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Introduction
The goal of this text is to prove a theorem by Cheeger and Kister stating that there are

countably many compact topological manifolds. We will first look at precise classification
theorems of compact manifolds in low dimensions, then at special cases of the statement for
smooth and high-dimensional manifolds, and finally show the proof given by Cheeger and Kister
in [CK70]. At the end, we will present an application to topological Morse theory discussed in
that same paper.

1 Classifications of compact manifolds
It is sufficient to classify all compact connected manifolds of a given dimension to classify the

compact manifolds. As a compact manifold can only have finitely many components, countability
of the set of compact connected manifolds then automatically implies countability of the set of
all compact manifolds, as those are exactly the finite disjoint unions of the connected compact
manifolds.

• 0-manifolds. There is only one compact connected 0-manifold, namely the point, and
a 0-manifold cannot have nonempty boundary.
So the set of all compact 0-manifolds up to homeomorphism is countable.
• 1-manifolds. There is, up to homeomorphism, exactly one compact connected 1-
manifold without boundary, namely the circle S1, and one compact connected 1-manifold
with nonempty boundary, namely the closed unit interval I = [0, 1]. A proof can be
found in [FR84].
Thus the set of all compact 1-manifolds up to homeomorphism is countable.
• 2-manifolds. Orientable connected compact 2-manifolds with empty boundary can be
obtained as finite connected sums of 2-tori, the number of tori being referred to as the
genus of the manifold. The empty connected sum is defined as the sphere S2.
Non-orientable connected compact 2-manifolds with empty boundary are finite connected
sums of RP 2 and the number of RP 2s in the connected sum is called the genus.
As any compact 1-manifold without boundary is homeomorphic to a finite union of circles,
compact 2-manifolds with nonempty boundary are obtained from compact 2-manifolds
with empty boundary by removing finitely many disjoint disks. A detailed proof can be
found in [Moi77, Chapter 22].
So, up to homeomorphism, compact connected 2-manifolds can be classified by orientabil-
ity, genus and number of boundary components, the last two being integers, and thus
the set of all compact 2-manifolds up to homeomorphism is countable.

For higher dimension, classification results are far more difficult and not as complete. There
has been a lot of progress in the classification of compact 3-manifolds, especially around the
Thurston geometrization conjecture first stated in 1982 in [Thu82]. The conjecture was proved
in 2003 using Ricci flow by Perelman in [Per03] (a brief discussion of these developments can be
found in [Mil03]).
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2 Smooth case
Theorem 2.1. There are only countably many compact smooth manifolds, up to homeomorphism.

Proof. As all compact smooth manifolds have a finite triangulation (as shown in [Cai61]), there
can only be countably many compact smooth manifolds up to homeomorphism: every compact
smooth manifold M can be constructed inductively in k steps by gluing a simplex to the existing
structure in each step, where k is the number of simplices in the finite triangulation of M . In
each step, there are only finitely many possible edges of simplices the new simplex can be glued
to, so there are only countably many possibilities to construct a compact smooth manifold. �

We know that topological manifolds that admit smooth structures can have multiple smooth
structures that are not diffeomorphic to each other, one well-known example being Milnor’s
exotic sphere (see [Mil56]). Thus, this proof can only classify compact smooth manifolds up to
homeomorphism, as the simplices can have multiple non-diffeomorphic smooth structures, and
the gluing maps need not preserve the smooth structure. So the question can be extended to
ask whether there are countably many diffeomorphism types of smooth manifolds.

In dimensions up to three, topological and smooth manifolds coincide, i.e. every topological 3-
manifold has exactly one smooth structure (up to diffeomorphism). A proof of this for dimension
one can be found in the appendix of Milnor’s book on differentiable topology ([Mil97, Appendix]),
a proof for dimension two is given by Radó in [Rad25] and a proof for dimension three can be
found in [Moi52].

Compact manifolds of dimension strictly greater than four only admit finitely many pairwise
non-diffeomorphic structures on the same manifold. This follows from the facts that PL-able
compact topological manifolds of dimension n ≥ 5 only admit finitely many PL structures (this
is a result by Kirby and Siebenmann that can be found in the lecture notes as Remark 17.12),
and compact PL manifolds only admit a finite number of smoothings (see chapter 18 in the
lecture notes).

This leaves only dimension four to be considered, which as usual behaves a bit differently
than other dimensions. There are non-compact 4-manifolds that admit uncountably many
pairwise non-diffeomorphic smooth structures (the most famous example being R4, as shown in
[DF92]). However, compact 4-manifolds thankfully only admit countably infinitely many pairwise
non-diffeomorphic smooth structures because the PL and DIFF categories coincide for dimension
four, i.e. every PL 4-manifold has exactly one smooth structure up to diffeomorphism (see
Theorem 18.3 in the lecture notes). By a combinatorial argument, there can only be countably
many PL structures on a compact manifold. We know concrete examples of 4-manifolds that
admit countably infinitely many non-isomorphic smooth structures, for example the K3-surface
that was discussed in a previous talk. The proof that there are infinitely many exotic smooth
structures on the K3-surface is due to work by Donaldson, Gompf and Mrowka in [Don90] and
[GM93].

Still, as there are only countably many compact smooth 4-manifolds up to homeomorphism,
and each of these manifolds can only have countably many pairwise non-diffeomorphic smooth
structures, there are also only countably many compact smooth 4-manifolds up to diffeomorphism.

3 High-dimensional case
Theorem 3.1. There are only countably many closed topological manifolds of dimension n ≥ 6
up to homeomorphism.

We will only give an idea for a proof of this theorem. Using the handlebody theory for
topological manifolds developed by Kirby and Siebenmann discussed in the lecture notes
(Theorem 21.4), we know that closed topological manifolds of dimension n ≥ 6 have a handle
decomposition. This handle decomposition must be finite, as the manifold is compact: since
the handles are compact, we can choose a covering of M by covering every handle with finitely
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many sets, and choose this covering in such a way that every open set in the covering covers at
most one handle. As the manifold is compact, this covering has a finite subcovering, so there
can only be finitely many handles. Similarly to Theorem 2.1 we can then construct every closed
topological manifold of dimension n ≥ 6 inductively in finitely many steps by gluing handles
together. Up to homeomorphism, there are only countably many options of gluing a handle on,
so there are only countably many possibilities to construct a closed manifold of dimension n ≥ 6.

This proof can be extended to 5-manifolds using the work of Quinn, who showed in [Qui82]
that 5-manifolds have topological handle decompositions.

4 Cheeger-Kister’s proof
The main result of this part is the following theorem proved by Cheeger and Kister in [CK70].

Theorem 4.6. Up to homeomorphism, there are only countably many compact topological
manifolds (with possibly nonempty boundary).

Although the statement of the theorem can be proven for many special cases (low dimen-
sions, high dimensions, PL-able topological manifolds) as we discussed above, the statement of
Theorem 4.6 is still an improvement, as we have seen that non-PL-able manifolds exist. A big
advantage of the proof we will present is also that it works the same way for all dimensions.

To prepare for the proof, we state and prove the following useful facts about separable spaces.

Definition 4.1. A space X is called separable if there is a countable subset S of X that is dense
in X.

Lemma 4.2. Subspaces of separable metric spaces are separable.

Proof. Let X be a separable metric space with a countable dense subset S and Y ⊆ X, and let
d be the metric on X. We consider the distance d(s, Y ) := inf{d(s, y) | y ∈ Y } for all s ∈ S. For
every s ∈ S, find a sequence of points asn in Y with d(s, asn) < d(s, Y ) + 1

n .
We define the set A := {asn ∈ Y | s ∈ S, n ∈ N}. This set is a countable subset of Y because S

is countable. It is also dense in Y because for any y ∈ Y and ε > 0, we can find some s ∈ S with
d(s, y) < ε

3 , because S is dense in X, and this implies d(s, Y ) ≤ ε
3 . So there is some asn ∈ A with

d(s, asn) < d(s, Y ) + 1
n < d(s, Y ) + ε

3 ≤
2ε
3 , by choosing n big enough so that 1

n <
ε
3 , and thus for

this asn we get d(y, asn) ≤ d(s, y) + d(s, asn) < ε, so A is dense in Y and so Y is separable. �

Lemma 4.3. If X is an uncountable separable metric space, there exists some x ∈ X that is
the limit point of a sequence x1, x2, · · · ∈ X with xi 6= x for all i ∈ N.

Proof. Let X be an uncountable separable metric space. Assume there is no such point in X.
Then we can find, for every x ∈ X, an open ball Bεx(x) ⊆ X that contains only x. As X is
uncountable, we can choose some ε > 0 such that there are uncountably many x ∈ X with
εx > ε by observing the sets Xn := {x ∈ X | εx > 1

n}. As X is uncountable and N is countable,
there must be some n ∈ N with Xn uncountable, and we set ε = 1

n .
We set X ′ := Xn = {x ∈ X | εx > ε} and consider the smaller open balls Bε(x) for x ∈ X ′.

These are disjoint, as Bε(x) contains only x and there are uncountably many of them since X ′
is uncountable. But this is a contradiction to the separability of X, as all dense subsets of X
must contain at least one element in each Bε(x). �

For the proof of Theorem 4.6 we first restrict to the case of manifolds with empty boundary.

Theorem 4.4. Up to homeomorphism, there are only countably many compact topological
manifolds with empty boundary.

Proof. The proof of the theorem will be by contradiction, so we first assume that there are
uncountably many compact manifolds with empty boundary that are pairwise non-homeomorphic.
Then, there must be some dimension n such that there are uncountably many n-manifolds (as
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there are only countably many options for n). We choose such an n and fix it for the rest of the
proof. Throughout the rest of the text, Br(x) will denote the closed ball of radius r centered at x
in Rn. For this n, we denote the collection of all homeomorphism types of compact n-manifolds
by M = {Mα}α∈A , where A is uncountable.

For each manifold Mα in M, choose finitely many embeddings of B2(0) into M such that Mα

is covered by the images of the restrictions to B1(0), i.e. we choose embeddings hαj : B2(0)→Mα

so that {hαj |B1(0)}kαj=1 covers Mα. Such a covering can be constructed by covering Mα with open
balls hαx( ˚B2(0)) around each point x in Mα, as the manifold is locally euclidean, and restricting
to the images of ˚B1(0). Since M is a compact manifold, there exists a finite subcovering of this
collection that still covers Mα, and the embeddings of this subcovering, extended to the closed
balls of radius 2, meet the condition.

We then choose a k such that there are uncountably many n-manifolds in M with kα = k.
This choice is possible by the same argument as for the choice of n. By an abuse of notation, we
also denote this new uncountable collection of manifolds with kα = k by M. We then modify
the maps hαj by fixing them on B1(0) and reparametrizing such that hαj |B1(0) is extended to
an embedding of Bk+1(0) with the same image as hαj , and continue referring to this modified
embedding as hαj , i.e. we now have embeddings hαj : Bk+1(0)→Mα for 1 ≤ j ≤ k and Mα ∈M.

Every n-manifold Mα can be embedded in R2n+1, as we have seen in a previous talk (the
result is due to Hanner [Han51]). We set l := 2n+ 1 and fix an embedding of Mα into Rl for all
α ∈A. We assume henceforth that Mα ⊆ Rl for all Mα ∈M.

Let d be the standard metric in Rl and define

εα,j,m := d(hαj (Bm(0)),Mα \ hαj ˚(Bm+1(0))) ∀α ∈A, j,m ∈ {1, . . . , k}.

Figure 1. This figure shows the intuition behind the definition of εα,j,m.

We then define εα := minj,m{εα,j,m}. This minimum is well-defined because j ∈ {1, . . . , k}
and m ≤ k.

We then choose an uncountable subcollection of M so that there exists some ε > 0 such that
εα > ε for all manifolds in this subcollection. This new subcollection, which we will continue
denoting by M, can be chosen by defining Mn := {M ∈M | εα > 1

n} and noting that if Mn were
countable for every n ∈ N, then M would be countable. As it is not, we can find an n so that
the collection of manifolds Mn is uncountable and set ε := 1

n and Mn to be our new M. This ε
will be used later in the proof.

It will be useful to think about j as counting the embedding and m as describing the size of
the ball, and to remember that M is already covered with j = k and m = 1.

Each manifold Mα determines an embedding gα : Bk+1(0)→ Rkl by

gα(x) = (hα1(x), . . . , hαk(x)).

We set G := {gα |α ∈A} to be the uncountable set of all such embeddings.

Claim 1. The set G is separable and metrizable.
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Figure 2. This is an example of a covering of a 1-manifold Mα
∼= S1 with k = 3.

Proof. We define the uniform metric on G by

d(gα, gβ) := maxx∈Bk+1(0)d(gα(x), gβ(x)),

which is well-defined since Bk+1(0) is compact, and equip G with the induced topology.
As G ⊆ C(Bk+1(0),Rkl) and we previously showed that subsets of separable metric spaces

are separable, we now only need to prove that C(Bk+1(0),Rkl) with the uniform metric is
separable, as G then has the subspace topology and is thus also separable. This is a consequence
of the theorem of Stone-Weierstrass (a general version and proof can be found in [Rud91,
Chapter 5]), which states that every real-valued function from a compact Hausdorff space can
be approximated by polynomials. The polynomials can then be approximated by polynomials
with rational coefficients, of which there are countably many. To obtain the statement about
functions into Rkl instead of real-valued functions, we apply Stone-Weierstrass in each variable
separately.

Thus, the set of functions from a compact subset of Rn into Rkl is separable, and the
polynomials with rational coefficients form a countable dense subset. So G is separable. �

Claim 2. There exists some gα0 ∈ G that is the limit point of a sequence of embeddings
gα1 , gα2 , . . . in G with gαi 6= gα0 for all i ∈ N \ {0}.

Proof. We know that G is an uncountable separable metric space and can thus apply Lemma 4.3.
�

We will now produce a contradiction by constructing a homeomorphism from Mα0 to Mαi for
i sufficiently large. This homeomorphism will be arbitrarily close to the identity as measured by
the metric d. Thus, as we had assumed that all elements in M are pairwise non-homeomorphic
and that gαi 6= gα0 for all i ∈ N, we will obtain a contradiction.

To simplify the notation, we will denote Mαi for some fixed but arbitrarily large i by M ′.
Then define the sets

Vj(m) := hα0,j(Bm(0)) ⊆M andV ′j (m) := hαi,j(Bm(0)) ⊆M ′

with j = 1, . . . , k and m = 1, . . . , k + 1, and let

Uj(m) := ∪jp=1Vp(m) ⊆M andU ′j(m) := ∪jp=1V
′
p(m) ⊆M ′.

We observe a few properties of these sets:
− Uk(1) = M and U ′k(1) = M ′ hold.
− Also, Uj(m) ⊆ Uj+1(m) and Uj(m) ⊆ Uj(m+1) hold, and so do the analogous statements

for U ′j(m).
We define the map fj := hαi,j ◦ h−1

α0,j : Vj(k + 1)→ V ′j (k + 1).
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Vj(k + 1) V ′j (k + 1)

Bk+1(0)
h−1
α0,j

fj

hαi,j

This map can be arbitrarily close to the identity as measured by the metric d, because
the embeddings hαi,j and hα0,j can be arbitrarily close by choosing i big enough, and is a
homeomorphism.

To construct the homeomorphism from M to M ′, we will proceed inductively. The induction
starts with the embedding g1 = f1|V1(k) : U1(k) = V1(k) ↪→ V ′1(k+1) ⊆M ′. We already know that
this embedding can be arbitrarily close to the identity. Given an embedding gj : Uj(m) ↪→M ′

that is close to the identity, we will use theorem [EK71, Theorem 5.1] to construct an embedding
gj+1 : Uj+1(m− 1) ↪→M ′ that is also close to the identity. Thus, by setting k = m in the first
step, we obtain an embedding gk : M = Uk(1) ↪→M ′ in k − 1 steps, which we will then show is
surjective.

Claim 3. If gj is close to the identity relative to the ε defined above and i is big enough,
gj(Uj(m) ∩ Vj+1(m)) ⊆ V ′j+1(m+ 1)

holds.

Proof. Let the embedding gj : Uj(m) ↪→ M ′ be close to the identity relative to ε, which was
chosen so that

ε < εα := minj,m{d(hαj (Bm(0)),Mα \ hαj ˚(Bm+1(0)))}
for all α ∈A. So
gj(Uj(m) ∩ Vj+1(m)) = gj((∪jp=1Vp(m)) ∩ hα0,j(Bm(0))) ⊆ hαi,j+1(Bm+1(0)) = V ′j+1(m+ 1)

must hold, because gj was close enough to the identity relative to ε, which measured the distance
of hαj (Bm(0) and Mα \ hαj ˚(Bm+1(0)) over all j ∈ {1, . . . , k}. �

The composition
F = f−1

j+1 ◦ gj : Uj(m) ∩ Vj+1(m)→ Vj+1(m)
is then well-defined and close to the identity, as both fj+1 and gj were close to the identity.

We apply the following theorem, [EK71, Theorem 5.1], a proof of which is given in the lecture
notes, Theorem 14.8, to extend F to Vj+1(m) while it stays fixed on an open set N ⊆M with

Uj(m− 1) ∩ Vj+1(m− 1) ⊆ N ⊆ Uj(m) ∩ Vj+1(m).
This is similar to the application of the theorem in the proof of the isotopy extension theorem
([EK71, Corollary 1.2, Corollary 1.4], Theorem 14.9 in the lecture notes).

Theorem 4.5. Let M be a manifold and C ⊆ U ⊆ M where U is an open neighbourhood of
the compact set C. Then there exists a neighbourhood P of the inclusion η : U → M and a
deformation

φ : P × [0, 1]→ Emb(U,M)
into EmbC(U,M) modulo the complement of a compact neighbourhood of C in U , and fixing η.

The manifold M can have nonempty boundary, the proof in this case is similar to the case
with empty boundary sketched in the lecture notes, but uses a boundary collar. Details can be
found in [EK71].

We want to obtain a homeomorphism F̃ : Vj+1(m)→ Vj+1(m) that is equal to F on N . So,
for the application of the theorem, we set M = Vj+1(m), U = ˚(Uj(m) ∩ Vj+1(m)) and C some
compact set with

Uj(m− 1) ∩ Vj+1(m− 1) ⊆ N := C̊ ⊆ C ⊆ U ⊆ Uj(m) ∩ Vj+1(m).
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This C exists because we can find open disjoint neighbourhoods of Uj(m − 1) ∩ Vj+1(m − 1)
and of M \ Uj(m) ∩ Vj+1(m) and choose C as the closure of the open neighbourhood of
Uj(m− 1) ∩ Vj+1(m− 1).

The theorem provides a neighbourhood P of the inclusion and a continuous deformation
φ : P × [0, 1]→ Emb(U,M)

into EmbC(U,M) modulo the complement of some compact neighbourhood C ⊆ W ⊆ U , i.e.
φ(P × {1}) ⊆ EmbC(U,M) and φ(h, t)|U\W = h|U\W for all h ∈ P and t ∈ [0, 1].

As F : U → Vj+1(m) can be obtained to be as close to the inclusion as wished, we can set i to
be large enough so that F ∈ P . Applied to F , the theorem gives an isotopy from φ(F, 0) = F to
G := φ(F, 1) ∈ EmbC(U,M) with φ(F, t)|U\W = F |U\W for all t ∈ [0, 1].

We define a map F̃ : Vj+1(m)→ Vj+1(m) by

F̃ =
{
FG−1(x) x ∈ G(U)
x x ∈M \G(W ).

Claim 4. The map F̃ is well-defined, continuous, a homeomorphism onto Vj+1(m) and coincides
with F on C, and thus extends F as we wished.

Proof.
− F̃ is well-defined:

We know that G(U) ∩ (M \G(W )) = G(U \W ). For x ∈ G(U \W ), choose z ∈ G−1(x).
As the deformation was modulo U \W , the relation x = G(z) = φ(F, 1)(z) = F (z) holds.
We then have

FG−1(x) = φ(F, 0)φ(F, 1)−1(x) = x.

− F̃ is continuous:
The map is continuous as the maps F and G−1 are continuous.

− F̃ is a homeomorphism:
Both F and G are embeddings, so FG−1 maps G(U) homeomorphically onto F (U). On
M \G(U) we have F̃ (x) = x, so F̃ is a homeomorphism.

− F̃ (x) = F (x) on C
On the set C, the maps F and F̃ coincide because C ⊆ G(U) as G can be made close
enough to the identity and U is a neighbourhood of C, and thus

F̃ (x) = FG−1(x) = F (x)
because G ∈ EmbC(U,M).

�

So we have extended F to F̃ .
We now define the map gj+1 : Uj+1(m− 1)→M ′ as

gj+1(x) =
{
gj(x) x ∈ Uj(m− 1)
fj+1F̃ (x) x ∈ Vj+1(m− 1).

Claim 5. The map gj+1 is well-defined, continuous and an embedding, more precisely a homeo-
morphism onto U ′j+1(m− j).

Proof.
− gj+1 is well-defined:

On Uj(m− 1) ∩ Vj+1(m− 1), the relation

fj+1F̃ (x) = fj+1FG
−1(x) = fj+1F (x) = fj+1f

−1
j+1gj(x) = gj(x)

holds, because Uj(m− 1) ∩ Vj+1(m− 1) ⊆ C, so gj+1 is well-defined.



8 MAGDALINA VON WUNSCH

− gj+1 is continuous:
The map is continuous as the maps F̃ , fj+1 and gj are continuous.

− gj+1 is an embedding and a homeomorphism onto U ′j+1(m+ 1− j):
All the maps F , fj+1 and gj are embeddings and can be arbitrarily close to the identity.
By induction, we know that gj is a homeomorphism onto U ′j(m+ 2− j). The map gj+1
is injective on Uj(m− 1) \N (which is a compact set with an open set removed) and
Vj+1(m− 1) \N by definition. The distance between those sets is strictly greater than
zero, and on N , the map is injective too. Thus, gj+1 is injective if i is big enough, as
that means that it is close enough to the identity.
The fact that gj+1 is a homeomorphism follows from the fact that F̃ is.

�

Thus, the embedding gk(1) : Uk(1) = M → M ′ = U ′k(1) is a homeomorphism, and it is
arbitrarily close to the identity. This means that the manifolds M and M ′ are homeomorphic,
which is a contradiction to the statement that the elements of the sequence were distinct. So our
assumption must be false, thus we have proven that there are only countably many manifolds
without boundary up to homeomorphism. �

Theorem 4.6. Up to homeomorphism, there are only countably many compact topological
manifolds (with possibly nonempty boundary).

Proof. The argument for manifolds with non-empty boundary is similar to the case with empty
boundary: we first assume that there are uncountably many compact topological manifolds
with boundary and fix some n so that there are uncountably many n-manifolds with boundary.
As before, Br(x) denotes the closed ball of radius r centered at x in Rn. We then choose an
(n− 1)-manifold B without boundary such that the set of all n-manifolds whose boundary is
homeomorphic to this manifold is uncountable, and restrict to this case. As we have proven
above that there are only countably many closed (n − 1)-manifolds, such a manifold B must
exist, and this restriction is no loss of generality. So we get an uncountable set M = {Mα}α∈A
of n-manifolds, each with boundary B.

Figure 3. This is an example of a covering of a 2-manifold with boundary
Mα
∼= D2 with k = 4.

We choose finite covers for the manifolds in M analogously to the case with empty boundary
and an integer k such that there are uncountably many compact manifolds covered by k
embedded closed balls in the same way. By the collaring theorem (first shown in [Bro62],
Theorem 6.5 in the lecture notes), each manifold in this set has a collared boundary, so for
Mα there exists an embedding hα1 : B × [0, k + 1] → Mα with hα1(b, 0) = b for all b ∈ B.
The finite cover of Mα gives us embeddings hαj : Bk+1(0) → Mα such that Mα is covered by
{hα1(B × [0, 1]), hα2(B(1)), . . . , hαk(B(1))}. We embed Mα in R2n+1 = Rl as in the first part of
the proof of Theorem 4.4 and define an embedding gα : B × [0, k + 1]×Bk+1(0)→ Rkl by

gα(x, t, y) = (hα1(x, t), hα2(y), . . . , hαk(y))
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for every manifold Mα in M. We denote the set of all such embeddings for α ∈A by G.
By the same arguments as before, there is an embedding gα0 ∈ G that is the limit point of

a sequence gα1 , gα2 , . . . in G with gα0 6= gαi for all i ∈ N. As in the proof for manifolds with
empty boundary, we set M ′ = Mαi for some i that is fixed, but arbitrarily large. We define
V1(m) := hα0,1(B × [0,m]) and V ′1(m) := hαi,1(B × [0,m]) with m = 1, . . . , k + 1. The sets
Vj(m) and V ′j (m) for j = 2, . . . , k as well as Uj(m) and U ′j(m) are defined as before, and the
rest of the proof constructs a homeomorphism from M to M ′ in the same way as the proof for
manifolds with empty boundary, as all statements used can also be applied to manifolds with
boundary. �

5 Application to Morse theory
In their paper [CK70], Cheeger and Kister also present a topological submersion theorem that

is an application of their results and useful in topological Morse theory. We will now state these
results and sketch a proof.

Definition 5.1. A map f : X → Y is called proper if the preimages of compact sets are compact,
i.e. for all compact C ⊆ Y , the set f−1(C) is compact. We call a continuous map f : X → Y
monotone if the inverse image of any point in f(X) is a connected subset of X.

Let Y be an m-manifold and X be an n-manifold, and thus metrisable. Let d be a metric on
X. Let f : X → Y be a proper monotone map satisfying the following condition:

for everyx ∈ X there are closed neighbourhoods f(x) ∈ U ⊆ Y andx ∈ V ⊆ X
and a homeomorphismh : B2(0)× U → V such that f ◦ h is the projection map onto U.

(?)

We define My := f−1(y) for y ∈ Y .

Proposition 5.2. For every y ∈ Y , My is a compact connected topological (m− n)-manifold.

Proof. We know that My is compact and connected because the map f is proper and monotone.
It is also Hausdorff as a subset of a Hausdorff space.

To show it is locally (m− n)-euclidean, take any x ∈My ⊆ X. By the condition mentioned
above, there is some neighbourhood V of x that is homeomorphic to B2(0) × U . As Y is an
n-manifold, there is some neighbourhood of f(x) in U that is isomorphic to Rn. We can now
restrict h to B2(0) cross this neighbourhood and obtain that My is locally (m− n)-euclidean
and thus a compact topological (m− n)-manifold.

As My is compact and locally (m − n)-euclidean, it can be covered by finitely many open
balls. We know that Rm−n is second-countable, so we can find a countable basis of the topology
of My by considering the images of the bases of the balls that we embedded. �

We fix y0 ∈ Y and can find a collection of embeddings

{hyj : B2(0)→My | y ∈ U, j = 1, 2, . . . , k}

where U is a closed neighbourhood of y0 in Y , and {hyj (B1(0))}kj=1 covers My. For fixed j, the
embeddings hyj vary continuously in y as embeddings of B2(0) into X. We apply the method
from the proof of Theorem 4.4 to construct a homeomorphism g : My0 →My for y in a small
enough neighbourhood U ′ of y0. This is canonical and continuous in y because the result from
[EK71] was too.

Then the map g : My0 ×U ′ → X that we define as g(x, y) = gy(x) is a local trivialization of f .
This result can be applied to topological Morse theory. For this purpose, we first want to

define some very basic concepts from topological Morse theory, as they can be found in [Sch99].

Definition 5.3. Let X be a connected topological n-manifold and f : X → R+ a continuous
function. Then x ∈ X is an ordinary point of f if there exists an open neighbourhood V of x
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in X and a homeomorphic parametrization of V by n parameters such that one of them is f .
Otherwise, x is a critical point of f .

A critical point x of f is called non-degenerate if there exists an open neighbourhood V of x
in X, a homeomorphic parametrization of V by parameters y1, . . . , yn and an integer 0 ≤ j ≤ n
such that, for all u ∈ U ,

f(u)− f(x) =
j∑
i=1

y2
i −

n∑
i=j+1

y2
i

holds.
Such a function f is called a topological Morse function if all critical points of f are non-

degenerate.

Applying the previous consideration to this case results in the following statement:

Proposition 5.4. Let X be a compact connected topological (n+ 1)-manifold, Y = [0, 1] and
f : X → Y be a topological Morse function without critical points, i.e. all point x ∈ X are
ordinary points. Then f is a trivial bundle map with fiber a compact manifold.

Proof. The map f , which is a topological Morse function without critical points, is proper and
monotone. To prove that f is proper, let C ⊆ [0, 1] be a compact set, and thus in particular
closed, as [0, 1] is a Hausdorff space. Then f−1(C) ⊆ X is also compact because it is a closed
subset of a compact manifold.

Let t ∈ [0, 1] be any point. The preimage of t under f cannot be empty. We can see this as
the image is nonempty, connected, closed, because X is compact, and open, because we can find
an open neighbourhood around any point using the condition that any point of X is an ordinary
point of f . Thus, the image must be all of Y . Similarly to the proof of Proposition 5.2, we can
see that f−1(t) is a compact manifold. If we assume that the preimage of t is not connected,
we can find two points x, y ∈ X with f(x) = f(y) = t that are in different path components
of f−1(t), but that can be connected by a path γ ⊆ X in X, as X is a connected, and thus
path-connected manifold. Then there must be a point in f(γ) that is not an ordinary point of f ,
which is a contradiction to our first assumption that f has no critical points.

The map f meets the condition ? by definition by setting V to be the closure of the open
neighbourhood in the definition of a Morse function and U = f(V ). The homeomorphic
parametrization yields exactly the necessary homeomorphism such that f ◦ h is the projection.

We can then analogously define Mt as f−1(t) and construct a homeomorphism g : Mt0 →Mt

for t in a small enough neighbourhood of t0, and the map g : Mt0 × U ′ → X, defined as
g(x, y) = gy(x) is a local trivialization of f . As these homeomorphisms change continuously
and all points of f are ordinary points, the map f is a trivial bundle map with fiber a compact
n-manifold. �
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