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LOCAL CONTRACTIBILITY OF THE GROUP OF HOMEOMORPHISMS OF A MANIFOLD

A. V. CERNAVSKIY UDC 513.836

In this paper the group of homeomorphisms of an arbitrary topological manifold is considered,
with either the compact-open, uniform (relative to a fixed metric), or majorant topology. In the
latter topology, a basis of neighborhoods of the identity is given by the strictly positive func-
tions on the manifold, a homeomorphism being in the neighborhood determined by such a func-
tion if it moves each point less than the value of this function at the point. The main result
of the paper is the proof of the local contractibility of the group of homeomorphisms in the
majorant topology. Examples are easily constructed to show that this assertion is false for
the other two topologies for open manifolds. In the case of a compact manifold the three topol-
ogies coincide. In conclusion a number of corollaries are given; for example, if a homeomor-

phism of a manifold can be approximated by stable homeomorphisms then it is itself stable.

§1. Statement of the problem and formulation of the results

1.1. In this paper the local contractibility of the group of homeomorphisms of a metrizable mani-
fold M with a fixed metric plx, y) is studied. We denote this group by © = (M) and endow it with
one of the three topologies: compact-open, uniform, majorant. The group $(M) when so topologized
will be denoted by @C(M), @U(M), or 5§m(M) respectively, or by 3727_(M) if the topology is unspecified.
A basis of neighborhoods of the identity e = e(M) (the identity mapping) is given in @C(M) by the
pairs (K, ¢), where ¢> 0 and K is a compact subset of M; the neighborhood determined by the pair
(K, o is denoted by QK,f(e), and consists of all homeomorphisms £: M — M such that plx, hx) <e¢
for x € K. A basis of neighborhoods of ¢ in Sﬁu(M) is given by the numbers ¢ > 0; the neighborhood
determined by ¢ is denoted by Qe(e), and consists of all homeomorphisms % such that p(x, hx) < ¢
forall x € M. In @m(M) a basis of neighborhoods of the identity is given by the continuous strictly
positive functions on ¥, which we shall call majorants: the neighborhood determined by the majorant
f: M — (0, =) is denoted by Qf(e), and consists of all & such that plx, hx) < fx for all x € M.

The main result of the paper is the proof of the local contractibility of Sﬁm(M) for all manifolds
and of @C(M) for compact manifolds. However the exact sense of, at any rate, the first assertion
requires clarification. This is the main purpose of the first section. A complete formulation of the
results is given in subsections 13, 14, 21, and 22 of the present section and in §5. An outline of

the proof is given in subsection 1.26.

We denote by [X), Int X, and FrX the closure, interior, and frontier of the set X in the manifold
M. By OM and IntM we denote the boundary and the interior of the manifold; 0.(X) is the e-neighbor-
hood of the set X in M. We denote the empty set by A.
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288 A. V. CERNAVSKIT

1.2. It is easy to see that for all three values of 7 the group Sﬁr(M) is a topological group, and
a topological group of transformations of M. One must verify the continuity of the three mappings

1) 3§T(M) X @T(M) — @TM: (h, 8') — ki’

2) §,00 — §.00: h— A7,

3) S§T(M) xM—-M: (h, x) — hx.

The continuity of the first and third mappings is almost obvious, and that of the second is clear for
r=u and r=m. Let us verify the continuity of the second mapping for r = ¢ at the point e (cf. [1]).

Let QK,e(e) be a given neighborhood of € in @c(M). Let K' be a compact subset of M con-
taining K in its interior, and ¢’ a positive number less than ¢, so small that the image of K’ under
any (homeomorphic) ¢’ -shift of K' in M contains K in its interior. The existence of such an ¢’ fol-
lows from homology considerations: it is sufficient to require that on FrK ' an ¢’ -shift be homotopic
to the identity mapping outside K. Then it is clear that if & € QK ' (e) then 71 € QK,E(e).

1.3. Clearly, for compact manifolds the three topologies coincide. The topology 7= u depends in
general on the metric in M, but occupies an intermediate position between the topologies 7 = ¢ and

r=m (which are independent of the metric), in the sense that the identity mappings

Om (M) = Qu (M) — K (M)
are continuous (they are contractions).

1.4. Definition 1. An isotopy of the manifold ¥ means a layer homeomorphism of M x [0, 1] onto
itself.

Being a layer homeomorphism means that the isotopy ®: M x {0, 1] — M x [0, 1] determines
homeomorphisms (‘I’)E M — M such that ®lx, t) = ((q))tx, t) for each point (x, t) € M x [0, 1]. We
shall say that ® joins the homeomorphisms (®); and (@), or that it takes (&) into (D).

(In order to distinguish the lower index which gives the value of the isotopy parameter ¢, we shall

always attach it to a parenthesis, so that it will always be the outermost index.)

1.5. Remark 1. It is sufficient to require that ® be a one-to-one continuous layer mapping of
M x [0, 1] onto itself, since from the theorem on invariance of domains, applied to the manifold M x
{0, 1], follows the continuity of the mapping inverse to ® (cf. [2]).

1.6. Our definition of isotopy does not depend on the topology in the group of homeomorphisms
(). It might seem that for the study of homotopic properties of these groups, for example local con-
tractibility, the definition of isotopies as paths in 857(M) would be more natural. As is well known,
the two definitions are equivalent for r = ¢ (see [3], [4]). This is not so in the other two cases.

Namely, the group Sﬁm(M) for a noncompact manifold possesses no countable basis, and moreover
if k,— & is a convergent sequence of homeomorphisms then from some index on they all coincide
with their limit outside some compact set, the same for all of them. Indeed, otherwise there exists a
sequence of pairwise distinct homeomorphisms converging to e and a sequence of points fxi} with
no convergent subsequence, such that h %, # x,. By this property of {x } we can find a majorant f
with the property that fx, < p(x,, hx ), and then all the %, lie outside Qf(e), so that it is not true that
limhi = e. Hence a path in ggm(M) can only join homeomorphisms that coincide outside some compact
set. Thus in the general case 5m(M) is not even locally arcwise connected when M is noncompact.

As regards the topology 7 = u, convergence in the sense of this topology is uniform convergence, whence it
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is easily deduced that if J: [0, 1] — $ (M) is a continuous mapping of an interval then there must exist
a function x (¢, ¢'), ¢, t' €0, 1], defined on the unit square, such that y (¢, t') = y(¢', ¢),

x(t, t)=0and y(t, t')>0 for t #¢t', and p(J(t) %, J(t ' )x) <y (¢, t') for ¥ € M. Again, this condi-
tion is too restrictive,

1.7. We consider the set of all isotopies of M as a subgroup S(M) of the group M x [0, 17,
and we topologize it as a subspace of $_ (M x [0, 11). The group I(M) with this topology is denoted
by J_(M). (The direct product metric is taken in ¥ x [0, 11.))

1.8. We introduce some further concepts and notation. We denote the unit of the group %r(M)
(the identity isotopy) by E, or occasionally, if necessary, by E(M). The isotopy inverse to ® is
denoted by ®71: (fI)_l)t = (((I))t)—l. If for the isotopy @ we have (®) x = hx for all ¢ € [0, 1] on the
set X CM, then we shall say that ® is identically equal to % on X, and write ® =4 on X.

The support of an isotopy ® is a set S = S(®) such that all the ((I))z coincide outside S (but are
not necessarily the identity!).

As well as the product ®¥ of isotopies ¥ and ® (where (®V), = (CD)t(‘P)t), we shall also con-
sider their composition ¥ ©®, which is defined, provided only that (‘I’)l = ((D)O, as the composition

of homotopies:

(‘PO(D)z:(‘P)Zt,for 0<t<ly, (‘I’OCD)Z=(®) for Iy <t <1.

2t-1°

In addition, we shall need to consider the product ®% of an isotopy and a homeomorphism, which
we understand as the product of ® and the isotopy ¥ = A.

Finally we shall consider infinite compositions. If a sequence of isotopies ‘I)l, (DZ, <+« is given
then their infinite composition is defined only if ((Diﬂ)o = ((Di)l’ i > 1, and it is the layer homeomor-
phism ®: M x 10, 1) — M x [0, 1), where ((D)z = ((I)i)(i+1)(ti"i+1) for t € G- 1)/i, i/t + 1)). We
shall say that the sequence {® } converges if its infinite composition is defined and extends to a
continuous mapping of M x [0, 1] onto itself. For this it is obviously necessary and sufficient that
there should be a continuous mapping (@) : M — M, where ((D)l = lim (CI)i)ti , in the sense 7= ¢, for
any sequence ¢ , where all the ¢, € [0, 1]. We call (CI))l the limit mapping, and ®, completed by
(<I))1 in the way described, the limit pseudoisotopy. If (CI))I is a homeomorphism then ® is an isot-
opy, by Remark 1 (see 1.5), and we shall also call it the limit isotopy.

1.9. Remark 2. For any neighborhood (e) in the group 357/(M) there is a neighborhood D(E) such
that for @ € H(E) all the homeomorphisms (®), lie in Qe).

In the case 7= ¢, for a neighborhood QK,e(e) in § (M) we take as the required 9(E) the neigh-
borhood QKX[0,1],5(E) n 3C(M) in 3C(M). In the case 7= u, for the neighborhood Qf(e) we take the
neighborhood £ E)N S, M) in %‘u(le. In the case 7= M, for the neighborhood (2 (e) we take the
neighborhood QT(E) N 3, (M), where { is the majorant equal to f(x) for all points (x, t), ¢t € [0, 1].

We note also that for each majorant f on M x [0, 1] there is a majorant f' on M such that
flx, ) < f'x forall x € M.

1.10. We now pass to definitions concerning homotopies in 557(M).

Definition 2. 4 subset AC8§_ deforms on BC§_ into I' CH (AYT CB) if there is a continu-
ous mapping T: A — %r such that for 2 € A we have
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D (Y (W) =h
2) (Y (h)):€B for te[0,1];
3) (Y (h) €T.

We now introduce the main concept of this paper.

Definition 3. The group $,(M) is called locally contractible if there is a neighborhood of ¢ in
9,(M) which deforms on 8, ) into e.

1.11. Remark 3. In this definition of local contractibility we may always assume that 1 (¢) = E,
since any contraction Y (4) can be replaced by the contraction Y’ (k) = (Y (e))™* Y (), having this
property. Further, an arbitrary neighborhood ((e) may be taken as B, provided that a sufficiently
small neighborhood of e is takenas A = '(e). For by Remark 2 there is a neighborhood O(E) C 37
such that for each isotopy ® € 9 all the homeomorphisms ((D)t € Qfe). Since Y is continuous, there
is a neighborhood Q '(e) such that Y (Q') C O. Thus if 9, is locally contractible in the sense of
Definition 3 then for a given neighborhood (e) there is a neighborhood §'(e) which deforms into
e in Q(e). This agrees with the usual definition.

On the other hand, one can weaken the definition and require only that some open subset of %r

deforms in 57 into some point of 557.

1.12. We make the following further two definitions.

Definition 4. A subset A C 857'(‘”) is called contractible if it contracts in itself to a point.

Definition 5. The group Sﬁr(M) contracts locally into its subset A, containing e, if there is a
neighborhood (e) which contracts in 9, into A with e fixed.

Finally, we denote by A(X) the subgroup of homeomorphisms that are fixed on the subset X C M.

1.13. We now formulate the main result of the paper.

Fundamental Theorem. For any metrizable manifold M the group § (M) is locally contractible.

1.14. In fact we shall prove an essentially stronger result (see Proposition (B) in 1.22). In the
compact case the three topologies coincide, as we have already said, and so as a corollary of the
fundamental theorem we have

Theorem 1. If the manifold M is compact then the group § (M) is locally contractible.

1.15. We recall that the local contractibility of the group Séc was hitherto known only for two-
dimensional compact manifolds, and also its local p-connectedness for all p for compact three-dimen-
sional manifolds (results of Hamstrom (5], [6]). In addition Kister [8], by modifying the well-known
argument of Alexander [7], proved the local contractibility of 9, (R") for Euclidean space R" with
its usual metric.

1.16. If a manifold has a boundary, then by applying the Fundamental Theorem we can find a
contraction Y :Q(e)—> Jn (M) of some neighborhood (e) into e in §_(M), such that if b € Qe)
A(OM) then T (k) =E on oM.

For let 99 be a nelghborhood of 9= (M) in 9,.(M) for which, by the Fundamental Theorem,
there exists a contraction 1°: Q%> Sm(OM) into ea, where by 1.11 we may assume that
Y° (¢%) = €. Now let T:Q()>3n(M) bea ngen contraction of some neighborhood (e) into
e(M) such that if h € Qe(M)) then A0 = h|aM € Q9. For each homeomorphism 19 which is the re-

striction of a homeomorphism % in {1, and is considered as such, it induces an isotopy ¥ (#). Thus
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for each & € () we have two isotopies on dM for ha'(?M’ namely Y° (ha) and 1? (h). This gives for
each A € Q a layer homeomorphism

Y740 (h):0M % 10,11 X [0,1]— 0M x [0,1] x [0,1],

depending continuously on h: Y7 () x = (X’ (Y (R))e))x, x€OM, where Y3, (h)=h’ and
e a g L. .
v1()=Tr, ((h) =e°.  Constructing in the square [0, 1] x [0, 1] the segments joining the point
(0, 0) with the points of the sides 1 x [0, 1] and [0, 1] x 1, we obtain a family of isotopies Tf n)
of the boundary of M depending on Alr = m) and on s € [0, 1] (r = ¢), such thar  Y? (h) =T° () and
Y7 (k) = Y?(h%). We recall that if A% = 9 then Y° (h%) = E(oM).
According to Brown [9] there is a homeomorphism G: M x [0, 11 Q, where Q is a closed

neighborhood of the boundary. Let G(dM x 0) = M. Let Q_= G(M x s), and let P : M x s — M
be the homeomorphism induced by the projection of the direct product M x {0, 1] — M. Now con-
struct a contraction Y :Q— J,, (M) as follows: for A € Q the isotopy Y (h) is equalto T (k)
outside ¢ and is equal to Y'(h)- G- P5"- (Y‘a (h)- Y _o(h)-Ps- G on Q.- Oneverifies directly
that on Q, = 9 the isotopy Y'(h) is equal to Y9(h°) and so it is equal to E(GM) it 9= 9. A
the same time Y (k) is equal to T(h), on (, and so the two definitions are equivalent.

1.17. We can derive the Fundamental Theorem for manifolds with boundary by applying it to mani-
folds without boundary, but in the somewhat stronger form:

If D is a closed subset of M and O(F1D) is a neighborhood of the boundary of D, then the sub-
group A(D) C§_(M) is contractible into e in A(D\ O (Fr D).

(We note that when D is empty this assertion becomes the Fundamental Theorem.) For the proof
we construct, as in 1.16, a homeomorphism G: oM x [0, 3] X Q, where @ is a closed neighborhood of
oM in M, with G(OM x 0) = M. Again let Q.= G{(oM x s) and put Q[tl, t2] = G(oM x [tl, tz]). Let

: Qlt, 21 = Qlo, 2] be the homeomorphism induced by the linear homeomorphism [¢, 2] — [0, 2]
w1th the point 2 fixed, where ¢t € [0, 1]. Extend g, 1dent1cally onto M\ Q[0, 2]. Now apply the
Fundamental Theorem to 9} and construct a contraction Y?: Q% — Iy (OM) for some neighborhood
Q- Q(ea). Now let Q be a neighborhood of e(M) so small that for & € Q we have

1) k9= ki, €09,

2) 20 D Qlo, 2].

Now construct an isotopy 1y (h) for & € Q as follows:

(Yy(h)): =h on @,
(X1 (R)) = G77*hy: on Qft, 3],
(Y, () = GP7H°PGt  on Qs s€[0, 7],

where P _: oM x s — 0M is induced by the projection of the direct product. These definitions are
consistent, since ¢, = e on (;, and AQ, CM\ Qlo, 2] by condition 2), and so ¢, = ¢ on hQ,. Thus
on Q3 the first and second definitions give (Y;(h))e=h, £€[0, 1]. Further ¢, = Psc—l on (,, and
so the second and third definitions give the same on Q Thus we obtain an isotopy. It is clear

that Y, (h) depends continuously on k, with T, (¢) = E. The isotopy T, (k) takes % into the homeo-
morphism (Y, (h)),, which is equal to G Py 1haP G on Q_, where s € [0, 1].

Now let T',(h) be the isotopy defined as follows:
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(T2 (A)e = (Y (), on M\QIO, 1],
(T2 (0)e = GP* (Y2 (B))PGT on Q[0, Yy,
(Co(h))e = GPTH (Y (h%))at 1_gPsG 0n Qs, s €[V, 1].

It is again easy to verify that the three definitions are consistent. Namely, the third definition coin-
cides for s = 1 with the first, and for s = % with the second. AgainY,(#) depends continuously on
h,and Tp(h)=E, if & = e. The composition of the isotopies Y, (k) and 7Y, (h) is defined, and takes
k into a homeomorphism which is the identity on Q[0, %4). Now we apply the Fundamental Theorem,
with the refinement mentioned at the beginning of this subsection, to IntM, with Q[0, }5] taken as D
and Q[Y, %], say, as O(FtD). For some neighborhood ﬁ(e(lntM)) we have a contraction

Ty: Q(e) N AQI0, /o) = I (Int M) in A(QL0, %)), which can be extended to the boundary as the
identity. It is 9_bvious that for & = e the composition T, (e)o Ty (e) = E. Now there exists a neigh-
borhood Q{e) C Q so small that if & € Q then the composition Y,(h)o Y (h) takes # into a homeo-
morphism lying in {}. So the composition 1 (k) Y, (k)0 Y,(4), is defined, depends continuously on
k, and takes k into the homeomorphism which is the identity on the whole manifold.

Thus we may validly assume that our given manifold is without boundary.

We note if we consider only homeomorphisms which are the identity on some closed set D, then
by a slight strengthening of this reasoning we could show that the resulting improvement of the theo-

rem is again valid for manifolds with boundary if it is valid for manifolds without boundary.

1.18. In the case of a noncompact manifold M one may speak of the local contractibility of
% (M) or $,(M) only if the topology of the manifold is sufficiently simple at infinity. For example
let M = U?:O Ti, where each Ti is a two-dimensional totus with two holes and Ti N TL.+1 = Y41
where y, and y, ,, are the boundaries of the holes in TL. for i > 0, the diameter of Ti being further
assumed less than 1/i. Define homeomorphisms /& : M — M as follows: if H is a cylindrical
neighborhood of y, in T, then ;= e on M\Hl. and h, is a twist through 27 on /. Then the curve
which is the product of the meridians of the tori T,_| and T, is # M is not homotopic to its image
under the homeomorphism hl. , which is the product m _, li_lmi i—_ll, where m_ is the meridian of T,
and li is the class of y,. (We remark that the group niM is freely generated by the meridians m  and
parallels p, of the tori and also lo’ with li = lo Hi:/:l[pi ' m; 1) Thus none of the homeomorphisms
h, is even homotopic to e, although it is clear that limhi = e in the topologies 7=c¢ or r=u, and so

the groups @C(M) and ﬁu(M) are not even semilocally linearly connected.

1.19. On the other hand, if an open manifold M has finitely generated homology and is simply
connected at infinity, then in the case when dimM > 6 [10], or in the case of a three-dimensional
irreducible M [11], there is a compact manifold whose interior is homeomorphic to M. (If the condi-
tion of simply-connectedness at infinity is omitted then this is not in general true [2].) Thus although
in the case of an open manifold we cannot give a definitive answer when 7= ¢ or r=u, we neverthe-
less see that with a high degree of generality we can restrict ourselves to the case when M is the
interior of a compact manifold, and we now consider this case.

1.20. Let M = IntN, where N is a compact manifold with nonempty boundary. Suppose further
that the mewic of M is induced by that of N, in the case 7=u. As before, let G: dN x {0, 11X Q
be a homeomorphism on a closed neighborhood () of the boundary of N and let G(aN x 0) = oN. We
note that K = [N\Q] is a compact subset of M = Int N. Consider the subgroup A(K) C %T(M), where
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r=c ot r=u. For t €(0, 1] define a homeomorphism q,: Q — Q by the formula qt(c(% s) =
G(x, s1/%), whete x € N and s € [0, 1]. If A € AK) let

(D) = quhqt on Q\ON for {£[0, 1],
(CD (h))[ =8 on 1V\G for te [O, 1],
(D (h)), =e on the whole of M.

This defines an isotopy ®() on M, depending continuously on 4. Thus A(K) is a contractible sub-
group for 7= c or r=u. This reasoning shows that in the present case the local contractibility of
9. or @U(M) is a consequence of the following more general assertion.

1.21. Proposition (A). For each compact subset K of the manifold M and for all values r=c,
u, or m, the group §_(M) is locally contractible in A_(K).

As was shown jn 1.20, this implies

Theorem 2. If the manifold M is the interior of a compact manifold N, then $ (M), and also
© M) if the metric of M is induced by that of N, is locally contractible.

In fact we shall prove the following assertion, essentially more general than (A), from which we
shall also derive the Fundamental Theorem.

1.22. Proposition (B). If C and D are closed subsets of the open manifold M, then for each
neighborhood O = O(C) and each neighborhood O' = 0 '(FtD N C) there exists a strictly positive
function fon O, such that for each homeomorphism h for which plx, hx) < fx, x € 0, and which is
the identity on D, there is an isotipy Y (h) such that

1(B). Y (k) depends continuously on h;

2(B). (X' ()y = h;

3(B). Y(h) =h on M\ O,

4B). (Y (h)), =¢ on C;

5(B). Y(h) =e on D\O';

6(B). if h=e|,, then (X (W) =¢€lo.

In the case of a compact C condition 3 also ensures the continuous dependence of Y'(h) on A
in the topologies 7=c¢ and 7= u, if it is known for r=m. Therefore Proposition ('A), together with
Theorem 2, follows from (B) (take D empty and C = K).

1.24. Let us derive the Fundamental Theorem, together with the improvement given in 1.17, from
Proposition (B). As we explained in 1.17, we may restrict ourselves to the case of a manifold with-
out boundary.

In (B) we put C = O(C) = M, and let D be any closed subset of M and O’ an arbitrary neigh-
borhood of its boundary. By (B) there exists a majorant { on M such that for each homeomorphism
h € Q],(e) N A(D) there is an isotopy Y (A) with the properties 1—6 (B). From properties 1, 2 and 4
it follows that Y (k) is a contraction of Qf(e) N A(D) into e, and from 5 follows the above-mentioned
improvement. Properties 3 and 6 are introduced for use in the proof by induction.

1.25. Remark 4. We note, in particular, that if FtD N FrC = A then Y (h) may be so constructed
that (Y (h)), is the identity on C | D.

1.26. Proposition (B) is proved in the next three sections. In $2 we reduce it to the local case,
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which we call the Local Theorem. In $3 a lemma is proved which is the kernel of the whole proof, and
which we call the lemma on correction of homeomorphisms. At the beginning of $3 a description is
given in general terms of the main ideas of the proof. In $4 the Local Theorem is proved on the basis
of the lemma. Finally, §5 is devoted to corollaries and unsolved problems.

$2. Reduction of Proposition (B) to the Local Theorem

2.1. Notation. In R" we introduce a system of Cartesian coordinates with origin 0 and axes
0x,, 1< i <n We shall denote the cube {x| |x,[ <r; 1<i<n} by I” and the unit cube [T by ™.
We take n = dim M.

2.2. First (subsections 2—5) we shall reduce (B) to the case when C is compact. Represent ¥

as a union U:°=1Ki , where the K are compact, such that

KiN K= A, for |i—i'[>1, (1
FrKi(\FrK;y = A, for i==i. (2)
From these two conditions it follows that

FrK;C Int (Kica U Kip)- (3)

Such a representation of M is possible because we have assumed that it is metrizable, and so it
is a locally compact paracompact space.

Let O be a neighborhood of C such that

[0lco, (4)
FrDN [0lc o (5)

There exists such a neighborhood because C is a closed subset of ¥ in O, and FrD N C is a closed
subsetof M in O'. Put C, = oln Ki. We observe that

(FrC) N CCInt (Cry | Crs). ©

Indeed, FrC N C CFrK N C, since C Clat {01, and now one applies (3). Choose numbers €, >0 so
small that

[06,(C)] N [Oeu (Cir)) = A, for [i—i'|>1, ©)
[0, € N Kir= A, for [i—i'|>1, (8)

O, (Ci) O, 9)

FrD M 0, (C) O, (10)

Conditions (7) and (8) can be satisfied by (1), condition (9) by (4), and (10) by (5).
2.3. First consider Czi for i > 1. Choose numbers 7, > 0 so small that
[Ony; (FrD ] Cai)] C O (11)

and the sets [077 (FrD N CZi)] are compact and only a finite number intersect each compact set.
: i
This is again possible because FrD Czt is a compact subset of ¥ lying, by (5), in O .
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Now assume that Proposition (B) is valid in the case of a compact C, and apply it with C2i
taken as C, Oezi(CZi) as O, and 0n2i(FrD N CZi) as 0'. We obtain a number 8,,> 0, and, for
each homeomorphism % which moves the points of szi(CZi) less than &, and is the identity on
D, an isotopy Y (h), satisfying conditions 1-6 of (B) with the given substitutions made. The
support of this isotopy is [0€2i(C2i)]’ and by (7) these sets are mutually disjoint, while by (8) they
are compact and only a finite number meet each compact set. Then obviously for every & moving

the points of each szi(CZi) less than &, , and which is the identity on D, an isotopy Yey (h) is

207

3

defined which on O <(C2i) is equal to Yg;(h), and on M\ U:°:10

, (C,,) is equal to h. This
14
isotopy has the following properties:

1 (ev). Yey (h) depends continuously on h;
2 (ev). (Yev(R)y — i

3(wyn4mzmmM\Qp%wm;
4 (ev). (Tey (h)), = € on £31C2ﬁ

(=]
5 (ev). Yey(h) =e on D\ J Oy, (Fr D[] Cap);
i=1
6 (CV). (Tev (h))l — € on O£2i (CQi)v if h = ¢ on OSQi (CQi)~
Conditions 2—6 (ev) follow directly from the definition of Yey(#) and the corresponding proper-
ties of the isotopies Yy; (h). Condition 1 (ev) is easily deduced from the fact that each Yo;(h)

depends continuously on %, and that only a finite number of the supports of these isotopies inter-

sect each compact subset of M.

2.4. We now turn to the €, (i >0). Pur D_, = D\U;.x’:lO 2i(FrD NC,). We note that

;
FrDoa ) Ci—O'. (12)
i=1

For, by the condition on the set [Oﬁz'(Fr DN CZi)]’ their union is closed in M, and lies by (11) in
12
0', and by (5) FrD N Ci CO’. Atthe same time FrDod CFeD () UT“I[Onz']'
- i

Let ),.,,=C,,UC,,,,UD 4, and let the numbers 7,,,, > 0 be so small that

Onziey (FrDog () Consy) 2O, (13)

Ongyy (Fr((Cei U Caina) N\ Doa)) () Doa "0, (14)

Onsioy (FrCu U FrCuss) N Coint) N1 C T Ciry,y (15)

Ongi oy (Fr Doa\(C2:UCois2))NCris1) (1 Cei [V C [ Opyy,, (Crig1) T Cuiyr (16)

Condition (13) can be satisfied because Fr/) N C is a compact subset of M lying, by (12), in

2it1
0'; condition (14), because Fr((CZi U sz)\ D, JoND  CFeD ,N(C,,UC,,,,) and by (12);

condition (15), by (6). For (16) we observe that [Fr Dod\Czl.] N CZi C Fr Czt’ and it temains only
to apply (6), since 0€2i+1 (Czi+1) N CZi_l = A by (8).
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) for O, and

such that for each homeomorphism B

We again apply (B), this time taking Cz;‘+1 for G, D,,, 4 for D, 0 +1( 2i 1

0_,72 - (FrD,, ., N sz+1) for O'. We find a number &
moving the points of 0 (

2it1

) by less than 5 and which is the identity on D there is an

2i+1 2i+1?
isotopy Tory| (h) with the propernes 1-6(B) when the substitutions have been made. By 1-6 (ev)

there exists a number §,.,  such that if the homeomorphism h moves the points of 062_(C2i) and
L

(C,,,,) less than 8, . then (Y, (h)), moves the points of O, (C )UOsz(C ) less

€2; 42 2it1

) 2 +1) less than 32 +1» then the same is

twue for (Ya))s,, since (Yev(A)y=h on O ( N©, (€00, (C),)). Thus for

2 +1 2 €242

than §,,, . If, moreover, b moves the points of 0, 1(

(Tey (h)); the isotopy T2i+1((rev(h))l) is defined. Let & bea homeomorphism which is the identity
on D and moves the points of each 062.((12‘.) less than §,, = min(Bzi, 5, ), and the points
12

2i+1° 2:“'1
of each 0€2i+1(c2i+1 less than 52 4

(X, (2)), all the isotopies T, , (X' (%)) ), i >0, are defined. So these isotopies are defined if
h € Qf(e) N A(D), where { is a majorant which is less than gi on 0(2 -(Czi)‘ Since, as we know, the
12

Then for h the isotopy Y (k) is defined, and for
ev

closures of the 062 ‘(Czi) are compact and only a finite number of them meet each compact set, such a
L

majorant can be constructed. Now, as above for the even case, we can construct for each 4 € Qf(e) N

A(D) an isotopy T, d(h) which coincides with Yyrp(((Yey (1)),), on O ' (C

2i+1) and coincides

identically with (I‘ev(h))l outside Uj‘;lofzm( 2;+1)- The isotopy I‘ (h) has the properties:
1 (od). Yod(h)depends continuously on k;

2 (0d). (Yo1(h)), = (Yev (A5
3 (od). Yos(h) =(Yev(H), on M \}20052i+1(c2i+1);

4 (od). (Yoa(h)), =€ on _U Coit1

5 (od). Yoa(h)=e on n (D211 \Onyy - (Fr Daitr N Coie1))s
6 (od). (CoaM) =elo. if 7 —elo.
Properties 2—5 (od) follow from the definition of Y'od(h) and the corresponding properties of the
Y111 (h); property 1 (od) follows from the continuous dependence of all the 1, (( rev(h))l) on
k, since only a finite number of the supports of these isotopies intersect each compact set; and
6(od) follows from the fact that, by 6(ev), if £ = e then (Tev(h))l = e, and so all the homeomorphisms
T, +1((r (~)) )— e on O.

2.5. In view of 2(od), the composition Tev(h) Crod(h) is defined, and this we take as Y'(h). Let
us show that ir has the required properties. Property 1(B) follows from 1(ev) and 1(od); property
2(B) is 2(ev) and 6(B) is 6(od); 3(B) follows from 3(od), 3(ev), and (9). We now verify 4(B). First, by
4(od), (T(h))l = (Tod(h))l =¢e on U:°=0 C,,+, and soon UT:O n K2i+1). On the other hand
(T(h))l =€ on C\ UT’:OO 1(C i+1) by 4(ev) and 3(od).

€2i+
Noting t hat 06 1( yno (c

. . « . N . .
2i+1 €2;'+1 2i/+1) =Aif i £i (see (7)), we see that it is sufficient

to consider (T(h))l on
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C 106y (Coit1) \ Caizr

((C MNCu OEZ,_H(C ;+1))\ Coit1) U (cn 62t1—2m OE?WI (C?l+l))\c2t+1)

We consider only the first term, since the second is similar. By 5(od), (r (h))l = (Yod(h))l =
(r (h)) =ée on

Ocegis 1 (C2t11) N € N (D2t \ Oy (FT Dair 1) Coi1)) D Oeyy (Coiir) N c’
M€ \Ong; ((Fr Dozy1 (] Coia) D Oeypyy (Cai1) NC
(WC2: \Ong, g 1 (Fr Coi UFrCoi )N Caig 1)\ Onyy y ((Fr Do\ (Cai U Coi2)) N Car1))-
2i+» and since (T(h))1 =e on C, ,, we obtain that (T(h))l =

ync ﬂ(C )\\0 2i+1((FrC2i U FrC2i+2) N C2i+1))’ and, by (15), on 0€2i+1(C2i+1) N

21+l

But by (16) the last term lies in C
on O, (C

€2i+]1
cn(C,\C,,.),
We now verify 5(B). By 5(ev), for t <15 we have o (h))c = (Tev(ﬁ)) =e on D
D\O'. For % <t <1, by 5(cd), (T(h))t = (T.'Od(h))u_l = e on Dod\UT:

20 +1
as required.

and so, by (11), on
),

od’

0 772i+1(FrD2i+1 NCyin

and since Dod D D\O " it is sufficient to show that for all

Dos N OnQH_l (Fr Dgiy () Cyy) CC O
But

Dog (1 Ongyy ((FrDarr (1 Cauiyi)
C Ongy 1 (Fr Doa (1 Corgr) U (Dod [Ony;y ) (Fr(Cos U Coira\ Dod))),

and (13) and (14) can be applied.
Thus we may suppose in the statement of (B) that C is compact.

2.6. Now we shall reduce (B) to the case when M = R". Let {Q,, qi}{f:l be a finite covering of
the component set C by Euclidean neighborhoods; that is, ¢.: R" — M is a homeomorphic mapping
and (., = q,R", with C C Ule()i. We suppose that the [(.] are compact and that

k
U QCO. (17)
i=1

We shall construct the required isotopy Y (k) as the composition of isotopies ¥ (h), each having
support in one of the (), and satisfying specific conditions similar to those of (B). By means of g,

the construction of ‘I’i(h) will be transferred to R". This reduction will be carried out in 2.7-2.10.

2.7. In constructing the isotopies V¥ (%) it will be convenient to assume that
12
val"OC, (18)

which of course we can do without loss of generality. We shall also assume that the Qi lie in a suf-

ficiently small neighborhood of the compact set C so that

R
FrDN U [QICO. (19)
i=1
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Condition (19) can be satisfied because FrD N C is a compact subset of 0.

Take & more neighborhoods O, = 0 (FrD N ) such that
[00C 0 O, (20)

which is possible because FrD ] C is a compact subset of O . Further, let

k
FrD [y [Q]CO, 21
=1
which is permissible by (19).
Also take numbers y, >0, 1 <i< k, such that

0< i< Yt <Y VYg for i>2. (22)

For 1 <i<k we shall successively construct numbers §, > 0, 8,4, <9,, and, for each homeo-
morphism kb that moves the points of O less than 8, and is the identity D, an isotopy W (), in such

a way that the following conditions are satisfied:
1 (V). ‘I‘i(h) depends continuously on £;
2 (W), (B, = (¥, (B), for i3 2, (¥ (), = hs
3 (9. Yh)=(¥,_[(B), for i>2 onMN\Q,, ¥ (B)=h on M\Q;
4 (D). (\Fi(h))l = e on Uf,zlqi,l’; by
s (¥). ¥(h)=e on D\O,;
6 (V). (‘Pi(h))l =e on O if h=e on O.

2.8. Let us show that if numbers 0, and isotopies ‘I’i with these properties have been con-
structed then we may take the required function f as equal to Sk on the whole neighborhood O, and
the required isotopy Y(%), for homeomorphisms & which move the points of O less than 8, and are

the identity on D, as the composition ‘Pl(b) orer oW (A).

We note that for such a homeomorphism all the isotopies ‘I’i(h) are defined, and by 2(¥) their
composition is defined, with (Y (h)), = h, so that 2(B) is satisfied. Properties 1(B) and 6(B) follow
immediately from 1(¥) and 6(¥) respectively, property 3(B) follows from 3(¥) by (17), 4(B) from
4(¥) by (18), since (Y (h)), = (‘I’k(h))l, and 5(B) from 5(¥) by (20).

2.9. Arguing by induction, suppose that . _, and ¥._  have already been constructed. Thus
& =1 1 y

1

for each homeomorphism % that moves the points of O less than 8;‘ and is the identity on D we

have a homeomorphism /,_, (equal to % for i =1 and to (¥, (h)) 1for i > 2) with the properties
1(h). hi"l depends continuously on #;
2(h). by =eon UL g 07, UDNO,_);
3 (h). ki_l =eon O if h=e on O.
If > 2 then 1(h) follows from 1(W¥), 2(h) from 4(¥), and 3(h) from 6(¥). If i = 1 then 1(h)
and 3 (h) are trivial, while 2(h) reduces to the condition that %A = e on D.

It

Thus our construction can be started.

2.10. We pass to the construction of ‘Pi(h) in R" by means of the homeomorphism ¢,. We shall

assume the following proposition, which will be proved later (see 2.11).

Proposition (C). If D is a closed subset of R", then for every neighborhood 0- 5(Fr5 ﬂl’zl)
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there exists a & such that for each homeomorphic 8—5hlft g: I3, — R" which is the identity on
D N1} there is an isotopy ‘-I’(g) of the space R™ such that
1(C). ‘P(g) depends continuously on g
2 (C). (‘I’(g ),
3 (C). ‘I’(g) =e on R"\gl
4 (C). (‘I’(g))1= "1 on gI"
5 (C). "i”(g) =e on D\\O;
6 (C). a(g)—e if g =¢ on l"
We take as D the set 8; 1((U‘ =18 ,I’1‘+,y
FrD N [2 so small that

1%4°

YU (D\-Oi-1))’ and we let 5 be a neighborhood of

:(D\.0) D D\0,, (23)
i—I1

Qt(D\O)D U Qi'll—}—w M [Q:]. (24)

Condition (23) can be satisfied because qi(FrD N 1'2’) is a compact subset of M not intersecting

D\Oi. In fact,
@D IQ‘)C(Fr«;l_Z q,-,11‘+yl.)u (D\of_l))) N el

i—1
C FrONOe) (1@ UCFr (B, alfey ) NONO-IIN (@D,

But [Oi_l] CO, (see (20)), and therefore if the intersection of the second term with D\Oi is non-
empty then it lies in the first. At the same time Fr(D\O. )ﬂ [0 ] c(FtDn [Q]) UFrO,_|. Here

both terms lie in 0 (the first by (20) and (21), and the second by (20)), and so neither intersects

D\O Condition (24) can be satisfied because U‘ =19 ,l ,C Int Ui .19 11 byiep by (22). We

now find a number & by (C). Also let 5 <1. Now if g isa 8-shift of I’ in R" then gy CI5. Let §>0 be so
small that if the diameter of a set in ¢, l is less than & then that of its inverse image in 1'31 is less
than 5. Further, let 5 be so small that 0‘—(q 1Y) Cq,I3. Thenifa homeomotphism h of the mani-
fold moves the pomts of Q. less than 5, the homeomorphlsm g = q; lhq is defined on I7, moves
points less than 8, and by 2(h) and the definition is the identity on D. Thus the isotopy W(g) is
defined, with properties 1-6(C).

By 1(h) and 3(h), there exists a positive number, which we take as &, less than §,_; and such

that if 2 € Q[Qi]: 5 then h _ € Qq-ln E(e). Put g = q;.—lhi_lqi and take for ¥ (h) a homeomorphism
12 3

™o - R VR VI
identically equal to /,_, on M\hi-lqil and equal to q,¥(g) q; lki_l =q,¥g)g q, ! on g, 15 ltis
clear that the two definitions agree on Fr qil;, by condition 3 (C), and so we obtain an isotopy. Let

us verify that "I’i(h) satisfies all the conditions 1-6(¥). Condition 1(¥) follows from 1 (h) and 1(C).
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Condition 2(¥) follows from the fact that, according to the definition of ¥ () and property 2(C),
we have (‘pi(h))o = hi—l’ - is (lpi-l(h))l for i > 1.
Condition 3 (¥) follows from the fact that, by 3(C) and the definition of ‘Pi(h), we have ‘I’i(h) =
h,., outside qil'zl, and so outside Qi. Condition 4(¥): from 4(C) it follows that (‘I’i(h))l =¢€ on
qil’;%, and so on ¢,/

and it remains only to recall that by definition &,

n

14y’

(‘Pi(h))l =¢€ on qi(’ﬁ\a), and so, by (24), on Ué-filqi ,12 by, Thus 4(¥) is satisfied. Moreover, by

(23), (‘I’i(h))l =e on D\Oi , so that 5(¥) is also satisfied. Condition 6(¥) follows from 6(C), 3(h),
and the definition of ‘I’i(h).

since y, < % by (22). Further, by 5(C) and the definition we have

2.11. We pass to the proof of Proposition (C). In the remaining part of this section we reduce
this proposition to an assertion (see 2.15) which, as we have said, is the local case of our theorem
and will be proved in $4.

We introduce some notation. If T is a triangulation of the space R” then T" denotes the sec-
ond barycentric subdivision. By St X we denote the union of the closed simplexes of T which

either are incident on simplexes of X, if X is a subcomplex, or intersect X, if X is a subset of R".

2.12. We take a triangulation T of the space R" so fine that

Stz-Str (D\O) N (Fr DN 1) = A, (25)
StT"StTI,IL'A C Int 1?)5. (26)

For each open simplex 0 € T we take the cell z = z(0) = (StTu(a)\ (St ,(80)). We note that
z(z' # A if and only if the corresponding simplexes are incident. We enumerate the simplexes of
StTI’;‘% , first enumerating those belonging to StT(D\O): 05 0y *++, 0,4, and then the remaining ones
O 4p» Ogep *** > O . We note that if z, ﬂ(D\O) # A then i < d.

Choose numbers ’7\;1‘ >0,d+1<i<s, sosmall that

in order of increasing dimensions:

0,71 (2:) T 15 (see (26)); (27)
057, @) N0z () =A it z0zir=A (28)
if Oz (2) N (D\0) == Atheni<<d. (29)

~o
We construct a sequence of numbers &, > 0 such that

8 <T i<y, (30)

- Y - ~ - - . - ~ -
and for each homeomorphic & -shift g: I — R" which is the identity on D, we construct an iso-

topy ‘I’i@) such that the first d of these isotopies are the identity and the following conditions are
satisfied:

1 (@). @i(g) depends continuously on E;
2 (B @EN, -, GV, ifi>d+1, RN, -eif i=d+1;
3@. V@) =W,_ @), for i>d+1 on ROy (2)),
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L ‘Pi(g)z e for i=d+1ong(R \O%Jdﬂ(zd“));

4 (W), (‘Pi(g))l =21 on gzi;

s (@), ¥,G) = (¥,_ @), on 8(Sty.d0);

6 (% (@i(g))l =e, if g =€ on r.

2.13. Put & <min(}4, & ). Then for each homeomorphic & -shift g: ]” - R", all the isotopies

‘I’ (g) are defined, and by 2(‘1’) their composition is defined, and we take it for ‘I’(g) Moreover
(‘P(g )) = e, so that 2(C) is satisfied. Conditions 1(C) and 6(C) obviously follow from 1(‘1’) and
6(‘1’) Condition 3(C) follows from the fact that, accordmg to 3(‘1’) the Om (z ) are supports of the
1sotop1es ‘I’ (g) and by (27), O,\, (z Jc I ,and so ¥ (g) =e¢ on R" \1” . But glz 311.5 since
5 <14, and hence v (g)— e on R \g]”

Let us verify 4(C). First, by 4(¥), (‘Pi(g))l =27! on gNzl,.' If i' >, either Om (2 ) does not
intersect z, or o, lies in do,,. In both cases ¥, @) = (ﬁi ,_1@‘)) on z, (by 3(‘1’) in the first case,
and by 5("1’4) in the second). By induction, ’ii,(g) =g 1 on gzi, and so (‘P(g )) (¥ (g )) -g!
on all the z;. But evidently Us_lzl P 1”

It remains to verify 5(C). As we have seen, ‘I’(g) =e on R \Us Ow (z ). If Om (z ) inter-
sects D\O then ¢ <d by (29) and all the initial isotopies ‘l’ (N) for 1 <i<d are the 1dent1ty

2.14. We construct the 8;’ and ‘I’L,(g) successively. Argumg by induction, we assume that
&, and ‘Pi_l(g) have already been constructed.

Thus for each homeomorphic 5 _,-shift PE 1’5 — R™ we have a homeomorphism '}\zli_l: R" — R"
equal to e for 7 =1 and equal to (¥ _ (g )| for i> 1, with the properties

1 (’l;,). hNL. depends continuously on g,

2 (’1\;), ?LJL._I =§‘1 on gStTuaoi,

3 (h). ?fi_l =e, if g =e on Il

If i = 1 then these properties are obvious. If { <d + 1 thrc;y are alsgvobvious, since each of the
f1rst d 1sotop1es is the 1dent1ty Let i > d + 1. Properties 1(h) and 3(h) follow immediately from
1(‘1’) and 6(‘1’) Proper ty 2(h) follows, as we saw above, from 4(‘1‘) and 5(‘1’) We must now con-
struct 8 and ‘I’ for i > d. Consider the homeomorphism g : O'Hi(zi) - R™ equal to ki_lg on

0*7\7' _(zi). It obvxously has the properties
i

1 (E) Ez_l depends continuously on g';
2 (E) g~’i—1 =e¢ on Str.doy;
3(g). g1 =e, if g=eon I}

g

We shall construct a number 3 > 0, and an isotopy ‘I‘ (g) for each homeomorphic 8 ~shift

O (z ) — R" with properties 1 3(g) such that

I
2 (¥

z ~en

) 1? (g) depends continuously on g,
¥).

(%I}( ))o:e;
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3 (7). ¥i(g) =e on 2(R™\O ()

4 (‘i’)- @'i (€)) =g on Z2s

5 (?) ‘g (g) =€ on StT' 60'1,

6 (F).(F,(g) —e, if g—e on O ().

3

A 2] ~
By conditions 1(g) and 3(g) there exists a number, which we take as &, less than § ;- and
A ~
such that if g is a homeomorphxc 5 ; -shift of [” in R” éhen the mapping g,_, = h i-18 (which is
obv1ously defined, since 8 < 8 ) isa homeomorphlc 8 ;-shift on Om (z ) Then the isotopy

‘I’i(g . ) is defined, and we take as the required 1sotopy ‘I’ (g) the isotopy identically equal to
= (\Il (g )) outside gOm (z, ) and equal to ‘I’ _l(gl l)k -, on gOm (z)

Propertles 1- 6(‘1’) follow 1mmed1ate1y from the definition, properties 1— 6(‘1’) and the properties

~

of the homeomorphism £ ;- and g i1

2.15. Now we carry out the last step in the reduction of proposition (B) to the Local Theorem.

Let p =dimo;. Represent R™ as RP x R" P, where RP is the coordinate hyperplane spanned
by the first p axes and R" P is that spanned by the last n~p. Let I® and I" " be the cubes de-
fined for RP and R™™ just as I" is for R™.

In an obvious way a homeomorphic mapping q: R" — 0?74 .(zi) can be constructed such that
12

1 (q). /" =z; 3
2 (q). (R™\{I" x R"™"))  Str-doy;
3 (). q(I* X R*™) = Og; (2)\Str-00:.

With the help of the homeomorphism ¢ the construction of ;‘Fi(g%) reduces to the following proposition.

2.16. Local Theorem. There is a number 8> 0 such that for each homeomorphic 5-shift g
I — R™ which is the identity on 1’2'\\ (IP % I—;—p) there exists an isotopy H(q) such that

1 (L). H(g) depends continuously on g,

2 (L) (H(g) =4 .

3 (L). H(@)=e on R\gU" x I177);

4 (L). (H(g) =g on gli;

5(L). (H(@)=e if g=e onls

2 A oy

2.17. Let us show how to construct 5. and ‘I’.(g) using this result, Since g is uniformly con-
tinuous on I", there exists a number, which we take as 5 , such that if the dxameter of a set in ql
is less than 3 then that of its prelmage in I7 is less than 8. Suppose also that 5 <

p(FrOw (z ) ql ). Then for a 5 ;-shift g I2 - R" we have

FACLH Y= 05 (21). 3D
Put g =g gq By (31) this homeomorphism is defined throughout /7 5» and by the choice of 3’ itis a
S-shift of l; in R". By the Local Theorem we find H(g), and we take as ‘I‘(g) the isotopy equal to
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E outsxde gql = ggl’), and to L]H(g)q“1 on ?ql" Then 2(‘1’) and 6(‘1’) follow from 1 (L), 2(L) and
5(L); 3(‘P) from 3(L), since g(ql”) CON', and 4(‘1’) from 4(1.) and the fact that, by 1(q), ¢/" =
Finally, 5(‘1’) follows from 3 (L), since ¢ (StTuaU ) mO~ = R*\IP x [” P and by 3(L), H=¢€ on
R™\g(I? x R*™®), but

g(I” x B) = qigg(I” x B C g (ali\Strd0)
— g (gIN\Str-00) C I” X R,
by 3(q), 2(8), and 2(q).
$3. The idea of the proof of the Local Theorem and the lemma on correction of homeomorphisms

3.1. We first introduce some notation which will be used right up to the end of the proof. We

define

Rig ={x|x;=d}; Rig={x|xi>d}; Ria={x[x<<d)

Ri(d;, dy) = R’i'-,d1 ) Rig,; Rig= Ri(d—¢e, d+¢);
Li(d; =R N I% 1i(dir)=RiaN I TL(dy, ds 1) = Ri(dy, d) N 1.

3.2. We now make some preliminary remarks which will, we hope, help the reader to understand

the main idea and the plan of the proof.

First suppose that in R® we are given three (n — 1)-dimensjonal hyperplanes orthogonal to some

coordinate axis: R, , R, ,R. ,a <a, 6 <a, and let a homeomorphism h: R"™ — R" be given,
e ,ajp t,a3 1 2 3
such that for some given number ¢ > 0 we have AR, C R6 for all values of j.
) aj

Let ¢ = (a1 + a2)/2, where 2¢ <c¢ - a,. Consider the problem of constructing an isotopy w of

R™ satisfying the following conditions:

1) o, =g
No=e on  R™ Ri(a,, a,);
3) w, =e on  R™ Ri(a,, a,);

4) mlhRi,c - Rta,c’
the latter condition being satisfied in some given finite part of the space. We shall henceforth omit

stipulations of the type ‘‘in a sufficiently large finite part of the space’, since they are not essential
for us and since the reader can easily establish them himself.
We construct w as a product of isotopies, of the form
® = 07YoT,
where 7, p, and ¢ are constructed as follows:
,~e<b <
a,, and we let 7 be an isotopy that is fixed outside Rl(al’ az), takes R, into R, , and takes
s »b

Construction of 7. We choose a hyperplane R such that AR, ., CR} | where a
i,by L,bl i,c?

every line parallel to the axis ox,. Then 7= RTRTL

Construction of ¢. Choose a hyperplane R, such that AR, C RS o Where b, < a,, and let
0 be an isotopy which is fixed outside R (bl’ a ) takes R, a3 into Ri by and takes every line
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parallel to ox; into itself. Then o = (rh)5(rh)7 .

Construction of p. Let p be an isotopy which takes each line parallel to ox; into itself, is the

N \\ N

J \J

) iy
\\_‘> 2 3

e, g, < |

T N :/

a, ¢ a; ay a

‘N

¢ a, 2
The homeomorphism % The homeomorphism (7) A

Figure 1

identity outside Ri(c -6 a, - ¢), and takes Ri,azﬁ into Ri’c”.

One verifies immediately that if w = 0 ~'po7 then w possesses the required properties.

\ \ \ \ REEEE\N
N
) )
(e ( 1
(7 (\ . D [t
. I
L0 e 6
> e
)i N Y
/ ' \'\L ‘ / W ] ]
The homeomorphism (o r)lh The homeomorphism (por)lh

Figure 2
Besides R,
,a

’ ’ ’
; and Ri'c, let hyperplanes Ri,’a, ,or R i a) <a, <.+ <a,, where

1 0y 1

ol . . . € o .

i' #1, now be given. Suppose that for all j the e-slabs R, _, are pairwise disjoint and that
U

kR € ..
i',aj' c Ri',aj'
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How does our construction alter the situation in this second direction?

It is clear that the isotopies 7 and ¢ take the image of each hyperplane Ri, ,¢ onto itself, and
i

therefore these isotopies do not disturb the stated conditions; that is, (o 7)1hRi, . C Ri: . - Injust

(\ / -
5 e
\

[
>
)
N (\f

A/

NV 1)

N A ,\b}yi

ﬂ.ﬁL/“%\Z/‘ ) v

Figure 3

the same way, p maps each strip Rf, , ¢ onto itself, and so p does not disturb this condition either.
However, p displaces the image hR , . from its position in R", and therefore when we apply o1
'

we are no longer justified in asserting that (o™ !po7) 1hRi’,a s lies in Ri’,a,’ . But since
j i
(po 7)1hRL, 1 o+ still lies in R¢ 1 o/ forall j, the homeomorphism (0—1)1 can take the points of this
curved surfaée only into points th;t are taken by (0)1 into the strip RE,‘a + . By the condition
i
lel ! C Ril'

, Q. a

', satisfied for all j, we obviously have that iR, /(a/.'_l, d].'ﬂ) D Ri: . for j#1 and
] i :

i
j # k, and since o takes each hypersurface of the form hRi 1 ,+ onto itself we also have that

(U)lhRi ,(aj’_l, a].'ﬂ) p) Ri'.a].' . Moreover, obviously (U)lhRi;(ajl_l, aj'ﬂ) C Ri ,(a].'__l - €, a;ﬂ +€).

. -1 +
On the other hand it is clear that (o par)I =e on AR] .. and so on R:a2+€, and at the same
a3 H

time (o _1)1 = (0)1 = e on (r)lhR;bl, and so in any case on Ri—az-—e' It follows that if for some j the image

of R, . falls completely outside Ril‘ai, under the homeomorphism (anlpar)lh, then this happens,

i ;
first, in the strip Ri ay? and, second, for j # 1 ot j # k in the slab R, ,(a].'_l — €, a].'+1 +¢). Thus

we have the situation shown in Figure 4.

It is clear that if an additional hyperplane Ri’C . between Ri,a1 and Ri,c is given, with Rfi’C )
not intersecting Ri,az or Ri,c, then the whole argument can be repeated for Ri'c +, and a new isotopy
o' constructed which takes the image of Ri,C ¢+ into R;C + and which is the identity outside
hRi(al, az), (o :)1 being the identity outside hRi(a, ¢), and the image of each hyperplane R, ot

, j

remaining within the slab R, (a] - "6 aj' ant ¢). In fact, for any finite number of hyperplanes

Ri,cl’ Ri,cz’ ee, Ri,cl between Ri,al and Ri,az’ a <c, <eee<e, < a,, we can construct an iso-
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topy @ which takes hRi ., into a narrow zone around R, .. and simultaneously alters the situation
,¢; 105

in the orthogonal direction in the indicated manner. The thickness of the zones for R, and

i,a 1
RL. a, A€ 00 obstacle, because they can be shrunk as thin as required beforehand.
’

We now return to the situation of our theorem. We are given a homeomorphic &-shift of 1’21 in R™,

EHEVEN
il
!

/
mE

’\/J ~
6‘%_R; - L
/

Figure 4

1

T\%~AA

I~

fes
)

We wish to construct an isotopy H(g) which restores the image of I" to its place and is the identity
outside 1"

For this purpose we consider the lattice formed by the (n —~ 1)-dimensional cubes of the form
1.(d; r.), where ¢ runs through the pumbers from 1 to 7, and d through some finite number of values
depending on i and j, from — r,tor;, and where 1, =1+ 1/2’. Moteover we can construct H(g) as a
limit of isotopies, arranging at the jth step that the image of each cube of the above form lies in the
€;-zone around this cube for some sufficiently small €. The induction is started by the choice of §.
It is clear that if g is a 8-shift then the condition is satisfied for the given lattice if ¢ is chosen
sufficiently small. As for the passage from j to J + 1, we apply here the method described above, with
the appropriate changes in connection with boundary conditions: after the jth step we require that the
complement of the image of l:‘j no longer moves.

At each step we construct the composition of the n isotopies associated with the respective n
axes. As is seen from the above construction, when we obtain a refinement of the lattice in one direc-
tion we necessarily lose two-thirds of the “‘correct’’ (n — 1)-cubes in each of the remaining directions
(in order to be able to separate the images of the remaining cubes by hyperplanes and then to shrink
them again to narrow bands). Therefore when we pass to the ith direction we have to multiply the
number of ‘‘correct’’ cubes first by 2 and then by 37!, in order to compensate for the losses incur-
red in this direction at the next n — 1 steps, when we deal with the other directions. In actual fact
there are also additional complications connected with the boundary conditions, but we need not go
into these here.

3.3. Ve define some auxiliary isotopies; in the last analysis our construction will reduce to
combinations of these.
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By £(d;, d,, dy, dyros r,), where d, <d,<d, i=2,3, we denote the isotopy which is the

identity outside T1.(d , d,; r,), which on each segment parallel to ox, with endpoints on /(d ; r))

Py 1
and Ii(d4; rl) moves its points of intersection with /(d ; rl) uniformly on ¢ to the point of inter-

section with IL.(d rl), which is linear on the complementary intervals of this segment, and which is

3;
linear on each segment of the ray extending from the center of the cube li(dz; rl) between
Hi(d1’ d4; rl) and Hi(d1’ d,; rz).

It is clear that the isotopy 'fi(dl’ dz’ d3, d4; o rz) firstly takes Ii(dz; rl) into Ii(ds; rl), and
secondly takes each hyperplane parallel to ox, into itself. We call an isotopy constructed in the
above way an isotopy of type £.

Denote, also, the product &, (d - €5 d-es d-~ €, drp, rz){-'i(d, d+ € d+ €y d+ €33 Ty r2) by
vi(d; €, € €55 7, 7). It is clear that the isotopy v; maps the ‘¢ -slab”’ (- epdte

the "ez-slab” Hi(d - €y d+ ¢

% rl) onto

. i n - .
5 rl) and is equal to e on R \Hi(d €3 d+ €5 rz),
3.4. We shall now prove a lemma in which the preliminary considerations of 3.2 are made pre-

cise, and which comprises the geometric kernel of the whole proof.

Lemma on the correction of homeomorphisms. Let the axis ox,, 1< i <n, be fixed, and sup-
pose given

a) three numbers Ty To Ty such that 1< rg ST <7 <2

b) for each i’ £i,1<i' <n, K, + numbers di’,k’ 1<k <k, such that di’,l ==7, di',z =-7,

d., :—r1<di

i <. oo <d, <d =T,

. d. =7 and d, =r
‘4 Ptk =3 S TR ey T LKL LK

L= T
c) numbers d, d , d,, d;, together with A numbers ¢, 1 <L <A, such that ~r <d <d <
c, <02<---<c)\<d2<d3§r0.
Let ¢> 0 be such that for each i' #i the slabs Rfl dihn
, 0

same is true for the set of slabs Ri ey 1 <1< A, ond for the RE 4 m=0,1,2,3.
, .

are pairwise disjoint, and that the

Then, for each homeomorphic mapping g: 1’21 — R" such that

gl (d; r) I3 (d; 1y + &), (*)

where 1<i' <n and d runs for i’ £ i through the points d, 'k and for i' =i through dy, d}, d, d3,
there exists an isotopy X(g) of R" such that (X), = e and the following conditions are satisfied.

1 (X). X depends continuously on g;

2 ). X gl lesr)Clile,;7+6), 1L

2 (X) (2). (X)lg(li Ad; rl) N Ri(dl, dz)) C Hi,(d’ —6,d"+ ;T +6N Ri(d1 -6 dy+ 6), where
i' #1i, d runs through the points di » in the interval [— T rI], and d', d" are the left and right
neighbors of d among these points;

3 (X)(1). X=e on R™NgIL(d,, dg ro);

3 (X) (2). (X), = e on R"™\gIL(d,, dy; 1y)-
(In view of condition 3(X) (1) it is immaterial in which topology we consider the space of isotopies

of R™.)

3.5. Before proving the lemma, we derive some consequences from condition () for the homeo-
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morphism g: -

g(Iy(d', ds N Ri(dy, do)) Cpo(d —e, d" &7 +¢) [ Ri(d,— &, dy-+ ), (1)

where i’ #i, and d', d" run through the pairs of points d,, . in the interval [-r, r], with d' <d"”

and r = r, on T.

Let r =7, say. We first notice that the left side of (1) lies outside the image of II, (d”, Tos ro) N
Ri(do’ d3). At the same time, by applying condition (%) to each face of this parallelepiped we see
that the segment joining an arbitrary point x of its boundary to its image gx lies outside
Hi Ad” 4 e, o= €7y = N Ri(d(J + €, ds ~¢), and so this boundary can be taken into its image by
a deformation outside the parallelepiped. Since the second parallelepiped lies in the first, we have

g (d", ry; ro) () Rildy, dg)) DM (A" -+ &, ry—eg; ry—e) [| Ri(dy-+ &, dg—&).
From the above it follows that the region g(II ,(d Ld"; TN R(d,, dz)) lies outside
Hi(d" +e, Tyt e T - )N Ii’i(d0 +e, dy - €).

In exactly the same way, this region lies outside II, A= o+ € d' —¢; o~ N Ri(do +e€ dy - €).

It is proved similar ly that it lies outside the parallelepipeds Hi,,(7 +€,7T

Rl.(d0+e, d3—€) and Hiu(" o+ € -7 —€; rO—e)ﬂRi(d0+e, d

O—e;r0~e)ﬂ

3= €), and also outside the

parallelepipeds l_ll.(d2 tesTy = €¢) and Hi(d2 te, dy—e5r - €). In all, we obtain that this
region cannot intersect the difference of parallelepipeds
Hi(d, - &, dyg—g; r,— e\ (Ui (d" —e, d" + & r+ &) () Ri(dy, dy)) )

or, in particular, the boundary of the former. But it intersects the first parallelepiped, and so is con-
tained in it. In fact, the point g{x), where the coordinates of x are x,=d, x,, = d' and Xow =T,
where i" #i and i" #£i', firstly belongs to this region and secondly belongs to

Hi(d0+e, d3 o

From the above it follows that the region in question lies in the smaller parallelepiped of the

—¢; 1 —¢), by condition (x) applied to all the coordinates of x.

difference (2), as was to be proved.

. . ’
We observe that in the particular case when d' =d” = d we have

g(I:-(d; r) () Ri(dy, do)) T 1ir(d; r+ &) (Y Ri(dy —e, dy+ 8), (3)
where r=r, or 7,1 #£1i, and dzdi’,k'

It is similarly proved that
gli(d, nC Ii(d; r+e), (4)

where r=r7 or 7, and d= dl or d_, and also that

27
glli(dy, do; 1) T 1i(dy —e, dy+ & 1+ 8), )
where r = T 7, o
3.6. We shall construct X as the composition of A isotopies w;, 1 </ <A, which successively

“‘correct’’ the images of the cubes li(cl; rl) corresponding to the points c¢,. We begin with the
point cy; that is, X = wy o+++ o w,.
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For the sake of uniformity put ¢, ,, = d2 and ¢y, = d3. Both these points are used in the
construction of w,, and the point d, also in the construction of w)_;. Denote by H the set
€ € ,
Ui'# i;lSiSH(Ri’,ro U Ril ,__ro), then

HO I o= A ©6)

3.7. We shall construct o, as the product of an isotopy w, for which (Z)l)o = e, and the homeo-
morphism equal to e for [ = A and (w“l)l for [ <A.

For the isotopies w, we require the following conditions (given in a form convenient for induc-

I
tion) to be satisfied:
1 (w). w, depends continuously on g;
2 () (1a). (col)lgli(cl,; 7) le(cl, sTre), L<l <
2 (w) (1b). (wl)lgli(cl, 5 ro) CRZC['-eUH, I<l' <)

2 (w) (2a). (ml)lg(lil(d; rl) ﬂRi(dl, dz)) C (lilﬂd; ro+ )N Ri(d1 - ¢, dz +eNU

(Hi,(d' —e,d" +e; T +E)HU?,+=1H11§(C[,;?+€)), where (', d, d' and d" are as in 2(X)(2);

2 (@) @b). () (W, (@', d"; IR e) I, @' e, d" +6;F+ N
Ri(d1 — €, cl+e), where i’ £i,1<i' <n,d' <d”",and d', d" run over the points di,,k of the
interval [-7, 7 );

2 (w) (20). (ml)lg(ﬂi,(d', d"; 7N Ri(dl’ dz)) C(ﬂi,(d' —,d" +e;T+€e)N
Ri(dl - ¢, d2 +eDURY —eUH)’ where i', d’, and d" are as in (2b);

i,c1+]
3 (w) (1). @, =€ on R™\ (wlﬂ)lgﬂi(dl, €l ro);
3 (w) (2). (Z)l)l =e on R”\(wlﬂ)lgﬂi(dl, €415 rO).
3.8. Conditions (X) follow from conditions (w). This is clear for 1(X) and 3(X). Condition
2(X) (1) follows from 2{w} (1a) for { = 1, and 2(X) (2) from 2(w) (2a) for I = 1, since, as one sees
immediately, both terms on the right-hand side of the latter condition lie in each term of the right-

hand side of condition 2(X) (2).

3.9. Arguing by induction, suppose that the isotopy w4, has already been constructed, and so
a homeomorphism gm is defined, equal to g in the case [ = A and equal to (wlﬂ)lg for I < A.
From conditions (w) it obviously follows here that

1 (E). glﬂ depends continuously on g;

2 (g). the same as 2(w), but with (w)) \8 replaced by glﬂ and [ by [+ 1;

3(8). & =g on R\II(d, d,; rp).

These conditions are satisfied for g in the case [/ = )\, and therefore we can start our induction.

In fact, 1(§) and 3(’g\') are satisfied trivially; 2 (E) (1a) and (1b) follow from the fact that by
hypothesis, according to (%), gli(dz; ro) C li (dz; o+ €); 2(g) (2a) follows from (3); and 2(3) (2b)
and (2c) both follow from (4).

Henceforth we drop the index [ in the notation for the isotopies and the index [ + 1 in the
notation for the homeomorphism §l+1.

Moreover, we carry out the argument for the case [ <)X. The case ! = A requires only minor
alterations.
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3.10. We derive some corollaries from condition 2(g).
glli(d,, dy r) C1i(d; —e, dy+& 1y + &) U Ricory—e 7

It is sufficient to prove that the boundary of the left-hand region is contained in the right-hand

: rl) and li(d

one. For the images of the faces [(d ;

3(2). If i’ £i then
g(]p(t Ty fl) ﬂ Rt(dl, dz))(:(lie'(i ., n + 8) ﬂ Rt(dl—ﬁ, d2+ 8))(_JRICH_1—8

¥ rl) this follows from (4), since g'\' =g by

by Z(Q) (2a), since lg(ci BT C R;:cl+2"€ for I > 1+ 2. Since obviously lil(i THTy+ €) C
:1+€, we obtain the required conclusion.
gHi(dO, ds; r_)DlL(dl, Cits—&; I+ ). (8)

We observe that the boundary of the left-hand region does not intersect the interior of the right-

hand one. For the faces Ii(do; 7) and Ii(d ; 7) this follows from condition (*) for g, since g =g

2
on them, by 3(g ). For the remaining faces it follows from 2(g) (2¢) (for d' =d" =7) and
(7)-

On the other hand, the two regions intersect; for example, they both contain gli(clﬂ; rl). This
is clear for the left-hand side, and for the right-hand side it follows from 2 (rg)(la) and (7).

From the above two assertions it follows that the left-hand region contains the right-hand one;
that is, (8) is proved.

el (dy, cipa; DT i(d, —e, a8 r -+ e). &)
This condition comes directly from 2 (g) (2b), upon putting d' =-7,d" =T.
gni(dl’ Ciig; ro)DHi(dl + &, Ci2 — & r‘o'—s)- (10)

The proof is similar to that of (8). In fact, that the boundary of the left-hand region does not

intersect the interior of the right-hand one follows from (*) for the face li(dl; ro), from 2(§)(1b) and

(6) for the face IE(CHZ; ro) and, finally, from (*) and (3) for the faces li 4+ Tos ro) 8] Ri(dl’ cl+2). On
the other hand, both regions contain gli(clﬂ; r) (see 2('g\') (1a).
g (&', d's 1) Rildy, era)) DIE(d; 1,4 €) () Ri(dy + & Crra— ), an

where i ' #£i, d is one of the points di, in the interval [— r rl], and d', d” are the left and

k

right neighbors among the points di T
Both sides of this inclusion contain g(li Ad; rl) N Ri(dl’ Cl+1)): the left-hand side obviously,

and the right by 2(g) (2a) and (2b). Therefore it is again sufficient to prove that the boundary of the

left-hand region does not intersect the interior of the right-hand one.
For the faces orthogonal to ox this follows from (), 3(@‘), and 2(2‘ ) (1b).
For the faces of the form /.,(+ 7, F) N R, Ad', d"N R(d,, ¢
have from Z(E) (2¢) that
g(r (=7, 1) N Ru(dy, do)) T (5 (7, 7 + &)\ Rdy—e, dy-+e)) URie,y,—UH,

and the right-hand side of this inclusion does not intersect the interior of the region standing on the

l+2)’ where i’ £#iand (" #1i, we
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right-hand side of (11).

Finally, we see that it follows from condition 2 (g) (2¢) that the image of the face ]i Ad PN
R(dl; Cl+2) lies in

Fo(d'; 7+ &) (1 Ri(dy —e, dy+e) U Rigyp,—e UH,

and again

Iv(d;r+e) N Ie(dir+e)=A Rig,—eIntRi, , o=A,
HO %o =A (see (6)).

3.11. We pass to the construction of w. We observe that by an arbitrarily small isotopy, inde-
pendent of g, we can arrange for the weak inclusion in 2 (g) to be replaced by strong; that is, by in-

clusion in the interior. We shall assume this to have been done already.

We shall construct w as a product o !po7, where 7, 0, and p are three isotopies, of which 7

and ¢ are conjugate to isotopies of type &, and p itself has type & (see 3.4).
3.12. Construction of 7. Let a, > ¢, be the least number with the property that

§1i (al; ro)CR;cl__s U H. (12)

This minimum exists, with

a; < C[+1 , (13)
by 2(g)) (1b).
Let us prove that a, = al(g) depends continuously on g To do this we first show that if a num-

ber @ has property (12) then for any @’ such that @ < o' Sy

gl (@, ro) N i(d, + & c;—e ry—e) = A, (14)
In fact, the image of the boundary of I]L.(dl, a; ro) obviously does not intersect
Int l_li(d1 IR €) ( by (), (12), and (6)), while this boundary may be deformed into its
image outside the parallelepiped Hi(a'1 teE, € —€5Ty— ¢). Indeed, the points of all the faces of
Hi(dl, a; ro), other than Ii(a; ro), go into their images along the segments joining them, and the
image of the latter face must first be deformed on H onto R;,cl—e’ and then also deformed along

segments.

From this we obtain that
gli(d,, @; ro) DILi(d, + & ci—e; rg—e). (15)
On the other hand, it is clear that for a’ <@ we have
gli(a’; ro) N Int glLi(dy, @; 1) = A
From this and (15) we obtain (14).

If now ¢ is a small number, then by the above it follows from the choice of a, that

g[,;(a—kﬁ; rO)ﬂHi(d1+8, Ci— & ro—e) = A,
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while
§1,(a1 —e 1) (1 IntI;(d, =& c,—e ro—e)F= A,

since otherwise a  — ¢ would have property (12), and then a. would not be the least number with

1 1

this property.
Both the conditions are preserved if ’gb is replaced by a sufficiently close homeomorphism. This
proves the continuity of al(g).

Now let a, = az(g) be the greatest number such that for all a',a<a' < a,, we have

g(Mi(d,, dy; r)\J?\—a) C Int H. (16)
This time we shall not prove that ¢, depends continuously on g, but we shall show that
az(’g\') is lower semicontinuous as well as, by the remark at the beginning of 3.11, strictly positive.
To prove the lower semicontinuity we observe that if 0 < a' < az(g) then condition (16) is also
satisfied for all homeomorphisms g': l; — R" sufficiently close to g, and therefore a,(g “Yy>a',
whence follows the semicontinuity of a,.
By Baire’s well-known theorem on the separation of semicontinuous functions by continuous ones

. . - . - ~ i
(see [4]), we can find a continuous strictly positive function a z(g) such that

g(Mi(dy, dy; r)\I7,_5) T H. (17)

—_ ~
Now let 7 = fi(dl, Cp @y €3 T, =0 ro).

Since d, <c¢,;<a; <c,,, 7 is correctly defined. We note that

wly(es re) S iag ro) U (Mi(dy, doy )\ 7 _52)- (18)
We put

T=gT1g.

We remark immediately that from the construction of 7 and from (18) it follows that

(v)eli(es ro)cgli (ay; ro) U g(Hi(dv dy; ro)\[:,_.aj)r (19)
and by the choice of a, (see (12)) and by (17),
(T)lgli (cr; ro) (- R;q—s U H. (20

Moreover, obviously
(Ohgli(es; 1) C glli(d,, ay; 7o)- (21)
3.13. We note the following properties of r:

1 (7). 7 depends continuously on g;

2 (r). the same as 2@), but with 'g\' replaced by (7)1 g and with the following addition to 1(a):

gli(cs; N C e, —e, copy + & 7+ &) (22)
3(r). r=¢€ on R"\gﬂi(dl, c

Property 1(r) follows from the fact that both the parameters a

l+l; ro).
~o —_
, and a, defining the isotopy 7

- s . . . - -
depend continuously on g, by their construction; and 3(r) is also obvious from the construction. To
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prove 2(7) and for later use we note that since 7 is an isotopy of type &, it takes every hyperplane

parallel to ox, into itself, and so 7 takes the images of such hyperplanes under g into themselves.

From these remarks and from 3(7) it follows that

(0@l (d; ro) =glin(d; 1), i =i, (23)
(vgle (d; 1y = gli(d; 1), @+ 1, (24)
(Ve = & on [o(d; 1)\ Rigyyy ©F 1. (25)

In turn it follows from these properties that (r)l takes the left sides of the inclusions in conditions
2@) (2) into themselves. The conditions 2(’§) (1) are not disturbed, since (r)l = e on their left
sides, by 3(7).

We note further that from (24) and (25) it follows that

(V81T (dy, croa; ) = @i (dy Cigas 7). (26)
Finally we prove the addition (22) to condition (1a). From 3(r) it follows that
(v)&l; (012;)C§Hi (di, Ciyns r). 27)
From (9) it now follows that
(t)gli(es VS I(d, —e, cipr 48 T+ €). (28)

From (21) and (28) it follows that
(Whglier 1) C (R y—e U HY N ILi(dy —&, €+ 7+ ),
which in view of (6) is Hi(cl —€ Cpy TET ¢), and thus (22) is proved.

We note for future use one further property of 7, which follows from the fact that 7 is constructed

as an isotopy of £, and from 3(r) (r = rg» 7o OF rl):
(v),&Mi(d,, dy; r) = glli(d,, dy; 1). (29)
3.14. Construction of 0. Let b, =b (g) be the least number such that
b, > max(c;, a,), (30
(V)8/i(by; 1)) TR~ UH. 31)

Such a minimum exists, with bl <c¢ 4 by 3(7) and the assumption of strict inclusion in 3.12.

. . i .
Like a , b1 depends continuously on g. We note some properties of bl:

(vhgli(cs; 1)) C glli(dy, by; 1) (32)

(from (30) and (21));
(V) &l (d; 1) N Ri(dy, b)) S 2 (U (di 7) () Rildy, ca)) (33)
(from (32), (24), and (26));
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T8 (dy, by 1) C g Ti(dy, o, T; (34)
(Th&TTi(by, Cita 7o) CC Rieyy—e U H. (35)

Indeed, the boundary of the left-hand region lies in the right-hand one.

(T)1§Hi(b1, Cit1; ;)C I; (Cit1; r+ g). (36)
Since bl >ec,> dl, it follows from (26) and (9) that
(T)léﬂi(bl, Citr; r_) Ci(d, —e& cryq + & r+ g).
On the other hand, from (34) we obtain that
(& (by, Crpas 1) C Rigy e U H.
Since H ﬂl:+€ = A (see (6)), we obtain (35).

Now let b2 = bz(g) be the least number such that

(1&gl (bs; r0) C Ri+,q+2—e UH. (37)
Again the minimum exists, with
cr1< by < Crte (38)
and with b2 depending continuously on E
We observe that
~ +
(V&I (byy Cryas ) C Rieyyp—e U T, (39)

which proves (34).
Now let G _ fi(bl, ¢4 by €pyps T+ €). Since by <c,,, <b,<c,,,, 0 is correctly defined.

Put
o = ((v)g) o (Vg™
Then, by the construction,
(07), Eli (€11 1) = (1)1511' (bs; 1p)- (40)
3.15. We note these properties of o:
1 (0). o depends continuously on 2‘;
~ +

2 (o) (1a). (or)lgli(clﬂ; ro) C Ri,cz+2-€U H;

2 (o) (1Db). (ar)lg = (1) g on Ifc;;ry);

2 (0) (2). The same as 2('{;) (2), with g replaced by (or)lg, and also ¢, by b1 in (2b).

3(s). o=e on R”\(r)lgﬂi(bl, €14 To

Properties 1(0), 2(0) (2), and 3(0) can be verified in just the same way as the analogous proper-
ties for 7. Property 2(0) (1b) follows from 3(o) and (30). Finally, 2(c) (1a) follows from (40) and (37).

+€).

We give some further properties of o that are needed later:

() (DN g i (dy, dy 1) = g 1T (dy, dy; r)- (41)
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forall ¢t €[0, 1] and for r =1 . T, 7o This follows from (29), 3 (o), and the fact that T is an isotopy
of type £.
(0), @11 (Cot, Creas 1) = (1), & iy, Crni 7). (42)
This follows from the construction.

From 3 (o) and (41) for r = ro it follows that

S(0) (1 g i (dy, dgi 1) = (T g Wi (b, €y 1) CH U RZCHL”E
(see (35)), where S(0) is the support of o.

Hence it obviously follows that

(@), (RTqe U H) =R e UH, (43)

(0)1 == € on (T)lgnf' (d/v dl’y ;) m Ri (d]_y bl)r i( 3& I:y (44)
(0), = ¢ on Ii(c; r - &), (45)

(0), = e on (1), g11;(d,, by; 7). (46)

Finally, since 7 and o also take the image under E of each hyperplane parallel to ox, into
itself, by 3(0) and 3(r) we obtain that
(@), g (U (d', ' 1) () Rijepy) = (00 g (T (&' d" 1) () Rieyy )
=gl (d', ' 1) (1 Ry, (47)

where i #£i, and d', d" €ld,, L d <d".
3.16. Construction of p. Put

0 ==Ei(ci—&, Cioy & C -+ E Clpa—8 T+ & f—E).

We observe that
)y Uilei—e, con+ &7+ &)= If (c;; 7+ ). (48)

3.17. We note these properties of p:

1 (p). p is independent of g

2 (p) (1a). (par)lgli(cl; 7) Cli(cl; F+e);

2(p) (1b). (pon) gl fe;;r) C R;Cl_euH;

2(p) (2a). (por) g, (&5 )NRd, d)C (RAd, —€, dy+ )N 5 + U
(U)ﬁinFi(cl’; T+ f)ﬂﬁi,(d' ~e,d" +e;7+¢€), wherei', d, d', d" are as in 2(g) (2a);

2 (p) (2b). (por) gL, (@', d"; FINRL, e NCI, (d" ~¢,d" + ;T + )N RId, ~¢, ¢, +¢),
where d' <d" and i’ are as in 2(g) (2b);

2 (p) (20). (Wr)lg(ﬂia(d', d";7) ﬂRi(dl, dz)) CHi,(d' —e,d "+ e; T+l

R(d; ¢,y —e)UH, where d', d", and i’ are as in 2(g) (2¢);
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3(p). p=e on R"\Hi(cl—e, Clag= € 7y~ ).

Properties 1(p) and 3(p) follow immediately from the fact that p is of type ¢&. Property 2(p) (1a)

foilows from (22), 2(0) (1b), and (48), and Z(p) (1b) from (21), 2(o) (1b), and the fact that S(p) C
Ri,cl-e by 3(p), where S(p) is the support of p.

Condition 2(p) (2a) follows from 2 (o) (2a), 2(3) (2a), and the fact that p takes the right-hand
side of the latter condition into itself, since p=e on R}

iyep4g—e (by 3(p)), and sinc