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Let Γ be either the infinite cyclic group Z or the Baumslag-
Solitar group Z � Z[ 12 ]. Let K be a slice knot admitting 
a slice disc D in the 4-ball whose exterior has fundamental 
group Γ. We classify the Γ-homotopy ribbon slice discs for 
K up to topological ambient isotopy rel. boundary. In the 
infinite cyclic case, there is a unique equivalence class of such 
slice discs. When Γ is the Baumslag-Solitar group, there are 
at most two equivalence classes of Γ-homotopy ribbon discs, 
and at most one such slice disc for each lagrangian of the 
Blanchfield pairing of K.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A knot K ⊂ S3 is slice if it bounds a locally flat disc D ⊂ D4. The goal of this paper is 
to study the classification of the slice discs of a given slice knot up to topological ambient 
isotopy rel. boundary. An initial observation is that one can connect sum a given slice 
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disc with any 2-knot, to obtain infinitely many mutually non-isotopic slice discs for every 
slice knot, as can be seen by considering the fundamental group of the exterior.

We therefore restrict to slice discs D for which π1(D4 \D) is a fixed group. We also 
add a technical homotopy ribbon condition on our discs by requiring that the inclusion 
map XK := S3 \ νK ↪→ ND := D4 \ νD induces a surjection π1(XK) � π1(ND). A 
knot is homotopy ribbon if it admits such a homotopy ribbon disc. The (open) topological 
ribbon-slice conjecture asserts that every slice knot is homotopy ribbon.

Definition. Given a group Γ, a homotopy ribbon disc D is Γ-homotopy ribbon if 
π1(ND) ∼= Γ. An oriented knot is Γ-homotopy ribbon if it bounds a Γ-homotopy ribbon 
disc.

We consider two cases: the infinite cyclic group Z and the Baumslag-Solitar group

G := B(1, 2) = 〈a, c | aca−1 = c2〉 ∼= Z � Z[ 12 ],

where the generator a of Z acts on Z[ 12 ] via multiplication by 2. Since both of these 
groups are solvable, and hence good in the sense of Freedman, topological surgery in 
dimension 4 and the 5-dimensional s-cobordism theorem can be applied to classify Γ-
homotopy ribbon discs. A first question, however, is whether such discs exist.

The following theorem, whose two parts are respectively due to Freedman [6] (see 
also [5, Theorem 11.7B] and [12, Appendix A]) and Friedl-Teichner [10, Theorem 1.3]
answers this question in the affirmative. Let MK denote the zero-framed surgery manifold 
of K. Note that ∂ND = MK for every slice disc D for K.

Theorem 1.1. Let K be an oriented knot.

(1) If K has Alexander polynomial ΔK(t) .= 1, then K is Z-homotopy ribbon.
(2) If there is a surjection π1(MK) � G such that Ext1Z[G](H1(MK ; Z[G]), Z[G]) = 0, 

then K is G-homotopy ribbon.

Since we now know that Γ-homotopy ribbon discs exist for the groups Γ = Z and G, 
we return to our initial objective: their classification.

1.1. Z-homotopy ribbon discs

In the Z case, we show that the Z-homotopy ribbon disc for an Alexander polynomial 
1 knot K is essentially unique. More precisely, we prove the following.

Theorem 1.2. Any two Z-homotopy ribbon discs for the same Z-homotopy ribbon knot 
are ambiently isotopic rel. boundary.
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Theorem 1.2 accords with Freedman’s other famous result that every knotted S2 ↪→ S4

with π1(S4\S2) = Z is topologically isotopic to the standard unknotted embedding S2 ↪→
S4 [5]. We also note that Theorem 1.2 has recently been applied by Hayden in order to 
construct pairs of exotic ribbon discs [14]. We now move on to the Z � Z[ 12 ] case.

1.2. Z � Z[ 12 ]-homotopy ribbon discs

Before stating our second result, some additional notions are needed. Recall that MK

denotes the 0-framed surgery along an oriented knot K, that H1(MK ; Z[t±1]) coincides 
with the Alexander module of K and that if D is a slice disc for K, then ∂ND = MK . 
If D is a homotopy ribbon disc for a knot K, then we call

PD := ker(H1(MK ;Z[t±1]) → H1(ND;Z[t±1]))

the lagrangian induced by D. The reason for this terminology is that PD is a lagrangian 
for the Blanchfield pairing Bl(K) of K, i.e. PD = P⊥

D . Note that if K is merely slice, 
then this only need hold over the PID Q[t±1].

Our second main result expresses the classification of Z �Z[ 12 ]-homotopy ribbon discs 
using the induced lagrangians of the Blanchfield form.

Theorem 1.3. Set G := Z � Z[ 12 ] and let K be a G-homotopy ribbon knot. If two G-
homotopy ribbon discs for K induce the same lagrangian, then they are ambiently isotopic 
rel. boundary.

Before describing applications of Theorem 1.3, we outline the common strategy behind 
the proofs of Theorems 1.2 and 1.3.

We say that two slice discs D1 and D2 for a slice knot K are compatible if there is an 
isomorphism f : π1(ND1) 

∼=−→ π1(ND2) that satisfies f ◦ ιD1 = ιD2 , where ιDk
: π1(MK) →

π1(NDk
) denotes the inclusion induced map for k = 1, 2. Observe that two Z-homotopy 

ribbon discs for an oriented Z-homotopy ribbon knot are necessarily compatible, while 
Proposition 3.3 shows that G-homotopy ribbon discs are compatible if and only if they 
induce the same lagrangian.

Theorems 1.2 and 1.3 are both consequences of the following result.

Theorem 1.4. Use Γ to denote either Z or Z � Z[ 12 ] and let K be a Γ-homotopy ribbon 
knot. If D1 and D2 are two compatible Γ-homotopy ribbon discs for K, then D1 and D2

are ambiently isotopic rel. boundary.

Theorem 1.4 is proved by applying the surgery programme to the disc exteriors ND1

and ND2 . We briefly recall the steps of this well known classification programme. Let D1

and D2 be two compatible Γ-homotopy ribbon discs.
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(1) In Lemma 2.1, we establish that ND1 and ND2 are homotopy equivalent. In fact, 
they are aspherical and both K(Γ, 1) spaces.

(2) Fixing a homotopy equivalence f : ND1 → ND2 , Proposition 2.3 constructs a cobor-
dism (W, ND1 , ND2) relative to MK , and a degree one normal map

(F, IdND1
, f) : (W,ND1 , ND2) → (ND1 × [0, 1], ND1 , ND1).

This is a surgery problem: we wish to know whether F is normally bordant to a (sim-
ple) homotopy equivalence. There is an obstruction σ(F ) in the (simple) quadratic 
L-group L5(Z[Γ]) to solving this problem.

(3) After analysing the surgery obstruction σ(F ) in Lemma 2.4, we take connected sums 
along circles with Freedman’s E8 manifold times S1, in order to replace F by a new 
degree one normal map with vanishing surgery obstruction.

(4) We perform 5-dimensional surgery to obtain an s-cobordism. Since Γ is a good group, 
the topological s-cobordism theorem in dimension 5 implies that ND1 and ND2 are 
homeomorphic rel. boundary.

(5) Lemma 2.5 shows if the disc exteriors ND1 and ND2 are homeomorphic rel. boundary, 
then the discs D1 and D2 are ambiently isotopic rel. boundary.

1.3. Characterisation of homotopy ribbon discs

Theorems 1.1 (1) and 1.2, combined with the fact that every knot with a Z-homotopy 
ribbon disc has Alexander polynomial 1, yield the following characterisation.

Theorem 1.5. A knot K has ΔK(t) .= 1 if and only if K has a Z-homotopy ribbon disc, 
unique up to ambient isotopy rel. boundary.

Now set G := Z � Z[ 12 ]. In Section 4, we shall combine Theorem 1.3 with [10, The-
orem 1.3] and further analysis to completely characterise G-homotopy ribbon discs. To 
state our characterisation, we introduce some notation. Given a Z[t±1]-module P , we 
write P for P with the Z[t±1]-module structure induced by t ·x = t−1x. Note that Z[ 12 ] is 
isomorphic as an abelian group to both Z[t±1]/(t −2) and Z[t±1]/(2t −1), but the action 
of t in the Z[t±1]-module structure differs – either multiplication by 2 or 1

2 respectively.
Let P ⊆ H1(MK ; Z[t±1]) be a submodule of H1(MK ; Z[t±1]) which is isomorphic 

to either Z[t±1]/(t − 2) or Z[t±1]/(2t − 1), and such that H1(MK ; Z[t±1])/P ∼= P . In 
particular, P is again isomorphic to Z[ 12 ] for one of the module structures. Associated 
with this submodule and a choice of meridian of the knot is a homomorphism

φP :π1(MK) � π1(MK)/π1(MK)(2)∼=Z � π1(MK)(1)/π1(MK)(2)∼=Z � H1(MK ;Z[t±1])

� Z � H1(MK ;Z[t±1])/P ∼= G
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which is obtained via canonical projections and the identification π1(MK)(1)/π1(MK)(2)∼=
H1(MK ; Z[t±1]). We can now state the complete algebraic characterisation of G-
homotopy ribbon discs. Details are given in Section 4.

Theorem 1.6. Set G := Z � Z[ 12 ]. Let K be an oriented knot, and let L be the set of 
submodules P ⊆ H1(MK ; Z[t±1]) of the Alexander module that are isomorphic to one 
of Z[t±1]/(t − 2) or Z[t±1]/(2t − 1) and fit into a short exact sequence

0 → P → H1(MK ;Z[t±1]) → P → 0. (1)

Mapping a G-homotopy ribbon disc to its induced lagrangian gives rise to a bijection 
between

• G-homotopy ribbon discs for K, up to topological ambient isotopy rel. boundary;
• submodules P ∈ L such that, with respect to φP ,

Ext1Z[G](H1(MK ;Z[G]),Z[G]) = 0. (Ext)

Moreover, these sets have cardinality at most two.

Note that Theorem 1.6 yields necessary and sufficient conditions for a knot to be G-
homotopy ribbon. This strengthens [10, Theorem 1.3], which was stated in Theorem 1.1.

Corollary 1.7. Set G := Z �Z[ 12 ]. An oriented knot K is G-homotopy ribbon if and only 
if its Alexander module contains a submodule P that satisfies the following conditions:

(1) P ∈ L, that is P is isomorphic to Z[t±1]/(t − 2) or Z[t±1]/(2t − 1), and we have 
H1(MK ; Z[t±1])/P = P ,

(2) Ext1Z[G](H1(MK ; Z[G]), Z[G]) = 0 with respect to φP .

The next remark notes that the situation in Theorem 1.6 can be made even more 
explicit.

Remark 1.8. As noted in Lemma 4.2, the fact that H1(MK ; Z[t±1]) fits into the short 
exact sequence (1) for some P ∈ L implies that H1(MK ; Z[t±1]) must be isomorphic to 
one of

M1 = Z[t±1]/(t− 2)(2t− 1) or M2 = Z[t±1]/(t− 2) ⊕Z[t±1]/(2t− 1).

This strengthens the observation, due to Friedl and Teichner, that if a knot K bounds a 
G-homotopy ribbon disc D, then ΔK

.= (t − 2)(2t − 1) [10, Corollary 3.4].
For these Z[t±1]-modules, Lemma 4.3 describes the set L of Theorem 1.6 explicitly:
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Fig. 1. The knot Kn, where for n > 0 the box symbolises n positive full twists, as depicted on the right. For 
n < 0, we use |n| negative full twists.

• for M1, we have L = {(t − 2)M1, (2t − 1)M1};
• for M2, we have L = {Z[t±1]/(t − 2) ⊕ {0}, {0} ⊕Z[t±1]/(2t − 1)}.

Finally, note that Theorem 1.6 ensures that if K is G-homotopy ribbon, then both P
and P are lagrangians of the Blanchfield pairing Bl(K).

1.4. Examples

After providing the proofs for these results, we shall describe an explicit application 
of Theorem 1.3: we study the (Z �Z[ 12 ])-homotopy ribbon discs for the family {Kn}n∈Z

of knots depicted in Fig. 1. We recall the construction of explicit (Z � Z[ 12 ])-homotopy 
discs for each Kn. Then for n = 3k, we obtain the following complete classification as 
an application of Theorem 1.3.

Theorem 1.9. Set G := Z � Z[ 12 ]. Up to ambient isotopy rel. boundary, the knot K3k
admits

(1) precisely two distinct G-homotopy ribbon discs if k = 0, −1;
(2) a unique G-homotopy ribbon disc if k �= 0, −1.

Since the Ext condition is difficult to verify in practice, the proof of the second item 
uses a theorem of Cochran-Harvey-Leidy [1] to obstruct the existence of a potential slice 
disc corresponding to one of the lagrangians of the Blanchfield pairing. This involves 
obtaining bounds on the Levine-Tristram signatures of metabolizing curves on a Seifert 
surface for Kn, as we shall explain in Section 5. For n ≡ 1, 2 mod 3, we have the 
following partial answer. Part (2) was obtained using a computer to calculate Levine-
Tristram signatures.

Proposition 1.10. Set G := Z � Z[ 12 ]. Up to ambient isotopy rel. boundary,

(1) the knots K−1 and K−2 admit precisely two distinct G-homotopy ribbon discs;
(2) the knots K−5, K−4, K1, and K2 admit a unique G-homotopy ribbon disc.



A. Conway, M. Powell / Advances in Mathematics 391 (2021) 107960 7
As |n| increases, so does the complexity of the metabolizing curves for Kn. We there-
fore conjecture that Kn admits precisely two G-homotopy ribbon discs for −3 ≤ n ≤ 0, 
and a unique G-homotopy ribbon disc otherwise. Note that altogether we have verified 
the conjecture for −6 ≤ n ≤ 3, and for n = 3k, k ∈ Z. Due to limitations in our ability to 
obtain bounds for Levine-Tristram signatures of metabolizing curves in infinite families, 
we only have the experimental evidence given in Proposition 1.10.

Organisation This article is organised as follows. Theorem 1.4 (and thus Theorem 1.2) 
is proved using surgery theory in Section 2, while we deduce Theorem 1.3 from con-
siderations on the Alexander module in Section 3. Theorem 1.6 is proved in Section 4, 
Theorem 1.9 and Proposition 1.10 are proved in Section 5. Finally, in Section 6 we relax 
the rel. boundary condition on ambient isotopies, but still exhibit knots with precisely 
two G-homotopy ribbon discs.
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Conventions Throughout this article, we work in the topological category and we 
assume that all manifolds are compact and oriented. We say that homeomorphisms, 
homotopy equivalences and isotopies are rel. boundary if they fix the boundary point-
wise. If N1, N2 are two n-manifolds with boundary M , a cobordism between N1 and N2
is relative M if, when restricted to M , it is the product M × [0, 1]. Given a Poincaré 
complex (X, ∂X), a degree one normal map (f, ∂f) : (N, ∂N) → (X, ∂X) is relative if ∂f
is a homotopy equivalence.

2. The surgery programme for slice disc exteriors

In this section, we prove Theorem 1.4 by following the surgery programme described 
above. From now on, Γ denotes either Z or Z � Z[ 12 ]. Recall that two Γ-homotopy 
ribbon discs D1 and D2 for a knot K are called compatible if there is an isomor-
phism f : π1(ND1) 

∼=→ π1(ND2) that satisfies f ◦ ιD1 = ιD2 , where ιDk
: π1(MK) →

π1(NDk
) denotes the inclusion induced map and ∂NDk

= MK for k = 1, 2. Such an 
isomorphism f will be called a compatible isomorphism.
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2.1. The homotopy type

Let D1 and D2 be two Γ-homotopy ribbon discs for a knot K. The first step in the 
surgery programme consists of showing that ND1 and ND2 have the same homotopy 
type. To achieve this, we describe the homotopy type of arbitrary Γ-homotopy ribbon 
disc exteriors: they are Eilenberg-Maclane spaces K(Γ, 1).

Lemma 2.1. Let Γ be either Z or Z �Z[ 12 ]. If D is a Γ-homotopy ribbon disc for a knot K, 
then its exterior ND is a K(Γ, 1). In particular,

(1) all Γ-homotopy ribbon disc exteriors are homotopy equivalent to one another;
(2) two Γ-homotopy ribbon discs are compatible if and only if they are homotopy equiv-

alent rel. boundary.

Proof. We must show that the higher homotopy groups of ND vanish. Since π1(ND) ∼= Γ, 
the Γ-cover of ND is simply connected. Thus, by the Hurewicz theorem, we are reduced to 
showing that Hi(ND; Z[Γ]) = 0 for i ≥ 2. We start with the case where i = 3, 4. Since K

is homotopy ribbon, the map π1(MK) → π1(ND) = Γ is surjective. It follows that the cor-
responding Γ-cover of MK is connected, so that we have an isomorphism H0(MK ; Z[Γ]) ∼=
H0(ND; Z[Γ]). Therefore H0(ND, MK ; Z[Γ]) = 0. Next, again since π1(ND) ∼= Γ, we 
have H1(ND; Z[Γ]) = 0, and we promptly deduce that H1(ND, MK ; Z[Γ]) = 0. Poincaré 
duality and the universal coefficient spectral sequence, UCSS for short [20, Theorem 2.3]

Ep,q
2 = Extq

Z[Γ](Hp(ND,MK ;Z[Γ]),Z[Γ]) ⇒ Hp+q(ND,MK ;Z[Γ])

imply that Hi(ND; Z[Γ]) ∼= H4−i(ND, MK ; Z[Γ]) = 0 for i = 3, 4. Here the overline 
emphasises the involuted module structure. For i = 2, by duality and the UCSS (where 
we use that Hi(ND, MK ; Z[Γ]) = 0 for i = 0, 1), we have

H2(ND;Z[Γ]) ∼= H2(ND,MK ;Z[Γ]) ∼= HomZ[Γ](H2(ND,MK ;Z[G]),Z[Γ]).

It is therefore enough to show that H2(ND, MK ; Z[Γ]) is Z[Γ]-torsion. Using the 
long exact sequence of (ND, MK) with Z[Γ] coefficients, this reduces to showing 
that H2(ND; Z[Γ]) and H1(MK ; Z[Γ]) are both Z[Γ]-torsion. The group Γ is PTFA since 
it is metabelian, has H1(Γ) = Z and torsion free commutator subgroup; we refer to [3, 
Definition 2.1 and Remark 2.3] for relevant details on PTFA groups. Since ND is a Z-
homology circle and since Hi(MK ; Z) = Hi(S1; Z) for i = 0, 1, these two statements 
follow from a now standard chain homotopy lifting argument [3, Proposition 2.10]. We 
have therefore shown that ND is a K(Γ, 1).

The first consequence is immediate: for fixed Γ and n, Eilenberg-Maclane spaces 
K(Γ, n) are unique up to homotopy equivalence. We prove the last assertion. If f : ND1 →
ND2 is a homotopy equivalence rel. boundary, then it certainly induces a compatible iso-
morphism π1(ND1) → π1(ND2). Conversely, assume that f : π1(ND1) → π1(ND2) is a 
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compatible isomorphism. We use basic obstruction theory to construct the desired rel. 
boundary homotopy equivalence ND1 → ND2 . Note that NDi

is homotopy equivalent to 
a 3-dimensional CW-complex with MK as a subcomplex (an argument is provided in [2, 
Proof of Proposition 5.14]). We define a map N

(1)
D1

∪MK → ND2 by sending the (relative 
MK) 1-cells to their image under f and mapping MK identically to its image in ND2 . This 
map extends over the 2-cells of (ND1 , MK): the attaching maps of the 2-cells are sent to 
the image of the relations under f and are therefore homotopically trivial. Since we have 
established that the NDi

are Eilenberg-Maclane spaces, π2(ND2) = 0 and π3(ND2) = 0, 
and we can therefore extend the aforementioned map over ND1 as desired. �
2.2. Finding a degree one normal map

Using Lemma 2.1, we fix once and for all a rel. boundary homotopy equiva-
lence f : ND2 → ND1 . This way, IdND1

and f are both degree one normal maps of 
the form (NDj

, ∂NDj
= MK) → (ND1 , MK), and we wish to find a relative degree one 

normal cobordism W → ND1 × [0, 1] between them; we refer the reader to [28] for the rel-
evant terminology from surgery theory. In other words, we must show that f and IdND1

define the same element in the set NTOP (ND1 , MK) of relative normal bordism classes 
of degree one normal maps (M4, ∂M4) → (ND1 , MK). To achieve this, we recall some 
facts from surgery theory that will be familiar to the experts.

Set G := colimG(n) and TOP := colimTOP (n), where G(n) and TOP (n) denote 
respectively the monoid of homotopy self-equivalences of Sn−1 and the group of homeo-
morphisms of Rn which map 0 to itself, both endowed with the compact-open topology. 
We refer to [22] for further details on G, TOP , and on the homotopy fibre G/TOP of the 
map of classifying spaces BTOP → BG. Given a basepoint ∗ of G/TOP and a compact 
oriented topological 4-manifold X, there are bijections

NTOP (X, ∂X) � [(X, ∂X), (G/TOP, ∗)] � H4(X, ∂X;Z) ⊕H2(X, ∂X;Z2). (2)

Here, since X is a manifold, NTOP (X, ∂X) is based by IdX and this leads to the first 
bijection in (2). That the first map is an isomorphism uses topological map transver-
sality [18, III.1], [5, Section 9.5]. The second bijection follows from the fact that the 
Postnikov 4-type of G/TOP is homotopy equivalent to K(Z, 4) × K(Z2, 2); see [18, 
Annex C, Remark 15.4], [19, p. 397].

When X = ND1 , a combination of Poincaré duality and the universal coefficient 
theorem give H2(ND1 , ∂ND1 ; Z2) = 0, starting from the fact that ND1 is a homology 
circle. We therefore focus on the H4 term: composing the bijection of (2) with the 
projection onto the first summand gives a map

proj1 : NTOP (X, ∂X) → H4(X, ∂X;Z). (3)

Since H3(X, ∂X; Z) ∼= H1(X; Z) ∼= HomZ(H1(X; Z), Z) is torsion free, we know that the 
evaluation map H4(X, ∂X; Z) → HomZ(H4(X, ∂X; Z), Z) is an isomorphism. As X is 
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compact, an element of H4(X, ∂X; Z) is determined by its evaluation on the fundamental 
class [X, ∂X].

Proposition 2.2. Let X be a compact oriented topological 4-manifold. Given a degree one 
normal map (g, ∂g) : (M, ∂M) → (X, ∂X) with ∂g a homotopy equivalence, one has

〈proj1(g, ∂g), [X, ∂X]〉 = 1
8
(σ(M) − σ(X)).

This result is known to surgery theorists. We give a proof using [22, Chapter 4], but 
also refer to [5, pp. 202-3] for a related discussion.

Proof. As mentioned above, by [18, Annex C, Remark 15.4] the map of G/TOP to its 
fourth Postnikov section yields a 5-equivalence

Θ: G/TOP → K(Z, 4) ×K(Z2, 2).

Letting k4 ∈ H4(K(Z, 4); Z) ∼= Z and k2 ∈ H2(K(Z2, 2); Z2) ∼= Z2 be generators, this 
gives rise to cohomology classes

h4 := [(pr1 ◦Θ)∗(k4)] ∈ H4(G/TOP ;Z),

h2 := [(pr2 ◦Θ)∗(k2)] ∈ H2(G/TOP ;Z2)

where pri is projection onto the ith factor. The degree one normal map (g, ∂g) determines 
ĝ ∈ [(X, ∂X), (G/TOP, ∗)] by (2). Then by definition of proj1, we have

〈proj1(g, ∂g), [X, ∂X]〉 = 〈ĝ∗(h4), [X, ∂X]〉.

Next, by [22, Remark 4.36 and p. 76], we have:

〈ĝ∗(h4), [X, ∂X]〉 = 1
8
(σ(M) − σ(X)). (4)

Madsen-Milgram give this formula for the class K̃4 = h4 ⊗ 1 ∈ H4(G/TOP ; Z) ⊗Z Z(2)
∼= H4(G/TOP ; Z(2)), instead of our h4, where Z(2) denotes the ring of integers localised 
at 2. This is because they are describing the entire homotopy type of G/TOP . To describe 
the homotopy type succinctly, as in Sullivan’s study of G/PL [27, p. 126 onwards], one 
describes the homotopy type localised at 2, G/TOP [2], and the homotopy type with 
2 inverted, and then combines them. But as we are only interested in the 4-type, the 
map Θ describes the homotopy type without localising. Note that the formula (4) is 
the same whether we use h4 or h4 ⊗ 1, since Z ⊆ Z(2). This concludes the proof of 
Proposition 2.2. �

Using Proposition 2.2, we can establish the existence of the desired normal bordism.
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Proposition 2.3. Let Γ be either Z or Z �Z[ 12 ]. Let D1 and D2 be two Γ-homotopy ribbon 
discs for a knot K and let f : ND1 → ND2 be a rel. boundary homotopy equivalence. There 
exists a rel. MK cobordism (W, ND1 , ND2) and a relative degree one normal map

(F, IdND1
, f) : (W,ND1 , ND2) → (ND1 × [0, 1], ND1 , ND1).

Proof. We show that the degree one normal maps IdND1
and f define the same class 

in the normal set NTOP (ND1 , MK). We already argued that H2(ND1 , MK ; Z2) = 0, 
whence the fact that the map proj1 : NTOP (ND1 , MK) → H4(ND1 , MK ; Z) described 
in (3) is a bijection. Proposition 2.2 now implies that IdND1

and f define the same class 
in NTOP (ND1 , MK): in both cases, we know that 1

8 (σ(NDi
) − σ(ND1)) vanishes, since 

H2(NDi
; Z) = 0 for i = 1, 2. This concludes the proof Proposition 2.3. �

2.3. The surgery obstruction

Proposition 2.3 gives rise to a 5-dimensional surgery problem. This surgery problem 
has a surgery obstruction in L5(Z[Γ]). Here, since the Whitehead groups Wh(Z �Z[ 12 ])
and Wh(Z) are zero, we omitted the decorations in the L-groups. That the Whitehead 
group Wh(Z �Z[ 12 ]) vanishes is due to Waldhausen [29, Theorem 5], since Z �Z[ 12 ] is a 
torsion-free one-relator group. We also refer to [15, Lemma 6.4] for a shorter explanation. 
The next lemma describes L5(Z[Γ]) for Γ = Z, Z � Z[ 12 ].

Lemma 2.4. For Γ = Z and Γ = Z � Z[ 12 ], there is an isomorphism L5(Z[Γ]) ∼= L4(Z).

Proof. For Γ = Z, this follows immediately from Shaneson splitting [26], namely one 
has L5(Z[Z]) = L4(Z) ⊕ L5(Z) = L4(Z). We therefore focus on the case G = Z � Z[ 12 ]. 
Invoking the Shaneson splitting L4(Z[Z]) = L4(Z), it is enough to show that

L5(Z[G]) ∼= L4(Z[Z]).

Multiplication by 2 induces an automorphism of Z[ 12 ]. Let α∗ be the induced auto-
morphism of Ln(Z[ 12 ]). Using Ranicki’s long exact sequence for twisted Laurent exten-
sions [24] (see also [10, Theorem 4.5]), we obtain the following exact sequence:

· · · L5(Z[Z[ 12 ]])
1−α∗

L5(Z[Z[ 12 ]]) L5(Z[G]) L4(Z[Z[ 12 ]])
1−α∗

L4(Z[Z[ 12 ]]) · · ·

(5)
As explained in [10, p. 2149], one has an isomorphism L4(Z[Z[ 12 ]]) ∼= L4(Z[Z]), and the 
induced map α∗ : L4(Z[Z[ 12 ]]) → L4(Z[Z[ 12 ]]) is the identity map. Arguing as in [10, 
p. 2149], one can use the fact that L-groups commute with colimits (direct limits) to 
show that L5(Z[Z[ 12 ]]) = 0 (in [10], the authors show that L3(Z[Z[ 12 ]]) = 0, but the 
same argument applies here). The lemma now follows from the exact sequence displayed 
in (5). �
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2.4. The proof of Theorem 1.4

We are now in position to prove Theorem 1.4, which states that if D1 and D2 are two 
compatible homotopy Γ-ribbon discs for K with Γ = Z, Z � Z[ 12 ], then D1 and D2 are 
ambiently isotopic rel. boundary.

Proof of Theorem 1.4. We first combine the results of the previous lemmas. Since D1
and D2 are compatible, Lemma 2.1 ensures the existence of a homotopy equiva-
lence f : ND1 → ND2 rel. boundary. Proposition 2.3 provides a relative degree one normal 
map

(F, IdND1
, f) : (W,ND1 , ND2) → (ND1 × [0, 1], ND1 , ND1).

The surgery obstruction σ(F ) lies in L5(Z[Γ]). Lemma 2.4 implies that L5(Z[Γ]) ∼= L4(Z)
and it is known that L4(Z) = L0(Z) ∼= 8Z is detected by the signature; see e.g. [21]. 
As a consequence, we think of σ(F ) as an integer. Next, we modify F to a new surgery 
problem F ′ with vanishing surgery obstruction. This is achieved by connect summing W

with σ(F ) copies of the degree one normal map S1 ×±E8 → S1 × S4. As in [5, p. 206], 
this connected sum is performed along loops; the next paragraph provides some details 
on this construction.

First, we may assume that the degree one normal map F : W → ND1 × [0, 1] is a 
homeomorphism F−1(ND1×[0, ε]) → ND1×[0, ε] in a collar neighbourhood of ND1×[0, 1]. 
Next, choose an embedded S1 ×D4 ⊂ ND1 × [0, ε] whose core represents a meridian of 
D1, and consider its preimage F−1(S1 × D4) ⊆ W . The domain of our new map is 
obtained by replacing the domain of the map F−1(S1×D4) → S1×D4 with the domain 
of the degree one map S1 × cl(E8 \D4) → S1 ×D4. Our new degree one normal map F ′

is obtained by modifying F using this map on the new S1 × cl(E8 \D4).
The outcome of this construction is a degree one normal map F ′ : W ′ → (ND1 × [0, 1])

with vanishing surgery obstruction and which coincides with F on the boundary. It 
follows that F ′ is normal bordant rel. MK × [0, 1] to a homotopy equivalence. We deduce 
that ND1 and ND2 are s-cobordant rel. boundary. Since the group Γ is solvable (for Z
this is immediate, while G = Z �Z[ 12 ] is metabelian i.e. G(2) = 1), it is good in the sense 
of Freedman [5] (see also [9,17]). The 5-dimensional s-cobordism theorem thus implies 
that ND1 is homeomorphic to ND2 rel. boundary [5, Theorem 7.1A]. Lemma 2.5 below 
shows that this homeomorphism gives rise to an ambient isotopy from D1 to D2. �

The next lemma concludes the proof of Theorem 1.4.

Lemma 2.5. Let D1 and D2 be slice discs for K. The following assertions are equivalent:

(1) the discs D1 and D2 are ambiently isotopic rel. boundary;
(2) the exteriors ND1 and ND2 are homeomorphic rel. boundary.
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Proof. Let (gt : D4 → D4)t∈[0,1] be an ambient isotopy rel. boundary from D1 to D2. 
In other words, the gt are homeomorphisms, g0 = idD4 and g1 : D4 ∼=→ D4 satis-
fies g1(D1) = D2. It follows that g1 induces a well defined rel. boundary homeomor-
phism ND1 → ND2 .

Now to the converse. Start from a rel. boundary homeomorphism f : ND1 → ND2 . 
We wish to attach 2-handles to ND1 and ND2 in order to recover a self-homeomorphism 
of D4. Note that for i = 1, 2, we have

MK = ∂NDi
∼= S3 \ (K ×D2) ∪ (Di × ∂D2).

As a consequence, we have an identification ofD1×∂D2 with D2×∂D2. Making use of this 
identification, we attach a two handle D2×D2 to both ND1 and ND2 with core D1×D2 =
D2 ×D2. The resulting manifolds are homeomorphic to D4 and respectively contain D1
and D2 as slice discs for K. Since the homeomorphism f fixes MK = ∂ND1 pointwise, 
it extends to a well defined homeomorphism

f ′ := f ∪ IdD2×D2 : D4 → D4.

By construction, this homeomorphism carries D1 to D2. Since f is equal to the identity 
on the boundary, so is f ′. We can therefore apply Alexander’s trick: this result implies 
that f ′ is isotopic rel. boundary to the identity homeomorphism. We have therefore 
established that D1 and D2 are ambiently isotopic rel. boundary. This concludes the 
proof of the lemma. �
3. The proof of Theorem 1.3

From now on, we write Z[t±1] instead of Z[Z] and recall that the lagrangian induced 
by a homotopy ribbon disc D is

PD := ker(H1(MK ;Z[t±1]) → H1(ND;Z[t±1])).

Thanks to Theorem 1.4, in order to conclude the proof of Theorem 1.3, it remains to 
show that if two (Z � Z[ 12 ])-homotopy ribbon discs induce the same lagrangian of the 
Blanchfield pairing, then they are compatible. In fact, in Proposition 3.3 below, we will 
show that these two conditions are equivalent.

First we show that if D is homotopy ribbon, then the Alexander module H1(ND; Z[t±1])
can be described as a quotient of the Alexander module H1(XK ; Z[t±1]) by the la-
grangian PD.

Lemma 3.1. If D is a homotopy ribbon disc for a knot K, then the inclusion ιD : XK ↪→
ND induces a Z[t±1]-isomorphism

(ιD)∗ : H1(XK ;Z[t±1])/PD

∼=→ H1(ND;Z[t±1]).
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Proof. It is enough to show that ιD induces a surjection (ιD)∗ : H1(XK ; Z[t±1]) 
∼=→

H1(ND; Z[t±1]) between the Alexander modules. Recall that these modules can be iden-
tified with derived quotients, namely

H1(ND;Z[t±1]) ∼= π1(ND)(1)/π1(ND)(2) and H1(XK ;Z[t±1]) ∼= π1(XK)(1)/π1(XK)(2).

The lemma will therefore follow once we observe that ιD restricts to a surjection

ιD : π1(XK)(1) → π1(ND)(1).

Indeed: if ιD is a surjection, then so is (ιD)∗. Next, we use the abelianisation homo-
morphisms φK and φD of π1(XK) and π1(ND). The inclusion ιD : XK ↪→ ND induces 
an isomorphism H1(XK ; Z) 

∼=→ H1(ND; Z). We also denote this map by ιD and observe 
that ιD ◦ φK = φD ◦ ιD. Furthermore, the kernels of φK and φD are isomorphic to the 
respective commutator subgroups:

π1(ND)(1) = ker(φD),

π1(XK)(1) = ker(φK).

The lemma will thus be proved once we show that ιD induces a surjection ker(φK) →
ker(φD). Let y lie in ker(φD). Since D is homotopy ribbon, the map ιD : π1(XK) →
π1(ND) is surjective and we can therefore choose an x ∈ π1(XK) such that ιD(x) = y. 
Using the aforementioned equality ιD ◦ φK = φD ◦ ιD, we deduce that ιD(φK(x)) =
φD(ιD(x)) = φD(y) = 0. Since ιD is an isomorphism on homology, we obtain φK(x) = 0, 
establishing that x lies in ker(φK). This concludes the proof of the lemma. �

Next, we describe two consequences of Lemma 3.1.

Corollary 3.2. Let D be a homotopy ribbon disc for a knot K.

(1) The inclusion MK ↪→ ND induces a Z[t±1]-isomorphism

(ιD)∗ : H1(MK ;Z[t±1])/PD

∼=→ H1(ND;Z[t±1]).

(2) Set G := Z � Z[ 12 ]. If D1 and D2 are G-homotopy ribbon discs, then a Z[t±1]-
linear isomorphism f : H1(ND1 ; Z[t±1]) 

∼=→ H1(ND2 ; Z[t±1]) that satisfies f◦(ιD1)∗ =
(ιD2)∗ gives rise to a compatible isomorphism π1(ND1) 

∼=→ π1(ND2).

Proof. To prove the first assertion, combine the isomorphism H1(XK ; Z[t±1]) =
H1(MK ; Z[t±1]) with Lemma 3.1. Next, we prove the second assertion. The groups 
π1(MK)(1)/π1(MK)(2) = H1(MK ; Z[t±1]) and π1(MK)/π1(MK)(1) = H1(MK ; Z) fit 
into the following short exact sequence of groups:
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1 → H1(MK ;Z[t±1]) → π1(MK)/π1(MK)(2) p→ H1(MK ;Z) → 1.

Since H1(MK ; Z) ∼= Z is freely generated by a meridian of K, if we fix a based meridian 
for K, then we get a splitting s of p. Thus, the map

Z � H1(MK ;Z[t±1])
∼=→ π1(MK)/π1(MK)(2)

(n, h) �→ s(n)h

is an isomorphism. Next, let D be a G-homotopy ribbon disc for K. Since the inclu-
sion MK ↪→ ND induces an isomorphism H1(MK ; Z) 

∼=→ H1(ND; Z), the choice of 
a based meridian for K also gives a splitting of π1(ND)/π1(ND)(2) � H1(ND; Z), 
and the same argument as above yields an isomorphism Z � H1(ND; Z[t±1]) ∼=
π1(ND)/π1(ND)(2). On the other hand, since the group π1(ND) ∼= G is metabelian 
(i.e. G satisfies G(2) = 1), we have π1(ND) = π1(ND)/π1(ND)(2). Combining these facts, 
we deduce that

π1(ND) = π1(ND)/π1(ND)(2) ∼= Z � H1(ND;Z[t±1]).

To conclude, let D1 and D2 be G-homotopy ribbon discs for the knot K, and 
fix a Z[t±1]-linear isomorphism f : H1(ND1 ; Z[t±1]) 

∼=→ H1(ND2 ; Z[t±1]). The iso-
morphism π1(ND1) 

∼=→ π1(ND2) is constructed by combining f with the isomor-
phism ϕ : H1(ND1 ; Z) = Z 

∼=→ Z = H1(ND2 ; Z) that maps a meridian of D1 to a meridian 
of D2. More precisely, the aforementioned splitting s : H1(MK ; Z) → π1(MK)/π1(MK)(2)
of p induces analogous splittings for ND1 and ND2 and this choice ensures that (ϕ, f)
gives an isomorphism Z �H1(ND1 ; Z[t±1]) → Z �H1(ND2 ; Z[t±1]). The second assertion 
follows and the lemma is proved. �

The following proposition concludes the proof of Theorem 1.3.

Proposition 3.3. Set G := Z � Z[ 12 ]. Two G-homotopy ribbon discs D1 and D2 for a 
knot K induce the same lagrangian if and only if they are compatible.

Proof. As in Corollary 3.2, we use (ιDj
)∗ to denote the inclusion induced maps on the 

level of the Alexander modules. Assume that D1 and D2 are compatible and choose a 
compatible isomorphism f : π1(ND1) 

∼=→ π1(ND2). Passing to the derived quotients, this 
isomorphism induces a Z[t±1]-linear isomorphism f∗ that satisfies f∗ ◦ (ιD1)∗ = (ιD2)∗. 
We therefore obtain PD1 = PD2 , as desired.

Conversely, assume that PD1 = PD2 . Using the first item of Corollary 3.2, 
we know that the inclusions induce isomorphisms (ιDj

)∗ : H1(MK ; Z[t±1])/PDj

∼=→
H1(NDj

; Z[t±1]) for j = 1, 2. Consequently, setting f∗ := (ιD2)∗ ◦ (ιD1)−1
∗ , we obtain 

a Z[t±1]-linear isomorphism H1(ND1 ; Z[t±1]) 
∼=→ H1(ND2 ; Z[t±1]). By construction, this 

isomorphism satisfies f∗ ◦ (ιD1)∗ = (ιD2)∗ Using the second item of Corollary 3.2, we can 
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thus extend f∗ to a compatible isomorphism π1(ND1) 
∼=→ π1(ND2). This concludes the 

proof of the proposition. �
4. Characterising G-homotopy ribbon discs

In this section, as promised in Section 1.3, we explain how our results combine with 
those of Friedl-Teichner [10] to give a characterisation of G-homotopy ribbon discs. In 
particular, we prove Theorem 1.6 from the introduction. Given a Z[t±1]-module P , we use 
P to denote P with the Z[t±1]-module structure induced by t · x = t−1x. Throughout 
this section, we also adopt the convention that Z[ 12 ] denotes either Z[t±1]/(t − 2) or 
Z[t±1]/(2t − 1), and that if Z[ 12 ] = Z[t±1]/p(t) for p(t) = t − 2 or 2t − 1, then Z[ 12 ]
denotes Z[t±1]/p(t−1).

We start with some necessary conditions for a knot K to bound a G-homotopy ribbon 
disc, some of which were touched on in [10].

Proposition 4.1. Let D be a G-homotopy ribbon disc for a knot K.

(1) The Alexander module of K sits in a short exact sequence

0 → PD → H1(MK ;Z[t±1]) → PD → 0, (6)

with the induced lagrangian PD isomorphic to either Z[t±1]/(t −2) or Z[t±1]/(2t −1). 
In particular, ΔK

.= (t − 2)(2t − 1).
(2) With respect to the inclusion induced map φ : π1(MK) � π1(D4 \ νD) ∼= G, one has

Ext1Z[G](H1(MK ;Z[G]),Z[G]) = 0. (7)

Proof. Using Poincaré duality, the UCSS, and the fact that D is homotopy ribbon, we 
see that H2(ND; Z[t±1]) = 0. Combining this with a glance at the long exact sequence 
of the pair (ND, MK) with Z[t±1] coefficients shows that

PD = im(H2(ND,MK ;Z[t±1]) → H1(MK ;Z[t±1])) ∼= H2(ND,MK ;Z[t±1]).

Next, observe that H1(ND; Z[t±1]) ∼= Z[ 12 ] and H1(ND, MK ; Z[t±1]) = 0: for the absolute 

homology module, use that H1(ND; Z[t±1]) = G(1)/G(2) = Z[ 12 ] (we fix our choice of 
p(t) in the convention from the start of the section so that this equation holds). For the 
relative homology module, use that D is homotopy ribbon. The long exact sequence of 
the pair (ND, MK) with Z[t±1] coefficients now gives rise to the short exact sequence 
displayed in (6).

In order to conclude the proof of the first item, it remains to argue that PD is iso-
morphic to Z[ 1 ]. First, note that Hom(H2(ND;Z[t±1]),Z[t±1]) = 0: indeed, we argued 
2
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that H2(ND; Z[t±1]) = 0) and Ext2Z[t±1](Z,Z[t±1]) = 0 (using for instance group coho-
mology). We then combine these facts with Poincaré duality, the UCSS, and the fact 
that H1(ND; Z[t±1]) = Z[ 12 ], to complete the proof of the first item:

PD
∼= H2(ND,MK ;Z[t±1]) ∼= H2(ND;Z[t±1]) ∼= Ext1Z[t±1](H1(ND;Z[t±1]),Z[t±1])

∼= Ext1Z[t±1](Z[ 12 ],Z[t±1]) ∼= Z[ 12 ].

Now we establish the second item of the proposition. According to Friedl-Teichner [10, 
Lemma 5.1], the Ext condition displayed in (Ext) is equivalent to the vanishing of a Z[G]
coefficient Blanchfield form BlKG : H1(MK ; Z[G]) ×H1(MK ; Z[G]) → Q(G)/Z[G], where 
Q(G) is the Ore localisation of Z[G]. Using the arguments of [3, pages 461-462], one can 
establish the existence of a Blanchfield-type pairing

BlDG : H2(ND,MK ;Z[G]) ×H1(ND;Z[G]) → Q(G)/Z[G].

Essentially, one uses that H∗(ND; Q(G)) = 0, and argues that the appropriate Bockstein 
homomorphism is an isomorphism. Using A∧ to denote HomZ[G](A, Q(G)/Z[G]), the 
same arguments as in [3, pages 461-462] then show that the following diagram commutes:

H2(ND,MK ;Z[G]) ∂

BlDG

H1(MK ;Z[G])
j

BlKG

H1(ND;Z[G])

BlDG

H1(ND;Z[G])∧
j∧

H1(MK ;Z[G])∧ ∂∧

H2(ND,MK ;Z[G])∧.

(8)

In (8), the vertical maps indicate the adjoints to the aforementioned Blanchfield pairings. 
Now π1(ND) ∼= G implies that H1(ND; Z[G]) = 0. A quick diagram chase then shows 
that BlKG = 0: given x, y ∈ H1(MK ; Z[G]), by exactness, and since H1(ND; Z[G]) = 0, 
there is an u ∈ H2(ND, MK ; Z[G]) with ∂u = x; the commutativity of the diagram 
displayed in (8) then gives

BlKG (x)(y) = BlKG (∂u)(y) = j∧ BlDG(u) = j∧(0) = 0

This completes the proof that Ext1Z[G](H1(MK ; Z[G]), Z[G]) = 0. �
Using the short exact sequence from Proposition 4.1, we deduce the possible isomor-

phism classes for the Alexander module of a G-homotopy ribbon knot.

Lemma 4.2. Let M be a Z[t±1]-module, and let P ⊂ M be a submodule that is isomorphic 
to one of Z[t±1]/(t − 2) or Z[t±1]/(2t − 1) and fits into a short exact sequence

0 → P → M → P → 0. (9)
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Then there are only two possible isomorphism classes of Z[t±1]-modules for the central 
module in such an extension. Indeed, Ext1Z[t±1](P , P ) ∼= Z3, the cyclic group of order 3, 
where

(1) 0 ∈ Z3 corresponds to the split extension with M ∼= Z[t±1]/(t − 2) ⊕Z[t±1]/(2t − 1),
(2) ±1 ∈ Z3 correspond to the cyclic module M ∼= Z[t±1]/(t − 2)(2t − 1).

In particular, if K is G-homotopy ribbon, then its Alexander module H1(MK ; Z[t±1])
must belong to one of these isomorphisms types, and both cases are realised.

Proof. First, we compute the extension group Ext1Z[t±1](P , P ) for P = Z[t±1]/(2t − 1); 
the case P = Z[t±1]/(t − 2) is analogous. We can use

0 → Z[t±1] t−2−−→ Z[t±1] → P → 0

as a free Z[t±1]-module resolution. Then we compute the abelian group:

Ext1Z[t±1](P , P ) ∼= Ext1Z[t±1](Z[t±1]/(t− 2),Z[t±1]/(2t− 1))
∼=coker

(
HomZ[t±1](Z[t±1],Z[t±1]/(2t− 1)) → HomZ[t±1](Z[t±1],Z[t±1]/(2t− 1))

)
∼=coker

(
Z[t±1]/(2t− 1) (t−2)−−−→ Z[t±1]/(2t− 1)

) ∼= Z[t±1]/(t− 2, 2t− 1).

In this quotient, we have t = t +(2 −t) = 2, so tk = 2k. Similarly, t−1 = t−1+t−1(2t −1) =
2 and so we also have t−k = 2k. Therefore every element in this quotient can be expressed 
as a multiple of 1. We also note that 0 = (2t − 1) − 2(t − 2) = 3. Moreover the resultant 
of t − 2 and 2t − 1 is det

(
1 2
−2 −1

)
= 3, so for the ideal I := (t − 2, 2t − 1) � Z[t±1] we 

have I ∩Z〈1〉 = (3) �Z. As a consequence, nothing more is killed in Ext1Z[t±1](PD, PD)
and we obtain the required result:

Ext1Z[t±1](P , P ) ∼= Z3.

Next, we describe the extensions resulting from this computation. The trivial element 
0 ∈ Z3 corresponds as always to the split extension Z[t±1]/(t − 2) ⊕Z[t±1]/(2t − 1). On 
the other hand, the elements ±1 ∈ Z3 both correspond to the same module, namely the 
cyclic module Z[t±1]/(t −2)(2t −1), but with different maps in the extension short exact 
sequence. Here, note that the computation that I ∩Z = (3) above also implies that the 
split extension is not cyclic, as can be seen by comparing the second elementary ideals.

The assertion on G-homotopy ribbon knots now follows from the first item of Propo-
sition 4.1. Finally, the knots K0 and K−1 from Example 1.9 realise the two possibilities 
for the Alexander module. This completes the proof of the lemma. �
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In the case of the two Alexander modules described in Lemma 4.2, the next lemma 
shows that at most two submodules can arise as lagrangians induced by G-homotopy 
ribbon discs.

Lemma 4.3. The following two assertions hold.

(1) If P ⊂ M := Z[t±1]/(t −2)(2t −1) is a submodule that is abstractly P ∼= Z[t±1]/(2t −
1) (resp. P ∼= Z[t±1]/(t − 2)) and fits into a short exact sequence

0 → P → M → P → 0,

then P = (2t − 1)M (resp. P = (t − 2)M).
(2) If P ⊂ Z[t±1]/(2t − 1) ⊕ Z[t±1]/(t − 2) is a submodule that is abstractly P ∼=

Z[t±1]/(2t − 1) (resp. P ∼= Z[t±1]/(t − 2)) and fits into a short exact sequence

0 → P → M → P → 0,

then P = Z[t±1]/(2t − 1) ⊕ {0} (resp. P = {0} ⊕Z[t±1]/(t − 2)).

Proof. We prove the first assertion for P ∼= Z[t±1]/(2t − 1); the proof of the second case 
is identical. Using the definition of M := Z[t±1]/(t −2)(2t −1), we see that P ⊂ (t −2)M . 
As M/P ∼= Z[t±1]/(t − 2), we have [(t − 2)] = 0 in M/P and therefore [t − 2] ∈ P ⊂ M , 
so that P ⊃ (t − 2)M , concluding the proof of the first assertion.

We prove the second assertion for P ∼= Z[t±1]/(2t − 1); the proof of the second case 
is identical. We claim that P ⊂ Z[t±1]/(2t − 1) ⊕ {0}. Since P ∼= Z[t±1]/(2t − 1), for 
p = ([p1], [p2]) ∈ P , we have (2t − 1)([p1], [p2]) = 0 and in particular [(2t − 1)p2] = 0
in Z[t±1]/(t −2). This implies that (2t −1)p2 = (t −2)x for some x ∈ Z[t±1]. Since Z[t±1]
is a unique factorization domain and since (2t − 1) and (t − 2) are coprime polynomials, 
we deduce that p2 = (t −2)z for some z ∈ Z[t±1]. It follows that [p2] = 0 in Z[t±1]/(t −2)
and therefore p ∈ Z[t±1]/(2t − 1) ⊕ {0}, concluding the proof of the claim.

Since we also assumed that M/P ∼= Z[t±1]/(t − 2), the claim implies that

Z[t±1]/(t− 2) = M/P = (Z[t±1]/(2t− 1))/P ⊕Z[t±1]/(t− 2).

Tensoring with Q and using that Q[t±1]-modules admits primary decompositions, we 
deduce that (Z[t±1]/(2t − 1))/P ⊗Z Q = 0. This implies that (Z[t±1]/(2t − 1))/P is Z-
torsion and therefore that M/P contains Z-torsion. But M/P ∼= Z[ 12 ] is Z-torsion free, so 
we deduce that (Z[t±1]/(2t −1))/P = 0 and consequently that P = Z[t±1]/(2t −1) ⊕{0}
as desired. �

Let K be an oriented knot, and let P ⊆ H1(MK ; Z[t±1]) be a submodule of 
H1(MK ; Z[t±1]) which is isomorphic to either one of the two submodules Z[t±1]/(t − 2)
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or Z[t±1]/(2t − 1) and such that H1(MK ; Z[t±1])/P ∼= P . In particular, P is again iso-
morphic to Z[ 12 ], for one of the module structures. As mentioned in the introduction, 
there is an associated homomorphism

φP : π1(MK) � π1(MK)/π1(MK)(2) ∼= Z � H1(MK ;Z[t±1])

� Z � H1(MK ;Z[t±1])/P ∼= G.

Note that if P = PD for some homotopy ribbon disc D, then φP coincides with the 
homomorphism induced by the inclusion MK ↪→ ND.

Theorem 4.4. Let K be an oriented knot, and let L be the set of submodules P ⊆
H1(MK ; Z[t±1]) of the Alexander module that are isomorphic to one of Z[t±1]/(t − 2)
or Z[t±1]/(2t − 1) and fit into a short exact sequence

0 → P → H1(MK ;Z[t±1]) → P → 0. (10)

Mapping a G-homotopy ribbon disc to its induced lagrangian gives rise to a bijection 
between

• G-homotopy ribbon discs for K, up to topological ambient isotopy rel. boundary;
• submodules P ∈ L such that, with respect to φP ,

Ext1Z[G](H1(MK ;Z[G]),Z[G]) = 0. (Ext)

Moreover, these sets have cardinality at most two.

Proof. First we show that assigning to a slice disc its induced lagrangian determines 
a map from the first set to the second set in the statement of the theorem. Let D
be a G-homotopy ribbon disc for K. Let P = PD be the induced lagrangian. In this 
case, up to an isomorphism of G, the map φP coincides with the inclusion induced 
map π1(MK) � π1(ND) = G. As a consequence, the first item of Proposition 4.1 ensures 
that the lagrangian P = PD belongs to L, while the second item of Proposition 4.1
guarantees that Ext1Z[G](H1(MK ; Z[G]), Z[G]) = 0. Therefore the assignment determines 
a map from the first to the second step as asserted.

Next, by Theorem 1.3, D is determined up to topological ambient isotopy rel. bound-
ary by the induced lagrangian P = PD. It follows that the assignment is injective.

Now we prove surjectivity. Given a submodule P ∈ L, we obtain the surjective 
homomorphism φP : π1(MK) � G. Since, with respect to φP , we assumed that the 
Ext condition Ext1Z[G](H1(MK ; Z[G]), Z[G]) = 0 holds, the second part of Theorem 1.1
(which is [10, Theorem 1.3]) ensures the existence of a G-homotopy ribbon disc D for K
with P = PD. This establishes that the assignment is a bijection. Finally, Lemma 4.3
shows that if L is nonempty then it contains precisely two elements P, P . It follows 
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Fig. 2. On the left: the knot Kn; on the right: a Seifert surface Fn for Kn as well as (oriented curves 
representing) generators a, b of H1(Fn; Z) and their Alexander dual curves α, β.

that K has at most two G-homotopy ribbon discs up to topological ambient isotopy rel. 
boundary. This completes the proof of Theorem 4.4. �
5. Examples

Throughout this section, we set G := Z � Z[ 12 ]. Given n ∈ Z, consider the knot Kn

obtained by adding n full twists in the left band of the 946 knot as on the left hand side 
of Fig. 2 above. The goal of this section is to use Theorem 1.3 to study the G-homotopy 
ribbon discs of Kn.

Let F := Fn be the obvious Seifert surface for K := Kn depicted on the right hand 
side of Fig. 2. This figure also shows simple closed curves α, β ⊂ S3 \ F Alexander 
dual to generators a, b of H1(F ; Z), which are also shown. These loops α and β (or 
more precisely their lifts to the infinite cyclic cover of MK) generate H1(MK ; Z[t±1]) as 
a Z[t±1]-module.

5.1. The case that n is a multiple of 3

Now we restrict to the case that n = 3k for some k ∈ Z. In this case we are able to 
classify the G-homotopy ribbon discs for K3k.

We write homology classes without brackets and we set β′ := kα+β so that a Seifert 
matrix computation yields

H1(XK ;Z[t±1]) = Z[t±1]α/(t− 2)α⊕Z[t±1]β′/(2t− 1)β′.

A metabolizer m for K is a rank 1 summand of H1(F ; Z) ∼= Z2 on which the Seifert form 
vanishes. Following [1, Definition 5.4], a metabolizer m represents a lagrangian P for the 
rational Blanchfield pairing if the image of m under the map

H1(F ;Z) → H1(F ;Z) ⊗Q
i∗� H1(XK ;Q[t±1])
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spans P as a Q-vector space; here i∗ is obtained by fixing a lift of F to the infinite 
cyclic cover of XK . The next lemma describes the lagrangians of Bl(K) as well as their 
generators and metabolizers which represent them.

Lemma 5.1. The Blanchfield pairing Bl(K3k) admits precisely two distinct lagrangians 
P1, P2 that are respectively generated by α and β′ = kα + β. The lagrangian P2 is 
represented by the metabolizer Z〈a − kb〉 ⊂ H1(F ; Z).

Proof. The description of the lagrangians for Bl(K3k) and their generators can be found 
in [8, p. 4–5] (the unpublished clarification of the published erratum to [10]). To prove 
the last statement, we use Cochran, Harvey and Leidy’s constructive proof of the fact 
that every lagrangian is represented by a metabolizer [1, Lemma 5.5]. We start from 
the lagrangian P2 = 〈kα + β〉, viewed as a 1-dimensional Q-vector subspace of the 
rational Alexander module A0(K) := H1(XK ; Q[t±1]) ∼= Q2. In the notation of [1], the 
element a1 := a − kb maps to γ1 := kα + β under the inclusion induced map

H1(F ;Z) = H1(F × {1};Z) → H1(S3
� (F × (−1, 1));Z),

which with respect to the bases {a, b} and {α, β} respectively is represented by the 

Seifert form 
(

3k 2
1 0

)
. Cochran, Harvey and Leidy then prove that {a1} spans P2 in the 

rational vector space A0(K) [1, p. 760-761]. This concludes the proof of the lemma. �
Although we do not require this fact, observe that the same argument as in the proof 

of Lemma 5.1 shows that the lagrangian P = P1 = 〈α〉 is represented by the metabolizer 
Z〈b〉.

The next result provides an application of Theorem 1.3.

Theorem 5.2. Set G := Z � Z[ 12 ]. Up to ambient isotopy rel. boundary, the knot K3k
admits

(1) precisely two distinct G-homotopy ribbon discs if k = 0, −1;
(2) a unique G-homotopy ribbon disc if k �= 0, −1.

Proof. Throughout the proof, we write K := K3k. We first assume that k = 0. We will 
give full details for k = 0, and adapt them to the case k = −1 below. Performing a saddle 
move on the left (resp. right) band of K gives rise to a ribbon disc D1 (resp. D2).

Claim. The discs D1 and D2 are G-homotopy ribbon and respectively induce the la-
grangians P1 and P2 described in Lemma 5.1.

Proof. We only prove this claim for D1, since D2 can be treated similarly. We draw a 
Kirby diagram of ND1 as in Fig. 3; we refer to [11, p. 213] for details on this procedure. 
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Fig. 3. A Kirby diagram for the exterior ND1 of the homotopy ribbon disc D1 obtained by performing a 
saddle move on the left band of K3k.

The group π1(ND1) admits a presentation with two generators, the meridians a, b of the 
dotted circles, and a unique relation bab−1a−1b−1a−1, obtained by reading off the word 
described by the 2-handle. Setting c := ab, we deduce that D1 is G-ribbon:

π1(ND1) ∼= 〈a, b | bab−1a−1b−1a−1 = 1〉 ∼= 〈a, c | a−1ca = c2〉 ∼= G.

Since ribbon discs are homotopy ribbon, we have proved that D1 is G-homotopy ribbon. 
Next, we show that D1 induces P1 = 〈α〉. As explained at the beginning of this section, 
the Alexander module H1(XK ; Z[t±1]) is generated by (homology classes of) the curves α
and β depicted in the right hand side of Fig. 2. After straightening the dotted circles 
in the Kirby diagram of ND1 , one sees that (ιD1)∗ maps α to zero and maps β to c. 
Since Lemma 5.1 implies that Bl(K) admits precisely two lagrangians, PD1 must equal 
either P1 = 〈α〉 or P2 = 〈β〉. Since we established that α lies in PD1 but β does not, we 
deduce that PD1 = P1. This concludes the proof of the claim. �

Using the claim, in order to establish the result in the k = 0 case, it remains to show 
that D1 and D2 are distinct and that, up to ambient isotopy, there are no other G-
homotopy ribbon discs. First, assume that D induces P1 and D′ induces P2; we claim 
that D and D′ are not ambiently isotopic rel. boundary. By means of contradiction, 
assume they are. Using Lemma 2.5, this ambient isotopy induces a rel. boundary homeo-
morphism of D4. In particular this homeomorphism is the identity on XK . Lifting these 
considerations to the infinite cyclic covers, it follows that P1 = P2. This is a contra-
diction and proves the claim that D and D′ are not ambiently isotopic rel. boundary. 
Finally, we show that there are no other G-homotopy ribbon discs than D1 and D2. If D
is such disc, then Lemma 5.1 implies that it must induce either P1 or P2. Without loss 
of generality, assume that D induces P1. By Theorem 1.3, since D1 and D induce the 
same lagrangian, they must be ambiently isotopic rel. boundary.

When k = −1, the lagrangian P2 is represented by the metabolizer Z〈a +b〉, and a +b

is represented by the unknotted curve J depicted on the left hand side of Fig. 4. The 
argument works similarly to the case k = 0, after performing an isotopy on F (resulting 
in the surface F ′ depicted on the right hand side of Fig. 4) so that J becomes the core 
of one the two bands of F ′.
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Fig. 4. On the left: the surface F together with the curve J which represents the homology class a + b. On 
the right: the surface F ′ obtained from F by performing an isotopy so that J becomes the core of one of 
the bands.

Finally, we assume that k �= 0, −1. Arguing as in the k = 0 case and applying 
Theorem 1.3, we know that up to ambient isotopy rel. boundary, K admits at most 
two G-homotopy ribbon discs, corresponding to the lagrangians P1 and P2 described in 
Lemma 5.1. As in the previous paragraphs, a saddle move on the left band of K produces 
a G-homotopy ribbon disc that induces P1.

Claim. The lagrangian P2 = 〈kα + β〉 is not induced by any slice disc.

Proof. Recall that a metabolizer m of the Seifert form represents a lagrangian P for the 
rational Blanchfield pairing if the image of m under the map

H1(F ;Z) → H1(F ;Z) ⊗Q � H1(MK ;Q[t±1])

spans P as a Q-vector space. Following [1, Definition 5.1] a derivative of K with respect 
to m is a knot J embedded in F that gives a basis for m. Lemma 5.1 establishes that 
P2 is represented by the metabolizer m := Z〈a − kb〉 ⊂ H1(F ; Z). Reading braids from 
bottom to top, for k > 0, a derivative of K with respect to m is given by the negative 
braid knot Jk = γ̂k, where γk is the negative braid

γk = (σ−1
k · · ·σ−1

1 )(σ−1
1 · · ·σ−1

k )(σ−1
k · · ·σ−1

1 ).

For k = 2, this knot is depicted in Fig. 5; note also that for k = 0, −1, the derivative is 
unknotted, as expected. For k < −1, the derivative is instead given by J−k−1.

Next, we consider the first order signature ρ1(K, φP2) associated to the lagrangian P2
of Bl(K). Since we need only two properties of ρ1(K, φP2), we omit its definition but refer 
the interested reader to [1, Definition 4.1] for details. Use ρ0(Jk) to denote the integral 
of the Levine-Tristram signature function σJk

(ω) over S1. Since Jk is a negative braid 
knot, we have σJk

(ω) ≥ 0 for all ω ∈ S1 (e.g. negative braid knots can be unknotted 
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Fig. 5. The knot J2 on the surface F .

using only negative to positive crossing changes) and σJk
(−1) > 0 (see e.g. [25] or [23]). 

Combining this observation with [1, Corollary 5.8] implies that

ρ1(K,φP2) = ρ0(Jk) > 0.

To finish the proof, if P2 were induced by a slice disc D, then [1, Theorem 4.2] would 
imply that ρ1(K, φP2) = 0, a contradiction. This concludes the proof of the claim that 
the lagrangian P2 = 〈kα + β〉 is not induced by a slice disc. �

Summarising, when k �= 0, −1, we know that P1 is induced by a slice disc D, but 
that P2 is not induced by any slice disc. The fact that D is unique up to ambient 
isotopy rel. boundary now follows by applying Theorem 1.3. This concludes the proof of 
Theorem 5.2. �
5.2. The cases with n not a multiple of 3

Now we study the cases that n is not a multiple of 3. Define k ∈ Z and x ∈ {1, 2} as 
the unique numbers with n = 3k + x.

As above, let F := Fn be the obvious Seifert surface for K := Kn depicted on the right 
hand side of Fig. 2. This figure also shows simple closed curves α, β ⊂ S3 \F Alexander 
dual to generators a, b of H1(F ; Z). The loops α and β generate H1(MK ; Z[t±1]). A 
computation with the Seifert matrix shows that

H1(MK ;Z[t±1]) ∼= Z[t±1]
(t− 2)(2t− 1)

is a cyclic Z[t±1]-module generated by kα+β. Using [4, Theorem 1.4], we compute that 
the Blanchfield form is isometric to:

Z[t±1]
(t− 2)(2t− 1) × Z[t±1]

(t− 2)(2t− 1) → Q(t)/Z[t±1]

(p, q) �→ −px(t− 1)2q
(t− 2)(2t− 1) .
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Contrary to the statement in [8, p. 4–5] (the unpublished clarification of the published 
erratum to [10]), there are two lagrangians for the Blanchfield form, namely the submod-
ules

P1 := (t− 2)Z[t±1] and P2 := (2t− 1)Z[t±1].

Here P1 is generated by α and P2 is generated by nα+3β. To see that these are distinct 
submodules, note that if they were equal then there would exist p, q ∈ Z[t±1] such that 
2t − 1 = p(t − 2) + q(t − 2)(2t − 1) = (t − 2)(p + q(2t − 1)). But then multiplication of 
Laurent polynomials leads to addition of their widths, so p + q(2t − 1) is a monomial 
±tm. But there is no monomial such that 2t − 1 = ±tm(t − 2). It follows that P1 and P2
are indeed distinct lagrangian submodules.

Corresponding to these lagrangians of Bl(K) are derivative curves on F represent-
ing b and 3a − nb respectively. One can find these metabolizers directly by computing 

with the Seifert matrix 
(
n 2
1 0

)
. For every n, as in Section 5.1, b is represented by an 

unknotted, and therefore slice derivative curve, so there is an essentially unique slice disc 
corresponding to P1 for every n.

The following proposition classifies the G-homotopy ribbon discs for small values of n.

Proposition 5.3. Set G := Z � Z[ 12 ]. Up to ambient isotopy rel. boundary,

(1) the knots K−1 and K−2 admit precisely two distinct G-homotopy ribbon discs;
(2) the knots K−5, K−4, K1, and K2 admit a unique G-homotopy ribbon disc.

Proof. As described above, there is a slice disc corresponding to P1. For n = −1, −2, the 
other derivative curve, representing 3a + b and 3a + 2b respectively, is also unknotted. 
In these cases there is therefore also a slice disc corresponding to the lagrangian P2, and 
so by Theorem 1.3 we have precisely two distinct G-homotopy ribbon discs as claimed.

For n ∈ {−5, −4, 1, 2}, we drew the derivative curves Jn on F for 3a −nb ∈ H1(F ; Z), 
and used a computer1 to show that ρ0(Jn), the integral over S1 of the Levine-Tristram 
signature function σJn

(ω), is nonzero. Thus by [1, Theorem 4.2], as explained in the 
proof of Theorem 5.2, there can be no slice disc corresponding to the lagrangian P2. It 
follows from Theorem 1.3 that there is a unique G-homotopy ribbon disc for Kn with 
n ∈ {−5, −4, 1, 2}. �

As mentioned in the introduction, we conjecture that for each n with n > 0 or n < −3, 
there is a unique G-homotopy ribbon disc for Kn. We have been unable to establish the 
required lower bounds on the absolute value of the integral of the signatures for the 
derivative curves corresponding to the lagrangian P2. It is encouraging that for the 

1 We used SnapPy to obtain the PD code of the Jn, Sage to deduce Seifert matrices, and Mathematica to 
deduce that the integral of the Levine-Tristram signature is negative for J1, J2 and positive for J−4, J−5.
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Fig. 6. On the left: the knot R := 946 with the infections curves η1, η2; on the right: the satellite knot 
K := R(J1, J2) obtained by infecting R along the curves η1, η2.

examples we checked with a computer, our conjecture holds. For larger absolute values 
of n, the derivatives become more complicated, so it seems doubtful that their signatures 
become trivial.

6. Relaxing the rel. boundary restriction

In this section, we consider relaxing the rel. boundary condition. Note that the two 
G-homotopy ribbon discs for 946 are isotopic as disc knots. That is, if isotopies of the 
knot in S3 are also permitted, then R := 946 admits an essentially unique G-homotopy 
ribbon disc.

Let η1 and η2 in XR be the curves shown on the left hand side of Fig. 6. Perform the 
satellite operation on R along η1 and η2 with infection knots J1 and J2 respectively, to 
obtain a knot that we denote K := R(J1, J2) and that is depicted schematically on the 
right hand side of Fig. 6.

The next theorem requires the existence of two hyperbolic Alexander polynomial one 
knots J1 and J2 with exteriors that are not homeomorphic. This is guaranteed by [7, 
Theorem 1.1] applied to a Seifert matrix for the unknot.

Theorem 6.1. Let J1 and J2 be two hyperbolic Alexander polynomial one knots with ex-
teriors that are not homeomorphic. The knot K shown on the right hand side of Fig. 6
has precisely two G-homotopy ribbon discs up to ambient isotopy.

Proof. First, we may construct a G-homotopy ribbon disc D1 for K by cutting the left 
hand band via a saddle move, to obtain the (2, 0) cable of J2, and then capping this 
off with two parallel copies of the Z-homotopy ribbon disc for J2 whose existence is 
guaranteed by the ΔJ2(t) = 1 condition. That this is a G-homotopy ribbon disc follows 
from the same calculation as in Section 5: two parallel copies of the Z-homotopy ribbon 
disc for J2 in D4 have complement with fundamental group free of rank two generated 
by the meridians to the two components, just like the standard slice discs for the unlink 
given by the dotted circles in Fig. 3.

Construct a similar G-homotopy ribbon disc D2 for K by cutting the right hand band. 
There are still only two lagrangians for the Blanchfield form, so there are still only at most 
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two G-homotopy ribbon discs up to ambient isotopy by Theorem 1.3. To complete the 
proof of Theorem 6.1 we need to argue that there is no isotopy of K interchanging the two 
lagrangians. If there were such an isotopy, then it would induce a self-homeomorphism 
F : XK → XK interchanging the classes of η1, η2 ∈ H1(XK ; Z[t±1]).

Recall the Jaco-Shalen-Johannson (JSJ) theorem [13, Theorem 1.9]: let M be a com-
pact, irreducible, orientable 3-manifold. There is a collection T of disjoint incompressible 
tori such that each component of M cut along T is either atoroidal (every incompress-
ible torus is boundary parallel) or a Seifert manifold. A minimal collection of such T is 
unique up to isotopy.

The knot exterior XK is certainly compact, orientable, and irreducible. We need to 
identify the JSJ tori: they correspond to the satellite construction.

Claim. The JSJ pieces of the knot exterior XK are XR,η := XR \ (νη1 ∪ νη2) together 
with the knot exteriors XJ1 and XJ2 . The JSJ tori are Ti := ∂νηi, i = 1, 2.

Proof. To prove the claim, first we argue that the tori Ti are incompressible. To see this, 
note that the longitude of Ti is a generator of the Alexander module of R, therefore is 
nontrivial in π1(XR), so also in π1(XR,η). The meridian of Ti is a longitude in XJi

, so 
is nontrivial in π1(XJi

) by the loop theorem and the fact that Ji is knotted.
Next, both J1 and J2 are hyperbolic knots, so XJ1 and XJ2 are atoroidal. Similarly, 

using SnapPy, we checked that the link R ∪ η1 ∪ η2 is hyperbolic, and so XR,η cannot 
be decomposed further along tori. This completes the proof of the claim on the JSJ 
decomposition of XK . �

Now we show that there is no isotopy of K interchanging the two lagrangians. If 
there were, there would be a self-homeomorphism of XK with the same effect. By the 
JSJ theorem it would have to switch the two JSJ tori, up to an isotopy of the self-
homeomorphism. Note that a longitude of the torus ∂νηi generates the lagrangian Pi, 
for i = 1, 2. But the JSJ pieces XJ1 and XJ2 are not homeomorphic, so the tori ∂νηi
and cannot be exchanged by any homeomorphism. Therefore the two slice discs D1 and 
D2 are not ambiently isotopic. �
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