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Abstract. We modify the proof of the disc embedding theorem for 4-manifolds, which appeared
as Theorem 5.1A in the book “Topology of 4-manifolds” by Freedman and Quinn, in order to

construct geometrically dual spheres. These were claimed in the statement but not constructed

in the proof. We also prove Proposition 1.6 from the Freedman-Quinn book regarding generic
homotopies of discs or spheres in a 4-manifolds, which was not proven there.

1. Introduction

The disc embedding theorem [Fre84] combines work of Casson, Freedman, and Quinn. In a
topological 4-manifold with good fundamental group, the theorem replaces an immersed disc with
embedded boundary and a framed algebraically dual sphere by a locally flat embedded disc with
the same boundary as the original disc. Consequences include topological 4-dimensional surgery
theory and the topological 5-dimensional s-cobordism theorem, both for good fundamental groups.

Freedman’s original proof was restricted to the simply connected case and used Casson handles,
built out of layers of (thickened) immersed discs. The full disc embedding theorem was first
stated in the book “Topology of 4-manifolds” by Freedman and Quinn [FQ90, Theorem 5.1A].
This book expanded on Freedman’s argument by using a generalisation of Casson handles built
out of capped gropes, variously called a skyscraper [BKK`21], a cope [Fre84], or a generalized
infinite tower [FQ90]. The Freedman-Quinn capped grope approach is key to the proof of the disc
embedding theorem for nontrivial fundamental groups.

The goal of this article is to modify part of the Freedman-Quinn proof of the disc embedding
theorem, in order to fill a gap in the proofs of [FQ90, Theorem 5.1A and Corollary 5.1B] related
to geometrically dual spheres. Briefly, one needs algebraically dual spheres for the input of the
disc embedding theorem, while for many applications one needs geometrically dual spheres in the
output. Here we say that two surfaces are geometrically dual if they intersect transversely in
precisely one point. The proof in [FQ90] produces algebraically dual spheres in the output, rather
than geometrically dual spheres.

Part II of Freedman-Quinn [FQ90] is the principal reference for the tools required to do any
nontrivial work with topological 4-manifolds. These include the annulus theorem [FQ90, The-
orem 8.1A], smoothing away from a point [FQ90, Theorem 8.2], transversality [FQ90, Theo-
rem 9.5A], and the existence and uniqueness of normal bundles for locally flat submanifolds [FQ90,
Section 9.3]. Every theorem in Chapters 7, 8, and 9 of [FQ90] relies on Theorem 5.1A, including
the latter’s assertion of geometrically dual spheres. In turn the classification results of Chapters
10 and 11, and indeed all classification results proven since then, make essential use of these tools.
Thus it is important to have a complete proof of Theorem 5.1A of [FQ90], from the point of view
of both the rest of that book and of much of the rest of the literature on topological 4-manifolds.

In the spirit of addressing foundational omissions from [FQ90], we also prove [FQ90, Proposi-
tion 1.6] on homotopies between immersed surfaces in a 4-manifold. This states that a homotopy
between generic immersions of a surface in a 4-manifold is homotopic to a composition of homo-
topies, each of which is a regular homotopy or a cusp homotopy in some ball, or the inverse of
a cusp homotopy. This important proposition was stated but not proven in the Freedman-Quinn
book. We will discuss the details in Section 1.3.

One might wonder whether our concern about the existence of geometrically dual spheres is
valid, and whether, for example, the algebraically dual spheres produced in the proof in [FQ90]
might suffice for the above mentioned applications. However, surgery on an embedded, framed
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sphere without a geometrically dual sphere might change the fundamental group of the ambient
4-manifold, whereas geometrically dual spheres guarantee control over the fundamental group.
Therefore, many applications hinge on providing geometric duals together with the embedded
spheres. We also note that a 2-sphere in a 4-manifold with an algebraically dual sphere need
not admit a geometrically dual sphere, a phenomenon not seen in higher dimensions due to the
Whitney trick. In dimension four, geometric duals cannot be found post hoc. An example of a
sphere in S2ˆS2 with an algebraically dual sphere but no geometrically dual sphere, was produced
in [Sat91, Section 3; Sat89, Example 4.1] cf. [KM19, Figure 9]. In the construction one begins with
a 2-knot Σ Ď S4 and performs surgery on a simple closed curve in S4 ∖ Σ which is homologous
to the meridian. The result is an embedded sphere S in S2 ˆ S2. By a judicious choice of Σ, one
may ensure that π1ppS2 ˆ S2q ∖ Sq is a nontrivial perfect group, implying that S does not admit
a geometrically dual sphere.

1.1. The disc embedding theorem. The equivariant intersection form of a connected 4-manifold
M is a pairing

λ : H2pM, BM ;Zrπ1M sq ˆ H2pM ;Zrπ1M sq ÝÑ Zrπ1M s.

As well as having nonempty boundary, the topological 4-manifold M may be nonorientable or
noncompact. For topological 4-manifolds, we will explain the reduced self-intersection number

rµ : π2pMq ÝÑ Zrπ1M s{xg ´ wpgqg´1,Z ¨ 1y

in Section 1.3. If M is orientable, the quantity rµ is determined by λ. In this case, the assump-
tions rµpgiq “ 0 below are implied by λpgi, giq “ 0.

Given maps tfiu
k
i“1 of discs or spheres to M , a second collection tgi : S

2 Ñ Muki“1 is alge-
braically dual to the tfiu

k
i“1 if the algebraic intersection form satisfies λpfi, gjq “ δij . If this is true

geometrically, we say that the collection tgiu is geometrically dual to the tfiu. More precisely, this
means that fi X gj is a single, transverse point for i “ j and is empty for i ‰ j. An intersection
point between fi and gi is said to be transverse if there are local coordinates R4 ãÑ M in which fi
and gi are linear. Here, and throughout the paper, we conflate the maps fi, gi with their images
fipS

2q/fipD
2q and gipS

2q, as well as with the corresponding homology/homotopy classes.
We remark that [FQ90] uses the terminology of ‘algebraically transverse spheres’ which by

definition have trivial normal bundles. We make the condition on normal bundles more explicit
in our nomenclature. Our algebraically dual spheres need not have trivial normal bundles. When
the latter condition is required, we state it explicitly.

Theorem A (Disc embedding theorem cf. [FQ90, Theorem 5.1A]). Let M be a connected 4-
manifold with good fundamental group. Consider a continuous map

F “ pf1, . . . , fkq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q ÝÑ pM, BMq

that is a locally flat embedding on the boundary and that admits algebraically dual spheres tgiu
k
i“1

satisfying λpgi, gjq “ 0 “ rµpgiq for all i, j. Then there exists a locally flat embedding

F “ pf1, . . . , fkq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q ãÑ pM, BMq

such that F has the same boundary as F and admits a generically immersed, geometrically dual
collection of framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion, then it induces a framing of the normal bundle of its
boundary circle. The embedding f i may then be assumed to induce the same framing.

Remark 1.1. Our statement of Theorem A differs from [FQ90, Theorem 5.1A] in that we empha-
sise that the input is purely homotopy theoretic, and we control the homotopy classes of the dual
spheres. The interested reader can use the discussion in Remark 6.3 to see that even the original
continuous maps fi induce framings modulo 2 on the boundary circles.

Remark 1.2. The geometrically dual spheres in the conclusion of the disc embedding theorem
imply that inclusion induces an isomorphism π1pMq – π1pMz

Ť

i f iq. As in [FQ90], we refer
to a collection of immersed surfaces whose removal does not change the fundamental group as
π1-negligible.
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We discuss topological immersions in Section 1.3, where we also explain why a topological generic
immersion f admits a linear normal bundle νpfq whose total space is embedded in M apart from
finitely many plumbings. If the base of νpfq is a disc, and so in particular contractible, then this
bundle has a unique trivialisation, or framing, which is used in the last paragraph of the statement
of Theorem A.

We recall the notion of a good group, from [FT95,KOPR21], in Definition 3.2. For applications,
it suffices to know that the class of good groups is known to contain groups of subexponential
growth [FT95,KQ00], and to be closed under subgroups, quotients, extensions, and colimits [FQ90,
p. 44]. In particular, all finite groups and all solvable groups are good. It is not known whether
non-abelian free groups are good.

The proof of the disc embedding theorem from [FQ90] begins with immersed discs and has
three distinct steps. We describe the k “ 1 case for ease of exposition. First use [FQ90, pp. 86-7,
Proposition 2.9 and Lemma 3.3] to upgrade the immersed disc f to a 1-storey capped tower T with
at least four surface stages, whose attaching region coincides with the framed boundary of f . Then
use [FQ90, Proposition 3.8] to show that every 1-storey capped tower with at least four surface
stages contains a skyscraper with the same attaching region. Finally, using decomposition space
theory, [FQ90, Theorem 4.1] shows that every skyscraper is homeomorphic to a handle D2 ˆ D2

relative to its attaching region. The proof given in [FQ90, pp. 86-7] does not mention geometrically
dual spheres, although they appear in the theorem statement. However, the claimed geometrically
dual spheres in the output are used multiple times in [FQ90], as we indicate in Section 2.

In this article we give a modified proof of the disc embedding theorem, including the construction
of the claimed geometrically dual spheres. Specifically, we only modify the first step of the proof,
producing 1-storey capped towers equipped with geometrically dual spheres. Our modification
utilises dual capped surfaces obtained from Clifford tori. Such capped surfaces allow us to create
arbitrarily many collections of pairwise disjoint geometrically dual spheres. The key insight in our
argument is that the Clifford tori are close to the corresponding double points, which allows us
to ensure that the tracks of certain null homotopies do not intersect them. This small amount of
extra disjointness is just enough to make the argument work. In Remark 1.4 we also explain an
alternative argument suggested by a referee.

Remark 1.3. For experts, we explain the problem with the proof in [FQ90] in more detail. That
proof begins with immersed discs with geometrically transverse spheres and upgrades the former
to capped gropes with arbitrarily many surface stages, still equipped with geometrically transverse
spheres tgiu. The key step is finding a further stage of caps, constructing a 1-storey capped tower.
The tower caps come from null homotopies for the double point loops in the caps of the capped
grope, which exist due to the assumption on fundamental groups. The null homotopies cannot be
easily controlled, and therefore the tower caps may intersect the dual spheres tgiu, as well as the
lower stages of the tower, arbitrarily. The final step in the proof of [FQ90, Lemma 3.3] is to push
intersections of the tower caps with the grope caps or surfaces stages down to the base stage and
tube into the spheres tgiu. One sees then that the intersections between tgiu and the tower caps
have not been controlled. These could be pushed down into the surface stages, but in that case
the 1-storey capped towers would still only have algebraically dual spheres.

It seems to have been tacitly assumed in [FQ90, Proposition 3.3 and pp. 86–7] that [FQ90,
Lemma 3.3] provides geometrically dual spheres. In fact, the first paragraph of the proof on
page 86 does not mention how to construct transverse spheres, and Lemma 3.3 does not claim to
provide them. So [FQ90] gives a correct proof of Theorem 5.1A without the last four words ‘and
with transverse spheres’ (known as geometrically dual spheres in our terminology). On the other
hand, as discussed above, it is assumed throughout Part II of [FQ90] that Theorem 5.1A constructs
geometrically dual spheres.

1.2. Outline of the proof. For experts, here is an outline of our argument – more details can
be found in Sections 4 and 5. The beginning follows that of [FQ90, Theorem 5.1A]: assume the
collections tfiu and tgiu are generically immersed, and after cusp homotopies that the intersections
and self-intersections of tgiu are algebraically cancelling. Tube the tfiu into the tgiu to ensure that
the intersections and self-intersections of tfiu are algebraically cancelling, and further arrange that
tfiu and tgiu are geometrically dual by the geometric Casson lemma (Lemma 3.3).
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Let tDju denote framed, immersed Whitney discs pairing the intersections within and among
the tfiu. Clifford tori at the double points of tfiu are geometrically dual to tDju. These tori can
be capped by meridional discs for tfiu, tubed into tgiu so that they lie in the complement of tfiu,
so we have dual capped tori tTju to the tDju.

Now comes our modification. Tube the intersections among tDju into the tTju to produce
capped surfaces tD1

ju with the same framed boundary. The caps of tD1
ju and of the tTju can

be separated as follows. The intersections between the two sets of caps are paired by framed,
immersed Whitney discs. These may be assumed to be disjoint from the Clifford tori since the tori
are located in a tubular neighbourhood of tfiu, and they can be made disjoint from the bodies of
tD1

ju by pushing down and tubing into geometrically dual spheres for tD1
ju produced by contracting

parallel copies of the tTju. Now the geometric Casson lemma, applied to these new Whitney discs,
separates the two families of caps, without creating any new undesirable intersections. Next we
similarly upgrade the caps of tD1

ju to capped surfaces, with caps disjoint from those of the tTju.

To do so, push the cap intersections for tD1
ju down and tube into tTju to obtain height two capped

gropes pairing the intersections among tfiu. Then separate the caps of these height two capped
gropes from the caps of the tTju using the separation argument above, so that the final height two
capped gropes are geometrically dual to the tTju.

The remainder of the proof is standard. By grope height raising and the good group hypothesis
replace the height two capped gropes by height four capped gropes with null-homotopic double
point loops and the same framed boundary. Let tCℓu denote immersed discs bounded by these
double point loops, arising from the null homotopies and with the appropriate boundary framing.
We may assume that tCℓu is disjoint from the Clifford tori (not their caps), since these lie in
a tubular neighbourhood of tfiu. For any intersections of tCℓu with the rest of the height four
gropes, push down and tube into geometrically dual spheres produced by contracting parallel
copies of tTju. Now the height four capped gropes can be equipped with tCℓu as tower caps to
produce 1-storey capped towers tT c

j u. Finally, the tTju are contracted to spheres tRju which are
geometrically dual to tT c

j u. By tubing tgiu into tRju, we acquire spheres tgiu that are geometrically
dual to tfiu and do not intersect tT c

j u. Freedman and Quinn [FQ90, Chapters 3 and 4] (see also

[BKK`21, Parts II and IV]) showed that 1-storey capped towers with at least four surface stages
contain embedded topological discs with the same framed boundary. These can be used to perform
the Whitney move on tfiu to produce the desired embeddings tf iu with geometric duals tgiu.

Finally, in order to see that each gi is homotopic to gi, we note that the latter only changes by
homotopy and tubing into the spheres tRju. But each sphere Rj is null-homotopic in M since it
is constructed by contracting a Clifford torus (Lemma 4.4).

Remark 1.4. We now describe an alternative method to obtain the geometrically dual spheres in
Theorem A suggested by the referee.

As in the outline above, we can arrange that tfiu and tgiu are generically immersed, that the
intersections and self-intersections of both tfiu and of tgiu are algebraically cancelling, and further
that tfiu and tgju are geometrically dual. Therefore the intersections and self-intersections of tfiu
are paired by framed, immersed Whitney discs. By tubing tfiu to itself along one of each pair of
Whitney arcs, the collection is upgraded to capped surfaces tf 1

iu. Meridional discs and the Whitney
discs provide the caps, after tubing into tgiu to ensure disjointness from the bodies of tf 1

iu.
Next, repeat the argument for the caps, as follows. First push all the intersections of tgiu with

the caps of tf 1
iu down to the body and then into the (unpushed) tgiu. This preserves the algebraic

intersection conditions on tgiu, while ensuring that the tgiu no longer intersect the caps of tf 1
iu.

Now the intersections among the caps of tf 1
iu are pushed down and tubed into the tgiu, to arrange

that the intersections among the caps of tf 1
iu are algebraically cancelling. Then we can assume

that the cap intersections are paired by framed, immersed Whitney discs. Tube along one of each
pair of Whitney arcs, and cap with meridional and Whitney discs, with intersections with tf 1

iu

pushed down and tubed into tgiu as needed, to upgrade tf 1
iu to a collection of height two capped

gropes.
Now apply grope height raising and the good group hypothesis to this collection to produce

height four capped gropes with the same framed attaching region as tfiu and null-homotopic
double point loops.
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Let tCℓu denote immersed discs bounded by these double point loops, arising from the null
homotopies and with the appropriate boundary framing. For every intersection of tCℓu with the
height four capped gropes, push down and tube into parallel copies of tgiu. Now the height four
capped gropes can be equipped with tCℓu as tower caps to produce 1-storey capped towers tT c

i u.
This is the outcome of [FQ90, Lemma 3.3]. Note that tgiu and the bodies of tT c

i u are geometrically
dual, but we do not have any control yet on the intersections between tgiu and tCℓu.

Now we have the modification proposed by the referee. Take parallel push-offs of tgiu, which
we call tg1

iu. For every intersection of tCℓu with tgiu, push tgiu down to the base surface of the
tower, and tube into copies of tg1

iu. Still call the result tgiu. Note that we have now arranged that
the intersections between tCℓu and tgiu are algebraically cancelling, since by the pushing down
procedure, each intersection between some element of tCℓu and the original set of spheres tgiu
has led to some even number of (algebraically cancelling) tubings into tg1

iu. Let tWju denote a
set of framed, immersed Whitney discs pairing the intersections between tCℓu and tgiu. Remove
any intersections between tWju and anything in the 1-storey towers tT c

i u below the tower caps by
pushing down and tubing into tg1

iu. Now use the geometric Casson lemma (Lemma 3.3) with tWju

to separate the caps of tT c
i u from tgiu. The result is a new collection of 1-storey capped towers

with geometrically dual spheres tgiu.
The rest of the argument consists of first upgrading the 1-storey capped towers to skyscrapers,

also equipped with geometrically dual spheres, and then showing that the homeomorphism from
any skyscraper to D2 ˆ D2, relative to the attaching region, preserves the geometrically dual
spheres. One can verify that the proofs of [FQ90, Proposition 3.8 and Theorem 4.1] accomplish
this, by moving the intersection point with the dual spheres sufficiently close to the preserved
attaching region.

Finally we check that the geometrically dual spheres produced are homotopic to the algebraically
dual spheres in the hypotheses. Note that in the construction above each gi has been changed by
homotopies and by tubing into tg1

iu. Since the tubing occurred after pushing down, each g1
j is used

for these tubing operations an algebraically cancelling number of times and therefore there is no
change in the homotopy class of gi, as desired.

1.3. Generic immersions and intersection numbers. Homotopy classes of smooth maps of
a compact surface to a 4-manifold are represented by generic immersions, which are immersions
whose only singularities are transverse double points in the interior. In the topological category,
we use this local description as the definition of a generic immersion. In particular, a generic
immersion is locally a flat embedding and hence restricts to a locally flat embedding of the bound-
ary. A regular homotopy in the smooth category is a homotopy through immersions. A smooth
regular homotopy of generically immersed surfaces in a 4-manifold is generically a concatenation
of (smooth) isotopies, finger moves, and Whitney moves [GG73, Section III.3]. A topological regu-
lar homotopy of generically immersed surfaces in a 4-manifold is by definition a concatenation of
(topological) isotopies, finger moves, and Whitney moves.

In order to work effectively in a topological 4-manifold, it is key to be able to assume that a con-
tinuous map of a surface can be perturbed to a topological generic immersion [FQ90, Lemma 1.2].
For instance, this is the first step in the proof of the disc embedding theorem in a topological
4-manifold. It also follows that a topological generic immersion f : Σ í M has a linear nor-
mal bundle νpfq. Similarly, it is also essential to be able to decompose a topological homotopy
into a sequence of regular homotopies and cusp homotopies [FQ90, Proposition 1.6]. This latter
proposition was stated in [FQ90] without a proof, so we provide one.

Specifically, the combination of [FQ90, Lemma 1.2 and Proposition 1.6] can be stated in the
following useful way, which is what we prove in Section 6.

Theorem 1.5. Let Σ be a disjoint union of discs or spheres, and let M be a 4-manifold. The
subspace of generic immersions in the space of all continuous maps leads to a bijection

tpf1, . . . , fmq : Σ “ Σ1 \ ¨ ¨ ¨ \ Σm í M | µpfiq1 “ 0, i “ 1, . . . ,mu

tisotopies, finger moves, Whitney movesu
ÐÑ rΣ,M sB,

where µpfiq1 P Z denotes the signed sum of double points of fi whose double point loops are trivial in
π1pMq, and rΣ,M sB denotes the set of homotopy classes of continuous maps that restrict on BΣ to
locally flat embeddings disjoint from the image of the interior of Σ. Moreover, any such homotopy
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between generic immersions is homotopic rel. Σ ˆ t0, 1u to a sequence of isotopies, finger moves
and Whitney moves.

As usual, the self-intersection number µpfq of a generic immersion f of a disc or sphere into M
is obtained by summing signed group elements g P π1pMq corresponding to double points in the
interior of f [Wal99, Chapter 5; FQ90, Section 1.7]. The ambiguity of the choice of sheets at each
double point leads to the relations g´wpgqg´1 in Zrπ1M s. Local cusp homotopies allow us to change
the coefficient µpfq1 at the trivial fundamental group element 1 at will, and correspondingly we
factor out by Z¨1. We obtain the reduced self-intersection number, already used in the assumptions
of Theorem A:

rµ : π2pMq ÝÑ Zrπ1M s{xg ´ wpgqg´1,Z ¨ 1y.

While µpfq depends on the choice of generically immersed representative f : S2 í M , the reduced
version rµ only depends on rf s P π2pMq. Any two generic immersions homotopic to f are of course
themselves homotopic. By the injectivity in Theorem 1.5 we see that rµ is well-defined on π2pMq,
since the quantity is evidently unchanged by isotopies, finger moves, and Whitney moves.

For any f : S2 í M , the invariant µ satisfies

λpf, fq “ µpfq ` µpfq ` epfq ¨ 1 P Zrπ1M s (1.1)

where epfq P Z is the Euler number of the normal bundle νpfq and the involution g :“ wpgqg´1 is
extended linearly to the group ring. Apply the augmentation map ε : Zrπ1M s Ñ Z to this equation,
to see that modulo 2, εpλpf, fqq ” epfq only depends on the homotopy class of f . This is also the
Stiefel-Whitney number w2pfq P Z{2 of νpfq which will be used in the assumption of Theorem B
in the next section. As in the discussion above one sees that w2paq “ 0 if and only if a P π2pMq is
represented by a generic immersion f : S2 í M that can be framed, i.e. whose normal bundle is
trivial.

Conventions. All manifolds are assumed to be based, in order to define homotopy groups and
equivariant intersection numbers. Topological embeddings are always assumed to be locally flat.

Outline. In Section 2 we give applications of the disc embedding theorem with geometrically
dual spheres from the literature. In particular we recall the sphere embedding theorem, and
the hyperbolic embedding theorem, which gives us the ability to represent a rank 2k hyperbolic
summand of the intersection form by an #k

i“1S
2 ˆ S2 connected summand. In Section 3, we

review the objects, geometric constructions, and further results needed for the proof of the disc
embedding theorem, then Section 4 contains the main technical results needed for the construction
of geometrically dual spheres. These results are applied in Section 5 to prove the disc embedding
theorem (Theorem A). Here we also explain an alternative argument kindly suggested by a referee.
Finally, in Section 6 we discuss generic immersions and prove Theorem 1.5.
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2. Applications of geometrically dual spheres in the literature

2.1. The sphere embedding theorem. A central application of the disc embedding theorem
is to prove the sphere embedding theorem. The existence and exactness of the topological surgery
sequence in dimension four are proven by changing a collection of generically immersed spheres with
vanishing intersection and self-intersection numbers, by a regular homotopy, to pairwise disjoint
embedded spheres [FQ90, Theorem 11.3A]. The sphere embedding theorem describes precisely
when such embedded spheres may be found. The proof of [FQ90, Theorem 11.3A] neglects to
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mention that geometrically dual spheres are essential for performing surgery on 4-manifolds without
inadvertently modifying the fundamental group. The sphere embedding theorem is also integral
to any known classification result for topological 4-manifolds, including those that use Kreck’s
modified surgery theory [Kre99], for example [HKT09]. Another example is the main step in
[HK88, Lemma 4.1], which uses sphere embedding to move from the easier stable classification up
to connected sums with copies of S2 ˆ S2 to unstable classification results. We refer to [OPR21,
Section 20.3] for a proof of the sphere embedding theorem.

Theorem B (Sphere embedding theorem with framed duals). Let M be a connected 4-manifold
with good fundamental group and consider a continuous map

F “ pf1, . . . , fkq : pS2 \ ¨ ¨ ¨ \ S2q ÝÑ M

satisfying rµpfiq “ 0 for every i and λpfi, fjq “ 0 for i ‰ j, with a collection of algebraically dual
spheres tgiu

k
i“1 with w2pgiq “ 0 for each i. Then there is a locally flat embedding

F “ pf1, . . . , fkq : pS2 \ ¨ ¨ ¨ \ S2q ãÑ M

with F homotopic to F and with a generically immersed, geometrically dual collection of framed
spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion and epfiq P Z is the Euler number of the normal bun-
dle νpfiq, then f i is regularly homotopic to fi if and only if epfiq “ λpfi, fiq.

Remark 2.1. The assumption rµpfiq “ 0 implies that λpfi, fiq P Z ¨ 1 Ď Zrπ1M s, by (1.1).
In this case, (1.1) gives an equation of integers λpfi, fiq “ 2 ¨ µpfiq1 ` epfiq and hence the last
condition epfiq “ λpfi, fiq in Theorem B is equivalent to the vanishing of µpfiq.

Remark 2.2. If we assume in addition to the hypotheses of Theorem B that λpfi, fiq “ 0 for
all i, then we can get disjointly embedded framed spheres tf iu as an output, since then w2pf iq “

w2pfiq ” εpλpfi, fiqq “ 0 for all i, by the equality (1.1). As a consequence, we can surger M
along tf iu to obtain a 4-manifoldM 1. The existence of the geometric duals gi implies that π1pM 1q –

π1pMq, but indeed more is true: each intersection (or self-intersection) of some gj with a fixed gi
can be tubed into the unique intersection point between gi and (a parallel copy of) f i, resulting
in geometric duals hi to f i that are now disjointly embedded. This means that each pair pf i, hiq

has a regular neighbourhood that is a sphere bundle over S2, with a 4-ball removed. The sphere
bundle is trivial if and only if w2phiq “ w2pgiq “ 0.

So in the setting of Theorem B where all w2pgiq are assumed to vanish, we get a connected sum
decomposition M as a connected sum with copies of S2 ˆS2. Note that the ai :“ rfis form the first
Lagrangian, but the second Lagrangian generated by bi :“ rhis is formed by linear combinations
of the rgis and rfis induced by the geometric manoeuvres above.

0
We record an important special case of the situation described in Remark 2.2 in the following

theorem.

Theorem 2.3 (Hyperbolic embedding theorem). Let M be a connected 4-manifold with good fun-
damental group and let H be a hyperbolic form in pπ2pMq, λM , rµM q, meaning that H is a Zrπ1pMqs-
submodule of π2pMq, generated by a hyperbolic basis consisting of classes a1, . . . , ak, b1, . . . , bk P H
with

λpai, bjq “ δij , λpai, ajq “ 0 “ λpbi, bjq and rµpaiq “ 0 “ rµpbiq for all i, j.

Then there is a homeomorphism M « p#k
i“1S

2ˆS2q#M 1 with a connected sum that on π2 sends ai
to rS2

i ˆ tptius and bi to rtptiu ˆS2
i s. In particular, H is an orthogonal summand freely generated

by tai, biu and π2pMq – H K π2pM 1q.

Theorem 2.3 was stated on the first page of Freedman’s ICM talk [Fre84]. Together with
Donaldson’s theorem on definite intersection forms for smooth 4-manifolds [Don83], it implies the
existence of infinitely many non-smoothable 4-manifolds. For example, a simply connected, closed
4-manifold with intersection form E8 ‘ E8 can be obtained from the K3 surface by removing a
hyperbolic form of rank 6. Since the form E8 ‘ E8 is definite but not diagonalisable, it cannot be
realised by a closed, smooth, 4-manifold.
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Proof of Theorem 2.3. Represent the ai and bi by framed generic immersions, using Proposition 6.2
and the fact that in Z{2 we have w2paiq ” εpλpai, aiqq “ 0 and w2pbiq ” εpλpbi, biqq “ 0 for all i.
Apply Theorem B to these framed generic immersions. The output is as in Remark 2.2, except
that we have the additional information that λpbi, bjq “ 0 “ rµpbiq for all i, j. This means that the

operations of tubing into the tf iu occur in such a way that up to homotopy there is no effect, i.e.
the resulting disjointly embedded spheres thiu still represent the tbiu in π2pMq. □

Remark 2.4. In this paper we prove the disc embedding theorem with geometrically dual spheres,
and then use it to deduce the sphere embedding theorem with geometrically dual spheres. Since the
former is used throughout [FQ90], our proof fills the gap in that source. However, for applications
in surgery theory, one begins with a dual spherical sublagrangian of the intersection form, as in
Theorem 2.3. In this case, the following proof of Theorem 2.3 is available, which applies the disc
embedding theorem without geometrically dual spheres. The idea is due to Casson [Cas86]; we
thank Slava Krushkal for reminding us of it.

Suppose we are given classes a1, . . . , ak, b1, . . . , bk P π2pMq for a topological 4-manifold M with
good fundamental group satisfying

λpai, bjq “ δij , λpai, ajq “ 0 “ λpbi, bjq and rµpaiq “ 0 “ rµpbiq for all i, j.

Assume taiu and tbiu are represented by immersed spheres tAiu and tBiu respectively. Let tA`
i u

and tB`
i u denote push-offs of tAiu and tBiu respectively. For each i, choose small 4-discs around

the unpaired intersection point between Ai and Bi, not intersecting tA`
i u and tB`

i u. Tube the
discs together using embedded 1-handles in M without intersecting tAiu Y tA`

i u Y tBiu Y tB`
i u,

and call the result D. The portion of tAiu and tBiu lying in MzD are immersed discs tA0
i u

and tB0
i u with trivial intersection and self-intersection numbers, equipped with algebraically dual

spheres tB`
i uYtA`

i u. Apply local cusp moves to tA0
i u and tB0

i u to ensure that the unreduced self-
intersection numbers vanish. Apply the version of [FQ90, Corollary 5.1B] without geometrically
dual spheres to tA0

i u and tB0
i u, to produce regularly homotopic, disjoint, embedded discs with the

same framed boundary. Replacing the portions of tAiu and tBiu within D produces the desired
geometrically transverse embeddings in the classes a1, . . . , ak, b1, . . . , bk P π2pMq.

It is tempting to attempt a similar strategy to prove the general disc and sphere embedding
theorems with geometrically dual spheres. However, this does not work, even for sphere embed-
ding. In the general sphere embedding scenario, one set of spheres may not have the requisite
triviality of intersection and self-intersection numbers. This arises in applications, for example in
the construction of star partners for 4-manifolds with odd intersection form [FQ90, Section 10.4],
[Sto94] [Tei97], [KPR22]. Also, it was essential that we were working with spheres, since ‘dual
discs’ are not as helpful.

2.2. Other instances of geometrically dual spheres. First we consider the book [FQ90],
which is generally regarded as the canonical source for the ramifications of the disc embedding
theorem.

(1) On page 105 of [FQ90], in Part II of the book, within the proof of the technical version
of h-cobordism theorem, it is claimed that 1-storey capped towers with geometrically dual
spheres were constructed in Part I. Geometrically dual spheres are used on page 107, where
they are key to proving the negligibility property.

(2) The technical version of the h-cobordism theorem is used in the proof of the technical
controlled h-cobordism theorem ([FQ90, Theorem 7.2C]), which in turn appears in the
proofs of the proper h-cobordism theorem (Corollary 7.3C) and the annulus conjecture
(Theorem 8.1A). The negligibility property (called a regular homotopy property in the
proof of 8.1A) is invoked in an essential way.

(3) The annulus conjecture is used in [FQ90] to prove topological transversality (Section 9.5),
existence and uniqueness of normal bundles (Section 9.3), and smoothing results (Chap-
ter 8).

(4) The geometrically dual spheres claimed in Theorem B ([FQ90, Corollary 5.1B]) also arise
in [FQ90] in the proof of the π1-negligible embedding theorem (Theorem 10.5A), the plus
construction (Theorem 11.1A), and the π ´ π lemma (p. 216).

Next we consider geometrically dual spheres elsewhere in the literature.
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(5) Similar to classical surgery theory, uses of Kreck’s modified surgery [Kre99] to obtain
classification results on 4-manifolds, for example in [HK88], [HK93] and [HKT09], needs
geometrically dual spheres to avoid changing the fundamental group by surgery on embed-
ded spheres obtained using the sphere embedding theorem.

(6) For M a compact 4-manifold with π1pMq good, every element of the Whitehead group
Whpπ1pMqq is realised as the Whitehead torsion of an h-cobordism pW ;M,M 1q based
on M . To prove this, one builds a cobordism with 2- and 3-handles. When attaching
the 3-handles, one can find smoothly embedded spheres in the desired homotopy classes,
but it is not known how to find such embeddings smoothly that also come with geo-
metrically dual immersed spheres. Without the geometric duals, the inclusion induced
map π1pM 1q Ñ π1pW q need not be an isomorphism. Thus the sphere embedding theorem
is needed to obtain topologically locally flat embeddings for the 3-handle attachments,
with geometrically dual spheres. See [KPR22, Theorem 3.5].

(7) Geometrically dual spheres are needed to show that the complement of the topological
slice disc produced in [GT04] for a knot with Alexander polynomial one has fundamental
group Z, and similarly in [FT05] for slice disc exteriors with fundamental group Z˙Zr1{2s.

The papers of Casson [Cas86] and Freedman [Fre82, Fre84] do not have problems relating to
geometrically dual spheres. A minor point is that in [Fre82, Theorem 1.2], Freedman claimed to
prove the exactness of the surgery sequence by embedding half of each hyperbolic pair representing
the surgery kernel in a simply connected manifold by an embedded sphere, however this can be
easily fixed using the method of Remark 2.4 instead.

3. Definitions and operations

We shall assume that a Whitney disc is a generic immersion W : D2 í M , which in particular
implies that the boundary is embedded, with each Whitney arc lying on one of the sheets whose
intersection points are paired by W . We allow interior self-intersections of W as well as intersec-
tions with other surfaces (and other Whitney discs) but assume that these are transverse, using
topological transversality. As usual, a Whitney disc W is said to be framed if the Whitney section
of the normal bundle νpW q of W restricted to its boundary extends to a non-vanishing section
of νpW q. The relative normal Euler number of W in Z is by definition the unique obstruction for
the existence of a framing of νpW q extending the Whitney section. The framing of a Whitney disc
can be altered by interior twists and boundary twists; see [FQ90, Section 1.3].

Given two Whitney discs, the corresponding Whitney circles may a priori intersect one another.
We can ensure that Whitney circles are disjoint by pushing one Whitney circle along the other.
From now on, we will assume that Whitney circles are pairwise disjoint and embedded.

In our proofs, we will construct gropes and ultimately towers, as defined in [PR21c] (see
also [FQ90, Chapters 2 and 3]). We assume the reader is familiar with these definitions. We
will need the following generalisation of the notion of dual spheres.

Definition 3.1 (Dual capped gropes and surfaces). Let tAiu be a collection of immersed discs,
gropes, or towers, with or without caps. A collection tT c

i u of (sphere-like) capped gropes is said
to be (geometrically) dual to tAiu if T c

i &Aj is a single transverse point when i “ j, located in
the bottom stages of T c

i and Ai, and T c
i &Aj is empty otherwise. For tAiu a generically immersed

collection of discs, the bottom stage of Ai is simply itself. Note that all the caps of tAiu are required
to be disjoint from the caps of tT c

i u. Additionally, note that intersections are allowed within the
collection tT c

i u. If each T c
i is a capped grope of height one, then we say that tT c

i u is a collection
of dual capped surfaces for tAiu.

We will use the definition of a good group in the proof of Lemma 4.2, so we recall it here.

Definition 3.2 ([FT95,KOPR21]). A group Γ is said to be good if for every height 1.5 disc-like
capped grope Gc, with some choice of basepoint, and for every group homomorphism ϕ : π1pGcq Ñ

Γ, there exists an immersed disc D í Gc whose framed boundary coincides with the attaching
region of Gc, such that the double point loops of D, considered as fundamental group elements by
making some choice of basing path, are mapped to the identity element of Γ by ϕ.

We will need the following lemma, to trade intersections between distinct surfaces for self-
intersections.
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Lemma 3.3 (Geometric Casson lemma [Fre82, Lemma 3.1] (see also [PR21a, Lemma 15.3]). Let F
and G be transverse generic immersions of compact surfaces in a connected 4-manifold M . Assume
that the intersection points tp, qu Ă F&G are paired by a Whitney disc W . Then there is a regular
homotopy from FYG to FYG such that F&G “ pF&Gq∖tp, qu, that is the two paired intersections
have been removed. The regular homotopy may create many new self-intersections of F and G;
however, these are algebraically cancelling. Moreover, the regular homotopy is supported in a small
neighbourhood of W .

Applications of this lemma, proven inductively on the number of intersection points, include the
following.

(i) Making F and G disjoint, if all intersection points F X G are paired by Whitney discs.
(ii) Turning algebraically dual spheres G for F into geometrically dual spheres G.

The process of contraction and push-off, introduced in [FQ90, Section 2.3] (see also [PR21a, Sec-
tion 15.2.5]) will be important in our proof. Contraction converts a capped surface into an immersed
disc using two parallel copies of both caps. Given a capped grope, we can iteratively contract caps,
to eventually obtain a collection of immersed spheres or discs called the total contraction.

After contracting a surface, any other surface that intersected the caps can (but does not
necessarily have to) be pushed off the contraction. This reduces the number of intersection points
between the resulting contraction and the pushed off surfaces. Suppose that a surface A intersects
a cap of the capped surface, and a surface B intersects a dual cap. Then after pushing both A
and B off the contraction, we obtain two intersection points between A and B. The contraction
push-off operation is shown in Figure 1.

(a) Before contraction of a surface.

(b) After contraction of a surface, and pushing other surfaces off the caps.

Figure 1. Contraction and push-off. Note the intersections of pushed-off surfaces
that occur between diagrams one and two and between diagrams four and five in
the bottom row of figures, namely one intersection in the past and one intersection
in the future between each pair of surfaces pushed off dual caps.

Lemma 3.4. The homotopy class of the sphere or disc resulting from symmetric contraction of a
fixed surface is independent of the choice of caps, provided the boundaries of the different choices
of caps coincide.

Proof. As explained in [FQ90, Section 2.3], an isotopy in the model induces a homotopy of the
immersed models, so the symmetric contraction is homotopic to the result of surgery along one
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cap per dual pair. Now let tCi, Diu
g
i“1 and tC 1

i, D
1
iu

g
i“1 be two sets of caps for a surface of genus g,

such that BCi “ BC 1
i and BDi “ BD1

i are a dual pair of curves on the surface for each i. Then
symmetric surgery on tCi, Diu

g
i“1 is homotopic to surgery on the tCiu, which is homotopic to

symmetric surgery on tCi, D
1
iu

g
i“1. This is homotopic to asymmetric surgery on the caps tD1

iu,
which finally is homotopic to the result of symmetric surgery on tC 1

i, D
1
iu

g
i“1, as asserted. □

4. Constructing capped gropes and towers with dual spheres

Our main technical lemma, given below, shows how to upgrade a collection of immersed discs
with certain types of dual capped surfaces to a collection of gropes whose attaching regions coincide
with the framed boundary of the original discs, as well as the same dual capped surfaces. The
requirement on the dual capped surfaces is that the bodies be located close to the boundary of
the ambient manifold. This property enables us to find Whitney discs which do not intersect the
bodies, at various steps of the argument. The extra power of the dual capped surfaces, compared
to dual spheres, is that we can use them to produce dual spheres multiple times in succession.

Lemma 4.1. Consider a generically immersed collection of discs in a 4-manifold M

D “ pD1, . . . , Dkq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q í pM, BMq.

Suppose that tT c
i u is a dual collection of capped surfaces for the tDiu such that

λpCℓ, Cmq “ µpCℓq “ 0 (4.1)

for every pair of caps Cℓ and Cm of tT c
i u. Assume in addition that the body Ti of each T c

i is
contained in a collar neighbourhood of BM , and that otherwise only boundary collars of each of
the Di and the Cℓ lie in the collar neighbourhood.

Then there exists a collection of mutually disjoint capped gropes tGc
iu, properly embedded in

M , with arbitrarily many surface stages and pairwise disjoint caps with algebraically cancelling
double points, such that parallel copies of the tT c

i u, after a regular homotopy of the caps, provides
a dual collection of capped surfaces for the tGc

iu. Moreover, for each i, the attaching region of Gc
i

coincides with the framed boundary of Di.

Proof. Parameterise the collar neighbourhood of BM as BM ˆ r0, 1s Ď M , where BM “ BM ˆ t0u.
Assume that initially the bodies tTiu of the dual capped surfaces lie in BM ˆ p5{6, 1q. We will take
parallel copies of the T c

i throughout the proof of this lemma, and also in the proof of Lemma 4.2
below, such that the bodies lie progressively closer to BM ˆ t0u, in regions of the form BM ˆ pp6´

nq{6, p7´nq{6q, n “ 1, . . . , 6, and caps are obtained as parallel copies of the original caps extended
at the boundary collar.

Let tCℓu denote the caps of the tT c
i u. Tube all the intersections and self-intersections among the

tDiu into parallel copies of the dual surfaces tT c
i u, with bodies tTiu contained in BMˆp5{6, 1q. This

produces a mutually disjoint collection of capped surfaces tD1
iu with the same framed boundaries

as tDiu. Let tC 1
nu denote the caps for tD1

iu.
Now we will separate the collections tCℓu and tC 1

nu. For each i, take a parallel copy of Ti in
BM ˆ p4{6, 5{6q, along with its caps, and contract to obtain a sphere Si. Push nothing off the
contraction. The collection tSiu is geometrically dual to tD1

iu. By construction and (4.1), all the
intersections between tCℓu and tC 1

nu can be paired by framed Whitney discs tWku. Since BWk

lies in MzpBM ˆ r0, 4{6qq, we may and shall assume that tWku does not intersect BM ˆ r0, 4{6q;
this follows since each constituent Whitney disc is obtained as a track of a null homotopy, and
because the inclusion map MzpBM ˆ r0, 4{6qq ãÑ M is a homotopy equivalence. From now on we
consider parallel copies of tT c

i u with each of the bodies Ti contained in BM ˆ r0, 4{6q. We continue
to denote these parallel copies by T c

i .
By tubing the tWku into the tSiu we can also arrange that tWku does not intersect tD1

iu. Now
the geometric Casson lemma (Lemma 3.3) applied with the Whitney discs tWku ensures that there
are no intersections between the collections tCℓu and tC 1

nu. The fact that Wk XD1
j “ H “ Wk XTi,

for all i, j, k, implies that no unwanted cap–body intersections are created whenever T c
i is a parallel

copy whose body lies in BM ˆ r0, 4{6q.
Push the intersections and self-intersections of the caps tC 1

nu down to tD1
iu and tube into parallel

copies of tT c
i u, with bodies in BM ˆ p3{6, 4{6q, to produce height two capped gropes tD2

i u. Let
tC2

pu denote the caps of tD2
i u. Next we separate the collections tC2

pu and tCℓu, as we did above.
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The procedure is the same: contract parallel copies of tT c
j u with bodies in BM ˆp2{6, 3{6q, pushing

nothing off the contraction, to obtain a collection tS1
iu of framed spheres geometrically dual to tf2

i u;
find framed Whitney discs for the intersections between tC2

pu and tCℓu which have interiors disjoint
from BM ˆ r0, 2{6q, as well as from tD2

i u by tubing into tS1
iu. Then apply the geometric Casson

lemma. Here, since the boundaries of the Whitney discs lie on
Ť

tCℓuYtC2
pu Ď MzpBM ˆr0, 2{6qq,

we may assume that the Whitney discs created by choosing a null homotopy miss BM ˆ r0, 2{6q,
and hence miss the body Ti of any parallel copy of T c

i whose body lies in BM ˆ r0, 2{6q. From now
on we will only consider such parallel copies of T c

i .
Apply grope height raising [FQ90, Proposition 2.7] (see also [FP21, Proposition 17.1 and

Lemma 17.7]) to the capped gropes tD2
i u, to produce a collection of capped gropes tGc

iu with
the same framed attaching region as the tD2

i u, arbitrarily many surface stages, and pairwise dis-
joint caps with algebraically cancelling double points. Additionally, parallel copies of the surfaces
tT c

i u with bodies in BM ˆ r0, 2{6q are geometrically dual to tGc
iu. Moreover, the first two stages

of each Gc
i coincide with the first two stages of D2c

i , for each i. This completes the proof. □

Next, we show that a collection of capped gropes with certain types of dual capped surfaces, such
as those produced by the previous lemma, can be replaced by a collection of 1-storey capped towers,
with the same framed attaching region as the original capped gropes, and with geometrically dual
spheres. The following lemma is the only point in this paper that uses the hypothesis that the
fundamental group of the ambient manifold be good. Recall that, roughly speaking, a 1-storey
capped tower can be built from a capped grope, all of whose cap intersections are self-intersections,
by adding a second layer of caps to the double point loops of the caps of the grope i.e. to the tip
regions on the disc stage of the capped grope.

Lemma 4.2. Let M be a connected 4-manifold with π1pMq good. Let n be a non-negative integer.
Let tGc

iu be a collection of capped gropes with height n ` 2.5 and mutually disjoint caps, properly
embedded in M , with a geometrically dual collection of capped surfaces tT c

i u, such that the body
Ti of each T c

i is contained in a collar neighbourhood BM ˆ r0, 2{6q of BM . Suppose that otherwise
only boundary collars of the attaching regions of the Gc

i and the caps of the T c
i lie in BM ˆ r0, 2{6q.

Then there exists a collection of 1-storey capped towers tT c
i u, properly embedded in M , where

the first storey grope has height n, with a geometrically dual collection of spheres tRiu, such that T c
i

and Gc
i have the same attaching region for each i. Moreover, the first n surface stages of Gc

i and
T c
i coincide and each Ri is obtained from T c

i by contraction.

Remark 4.3. At first glance Lemma 4.2 seems remarkably close to [FQ90, Proposition 3.3],
which claims to begin with a collection of properly immersed discs in a 4-manifold M equipped
with a collection of π1-null geometrically transverse capped surfaces, and replace this with 1-storey
capped towers with arbitrary grope height, the same framed attaching region, and equipped with
geometrically dual spheres. However, the proof of [FQ90, Proposition 3.3] does not construct
the claimed geometrically transverse spheres. We also note that the definition of geometrically
transverse capped surfaces in [FQ90] allows intersections with the caps, which is different from our
notion of dual capped surfaces in Definition 3.1.

Proof. Consider the union of the top 1.5 stages of the gropes tGc
iu. Since π1pMq is good (Defi-

nition 3.2) and the caps are mutually disjoint, each component contains an immersed disc whose
double point loops are null-homotopic in M , and whose framed boundary coincides with the at-
taching region of the old top 1.5 stages. Attach these discs to the lower stages, producing capped

gropes t rGc
iu of height n ` 1. Contract the top stage to obtain capped gropes of height n, whose

double point loops are still null-homotopic in M , with caps still mutually disjoint, and such that
the caps have algebraically cancelling self-intersection points, since they arose from a symmetric
contraction. Here we are using the fact that the new double point loops are parallel push-offs of
the previous double point loops.

Null homotopies for the double point loops produce immersed discs trδαu bounded by the double
point loops of the new caps. These new discs may be assumed to miss tTiu, since any null homotopy
may be pushed off the collar BM ˆ r0, 2{6q, and since the boundaries of these discs, the double

point loops, are disjoint from BM ˆ r0, 2{6q because of the hypothesis that rGc
i X pBM ˆ r0, 2{6qq

consists of a boundary collar of the attaching region of rGc
i , for each i. On the other hand the discs

coming from the null homotopies might intersect t rGc
iu arbitrarily.
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Contract parallel copies of tT c
i u, with bodies in BMˆp1{6, 2{6q, to produce a family of spheres tS2

i u

geometrically dual to tGc
iu. Boundary twist the discs trδαu to achieve the correct framing and then

push down and tube into tS2
i u to remove any intersections of the resulting discs with t rGc

iu. Glue

the resulting discs tδαu to t rGc
iu to produce the 1-storey capped towers tT c

i u.
Now consider parallel copies of the tT c

i u with bodies in BM ˆ p0, 1{6q. At this point the caps
of tT c

i u only (possibly) intersect tT c
i u in the tower caps, and the body Ti is geometrically dual

to T c
i . Contract each T c

i along its caps and call this family of spheres tRiu. Push all intersections
with tower caps off the contraction. The family of dual spheres tRiu is then geometrically dual to
the resulting 1-storey capped towers tT c

i u, as desired. □

We need one more lemma, that we shall use to control the homotopy classes of the geometrically
dual spheres in the output of the disc embedding theorem.

Lemma 4.4. Let N be a 4-manifold and let

D “ pD1, . . . , Dmq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q Ñ pN, BNq

be a generic immersion of a collection of discs that admits a geometrically dual, generically im-
mersed collection tEiu

m
i“1 of framed spheres in N . Let T c Ď Nz

Ťm
i“1 νDi be a capped surface

constructed by taking a Clifford torus corresponding to an intersection point between Di and Dj,
where i “ j is permitted, and tubing meridional caps obtained from meridional discs for Di and
Dj into parallel copies of Ei and Ej. Let S : S2 Ñ Nz

Ťm
i“1 νDi be the 2-sphere obtained by

contracting T c. Then ι˚rSs “ 0 P π2pNq, where ι : Nz
Ťm

i“1 νDi Ñ N is the inclusion map.

Proof. By Lemma 3.4, and as explained in [FQ90, Section 2.3], the homotopy class of a 2-sphere
obtained by contracting a torus along caps is independent of the choice of caps, provided the
boundaries of the different choices of caps coincide. Therefore in N we may replace the caps
constructed from Ei and Ej by the meridional caps. The sphere S1 resulting from contraction
along the meridional caps is contained in a D4 neighbourhood in N of the intersection point giving
rise to the Clifford torus. So S1 is null-homotopic in N . It follows that ι ˝S is null-homotopic. □

5. Proof of the disc embedding theorem

In this section we prove Theorem A, which we recall below.

Theorem A ([FQ90, Theorem 5.1A]). Let M be a connected 4-manifold with good fundamental
group. Consider a continuous map

F “ pf1, . . . , fkq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q ÝÑ pM, BMq

that is a locally flat embedding on the boundary and that admits algebraically dual spheres tgiu
k
i“1

satisfying λpgi, gjq “ 0 “ rµpgiq for all i, j. Then there exists a locally flat embedding

F “ pf1, . . . , fkq : pD2 \ ¨ ¨ ¨ \ D2, S1 \ ¨ ¨ ¨ \ S1q ãÑ pM, BMq

such that F has the same boundary as F and admits a generically immersed, geometrically dual
collection of framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion, then it induces a framing of the normal bundle of its
boundary circle. The embedding f i may be assumed to induce the same framing.

Proof. By Theorem 1.5, we may assume that the collections tfiu and tgiu are generically immersed
and transverse. By adding local cusps if necessary, assume that µpgiq “ 0 for each i. Tube each
intersection and self-intersection within tfiu into tgiu using the unpaired intersection point (after
having chosen a pairing of all but one of the fi-gi intersection points by Whitney discs, which is
possible since λpfi, giq “ 1). We then obtain a collection of discs, which we still call tfiu, where
λpfi, fjq “ µpfiq “ 0 and λpfi, gjq “ δij for each i, j. Note also that the framing on the boundary
of each fi is unchanged since all gj are framed. Apply the geometric Casson lemma (Lemma 3.3)
to arrange that tfiu and tgiu are geometrically dual, after a regular homotopy.

Since λpfi, fjq “ µpfiq “ 0 for all i, j, the intersections and self-intersections among the tfiu
can be paired up with framed Whitney discs tDju. By tubing into the geometric duals tgiu we
can assume that the interiors of tDju lie in the complement of the tfiu.

Let M 1 :“ Mz
Ť

νpfiq. We will apply Lemmas 4.1 and 4.2 in M 1, so we check the hypotheses.
The collection tfiu is π1-negligible in M so π1pM 1q – π1pMq is good. Let Tj be the Clifford torus
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at one of the double points paired by Dj . Cap each Tj with meridional discs to tfiu, then tube the
unique intersection point of each cap with tfiu into parallel copies of the dual spheres tgiu. The
resulting capped surfaces tT c

j u lie inM 1 as desired. The bodies lie in a collar neighbourhood of BM 1,
and are are geometrically dual to tDju, while the caps have algebraically cancelling intersections.
Contract a parallel copy of each T c

j to produce a dual sphere Sj for Dj in M 1, and push the
collection tDju off the contraction. Remove the intersections between the caps of tT c

j u and tDju

by tubing into parallel copies of tSju. The resulting caps for tT c
j u no longer intersect tDju.

Now apply Lemmas 4.1 and 4.2 toM 1, to replace the discs tDju with 1-storey capped towers tT c
j u

whose framed attaching regions coincide with the framed boundary of tDju and that have geomet-
rically dual spheres tRju. Remove intersections of tgiu with tT c

j u, by pushing down into the base
surface and tubing into tRju. The resulting spheres tgiu are disjoint from tT c

j u and geometrically

dual to tfiu. By [FQ90, Chapters 3 and 4] (see also [MP21, Chapter 17; BKK`21, Part IV]) every
disc-like 1-storey capped tower with at least four surface stages contains a locally flat embedded
disc whose framed boundary coincides with the attaching region of the capped tower. Applied to
the collection tT c

j u, this produces mutually disjoint, embedded and framed Whitney discs pairing
the intersections and self-intersections of the tfiu away from tgiu. Whitney moves guided by these
discs produce embedded discs tf iu geometrically dual to tgiu. In the case that fi was initially
generically immersed, we obtain the same framing on the boundary of f i since these are regular
homotopies in the interior.

It remains only to argue that each gi is homotopic in M to gi for each i. Observe that to
obtain gi, we have:

(i) homotoped gi by an application of the geometric Casson lemma, and then
(ii) tubed into parallel copies of the dual spheres tRju for the towers tT c

j u.

However, Rj was obtained by contracting T c
j , whose body is a Clifford torus for an intersection

point among the tfiu. Therefore by Lemma 4.4, Rj is null-homotopic in M , i.e. rRjs “ 0 P π2pMq.
(Note that Rj is nontrivial in π2pM 1q.) It follows that gi is homotopic in M to gi, as desired. This
completes the proof. □

6. Generic immersions in smooth and topological 4-manifolds

The goal of this section is to prove Theorem 1.5, rectifying another omission in [FQ90].

Remark 6.1. During the proof we will use results that rely on the smooth-input disc embedding
theorem. Therefore the results of this section rely on a version of Theorem A where M is assumed
to be a smooth 4-manifold. Proposition 6.2 was used in the proof of Theorem A with a purely
topological input, in order to find generic immersions. The logical dependencies in the development
of topological 4-manifold topology are elucidated in [PR21b].

Recall that for a compact surface Σ and 4-manifold M , a generic immersion in the smooth
category, written f : Σ2 í M4, is a smooth map which is an embedding, except for a finite number
of transverse double points in the interior. This means that f is an embedding on BΣ and there
are coordinates on Σ and on M such that restricted to the interior, f coincides in local coordinates
in M with either the inclusion R2ˆt0u Ă R4 or a transverse double point R2ˆt0uYt0uˆR2 Ă R4.

In a smooth 4-manifold M , the set of generic immersions is open and dense in the Whitney
topology on C8pΣ,Mq. To see this, apply [Hir76, Theorem 2.2.12] which shows that immersions
are dense in the space of smooth maps, and then [GG73, Chapter III, Corollary 3.3] shows that
generic immersions are dense in the space of immersions. These are exactly the stable maps in the
smooth mapping space [GG73, Chapter III, Theorem 3.11], where a map f is said to be stable if
it has a neighbourhood in C8pΣ,Mq such that every map in the neighbourhood can be obtained
by pre-composing with a diffeomorphism of Σ and post-composing with a diffeomorphism of M ,
with both diffeomorphisms isotopic to the identity.

It is well known that every continuous map between smooth manifolds is arbitrarily close to a
smooth map (see for example [Lee03, Theorem 10.21] or [Hir76, Theorem 2.2.6]). Since moreover
the collection of generic immersions is open and dense in C8pΣ,Mq, a smooth map can be further
perturbed to a (smooth) generic immersion. Since the perturbations may be chosen to be small,
a proper continuous map may be perturbed to a proper smooth generic immersion (see [Spr72,
Lemma 1]).
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A continuous map between topological manifolds is called an immersion if it is locally an em-
bedding. A continuous map of a surface to a topological 4-manifold with the same local behaviour
as a smooth generic immersion will be called a generic immersion in the topological category. Note
that this implies that the map is a locally flat embedding near points with a single inverse image.

A smooth homotopy H between smooth maps Σ Ñ M is said to be generic if the corresponding
map Σ ˆ r0, 1s Ñ M ˆ r0, 1s is a generic smooth map. Whitney’s classification of singularities
[Whi43,Whi44] of generic maps from 3-manifolds to 5-manifolds implies that the singularities of
the track of a generic homotopy H as above consist of finger moves, Whitney moves and cusps.
These arise at finitely many times t P I, when Ht : Σ Ñ M is not a generic immersion but either:

(i) Ht has a tangency, increasing or decreasing the double point set by a pair with opposite
signs, corresponding to a finger/Whitney move, or

(ii) the rank of the derivative of Ht drops at a single point, creating a cusp where one double
point appears or disappears.

A topological generic homotopy is defined to be a concatenation of finger moves, Whitney moves,
and cusps.

A continuous homotopy between smooth maps Σ Ñ M may be perturbed (rel. boundary) to
produce a smooth generic homotopy. Since the perturbation may be chosen to be small, a proper
homotopy may be perturbed to a proper smooth generic homotopy.

Our goal in this section is to state and prove purely topological analogues of these smooth facts.
Here is the main technical result.

Proposition 6.2. Let Σ be a compact surface and let M be a 4-manifold.

(1) Every continuous map f : pΣ, BΣq Ñ pM, BMq is homotopic to a generic immersion, smooth
in Mztqu for some point q P M .

(2) Every continuous homotopy H : pΣ, BΣq ˆ r0, 1s Ñ pM, BMq that restricts to a smooth
generic immersion on Σ ˆ tiu for each i “ 0, 1, with respect to some smooth structure on
M minus a point q, is homotopic rel. Σ ˆ t0, 1u to a generic homotopy, that is smooth in
some smooth structure on Mztru for some point r P M .

Proof. First we prove (1), following [FQ90, Corollary 9.5C]. We may assume without loss of gener-
ality that M is connected. Choose a smooth structure on Σ. The complement of a point p in the in-
terior of M is smoothable relative to any fixed chosen smoothing of the boundary of M [FQ90, The-
orem 8.2; Qui82; Qui86]. Choose a smooth structure on Mztpu.

If the point p can be chosen disjoint from the image fpΣq in (1), and disjoint from HpΣ ˆ r0, 1s

in (2), then we have a continuous map, and the result follows from smooth approximation and
general position. The aim of the rest of the proof is therefore to arrange that f (respectively H
can be arranged to have image missing a point. The proof given in [FQ90, Corollary 9.5C] assumes
that this holds without comment.

Homotope the restriction of f to BΣ to a smooth embedding, and extend this to a homotopy
of Σ supported in a collar near the boundary (or use a given embedding to start with and work
rel. boundary). Consider the smooth surface Σp :“ Σ ∖ f´1ppq, which comes with a proper
map f | : Σp Ñ M ∖ tpu that is properly homotopic to a smooth proper map f 1. By Sard’s
theorem, some point q in the interior of M ∖ tpu does not lie in the image of f 1. Moreover, as Σ is
compact and the homotopy was proper, f 1 maps each end of Σp to p (as did f). Send all of f´1ppq

to p, to extend f 1 to a continuous map Σ Ñ M ∖ tqu, homotopic in M to the original map f . The
latter homotopy is produced from the proper homotopy between f | and f 1| by mapping every end
to p.

Now as explained above, the map f 1 is homotopic to a smooth generic immersion f2 : Σ í

M ∖ tqu. Add q back in and forget the smooth structure to yield a topological generic immersion,
noting that as required f2 is smooth in some structure on Mztqu by construction.

Now, to prove (2), consider a homotopy H : Σˆr0, 1s Ñ M whose restriction H| : Σˆtiu Ñ M is
a smooth generic immersion in some smooth structure on Mztqu for some q P M , for each i “ 0, 1.
We follow a similar strategy as the proof of (1). Use a smoothing of M away from q, and consider

pΣ ˆ r0, 1sqq :“ pΣ ˆ r0, 1sqzH´1ptquq Ď M ∖ tqu.

The proper map pΣˆr0, 1sqq Ñ Mztqu is properly homotopic rel. Σˆt0, 1u to a proper smooth map
H 1 : pΣˆr0, 1sqq Ñ Mztqu, that by Sard’s theorem misses at least one point r P M . Since Σˆr0, 1s
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is compact and the homotopy was proper, H 1 maps each end of H´1pqq to q. Extend H 1 to
a continuous map H2 : Σ ˆ r0, 1s Ñ Mztru. Choose a smooth structure on Mztru, such that
H| “ H2| : Σˆ t0, 1u Ñ M is a smooth generic immersion. To achieve this, start with the original
smooth structure onMztqu restricted to a neighbourhood ofH2pΣˆt0, 1uq Ď Mztq, ru, and extend
that structure to a smooth structure on Mztru.

Now homotope H2|Σˆr0,1s rel. Σˆt0, 1u to a smooth generic homotopy in Mztru. Add r back in
and forget the smooth structure to yield a topological generic homotopy, noting that as requiredH2

is smooth in some smooth structure on Mztru. □

Remark 6.3. Let us discuss some consequences of Proposition 6.2 for normal bundles of generic
immersions. A generic immersion f : Σ í M has a linear normal bundle νpfq Ñ Σ, in both the
smooth and topological categories [FQ90, Section 9.3]. However Proposition 6.2 tells us that f
is generically homotopic to a smooth immersion in some smooth structure on Mztqu, so this
gives an easier proof that up to homotopy f has a linear normal bundle. Then f comes with a
map νpfq Ñ M of the total space into M , which is an embedding away from a finite number
of plumbings near the double points of f . In the case that Σ has nonempty boundary, assume
that f´1pBMq “ BΣ and that we are given a fixed framing of the normal bundle restricted to
the boundary. We call f framed if νpfq comes with a trivialisation and twisted if the (relative)
Stiefel-Whitney class w2pfq :“ w2pνpfqq P H2pΣ, BΣ;Z{2q is nonzero. If Σ is oriented, f |BΣ is
framed and f is not twisted, then one can add local cusps to f (corresponding to a non-regular
homotopy between generic immersions) until the relative Euler number in H2pΣ, BΣ;Zq of νpfq

vanishes and hence νpfq becomes trivial and the framing on f induces the given framing on BΣ.

Now we prove Theorem 1.5 about homotopy classes rΣ,M s of maps f : Σ Ñ M , when Σ is a
union of spheres or discs. We write tΣ,MuB for the subspace of all continuous maps that restrict
on BΣ to locally flat embeddings disjoint from the image of the interior of Σ, and rΣ,M sB for the
set of homotopy classes of such maps. In this theorem we do not assume that f´1pBMq “ BΣ.
Choose a local orientation of M at the basepoint and assume that Σ comes with a whisker to the
basepoint. The proof will use topological transversality, which we state first.

Theorem 6.4 ([Qui82,Qui88] (see also [FQ90, Section 9.5]). Let Σ1 and Σ2 be locally flat proper
submanifolds of a topological 4-manifold M that are transverse to BM . There is an isotopy of M ,
supported in any given neighbourhood of Σ1 XΣ2, taking Σ1 to a submanifold Σ1

1 transverse to Σ2.

Theorem 1.5. Let Σ be a disjoint union of discs or spheres, and let M be a 4-manifold. The
subspace of generic immersions in the space of all continuous maps leads to a bijection

F “ tpf1, . . . , fmq : Σ “ Σ1 \ ¨ ¨ ¨ \ Σm í M | µpfiq1 “ 0, i “ 1, . . . ,mu

tisotopies, finger moves, Whitney movesu
ÐÑ rΣ,M sB,

where µpfiq1 P Z denotes the signed sum of double points of fi whose double point loops are trivial in
π1pMq, and rΣ,M sB denotes the set of homotopy classes of continuous maps that restrict on BΣ to
locally flat embeddings disjoint from the image of the interior of Σ. Moreover, any such homotopy
between generic immersions is homotopic rel. Σ ˆ t0, 1u to a sequence of isotopies, finger moves
and Whitney moves.

Theorem 1.5 could be rephrased more succinctly, but perhaps less transparently, as the statement
that the inclusion of the space of generic immersions into tΣ,MuB is a 1-connected map.

Proof. The map is well-defined since any isotopy, finger move, or Whitney move is a homotopy.
Note that for each i, µpfiq1 can be changed arbitrarily by (non-regular) cusp homotopies. Therefore
by Proposition 6.2(1) the map is surjective.

For injectivity, consider generic immersions F, F 1 : Σ í M , which restrict to embeddings on BΣ
that miss the image of the interior, and assume that F and F 1 are homotopic. Using topological
transversality, we can assume that F and F 1 intersect transversely after performing an isotopy.
Choose a point q P M disjoint from the image of both F and F 1. Since F and F 1 are generic
immersions intersecting transversely, there is a neighbourhood, namely the union of the images of
the normal bundles, within which F and F 1 are smooth generic immersions. Extend this smooth
structure over M ∖ tqu.

Now by Proposition 6.2(2), we can replace the homotopy from F to F 1 by a smooth generic
homotopy, by performing a homotopy rel. Σ ˆ t0, 1u. Then we saw earlier that the singularities of
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the track of this homotopy consists of finger moves, Whitney moves and cusps. If µpfiq1 “ µpf 1
iq1

for every i then the cusps arising in H can be cancelled in pairs [FQ90, p. 23], leading to a regular
homotopy, which as desired is a sequence of isotopies, finger moves, and Whitney moves. □
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