

morphism H4(π;Zw)
∼=−→ H1(π; ker dD,w2 ). Here the superscript w denotes twisting

the coefficients using w : π → Z/2 as described in Section 33. Given any closed
4-manifold M with fundamental group π and orientation character w, we have
isomorphisms

H1(π; ker dD,w2 )
c∗,∼=←−−− H1(M ; ker dD,w2 )

PD,∼=←−−−− H3(M ; ker dD2 ),

where c : M → Bπ denotes the classifying map and PD denotes Poincaré duality.
Let P2(M) be the Postnikov 2-type of M .

Lemma 5.3. The induced map H3(P2(M); ker dD2 ) → H3(M ; ker dD2 ) is an iso-
morphism.

Proof. Since the mapM → P2(M) is 3-connected, the induced mapH2(P2(M);A)
∼=−→

H2(M ;A) is an isomorphism and the map H3(P2(M);A) ↪→ H3(M ;A) is injective



CP2-STABLE CLASSIFICATION OF 4-MANIFOLDS 15

for any coefficient system A. Using this and H3(M ;D2) ∼= H1(M ;D2) = 0, we ob-
tain the following diagram associated with the short exact sequence 0→ ker dD2 →
D2 → im dD2 → 0.

H2(P2(M); im dD2 )

∼=
��

// H3(P2(M); ker dD2 ) //
� _

��

H3(P2(M);D2)� _

��
H2(M ; im dD2 ) // // H3(M ; ker dD2 ) // 0

It follows from commutativity of the left square that the middle vertical map
H3(P2(M); ker dD2 )→ H3(M ; ker dD2 ) is surjective, and thus an isomorphism. �

By the Hurewicz theorem, 0 = π3(P̃2(M))→ H3(P̃2(M);Z) ∼= H3(P2(M); Λ) is
onto, so H3(P2(M); Λ) = 0. Hence

C
P2(M)
4

d
P2(M)
4−−−−→ C

P2(M)
3

d
P2(M)
3−−−−→ C

P2(M)
2 → coker d

P2(M)
3 → 0

is exact, where (C
P2(M)
∗ , d

P2(M)
∗ ) denotes the cellular Λ-chain complex of P2(M).

This implies that

(5.4) H3(P2(M); ker dD2 ) ∼= Ext1
Λ(coker d

P2(M)
3 , ker dD2 ),

using the description from Remark 5.25.2. As we can obtain P2(M) from M by

attaching cells of dimension 4 and higher, we have d
P2(M)
3 = dM3 .

We obtain the chain of isomorphisms

H4(π;Zw)
∼=−→ H1(π; ker dD,w2 )

c∗,∼=←−−− H1(M ; ker dD,w2 )
PD;∼=←−−−− H3(M ; ker dD2 )(5.5)

∼=←− H3(P2(M); ker dD2 ) ∼= Ext1
Λ(coker dM3 , ker dD2 ).

We will now recast this isomorphism using homological algebra. Let (D∗, d
D
∗ )

and (D′∗, d
D′

∗ ) be free resolutions of Z as a Λ-module with D′i finitely generated
for i = 0, 1, 2. Such a resolution exists since the fundamental group of a closed
manifold is finitely presented. Using the resolution D′∗, we have

H4(π;Zw) ∼= H1(π; ker dD,w2 ) ∼= H1(D′∗ ⊗Λ ker dD,w2 ) ∼= H1(D′,w∗ ⊗Λ ker dD2 )

∼= H1(HomΛ(D′,∗w , ker dD2 )).

The last isomorphism uses that D′i is finitely generated for i = 0, 1, 2.

Let P∗ → coker dD
′,2

w be a free resolution. As in Remark 5.25.2, we have an isomor-
phism

θ : Ext1
Λ(coker dD

′,2
w , ker dD2 )

∼=−→ H1(HomR(P∗, ker dD2 )).

By the fundamental lemma of homological algebra, there is a chain map D′,2−∗w →
P∗, unique up to chain homotopy, as follows:

0 // D′,0w
dD
′,1

w //

��

D′,1w
dD
′,2

w //

��

D′,2w // //

��

coker dD
′,2

w

· · · // P2
// P1

// P0

77 77

This induces a homomorphism

Ξ: H1(HomR(P∗, ker dD2 ))→ H1(HomΛ(D′,∗w , ker dD2 )),
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so composing this with θ we obtain a homomorphism Ext1
Λ(coker dD

′,2
w , ker dD2 ) →

H1(HomΛ(D′,∗w , ker dD2 )). Since we take first homology, the right hand side is the
same whether we write D′,2−∗w or D′,∗w , so for brevity we write the latter.

Lemma 5.6. The homomorphism

Ξ: H1(HomR(P∗, ker dD2 ))→ H1(HomΛ(D′,∗w , ker dD2 ))

is an isomorphism.

If D′,0w −→ D′,1w −→ D′,2w happens to be exact, in other words if H1(π; Λ) = 0, then
the lemma is straightforward because D′,2−∗ is the start of another free resolution
of coker dD

′,2
w . In general this sequence is not exact. We postpone the proof of the

lemma in order to first discuss some of its consequences.
Consider the composition

Ψ(D∗, D
′
∗) : H4(π;Zw) ∼= H1(HomΛ(D′,∗w , ker dD2 ))

∼= H1(HomR(P∗, ker dD2 ))

∼= Ext1
Λ(coker dD

′,2
w , ker dD2 ),(5.7)

using the inverse of the isomorphism Ξ from Lemma 5.65.6. The composition Ψ(D∗, D
′
∗)

is natural in D∗ and D′∗. This implies the following lemma.

Lemma 5.8. For all chain homotopy equivalences D∗
f−→ E∗ and D′∗

f ′−→ E′∗ of
free resolutions, with D′∗, E

′
∗ finitely generated for i = 0, 1, 2, the induced map

Ext1
Λ((f ′)∗, f∗) : Ext1

Λ(coker dD
′,2

w , ker dD2 )→ Ext1
Λ(coker dE

′,2
w , ker dE2 ) is an isomor-

phism and Ψ(E∗, E
′
∗) = Ext1

Λ((f ′)∗, f∗) ◦Ψ(D∗, D
′
∗).

Lemma 5.85.8 together with (5.75.7) implies Proposition 1.91.9. We will now explain how
(5.75.7) can be identified with (5.55.5). Let M be a closed, smooth 4-manifold with a
2-equivalence c : M → Bπ and an element w ∈ H1(π;Z/2) such that c∗(w) = w1M .
Consider a handle decomposition of M with a single 0-handle and a single 4-handle.

Let (CM∗ , d
M
∗ ) be the corresponding Λ-chain complex. Let (C\∗, δ∗) denote the Λ-

chain complex for the dual handle decomposition. Observe that under the canonical

identification of C\i = Λw ⊗Λ C4−i := C4−i
w , we have δi = d5−i

M,w and δiw = dM5−i.

Hence picking D∗ and D′∗ so that Di := CMi and D′i := C\w for i = 0, 1, 2, the
isomorphism Ψ(D∗, D

′
∗) can be identified with (5.55.5).

Now we begin the promised postponed proof of Lemma 5.65.6.

Lemma 5.9. Let D2
d2−→ D1

d1−→ D0 be an exact sequence of finitely generated

projective Λ-modules, and let f : L → D1 be a Λ-homomorphism such that L
f−→

D1 d2

−→ D2 is exact. Then

D2
d2−−→ D1

f∗−−→ HomΛ(L,Λ)

is also exact.

Proof. First note that f∗ ◦ d2 = (d2 ◦ f)∗ = 0, and thus im d2 ⊆ ker f∗. We need

to show that ker f∗ ⊆ im d2. Dualise D2
d2−→ D1

d1−→ D0 we have that d2 ◦ d1 = 0.
Using this and the hypothesis on f we have a commutative diagram, showing that
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both d1 and f factor through ker d2:

D0

d1

%%��
ker d2 �

� // D1 d2
// D2.

L

OOOO

f

99

Dualise, and identify D0, D1 and D2 with their double duals, to obtain the diagram:

D0

D2
d2 // D1

d1

77

f∗ ''

// HomΛ(ker d2,Λ)

OO

� _

��
HomΛ(L,Λ).

Since HomΛ(−,Λ) is left exact, HomΛ(ker d2,Λ) → HomΛ(L,Λ) is injective as
shown. It now follows from the diagram that every element in the kernel of
f∗ : D1 → HomΛ(L,Λ) is also in the kernel of d1, and hence by exactness of D∗ lies
in the image of d2. This shows that ker f∗ ⊆ im d2 as desired, which completes the
proof of the lemma. �

The next lemma implies Lemma 5.65.6 by taking N := ker dD2 and E := D′w.

Lemma 5.10. Let E2
d2−→ E1

d1−→ E0 be an exact sequence of finitely generated
projective Λ-modules. Let N be a submodule of a finitely generated free Λ-module
F . Let P∗ → coker d2 be a projective resolution. Then

Ξ: H1(HomΛ(P∗, N))→ H1(HomΛ(E∗, N))

is an isomorphism.

Proof. By the fundamental lemma of homological algebra, we can assume that

P1 = E1 d2

−→ P0 = E2, and obtain a chain map E2−∗ → P∗, giving a commutative
diagram

E0 d1
//

α

��

E1 d2
// E2 // // coker d2

· · · // P2
//

β

==

P1
// P0

:: ::

where β is defined by the composition P2 → P1 = E1. We will consider three cases:
(i) N = Zπ; (ii) N is a finitely generated free module; and (iii) N is a submodule
of a finitely generated free module F .

For case (i), we identify HomΛ(Ei,Zπ) with Ei, from which it follows that
H1(HomΛ(E∗,Zπ)) = 0. By Lemma 5.95.9 with Di = Ei for i = 0, 1, 2 and L = P2,
we deduce that H1(HomΛ(P∗,Zπ)) is also trivial.

For case (ii), using additivity of both sides under direct sum, the statement
follows immediately from case (i).

Finally we consider case (iii). It suffices to show that the kernel of β∗N , shown in

the next diagram, agrees with the kernel of d1,∗
N : HomΛ(E1, N) → HomΛ(E0, N).
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Consider the diagram whose rows come from applying HomΛ(−,M) to the factori-
sation d2 = β ◦ α for M = N,F :

d1,∗
N : HomΛ(E1, N)� _

��

β∗N // HomΛ(P2, N)� _

��

α∗N // HomΛ(E0, N)� _

��
d1,∗
F : HomΛ(E1, F )

β∗F // HomΛ(P2, F )
α∗F // HomΛ(E0, F ).

By case (ii), in the bottom row the kernels of d1,∗
F : HomΛ(E1, F )→ HomΛ(E0, F )

and β∗F : HomΛ(E1, F )→ HomΛ(P2, F ) both equal the image of HomΛ(E2, F ), and
in particular are equal. Now it follows from an easy diagram chase, using injectivity
of the middle vertical map, that the kernels of β∗N and d1,∗

N also agree, as desired.
This completes the proof of case (iii) and therefore of Lemma 5.105.10. �

We will need another lemma, tracing the effect of dimension shifting.

Lemma 5.11. Dimension shifting H0(M ;Z) → H3(M ; ker dM2 ) send the class of
the augmentation ε : CM0

∼= Λ→ Z to the class of dM3 : CM3 → kerdM2 .

Proof. In order to give a uniform treatment, define dM0 := ε : CM0 → CM−1 := Z and

write dM−1 : Z→ 0. Then

CM3
dM3−−→ CM2

dM2−−→ CM1
dM1−−→ CM0

dM0−−→ CM−1

dM−1−−→ 0.

is exact at CMi for i ≤ 1. For every i we have a short exact sequence

0→ ker dMi → CMi
dMi−−→ im dMi → 0,

which for i = 0, 1, 2 by exactness yields a short exact sequence

0→ ker dMi → CMi
dMi−−→ ker dMi−1 → 0.

Dimension shifting is given by the Bockstein β : Hi(M ; ker dMi−1)→ Hi+1(M ; ker dMi )

associated with this short exact sequence. We claim that β([dMi ]) = [dMi+1]. Then it

will follow using this for i = 0, 1, 2 that [ε] = [dM0 ] ∈ H0(M ; ker dM−1) = H0(M ;Z)

is sent to [dM3 ] ∈ H3(M ; ker dM2 ), as desired. The claim follows from studying the
definition of the Bockstein connecting homomorphism via the following diagram.

HomΛ(CMi , CMi )
dMi ◦− //

−◦dMi+1

��

HomΛ(CMi , ker dMi−1)

HomΛ(CMi+1, ker dMi ) // HomΛ(CMi+1, C
M
i )

Here dMi ∈ HomΛ(CMi , ker dMi−1) lifts to IdCMi ∈ HomΛ(CMi , CMi ), which is sent to

dMi+1 ∈ HomΛ(CMi+1, ker dMi ), as claimed. �

For the proof of Proposition 1.101.10, we now want to understand π2(M) as an ex-
tension class. As before, let M be a closed, smooth 4-manifold with a 2-equivalence
c : M → Bπ and an element w ∈ H1(π;Z/2) such that c∗(w) = w1M . Con-
sider a handle decomposition of M with a single 0-handle and a single 4-handle.
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Let (CM∗ , d
M
∗ ) be the corresponding Λ-chain complex. For a finite, connected 2-

complex K with fundamental group π, Hambleton showed [Ham09Ham09, Theorem 4.2]
that π2(M) is stably isomorphic as a Λ-module to an extension E of the form

0 −→ H2(K; Λ) −→ E −→ H2(K; Λw) −→ 0.

Note that in [Ham09Ham09, Theorem 4.2] only the oriented case was considered. To
identify the equivalence class of this extension with c∗[M ] ∈ H4(π;Zw), which is
the goal of this section, we need the following version of this theorem.

Let i : ker dM2 ↪→ CM2 and i′ : ker dM2 / im dM3 ↪→ coker dM3 denote the inclusions
and let p : ker dM2 � ker dM2 / im dM3 and p′ : CM2 � coker dM3 denote the projections.

Proposition 5.12. There is a short exact sequence

0 −→ ker dM2
(i,−p)T−−−−−→ CM2 ⊕H2(CM∗ )

(p′,i′)−−−−→ coker dM3 −→ 0.

Proof. Consider the diagram

ker dM2
i //

p

��

CM2

p′

��
H2(CM∗ ) = ker dM2 / im dM3

i′ // coker dM3 .

It is straightforward to check that this square is a pullback as well as a push out.
Therefore, we obtain the claimed short exact sequence. �

We explain why Proposition 5.125.12 coincides with [Ham09Ham09, Theorem 4.2]. In
that reference coker dM3 is replaced with H2(K; Λw), and ker dM2 is replaced with
H2(K; Λ), where K is a finite 2-complex with π1(K) = π.

To see why one can make these replacements, we need the following lemma.

Lemma 5.13. Let K1,K2 be finite 2-complexes with 2-equivalences Ki → Bπ for
i = 1, 2. Then there exist p, q ∈ N0 such that K1 ∨

∨p
i=1 S

2 and K2 ∨
∨q
i=1 S

2 are
homotopy equivalent over Bπ. In particular H2(K1; Λ) and H2(K2; Λ) are stably
isomorphic Λ-modules and so are H2(K1; Λw) and H2(K2; Λw).

Proof. After collapsing maximal trees in the 1-skeletons of Ki, we can assume that
both Ki have a unique 0-cell. The lemma follows from the existence of Tietze
transformations that relate the resulting presentations of the group π, by realising
the sequence of transformations on the presentation by cellular expansions and
collapses. See for example [HAM93HAM93, (40)]. �

It follows that ker dM2 = H2(M (2); Λ) is stably isomorphic to H2(K; Λ). Let M \

be the manifold M endowed with the dual handle decomposition, and let (C\∗, δ∗) be
its Λ-module chain complex as before. Fix a choice of (twisted) fundamental class
[M ] in H4(M ;Zw). Use this choice to identify ker δ2 = ker d3

M,w and coker dM3 =

coker δ2
w. It then follows from Lemma 5.135.13 that

ker dM2 = H2(M (2); Λ)∼=sH2((M \)(2); Λ) = ker δ2 = ker d3
M,w,

coker dM3 = coker δ2
w = H2((M \)(2); Λw)∼=sH

2(M (2); Λw) = coker d2
M,w.

We can now prove the following proposition, which is the same as Proposition 1.101.10.
Here we use the same choice of [M ] that we just fixed.
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Proposition 5.14. Let M be a closed 4-manifold with a 2-equivalence c : M → Bπ
and let (CM∗ , d

M
∗ ) be the chain complex from a handle decomposition of M . Let

D∗ be a free resolution of Z with Di = CMi for i = 0, 1, 2 and let D′∗ be a free

resolution of Z with D′i = C\i for i = 0, 1, 2. Then the isomorphism Ψ(D∗, D
′
∗) takes

c∗[M ] ∈ H4(π;Zw) to the equivalence class of the extension from Proposition 5.125.12:

0 −→ ker dM2 −→ CM2 ⊕H2(CM∗ ) −→ coker dM3 −→ 0.

Proof. We use the identification of Ψ(D∗, D
′
∗) with (5.55.5). Using the description

of the extension group from Remark 5.25.2, the extension from Proposition 5.125.12 in
Ext1

Λ(coker dM3 , ker dM2 ) is represented by dM3 ∈ HomΛ(CM3 , ker dM2 ). It remains to
show that (5.55.5) sends c∗[M ] to the class [dM3 ] ∈ Ext1

Λ(coker dM3 , ker dM2 ).
Consider the diagram

H4(M ;Zw)

c∗

��

H0(M ;Z) //∼=oo H3(M ; ker dM2 )

∼=
��

H4(π;Zw)
∼= // H1(π; ker dw2 )

∼= // H1(M ; ker dM,w
2 ).

The square commutes by naturality of Poincaré duality in the coefficients. Under
Poincaré duality the fundamental class [M ] ∈ H4(M ;Zw) is mapped to the class in
H0(M ;Z) represented by the augmentation ε : CM0

∼= Λ→ Z. By Lemma 5.115.11, di-
mension shifting maps [ε] to [dM3 ] ∈ H3(M ; ker dM2 ). So [M ] is sent by the top route
to [dM3 ]. On the other hand the bottom-then-up route H4(π;Zw)→ H3(M ; ker dM2 )
is the first three isomorphisms of (5.55.5). So by commutativity these send c∗[M ] to
[dM3 ]. Finally, since P2(M) is obtained from M by attaching cells of dimension 4
and higher, [dM3 ] ∈ H3(P2(M); ker dM2 ) is a pre-image of [dM3 ] ∈ H3(M ; ker dM2 ). It
follows that c∗[M ] is mapped under (5.55.5) to the extension represented by [dM3 ], as
desired. �

6. Detecting the extension class

This section is entirely algebraic. Let hCh2(π) denote the category whose ob-
jects are free Λ-chain complexes C∗ concentrated in non-negative degrees such that
Hn(C∗) = 0 for n 6= 0, 2, together with a fixed identification H0(C∗) = Z, and
whose morphisms are chain maps that induce the identity on H0, considered up
to chain homotopy. Let Λn[2] denote the chain complex given by the based free
Λ-module Λn concentrated in degree 2. We call two chain complexes C∗, C

′
∗ stably

isomorphic if there exists p, q such that C∗⊕Λp[2] and C ′∗⊕Λq[2] are isomorphic in
hCh2(π) i.e. chain homotopy equivalent. We denote the set of stable isomorphisms
classes by sCh2(π).

For the rest of this section fix a free resolution (C∗, d∗) of Z as a Λ-module with
C∗ finitely generated for ∗ = 0, 1, 2. Also fix a complex

· · · → B4
b4−−→ B3

b3−−→ B2

of free Λ-modules that is exact at Bn for n ≥ 3, with B2 and B3 finitely generated.

Furthermore, assume that the dual complex B2 b3−→ B3 b4−→ B4 → · · · is exact at
B3, or equivalently that Ext1

Λ(coker b3,Λ) = 0.
Next we define a map Θ: Ext1

Λ(coker b3, ker d2) → sCh2(π). Recall from Re-
mark 5.25.2 that any element of Ext1

Λ(coker b3, ker d2) can be represented by a map
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f : B3 → ker d2 with f ◦ b4 = 0. For such a map, let Cf be the Λ-chain complex

· · · // B4
b4 // B3

(f,b3)T // C2 ⊕B2
(d2,0) // C1

d1 // C0.

This is our candidate for Θ([f ]). We need to check that it is well-defined.

Lemma 6.1. Suppose that two maps f, g : B3 → ker d2 differ by a coboundary

B3
B3−−→ B2

h−→ ker d2, so represent the same extension class in Ext1
Λ(coker b3, ker d2).

Then [Cf ] = [Cg] ∈ sCh2(π).

Proof. Two maps f, g : B3 → ker d2 represent the same extension class if and only
if f − g = h ◦ b3, for some h : B2 → ker d2 ⊆ C2. We then have the following chain
isomorphism.

· · · // B3

(f,b3)T //

Id

��

C2 ⊕B2

(d2,0) //
(

Id −h
0 Id

)
��

C1
d1 //

Id

��

C0

Id

��
· · · // B3

(g,b3)T // C2 ⊕B2

(d2,0) // C1
d1 // C0

In particular, [Cf ] = [Cg] ∈ sCh2(π). �

Thus we obtain a well-defined map as follows:

Θ: Ext1
Λ(coker b3, ker d2) −→ sCh2(π)

[f ] 7→ [Cf ].

Our next aim is to find a suitable quotient of the domain that converts this map
into an injection. The inclusion coker b3 → coker b3 ⊕ Λ induces an isomorphism
(cf. Lemma 5.85.8)

Ext1
Λ(coker b3, ker d2) −→ Ext1

Λ(coker b3 ⊕ Λ, ker d2),

and hence any automorphism of coker b3 ⊕ Λn acts on Ext1
Λ(coker b3, ker d2).

Lemma 6.2. The map Θ is invariant under the action of α ∈ Aut(coker b3 ⊕ Λn)
on Ext1

Λ(coker b3, ker d2), that is Θ(α · [f ]) = Θ([f ]).

Proof. Let α : coker b3⊕Λn → coker b3⊕Λn be a stable automorphism of coker b3.
This can be lifted to a chain map

· · · // B3

α3

��

(b3,0)T // B2 ⊕ Λn

α2

��

// coker b3 ⊕ Λn

α

��
· · · // B3

(b3,0)T
// B2 ⊕ Λn // coker b3 ⊕ Λn

since the top row is projective and the bottom row is exact. The action of α
on an extension represented by f : B3 → ker d2 is given by precomposition with
α3 : B3 → B3. We have the following chain map:

· · · // B3
(f◦α3,b3,0)T //

α3

��

C2 ⊕ (B2 ⊕ Λn)
(d2,0,0) //

(
Id 0
0 α2

)
��

C1
d1 //

Id

��

C0

Id

��
· · · // B3

(f,b3,0)T // C2 ⊕ (B2 ⊕ Λn)
(d2,0,0) // C1

d1 // C0.
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It remains to prove that the chain map above induces an isomorphism on second
homology, which since it is chain map between bounded chain complexes of f.g.
projective module, implies that it is a chain homotopy equivalence.

To see surjectivity on second homology, consider a pair (x, y, λ) ∈ C2 ⊕B2 ⊕Λn

with x ∈ ker d2. Since α is an isomorphism, there exists (y′, λ′) ∈ B2 ⊕ Λn and
a ∈ B3 with (y, λ) = (b3(a), 0) +α2(y′, λ′). In H2(Cf ⊕Λn[2]), i.e. the homology of
the bottom row, we have

[(x, y, λ)] = [x, b3(a), 0] + [0, α2(y′, λ′)] = [x− f(a), α2(y′, λ′)],

which is the image of (x− f(a), y′, λ′) under the above chain map.
Now, to prove injectivity on second homology, consider a pair (x, y, λ) ∈ C2 ⊕

B2 ⊕ Λn with x ∈ ker d2, and assume that there exists a ∈ B3 with f(a) = x and
(b3(a), 0) = α2(y, λ). Again since α is an isomorphism, this implies that λ = 0 and
that there exists a′ ∈ B3 with b3(a′) = y. We have

(b3(a), 0) = α2(y, 0) = α2(b3(a′), 0) = (b3 ◦ α3(a′), 0) ∈ B2 ⊕ Λn.

Since B4
b4−−→ B3

b3−−→ B2 is exact at B3, there is an element c ∈ B4 with b4(c) =
a−α3(a′). Since f ◦ b4 = 0, we have that x = f(a) = f(b4(c) +α3(a′) = f(α3(a′)).
Hence (x, y, 0) = ((f ◦α3)(a′), b3(a′), 0) and the element (x, y, 0) is trivial in second
homology as desired. �

Let sAut(coker b3) denote the group of stable automorphisms of coker b3 as above.
We can now state the main theorem of this section.

Theorem 6.3. The assignment Θ descends to an injective map

Θ: Ext1
Λ(coker b3, ker d2)/ sAut(coker b3) −→ sCh2(π).

Proof. By Lemma 6.26.2, Θ is well-defined on the quotient by sAut(coker b3). Let
f, g : B3 → ker d2 represent two extensions, and suppose that their images in
sCh2(π) agree. Then there is a chain map

B3

(f,b3,0)T //

h3

��

C2 ⊕B2 ⊕ Λn
(d2,0,0) //

h2

��

C1
d1 //

h1

��

C0

h0

��

// Z

Id

��
B3

(g,b3,0)T
// C2 ⊕B2 ⊕ Λn

(d2,0,0)
// C1

d1

// C0
// Z

that induces an isomorphism on second homology. We can assume that the chain
map h∗ is the identity on C1 and C0.

Consider the diagram with exact rows:

0 // ker(d2, 0, 0)/ im(f, b3, 0)T //

(h2)∗

��

coker(f, b3, 0)T
(d2,0,0) //

(h2)∗

��

im(d2, 0, 0)

Id

��

// 0

0 // ker(d2, 0, 0)/ im(g, b3, 0)T // coker(g, b3, 0)T
(d2,0,0) // im(d2, 0, 0) // 0.

Since h2 induces an isomorphism on second homology, the map coker(f, b3, 0)T →
coker(g, b3, 0)T induced by h2 is an isomorphism by the five lemma. Use the facts
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that the composition B4 → B3
f−→ C2 is trivial and the sequence B2 → B3 → B4 is

exact, to see that the dual of f lifts to a map f̂ : C2 → B2, as in the next diagram.

C2

f∗

��

f̂∗

}}
B2 b3 // B3 // B4

Dualise again to deduce that f : B3 → C2 factors as B3
b3−→ B2

f̂−→ C2. This gives
rise to a commutative square

B3
Id //

(0,b3)T

��

B3

(f,b3)T

��
C2 ⊕B2

(
Id f̂
0 Id

)
// C2 ⊕B2

that induces an isomorphism C2 ⊕ coker b3 ∼= coker(0, b3)T → coker(f, b3)T .
Add the identity on Λn to obtain an isomorphism

C2 ⊕ coker b3 ⊕ Λn ∼= coker(f, b3, 0)T .

Similarly, we obtain an isomorphism C2 ⊕ coker b3 ⊕ Λn ∼= coker(g, b3, 0)T .
In the next diagram we show a composition of these maps that give a stable

automorphism of coker b3 and its resolution.

· · · // B3

(0,b3,0)T//

Id

��

C2 ⊕B2 ⊕ Λn //(
Id f̂ 0
0 Id 0
0 0 Id

)
��

C2 ⊕ coker b3 ⊕ Λn //

∼=
��

0

· · · // B3

(f,b3,0)T//

h3

��

C2 ⊕B2 ⊕ Λn //

h2

��

coker(f, b3, 0)T //

∼=
��

0

· · · // B3

(g,b3,0)T//

Id

��

C2 ⊕B2 ⊕ Λn //(
Id −ĝ 0
0 Id 0
0 0 Id

)
��

coker(g, b3, 0)T //

∼=
��

0

· · · // B3

(0,b3,0)T// C2 ⊕B2 ⊕ Λn // C2 ⊕ coker b3 ⊕ Λn // 0

The induced action on B3 is via h3, so the stable automorphism shown act on a map
f : B3 → ker d2 representing an element of Ext1

Λ(coker b3, ker d2) by pre-composition
with h3, that is f ◦ h3 : B3 → ker d2.

To recap, we started with the chain map h∗ arising from the assumption of two
extensions having equal image in sCh2(π), and we obtained an automorphism of
coker b3, that acts on a representative map B3 → ker d2 in Ext1

Λ(coker b3, ker d2) by
pre-composition with h3. To complete the proof, we have to show that g ◦ h3 and
f represent the same class in Ext1

Λ(coker b3, ker d2).

Recall the definition of f̂ : B2 → C2 from above, and consider the composition

F : B2
(f̂ ,Id,0)T−−−−−−→ C2 ⊕B2 ⊕ Λn

h2−−→ C2 ⊕B2 ⊕ Λn
pr1−−→ C2.
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Now consider the commutative diagram

B3

b3

��

Id // B3

(f,b3,0)T

��

h3 // B3

(g,b3,0)T

��

Id // B3

g

��
B2

(f̂ ,Id,0)T// C2 ⊕B2 ⊕ Λn

(d2,0,0)

��

h2 // C2 ⊕B2 ⊕ Λn
pr1 //

(d2,0,0)

��

C2

d2

��
C1

Id // C1
Id // C1

Commutativity of the three top squares shows that g ◦h3 = F ◦ b3. Commutativity

of the lower two squares pre-composed with (f̂ , Id, 0)T : B2 → C2⊕B2⊕Λn proves

that d2 ◦F = d2 ◦ f̂ . It follows from the first statement that g ◦h3− f = F ◦ b3− f ,

which equals (F − f̂) ◦ b3 : B3 → C2 since f = f̂ ◦ b3. This is in fact a map

(F − f̂)◦ b3 : B3 → ker d2 since d2 ◦F = d2 ◦ f̂ . Thus g ◦h3−f : B3 → ker d2 factors
through B2 and hence represents the trivial extension class. �

Next we check that Θ does not depend on the choice of resolution C∗. Let
(C ′∗, d

′
∗) be another free resolution of Z as a Λ-module with C ′i finitely generated

for i = 0, 1, 2 and let α∗ : C∗ → C ′∗ be a chain homotopy equivalence over Z. Then
α∗ induces a map a : ker d2 → ker d′2 given by restricting α2.

Lemma 6.4. The diagram

Ext1
Λ(coker b3, ker d2)

Θ //

a∗

��

sCh2(π)

Ext1
Λ(coker b3, ker d′2)

Θ

66

commutes.

Proof. First consider the case that α∗ restricted to degrees 0, 1, 2 is a chain homo-
topy equivalence. Then

· · · // B3

Id

��

(f,b3)T // C2 ⊕B2

α2⊕Id

��

(d2,0) // C1

α1

��

d1 // C0

α0

��
· · · // B3

(α2◦f,b3)T // C ′2 ⊕B2

(d′2,0) // C ′1
d′1 // C ′0.

is a chain homotopy equivalence and Θ([f ]) = Θ(a∗[f ]).

Next we will now reduce the lemma to the case C∗ = C ′∗. Let (Fi
Id−→ Fi)[i]

denote the chain complex Fi
Id−→ Fi concentrated in degrees i and i + 1. Applying

Schanuel’s lemma [Sta20Sta20, Tag 00O3Tag 00O3], [Bro82Bro82, Lemma VIII.4.2] inductively, for any
two free resolutions C∗, C

′
∗ of Z, there are free Λ-modules Fi and F ′i such that

C∗ ⊕
⊕

i∈N0
(Fi

Id−→ Fi)[i] and C ′∗ ⊕
⊕

i∈N0
(F ′i

Id−→ F ′i )[i] are isomorphic over Z.

The inclusion of C ′∗ ⊕ (F ′2
Id−→ F ′2)[2] into C ′∗ ⊕

⊕
i∈N0

(F ′i
Id−→ F ′i )[i] as well as

the projection of C∗ ⊕
⊕

i∈N0
(Fi

Id−→ Fi)[i] onto C∗ ⊕ (F2
Id−→ F2)[2] are chain

homotopy equivalences that remain chain homotopy equivalences upon restricting
to degrees 0, 1, 2. It follows from the first paragraph that there is a chain homotopy

https://stacks.math.columbia.edu/tag/00O3
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equivalence β : C ′∗ ⊕ (F ′2
Id−→ F ′2)[2]→ C∗ ⊕ (F2

Id−→ F2)[2] over Z such that, taking
b : ker d′2 → ker d2 to be the restriction of β2, we have Θ = Θ ◦ b∗.

Next we want to relate this to the chain complexes C∗ and C ′∗ before stabilisation.

The inclusion C∗ → C∗ ⊕ (F2
Id−→ F2)[2] is a chain homotopy equivalence whose

induced map on kernels is the inclusion ker d2 → ker d2 ⊕ F2, and similarly for C ′∗.
By definition,

· · · // B3
(f,0,b3)T// C2 ⊕ F2 ⊕B2

(d2,0,0)// C1
d1 // C0 and

· · · // B3
(f,b3)T // C2 ⊕B2

(d2,0) // C1
d1 // C0

represent the same element in sCh2(π). Thus composing C ′∗ → C ′∗ ⊕ (F ′2
Id−→

F ′2)[2]
β−→ C∗ ⊕ (F2

Id−→ F2)→ C∗ gives a chain homotopy equivalence β† : C ′∗ → C∗
over Z with induced map b†∗ such that Θ = Θ ◦ b†∗.

Given any chain homotopy equivalence α : C∗ → C ′∗ over Z we can consider the

composition β† ◦α. Since Θ = Θ ◦ b†∗ for β†, it suffices to show that Θ = Θ ◦ b†∗ ◦ a.
So we may restrict to the case C ′∗ = C∗.

Let α∗ : C∗ → C∗ be a chain homotopy equivalence over Z and let a : ker d2 →
ker d2 be the restriction of α2. As α∗ is a chain homotopy equivalence over Z, it
is chain homotopic to the identity. Let H∗ : C∗ → C∗+1 be such that Id−α∗ =
d∗+1H∗+H∗−1d∗. Then the diagram on the left commutes. Thus also the diagram
on the right commutes.

ker d2
a //

��

ker d2

��

ker d2
a //

��

ker d2

��
C2

α2+H1d2 //

d2

��

C2

d2

��

C2
α2+H1d2 //

d2

��

C2

d2

��
C1

Id // C1 im d2
Id // im d2

On the right the columns are short exact. Apply Ext∗Λ(coker b3,−) to obtain the
following diagram.

· · · // HomΛ(coker b3, im d2) //

Id

��

Ext1
Λ(coker b3, ker d2)

a∗

��

// 0

· · · // HomΛ(coker b3, im d2) // Ext1
Λ(coker b3, ker d2) // 0

Here we use that Ext1
Λ(coker b3, C2) = 0, which since C2 is free follows from the as-

sumption on b3 that Ext1
Λ(coker b3,Λ) = 0. In particular, a∗ : Ext1

Λ(coker b3, ker d2)→
Ext1

Λ(coker b3, ker d2) is the identity. �

Now, to apply this to the CP2-stable classification of 4-manifolds, we need to
investigate the action of sAut(coker b3) on the extension classes for some families of
1-types. More precisely, we choose b3 to be d2

w, the dual of d2 twisted by w : π →
Z/2.
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Lemma 6.5. Assume that H1(π; Λ) = 0 and π is infinite. Then sAut(coker d2
w)

acts on Ext1
Λ(coker d2

w, ker d2) by multiplication by ±1.

Proof. Since π is infinite, H0(π; Λ) = 0. As Λ is isomorphic to Λw as a right
Λ-module, we also have H0(π; Λw) = H1(π; Λw) = 0. Hence the sequence

0 −→ C0 d1
w−−→ C1 (d2

w,0)T−−−−−→ C2 ⊕ Λn −→ coker d2
w ⊕ Λn −→ 0

is exact. Thus every stable automorphism α of coker d2
w lifts to a chain map α∗ as

follows.

C0

α0

��

d1
w // C1

α1

��

(d2
w,0)T // C2 ⊕ Λn

α2

��

// coker d2
w ⊕ Λn

α

��
C0

d1
w // C1

(d2
w,0)T // C2 ⊕ Λn // coker d2

w ⊕ Λn.

The action of α on Ext1
Λ(coker d2

w, ker d2) is given by pre-composition with α1. Let
β∗ be a lift of α−1 to a chain map. Let H∗ : C∗ → C∗−1 be a chain homotopy from
β∗ ◦α∗ to Id. In particular, β0 ◦α0− Id = H1 ◦d1

w. Take duals and twist with w to
obtain α0 ◦ β0 − Id = d1 ◦H1. Hence α0 ◦ β0 induces the identity on coker d1

∼= Z
and thus α0 induces multiplication by plus or minus one on coker d1.

Dualise α∗ and twist with w again to obtain the following diagram, where the
maps αi are the maps dual to αi.

C0 C0
α0oo

G0

xx
C1

d1

OO

C1

d1

OO

α1oo

G1

xx
C2 ⊕ Λn

(d2,0)

OO

C2 ⊕ Λn

(d2,0)

OO

α2oo

Since α0 induces multiplication by plus or minus one on coker d1, α0± Id : C0 → C0

factors through d1. That is, there exists a homomorphism G0 : C0 → C1 with
d1 ◦ G0 = α0 ± Id. This implies d1 ◦ ((α1 ± Id) − G0 ◦ d1) = 0, so there exists
G1 : C1 → C2 ⊕ Λn with α1 ± Id = G0 ◦ d1 + (d2, 0) ◦G1.

Take duals and twist by w one last time to obtain α1 ± Id = d1
w ◦G0 +G1 ◦ d2

w,
where Gi is the map dual to Gi for i = 0, 1.

Now let f : C1 → ker d2 represent an extension Ext1
Λ(coker d2

w, ker d2). In par-
ticular, f ◦ d1

w = 0 and thus

α∗[f ] = [f ◦ α1] = [∓f + f ◦G1 ◦ d2
w] = [∓f ].

Hence α acts by multiplication by ±1 on Ext1
Λ(coker d2

w, ker d2). This completes
the proof of Lemma 6.56.5. �

7. Proof of Theorem AA

Let hCW∗ denote the category whose objects are based connected CW-complexes
and whose morphisms are based homotopy classes of maps. Let hCW2 be the full
subcategory of based, connected, and 3-coconnected (i.e. homotopy groups πi vanish
for i ≥ 3) CW-complexes. Taking the second stage of the Postnikov tower gives
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a functor P2 : hCW∗ → hCW2. As discussed in the introduction, the k-invariant
k(X) ∈ H3(π1(X), π2(X)) of X ∈ CW∗ classifies the fibration

K(π2(X), 2) −→ P2(X) −→ K(π1(X), 1).

Let hCW2(π) be the full subcategory of hCW2 of objects with fundamental group
π. For each X ∈ hCW2(π), define Ξ(X) ∈ sCh2(π) as follows: take a Λ-chain
complex (C∗, d∗) for X and replace it in degrees ≥ 4 by a free resolution of ker d3.

Proposition 7.1. Let M be a 4-manifold with 1-type (π,w) and chain complex
(C∗ = C∗(M ; Λ), d∗). The composition

H4(π;Zw) −→ Ext1
Λ(coker d3, ker d2)/ sAut(coker d3)

Θ−→ sCh2(π)

sends the (twisted) fundamental class c∗[M ] to Ξ(P2(M)).

Proof. Given a 4-manifold M with π1(M) = π and a chosen handle decomposition.
Denote the associated Λ-chain complex by (C∗, d∗). We apply the theory from

Section 66 with · · · → B4 → B3
b3−→ B2 as · · · → C4 → C3

d3−→ C2, a free resolution for
coker(d3). Any two choices of handle decomposition induce chain equivalent chain
complexes C∗, and stably equivalent modules coker d3, it follows from Lemma 6.26.2
and Lemma 6.46.4 that the image of c∗[M ] under the map in the statement of the
proposition does not depend on the choice of handle decomposition of M .

Consider Θ applied to the extension class of π2(M) in Ext1
Λ(coker d3, ker d2).

Since this extension class is represented by the homomorphism d3 : C3 → C2, we
consider chain complex Cd3 :

· · · → C3

(d3,d3)T// C2 ⊕ C2

(d2,0) // C1
d1 // C0.

Use the isomorphism
(

Id 0
− Id Id

)
: C2 ⊕ C2 → C2 ⊕ C2 to see that the previously

displayed chain complex is chain isomorphic to the chain complex Ξ(P2(M)) ⊕
Λrank(C2)[2] (replace the second d3 in (d3, d3) with 0). Hence in sCh2(π), Θ([d3])
agrees with Ξ(P2(M)) as desired. �

Note that each stable automorphism of coker b3 induces an automorphism of
the extension group and hence the trivial element is fixed by the action. Therefore,
combining Theorem 6.36.3 and Proposition 7.17.1 with Theorem 1.111.11 yields the following
corollary.

Corollary 7.2. The CP2-stable diffeomorphism class represented by the trivial ex-
tension is detected by the stable 2-type (π,w, π2, k). More precisely, let K be a
2-complex representing (π,w). For every 1-type (π,w), a 4-manifold M with this
1-type is CP2-stably diffeomorphic to the double N := νK ∪−νK if and only if the
2-types [π2(M), k(M)] = [π2(N), k(N)] are stably isomorphic.

Proof of Theorem AA. By [Geo08Geo08, Proposition 13.5.3 and Theorem 13.5.5], a group π
with one end is infinite and has H1(π; Λ) = 0. Hence Theorem AA (iiii) follows by
combining Theorem 1.111.11 with Theorem 6.36.3, Proposition 7.17.1 and Lemma 6.56.5. In
more detail, recall that Theorem 1.111.11 says that the extension class of π2(M) in
Ext(H2(K; Λw), H2(K; Λ)) ∼= H4(π;Zw) determines c∗[M ] up to sign, which by
Theorem 1.21.2 determines CP2-stable diffeomorphism. By Theorem 6.36.3 and Proposi-
tion 7.17.1 the pair (π2(M), k(M)) determines the extension class, up to the action of
sAut(coker d2

w). By Lemma 6.56.5, the action of sAut(coker d2
w) is just multiplication

by ±1, so altogether (π2(M), k(M)) determines c∗[M ] up to sign.
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If π is torsion-free, then by Stalling’s theorem [Sta68Sta68, Theorems 4.11 and 5.1], π
has more than one end if and only if π ∼= Z or π is a free product of two non-trivial
groups. For π = Z, H4(π;Zw) = 0, hence every pair of 4-manifolds is with a fixed
1-type is CP2-stably diffeomorphic. Hence the conclusion of Theorem AA holds for
π = Z for trivial reasons.

For π ∼= G1 ∗ G2, we have H4(π;Zw) ∼= H4(G1;Zw1) ⊕ H4(G2;Zw2), where wi
denotes the restriction of w to Gi, i = 1, 2. Hence CP2-stably any 4-manifold with
fundamental group π is the connected sum of manifolds with fundamental group
G1 and G2. Therefore, Theorem AA (ii) follows in this case by induction, with base
cases π = Z or the groups with one end of (iiii).

If π is finite then H1(π; Λ) = 0 by [Geo08Geo08, Proposition 13.3.1]. If multiplication
by 4 or 6 annihilates H4(π;Zw), then the subgroup generated by c∗[M ] is cyclic
of order 2, 3, 4 or 6. In each case it has a unique generator up to sign and hence
it determines c∗[M ] up to a sign. As a consequence, Theorem AA (iiiiii) follows from
Corollary 4.34.3, which shows that the subgroup generated by c∗[M ] is determined by
the 2-type of M . �

8. Fundamental groups of aspherical 4-manifolds

In this section, we fix a closed, connected, aspherical 4-manifold X with orien-
tation character w and fundamental group π. We can identify

H4(π;Zw)/±Aut(π) ∼= H4(X;Zw)/±Aut(π) ∼= Z/± ∼= N0

and write |c∗[M ]| for the image of c∗[M ] under this sequence of maps.

Theorem 8.1. Let M be a 4-manifold with 1-type (π,w) and classifying map
c : M → X = Bπ.

(1) If |c∗[M ]| 6= 0, then H1(π;π2(M)w) is a cyclic group of order |c∗[M ]|.
(2) If |c∗[M ]| = 0, then H1(π;π2(M)w) is infinite.

Thus two 4-manifolds M1 and M2 with fundamental group π and orientation char-
acter w are CP2-stably diffeomorphic if and only if they have stably isomorphic
second homotopy groups π2(M1)⊕ Λr1 ∼= π2(M2)⊕ Λr2 for some r1, r2 ∈ N0.

Proof. For the proof, we fix twisted orientations on M and X. In particular this
determines an identification H4(X;Zw) = Z.

Since c : M → X induces an isomorphism on fundamental groups, the map
c∗ : H1(X;Z)→ H1(M ;Z) is an isomorphism. Consider the following commutative
square.

H3(M ;Zw)
c∗ // H3(X;Zw)

H1(M ;Z)

−∩[M ] ∼=

OO

H1(X;Z)
c∗

∼=
oo

−∩c∗[M ]

OO

Since H1(X;Z) is torsion free and capping with [X] is an isomorphism, capping
with c∗[M ] is injective if c∗[M ] 6= 0. Thus from Theorem 4.14.1 we directly obtain the
isomorphism Z/|c∗[M ]| ∼= H1(π;π2(M)w).

If c∗[M ] = 0, then it also follows from Theorem 4.14.1 that Z ∼= H4(X;Zw) is a
subgroup of H1(π;π2(M)w), and hence the latter is infinite. �
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We can also show that under certain assumptions, |c∗[M ]| can be extracted from
the stable isomorphism class of Zw ⊗Λ π2(M), an abelian group that is frequently
much easier to compute than the Λ-module π2(M).

Theorem 8.2. In the notation of Theorem 8.18.1, assume that H1(X;Z) 6= 0. Then

(1) If c∗[M ] 6= 0, then |c∗[M ]| is the highest torsion in Zw ⊗Λ π2(M), that is
the maximal order of torsion elements in this abelian group.

(2) If H2(X;Z) has torsion, then |c∗[M ]| is completely determined by the tor-
sion subgroup of Zw ⊗Λ π2(M). This torsion subgroup is trivial if and only
if |c∗[M ]| = 1.

(3) If H2(X;Z) is torsion-free, then |c∗[M ]| = 1 if and only if π2(M) is projec-
tive, and otherwise |c∗[M ]| is completely determined by the torsion sub-
group of Zw ⊗Λ π2(M). This torsion subgroup is trivial if and only if
|c∗[M ]| ∈ {0, 1}.

Except for the statement that c∗[M ] corresponds to the highest torsion in Zw⊗Λ

π2(M), the above theorem can be proven more easily using the exact sequence from
Theorem 4.14.1. But since we believe that this statement is worth knowing, we take a
different approach and start with some lemmas. For the lemmas we do not yet need
the assumption that H1(π;Z) = H1(X;Z) 6= 0; we will point out in the proof of
Theorem 8.28.2 where this hypothesis appears. Choose a handle decomposition of X
with a single 4-handle and a single 0-handle and let (C∗, d∗) denote the Λ-module
chain complex of X associated to this handle decomposition.

Lemma 8.3. The group Ext1
Λ(coker d3, ker d2) ∼= H4(π;Zw) ∼= Z is generated by

0 −→ ker d2
i−→ C2

p−→ coker d3 −→ 0.

Proof. By Proposition 1.101.10 the extension 0 → ker d2
i−→ C2

p−→ coker d3 → 0 cor-
responds to c∗[X] ∈ H4(π;Zw), where c : X → Bπ is the map classifying the
fundamental group. Since in this case X is a model for Bπ, we can take c = IdX
with [X] a generator of H4(X;Zw). �

Lemma 8.4. Using the generator from Lemma 8.38.3, the extension corresponding to
m ∈ Z is given by

0 −→ ker d2
(0,Id)T−−−−→ (C2 ⊕ ker d2)/{(i(a),ma) | a ∈ ker d2}

p◦p1−−−→ coker d3 −→ 0,

where p1 is the projection onto the first summand.

Note that m = 0 gives the direct sum E0 = ker d2 ⊕ coker d3.

Proof. In the case m = 1, the group (C2⊕ ker d2)/{(i(a), a) | a ∈ ker d2} is isomor-
phic to (C2 ⊕ ker d2)/{(0, a) | a ∈ ker d2} ∼= C2, where this isomorphism is induced
by the isomorphism C2⊕ker d2 → C2⊕ker d2 given by (c, a) 7→ (c− i(a), a). Under
this isomorphism the extension from the lemma is mapped to the extension from
Lemma 8.38.3. Hence it suffices to show that the Baer sum of two extension for m,m′

as in the lemma is isomorphic to the given extension for m+m′.
Let L be the submodule of C2⊕ker d2⊕C2⊕ker d2 consisting of all (c1, a1, c2, a2)

with p(c1) = p(c2), let L′ be the submodule

L′ := {(i(a),ma+ b, i(a′),m′a′ − b) | a, a′, b ∈ ker d2}
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and let E := L/L′. The Baer sum [Wei94Wei94, Definition 3.4.4.] of the extensions for
m and m′ is given by

0 −→ ker d2 −→ E −→ coker d3 −→ 0,

where the map ker d2 → E is given by a 7→ [0, a, 0, 0] and the map E → coker d3 is
given by [(c1, a1, c2, a2)] 7→ p(c1). The map

f : L −→ C2 ⊕ ker d2 ⊕ ker d2 ⊕ ker d2

(c1, a1, c2, a2) 7→ (c1, a1 + a2 +m′(c1 − c2), c2 − c1, a2)

defines an isomorphism, and the subset L′ is mapped to

f(L′) = {(i(a), (m+m′)a, a′ − a,m′a′ − b) | a, a′, b ∈ ker d2}
= {(i(a), (m+m′)a, a′, b) | a, a′, b ∈ ker d2}.

Hence f induces an isomorphism

E ∼= (C2 ⊕ (ker d2)3)/f(L′) ∼= (C2 ⊕ ker d2)/{(i(a), (m+m′)a) | a ∈ ker d2}.

This defines an isomorphism from the Baer sum to the extension for m+m′ from
the statement of the lemma. �

Lemma 8.5. Let 0 → ker d2 → Em → coker d3 → 0 be the extension for m ∈ Z
from Lemma 8.48.4. Then

Zw ⊗Λ Em ∼=
(
(Zw ⊗Λ C2)⊕ (Zw ⊗Λ C3)

)
{(Idw

Z
⊗d3)a,ma) | a ∈ Zw ⊗Λ C3}

.

Proof. Note that IdZw ⊗d4 = 0, since X has orientation character w and thus
H4(X;Zw) ∼= Zw ⊗Λ C4

∼= Z. By exactness, ker d2 = im d3
∼= coker d4. By right

exactness of the tensor product, it follows that Zw ⊗Λ ker d2
∼= coker(IdZw ⊗d4) ∼=

Zw ⊗Λ C3. Tensor the diagram

C3

"" ""

d3 // C2

ker d2

i

<<

with Zw over Λ, to obtain

Zw ⊗Λ C3

∼=

''

IdZw ⊗d3 // Zw ⊗Λ C2

Zw ⊗Λ ker d2

IdZw ⊗i
77

The lemma now follows from right exactness of the tensor product. �

Proof of Theorem 8.28.2. Let Em be as in Lemma 8.58.5. By Proposition 1.91.9 and Propo-
sition 1.101.10, π2(M) is stably isomorphic to Em as a Λ-module if c∗[M ] = ±m. All
of the conditions appearing in Theorem 8.28.2 are invariant under adding a free Λ-
summand to π2(M). Since for any extension and its negative, the middle groups
are isomorphic, we have Em ∼= E−m. Hence we can only obtain a distinction up to
sign.
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The boundary map IdZw ⊗d4 : Zw⊗ΛC4 → Zw⊗ΛC3 vanishes sinceH4(X;Zw) ∼=
Z and X has a unique 4-handle. Hence H3(X;Zw) ∼= ker(IdZw ⊗d3). By Poincaré
duality

H1(π;Z) ∼= H1(X;Z) ∼= H3(X;Zw) ∼= ker(IdZw ⊗d3).

Claim. The cokernel of IdZw ⊗d3 : Zw ⊗Λ C3 → Zw ⊗Λ C2 is stably isomorphic to
H2(π;Zw) ∼= H2(π;Z).

We have a cochain complex:

Zw ⊗Λ C3
IdZw ⊗d3 // Zw ⊗Λ C2

IdZw ⊗d2 // Zw ⊗Λ C1

whose cohomology ker(IdZw ⊗d2)/ im(IdZw ⊗d3) is isomorphic to H2(π;Zw). There
is an exact sequence:

0 −→ ker(IdZw ⊗d2)

im(IdZw ⊗d3)
−→ Zw ⊗Λ C2

im(IdZw ⊗d3)
−→ Zw ⊗Λ C2

ker(IdZw ⊗d2)
−→ 0.

Since Zw ⊗Λ C2/ ker(IdZw ⊗Λd2) ∼= im(IdZw ⊗d3), and im(IdZw ⊗d2) as a sub-
module of the free abelian group Zw ⊗Λ C1 is free, we see that there is a stable
isomorphism of the central group

(Zw ⊗Λ C2)/ im(IdZw ⊗d3) = coker(IdZw ⊗d3 : Zw ⊗Λ C3 −→ Zw ⊗Λ C2)

with H2(π;Zw), as claimed.
By applying elementary row and column operations, IdZw ⊗d3 : Zw ⊗Λ C3 →

Zw ⊗Λ C2 can be written as

(8.6) Za ⊕ Zk
( 0 0

0 D )
−−−−→ Zb ⊕ Zk,

with a ≥ 1, k, b ≥ 0 and D a diagonal matrix with entries δ1, . . . , δk ∈ N \ {0}.
In order to see that a ≥ 1, we use that the kernel is H1(π;Z) together with the
hypothesis that H1(X;Z) ∼= H1(π;Z) 6= 0.

Using the description from Lemma 8.58.5, stably

Zw ⊗Λ Em ∼=s (Z/mZ)a ⊕
k⊕
i=1

Z/gcd(δi,m)Z.

If m 6= 0, then the highest torsion in Zw ⊗Λ Em is m-torsion. Thus Em is not iso-
morphic to Em′ whenever m 6= m′ and both are nonzero. It remains to distinguish
E0 from Em for m 6= 0 (recall gcd(δi, 0) = δi).

First let us assume that the torsion subgroup TH2(π;Z) is nontrivial. Then the
cokernel of (8.68.6) is not free, and hence there exists 1 ≤ j ≤ k with δj > 1. Thus

Zw ⊗Λ E0
∼=
⊕k

i=1 Z/δiZ is not torsion free. Since Zw ⊗Λ Em can only contain
δi-torsion if δi divides m, Zw ⊗Λ E0 and Zw ⊗Λ Em can only be stably isomorphic
if all the δi divide m. This already implies |m| > 1. But in this case

Zw ⊗Λ Em ∼= (Z/mZ)a ⊕
k⊕
i=1

Z/δiZ ∼= (Z/mZ)a ⊕ Zw ⊗Λ E0,

and so Zw ⊗Λ E0 and Zw ⊗Λ Em are not stably isomorphic, since a ≥ 1. This
completes the proof of case where TH2(π;Z) is nontrivial.

If H2(π;Z) is torsion free, then all the δi are 1 and Zw ⊗Λ Em ∼=s (Z/mZ)a.
This already distinguishes the cases |m| > 1 and m ∈ {0,±1}. For m = ±1, we
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have Em ∼= C2 is free and for m = 0 we have E0 = ker d2 ⊕ coker d3. Note that
ker d2 is not projective, since otherwise

0 −→ ker d2 −→ C2 −→ C1 −→ C0

would be a projective Λ-module resolution for Z, which cannot be chain equivalent
to the Λ-module chain complex of a closed aspherical 4-manifold with fundamental
group π. Therefore, E0 is not projective. �

Remark 8.7. Note that the assumption that H1(X;Z) ∼= H1(π;Z) 6= 0 is equiva-
lent to the abelianisation πab being infinite, since H1(π;Z) = HomZ(πab,Z) and πab

is finitely generated. This assumption is crucial; without it there exist m > m′ ≥ 0

with Zw ⊗Λ Em ∼= Zw ⊗Λ Em′ . For example this would happen for m =
∏k
i=1 δi

and m′ = 2m, where the δi are as in the proof of Theorem 8.28.2.

9. Examples demonstrating necessity of hypotheses and data

In the preceding sections we saw that for large classes of finitely presented groups,
such as infinite groups π with H1(π; Λ) = 0, the quadruple (π1, w, π2, k) detects
the CP2-stable diffeomorphism type. Moreover for fundamental groups of aspheri-
cal 4-manifolds even (π1, w, π2) suffices. In this section we give examples where the
data (π1, w, π2, k) does not suffice to detect the CP2-stable diffeomorphism classi-
fication, showing that the hypothesis H1(π; Λ) = 0 is required. We also provide
examples where the data is sufficient to detect the classification, but the k-invariant
is relevant, so all of the data is necessary.

9.1. The 2-type does not suffice in general. In this section, as promised in
Section 1.21.2, we give examples of orientable manifolds that are not CP2-stably dif-
feomorphic, but with isomorphic 2-types.

It will be helpful to recall the construction of 3-dimensional lens spaces Lp,q.
Start with the unit sphere in C2 and let ξ be a pth root of unity. On the unit
sphere, Z/p acts freely by (z1, z2) 7→ (ξz1, ξ

qz2) for 0 < q < p such that p, q are
coprime. The quotient of S3 ⊂ C2 by this action is Lp,q.

Now fix an integer p ≥ 2, let π := Z/p×Z and consider the 4-manifolds Np,q :=

Lp,q × S1. Note that π2(Np,q) = π2(Ñp,q) = π2(S3 × R) = 0. Thus the stable
Postnikov 2-type is trivial for all p, q, and the number q cannot possibly be read off
from the 2-type.

Nevertheless, we will show below that for most choices of p, there are q, q′ for
which the resulting manifolds Np,q and Np,q′ are not CP2-stably diffeomorphic.
The smallest pair is N5,1 and N5,2, corresponding to the simplest homotopically
inequivalent lens spaces L5,1 and L5,2 with isomorphic fundamental groups. In
general, compute using the equivalence of (ii) and (iviv) of Proposition 9.29.2 below.

Although π is infinite, by the following lemma the group π has two ends, so these
examples are consistent with our earlier investigations.

Lemma 9.1. We have that H1(π; Λ) ∼= Z.

Proof. We compute using the fact that the manifold can be made into a model
for Bπ by adding cells of dimension 3 and higher, which do not alter the first
cohomology.

H1(π; Λ) ∼= H1(Np,q; Λ)
PD∼= H3(Np,q; Λ) ∼= H3(Ñp,q;Z) ∼= H3(S3 ×R;Z) ∼= Z. �
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Proposition 9.2. The following are equivalent:

(i) Np,q and Np,q′ are CP2-stably diffeomorphic;
(ii) c∗[Np,q] = c∗[Np,q′ ] ∈ H4(Z/p× Z)/±Aut(Z/p× Z);

(iii) c∗[Lp,q] = c∗[Lp,q′ ] ∈ H3(Z/p)/±Aut(Z/p);
(iv) q ≡ ±r2q′ mod p for some r ∈ Z;
(v) Lp,q and Lp,q′ are homotopy equivalent;

(vi) The Q/Z-valued linking forms of Lp,q and Lp,q′ are isometric.

Proof. Items (ii) and (iiii) are equivalent by Theorem 1.21.2. By the Künneth theorem,

H4(Z/p× Z) ∼= H3(Z/p)⊗Z H1(Z) ∼= H3(Z/p) ∼= Z/p.

The image of c∗[Lp,q] ∈ H3(Z/p) under this identification is precisely c∗[Np,q], since
BZ = S1. Thus (iiiiii) and (iiii) are equivalent by the construction of Np,q.

Let m be such that mq = 1 mod p. Then there is a degree m map g : Lp,q → Lp,1
that induces an isomorphism on fundamental groups, given by [z1, z2] 7→ [z1, z

m
2 ].

Take c∗[Lp,1] as the generator of H3(Z/p). Then c∗ ◦ g∗[Lp,q] = mc∗[Lp,1] cor-
responds to the element m = q−1 ∈ Z/p ∼= H3(Z/p). An element r ∈ (Z/p)× ∼=
Aut(Z/p) acts onH1(Z/p) ∼= Z/p and hence also onH2(Z/p) ∼= Ext1

Z
(H1(Z/p),Z) ∼=

Z/p by taking the product with r. Since H∗(Z/p) ∼= Z[x]/(px), where the generator
x lies in degree two [Hat02Hat02, Example 3.41], r acts on H4(Z/p) ∼= Ext1

Z
(H3(Z/p),Z)

via multiplication by r2. Therefore, the action of r on H3(Z/p) ∼= Z/p is also
multiplication by r2. Hence (iiiiii) and (iviv) are equivalent.

Items (iviv) and (vv) are equivalent by [Whi41Whi41, Theorem 10]. Seifert [Sei33Sei33] com-
puted that the linking form H1(Lp,q)×H1(Lp,q)→ Q/Z is isometric to

Z/p× Z/p → Q/Z
(x, y) 7→ −qxy/p.

For q and q′, the associated forms are isometric up to a sign if and only if (iviv) is
satisfied. Thus (iviv) and (vivi) are equivalent. �

9.2. The k-invariant is required in general. In this section we give examples
where the CP2-stable classification is determined by the 2-type, but in contrast to
the case that π is the fundamental group of some aspherical 4-manifold, here the
stable isomorphism class of the second homotopy group is not sufficient to determine
the classification. As with the examples in the previous section, these examples can
be compared with [Tei92Tei92, Conjecture A], although we remark that this conjecture
was only made for finite groups.

Let X be a closed, oriented, aspherical 3-manifold with fundamental group G.
Let p ≥ 2, let 1 ≤ q < p, and let Xp,q := Lp,q#X and Mp,q := Xp,q × S1. Then
Mp,q is a 4-manifold with fundamental group π := (Z/p ∗G)× Z.

Lemma 9.3. The group π is infinite and has H1(π; Λ) = 0. In particular, the pair
(π2, k) suffices for the CP2-stable classification over π of oriented manifolds.

Proof. Certainly π = (Z/p ∗ G) × Z is infinite. Since π1(X) = G is nontrivial,

π1(Xp,q) = Z/p ∗ G is infinite, and hence X̃p,q is a noncompact 3-manifold, so

H3(X̃p,q;Z) = 0. Since π1(Mp,q) = π, we see that

H1(π; Λ) = H1(Mp,q; Λ) ∼= H3(Mp,q; Λ) ∼= H3(X̃p,q ×R;Z) ∼= H3(X̃p,q;Z) = 0.

The second sentence of the lemma then follows from Theorem AA (iiii). �
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Lemma 9.4. The second homotopy group π2(Xp,q) is independent of q.

Proof. We show the following statement, from which the lemma follows by taking
Y1 = Lp,q and Y2 = X: let Y1, Y2 be closed, connected, oriented 3-manifolds with
π2(Y1) = π2(Y2) = 0. Suppose that G1 := π1(Y1) is finite and G2 := π1(Y2) is
infinite. Then π2(Y1#Y2) depends only on G1 and G2.

To investigate π2(Y1#Y2) = H2(Y1#Y2;Z[G1 ∗ G2]), we start by computing
H2(cl(Yi \D3);Z[G1 ∗G2]). For the rest of the proof we write

R := Z[G1 ∗G2].

Consider the Mayer-Vietoris sequence for the decomposition Yi = cl(Yi\D3)∪S2D3:

0 −→ H3(Yi;R)

∂−→ H2(S2;R) −→ H2(cl(Yi \D3);R)⊕H2(D3;R) −→ H2(Yi;R).

We have H2(Yi;R) ∼= R⊗Z[Gi] π2(Yi) = 0, H2(S2;R) ∼= R ∼= R⊗Z[Gi] Z[Gi] and

H3(Yi;R) =

{
R⊗Z[Gi] Z |Gi| <∞
0 |Gi| =∞.

In the case that Gi is finite, the boundary map is given by

Id⊗N : R⊗Z[Gi] Z −→ R⊗Z[Gi] Z[Gi],

where N : 1 7→
∑
g∈Gi g sends the generator of Z to the norm element of Z[Gi].

Thus

H2(cl(Yi \D3);R) =

{
coker(Id⊗N) |Gi| <∞
R |Gi| =∞.

Now, as in the hypothesis of the statement we are proving, take G1 to be finite
and G2 infinite. Then the Mayer-Vietoris sequence for Y1#Y2,

0 −→ H3(Y1#Y2;R)

→ H2(S2;R) −→ H2(cl(Y1 \D3);R)⊕H2(cl(Y2 \D3);R) −→ H2(Y1#Y2;R)→ 0

becomes

0 −→ R
j−→ coker(Id⊗N)⊕R −→ H2(Y1#Y2;R) −→ 0.

From the first Mayer-Vietoris sequence above, in the case that Gi is infinite, we see

that the map R
j−→ coker(Id⊗N) ⊕ R pr2−−→ R is an isomorphism, where pr2 is the

projection to the R summand. It follows that

π2(Y1#Y2) ∼= H2(Y1#Y2;R) ∼= coker
(

Id⊗N : R⊗Z[Gi] Z −→ R⊗Z[Gi] Z[Gi]
)
.

This R-module depends only on the groups G1 and G2, as desired. �

Proposition 9.5. For π = (Z/p ∗ G) × Z as above, the stable isomorphism class
of the pair (π2, k) detects the CP2-stable diffeomorphism type of orientable mani-
folds with fundamental group isomorphic to π, but the stable isomorphism class of
the second homotopy group alone does not. That is, there exists a pair of mani-
folds M,M ′ with this fundamental group such that π2(M) and π2(M ′) are stably
isomorphic but M and M ′ are not CP2-stably diffeomorphic.
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Proof. Let t : Z/p ∗ G → Z/p be the projection. Then under the induced map
t∗ : Ω3(Z/p ∗ G) → Ω3(Z/p) the manifold Xp,q becomes bordant to Lp,q, because
π1(X) = G maps trivially to Z/p under t. Cross this bordism with S1 to see that
Mp,q = Xp,q × S1 is bordant over Z/p× Z to Lp,q × S1.

If the manifolds Mp,q and Mp,q′ are CP2-stably diffeomorphic, they are bordant
over π, for some choice of identification of the fundamental groups with π, because
bothMp,q and Mp,q′ have signature zero. Therefore the two 4-manifolds are bordant
over Z/p× Z,. Combine this with the previous paragraph to see that Lp,q × S1 is
bordant to Lp,q′ × S1 over Z/p × Z. As we have seen in Section 9.19.1, this implies
that q = ±r2q′ mod p for some r ∈ N by Proposition 9.29.2. But there are choices of
p, q and q′ such that this does not hold, so there are pairs of manifolds in the family
{Mp,q} with the same p that are not CP2-stably diffeomorphic to one another.

On the other hand, we have π2(Mp,q) = π2(Xp,q×S1) = π2(Xp,q). By Lemma 9.49.4,
π2(Xp,q) is independent of q. Hence π2(Mp,q) ∼= π2(Mp,q′) as Λ-modules for any
q, q′ coprime to p with 1 ≤ q, q′ < p.

We remark that by Lemma 9.39.3, we know that Theorem AA applies, and so the
k-invariants must differ for q and q′ such that Lp,q and Lp,q′ fail to be homotopy
equivalent to one another. �
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