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Abstract. We modify the proof of the disc embedding theorem for 4-manifolds, which

appeared as Theorem 5.1A in the book “Topology of 4-manifolds” by Freedman and
Quinn, in order to construct geometrically dual spheres. These were claimed in the

statement but not constructed in the proof.

Fundamental results in 4-manifold topology such as the existence and exactness of
the surgery sequence, the s-cobordism theorem, and thence the classification of closed,

simply connected topological 4-manifolds up to homeomorphism, rely on a closely related

sphere embedding theorem with geometrically dual spheres, which is proven using the
disc embedding theorem.

1. Introduction

Manifolds of dimension at least 5 are studied using the Browder-Novikov-Sullivan-Wall
surgery theory [Bro72, Sul96, Nov64, Wal99, KS77], Kreck’s modified surgery [Kre99],
and the s-cobordism theorem of Smale and Barden-Mazur-Stallings [Sma62, KS77, Bar63,
Maz63, Sta67]. These strongly depend on the Whitney trick, which does not apply when the
ambient manifold is 4-dimensional. Casson [Cas86] gave an infinite construction of certain
4-dimensional objects, now called Casson handles, within simply connected 4-manifolds. He
showed that exactness of the surgery sequence for simply connected 4-manifolds and the 5-
dimensional h-cobordism theorem would follow if every Casson handle were homeomorphic,
relative to its attaching region, to the interior of a standard handle D2ˆ D̊2. This last step
is Freedman’s celebrated theorem [Fre82].

The disc embedding theorem [Fre84] combines work of Casson, Freedman, and Quinn. In
a topological 4-manifold with good fundamental group, the disc embedding theorem replaces
an immersed disc with embedded boundary and an algebraically dual sphere by a locally flat
embedded disc with the same boundary as the original disc. The full disc embedding theorem
was first stated in the book “Topology of 4-manifolds” by Freedman and Quinn [FQ90,
Theorem 5.1A]. This book gave a new proof using a generalisation of Casson handles built
out of capped gropes, variously called a skyscraper [BKKPR], a cope [Fre84], or a generalized
infinite tower [FQ90]. The Freedman-Quinn capped grope approach is key to the proof of
the disc embedding theorem for nontrivial fundamental groups.

The goal of this article is to modify part of the Freedman-Quinn proof of the disc embed-
ding theorem, in order to fill a gap in the proof of [FQ90, Theorem 5.1A and Corollary 5.1B]
related to geometrically dual spheres. We elucidate further below, but in brief one needs
algebraically dual spheres for the input of the disc embedding theorem, while for many ap-
plications one needs geometrically dual spheres in the output. Here we say that two surfaces
are geometrically dual if they intersect transversely in precisely one point.

We will explain how to deduce the sphere embedding theorem, which gives conditions
under which a collection of immersed spheres with framed algebraically dual spheres can be
regularly homotoped, using Whitney discs produced by the disc embedding theorem, to a
collection of locally flat pairwise disjoint embedded spheres with geometrically dual spheres.

The geometrically dual spheres in the outcome of the sphere embedding theorem, con-
structed using the geometrically dual spheres in the disc embedding theorem, are important
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in several applications, especially to surgery theory. Surgery on an embedded, framed sphere
without a geometrically dual sphere might change the fundamental group of the ambient 4-
manifold, whereas geometrically dual spheres guarantee control over the fundamental group
and are hence essential. In high dimensions, by the Whitney trick, geometrically dual spheres
exist whenever there are algebraically dual spheres.

A 2-sphere in a 4-manifold with an algebraically dual sphere need not admit a geometri-
cally dual sphere. Such a sphere in S2 ˆ S2 was constructed in [Sat91, Section 3], [Sat89,
Example 4.1] (a diagram is provided in [KM19, Figure 9]). Briefly, in Sato’s construction
one begins with a 2-knot Σ Ď S4 and performs surgery on a simple closed curve in S4 r Σ
which is homologous to the meridian. The result is an embedded sphere S in S2ˆS2. By a
judicious choice of Σ, one may ensure that π1ppS

2 ˆ S2qr Sq is a nontrivial perfect group,
implying that S does not admit a geometrically dual sphere. Unlike in high-dimensional
surgery, geometric duals cannot be found post hoc, and the application to surgery theory,
and thence to 4-manifold classification results, hinges on providing geometric duals together
with the embedded spheres. We also note that Remark 1.5 describes an alternative argument
that suffices for surgery applications.

1.1. The disc embedding theorem. This is one of the main tools in 4-dimensional topol-
ogy, similar in spirit to Dehn’s lemma in dimension 3. Under the assumptions given below,
the theorem states that a collection of maps of discs to a 4-manifold can be replaced by
pairwise disjoint locally flat embeddings. Dual spheres are essential both in the input and
the output of the precise statement in Theorem A and will be explained next.

The equivariant intersection form of a connected 4-manifold M is a pairing

λ : H2pM, BM ;Zrπ1M sq ˆH2pM ;Zrπ1M sq ÝÑ Zrπ1M s.

As well as having nonempty boundary, the topological 4-manifold M may be nonorientable
or noncompact, in which case the definition of λ via cap products involves cohomology with
compact support and coefficients twisted by the orientation character w : π1pMq Ñ t˘1u.
For topological 4-manifolds, we will explain the reduced self-intersection number

rµ : π2pMq ÝÑ Zrπ1M s{xg ´ wpgqg
´1,Z ¨ 1y

in Section 1.2, and in more detail in Section 4. If M is orientable, the quantity rµ is deter-
mined by λ. In this case, the assumptions rµpgiq “ 0 below are implied by λpgi, giq “ 0.

Given maps tfiu
k
i“1 of discs or spheres to M , a second collection tgi : S

2 Ñ Muki“1 is
algebraically dual to the tfiu

k
i“1 if the algebraic intersection form satisfies λpfi, gjq “ δij . If

this is true geometrically, we say that the collection tgiu is geometrically dual to the tfiu.
More precisely, this means that fiX gj is a single point for i “ j and is empty for i ‰ j, and
that each intersection point has local coordinates R4 ãÑM in which fi and gi are linear.

Theorem A (Disc embedding theorem cf. [FQ90, Theorem 5.1A]). Let M be a connected
4-manifold with good fundamental group. Consider a continuous map

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q ÝÑ pM, BMq

that is a locally flat embedding on the boundary and that admits algebraically dual spheres
tgiu

k
i“1 satisfying λpgi, gjq “ 0 “ rµpgiq for all i, j. Then there exists a locally flat embedding

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q ãÑ pM, BMq

such that F has the same boundary as F and admits a generically immersed, geometrically
dual collection of framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion, then it induces a framing of the normal bundle
of its boundary circle. The embedding f i may be assumed to induce the same framing.

Remark 1.1. Our statement of Theorem A differs from [FQ90, Theorem 5.1A] in that we
emphasise that the input is purely homotopy theoretic, and we control the homotopy classes
of the dual spheres. The interested reader can use the discussion in Remark 3.2 to see that
even the original continuous maps fi induce framings modulo 2 on the boundary circles.
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We discuss topological immersions in Section 1.2, where we also explain why a topological
generic immersion f admits a linear normal bundle νpfq whose total space is embedded
in M apart from finitely many plumbings. If the base of νpfq is a disc, and so in particular
contractible, then this bundle has a unique trivialisation, or framing, which is used in the
last paragraph of Theorem A.

The notion of a good group will be recalled in Definition 5.7. Practically, it suffices to know
that the class of good groups is known to contain groups of subexponential growth [FT95a,
KQ00], and to be closed under subgroups, quotients, extensions, and colimits [FQ90, p. 44].
In particular, all finite groups and all solvable groups are good. It is not known whether
non-abelian free groups are good.

The proof of the disc embedding theorem from [FQ90] begins with immersed discs and
has three distinct steps. We describe the k “ 1 case for ease of exposition. First upgrade the
immersed disc f to a 1-storey capped tower T with at least four surface stages, whose at-
taching region coincides with the framed boundary of f (see Section 4 for a precise definition
of capped towers). Then show that every 1-storey capped tower with at least four surface
stages contains a skyscraper with the same attaching region. Then, using decomposition
space theory, prove that every skyscraper is homeomorphic to a handle D2 ˆD2 relative to
its attaching region. The proof given in [FQ90, pp. 86-7] does not mention geometrically
dual spheres, although they appear in the theorem statement. However, the claimed dual
spheres in the output are used multiple times in [FQ90], as we indicate in Section 2.

In this article we give a modified proof of the disc embedding theorem, including the
construction of the claimed geometrically dual spheres. More precisely, we only modify the
first step of the proof, producing 1-storey capped towers equipped with geometrically dual
spheres. Our modification utilises dual capped surfaces obtained from Clifford tori. These
dual capped surfaces act as a sort of dual sphere factory, allowing us to create arbitrarily
many collections of pairwise disjoint geometrically dual spheres. The remainder of our
proof appeals to the original proof of Freedman and Quinn that 1-storey capped towers
contain skyscrapers and that skyscrapers are standard handles. The tools we use are not
new. We apply standard constructions pioneered by Casson [Cas86], Freedman [Fre82],
and Freedman-Quinn [FQ90] for manipulating capped gropes and towers. In particular,
capped surfaces were used to produce dual spheres, and indeed multiple pairwise disjoint
dual spheres, in [FQ90]. The key insight in our argument, which has not been employed
before, is that the Clifford tori are close to the corresponding double points, which allows
us to ensure that the tracks of certain null homotopies do not intersect them. This small
amount of extra disjointness is just enough to make the argument work.

For experts, we explain the problem with the proof in [FQ90] in more detail. That proof
begins with immersed discs with geometrically transverse spheres and upgrades the former
to capped gropes with arbitrarily many surface stages, still equipped with geometrically
transverse spheres tgiu. The key step is finding a further stage of caps, constructing a 1-
storey capped tower. The tower caps come from null homotopies for the double point loops in
the caps of the capped grope, which exist due to the assumption on fundamental groups. The
null homotopies cannot be easily controlled, and therefore the tower caps may intersect the
dual spheres tgiu arbitrarily. Consequently, the 1-storey capped towers produced in [FQ90,
Lemma 3.3] may only be assumed to have algebraically dual spheres in the remainder of the
proof, whereas it seems to have been tacitly assumed in [FQ90, Proposition 3.3 and pp. 86–7]
that [FQ90, Lemma 3.3] provides geometrically dual spheres. In fact, the first paragraph of
the proof on page 86 does not mention how to construct transverse spheres, and Lemma 3.3
does not claim to provide them. So [FQ90] gives a correct proof of Theorem 5.1A without
the last four words ‘and with transverse spheres’.

1.2. Generic immersions and intersection numbers. In the smooth category, the first
step in the proof of Theorem A is to bring the original maps into the most “generic” position.
Specifically, as we discuss in Section 3, homotopy classes of smooth maps of a compact surface
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to a 4-manifold are represented by generic immersions, which are immersions whose only
singularities are transverse double points in the interior.

In the topological category, we use this local description as the definition of a generic
immersion. In particular, a generic immersion is locally a flat embedding and hence restricts
to a locally flat embedding of the boundary. Proposition 3.1 states that every continuous
map of a compact surface is homotopic to a generic immersion f : Σ í M , and in fact for
M connected and p PMzfpΣq there is a smooth structure on Σ and on Mztpu with respect
to which f is a smooth generic immersion. In particular it follows that a topological generic
immersion f : Σ í M has a linear normal bundle νpfq.

A regular homotopy in the smooth category is a homotopy through immersions. A smooth
regular homotopy of generically immersed surfaces in a 4-manifold is generically a concate-
nation of (smooth) isotopies, finger moves, and Whitney moves [GG73, Section III.3]. A
topological regular homotopy of generically immersed surfaces in a 4-manifold is by defini-
tion a concatenation of (topological) isotopies, finger moves, and Whitney moves. We show
the following useful fact, which combines [FQ90, Lemma 1.2 and Proposition 1.6]. The latter
proposition was asserted there without a proof, which we now provide.

Theorem 1.2. Let Σ be a disjoint union of discs or spheres, and let M be a 4-manifold.
The subspace of generic immersions in the space of all continuous maps leads to a bijection

tpf1, . . . , fmq : Σ “ Σ1 \ ¨ ¨ ¨ \ Σm í M | µpfiq1 “ 0, i “ 1, . . . ,mu

tisotopies, finger moves, Whitney movesu
ÐÑ rΣ,M sB,

where µpfiq1 P Z denotes the signed sum of double points of fi whose double point loops
are trivial in π1pMq, and rΣ,M sB denotes the set of homotopy classes of continuous maps
that restrict on BΣ to locally flat embeddings disjoint from the image of the interior of Σ.
Moreover, any such homotopy between generic immersions is homotopic rel. Σˆ t0, 1u to a
sequence of isotopies, finger moves and Whitney moves.

More generally, the self-intersection number µpfq of a generic immersion f of a disc or
sphere into M is obtained by summing signed group elements g P π1pMq corresponding
to double points in the interior of f (see Section 4.2 for details). The ambiguity of the
choice of sheets at each double point leads to the relations g ´ wpgqg´1 in Zrπ1M s. Local
cusp homotopies allow us to change the coefficient µpfq1 at the trivial fundamental group
element 1 at will, and correspondingly we factor out by Z ¨ 1. We obtain the reduced self-
intersection number, already used in the assumptions of Theorem A:

rµ : π2pMq ÝÑ Zrπ1M s{xg ´ wpgqg
´1,Z ¨ 1y.

While µpfq depends on the choice of generically immersed representative f : S2 í M , the
reduced version rµ only depends on rf s P π2pMq. Any two generic immersions homotopic
to f are of course themselves homotopic. Use the injectivity in Theorem 1.2 to obtain a
regular homotopy, and deduce that rµ is well-defined on π2pMq, since the quantity is evidently
unchanged by isotopies, finger moves, and Whitney moves.

For any f : S2 í M , the invariant µ satisfies

(1) λpf, fq “ µpfq ` µpfq ` epfq ¨ 1 P Zrπ1M s

where epfq P Z is the Euler number of the normal bundle νpfq (see Lemma 4.1) and the
involution g :“ wpgqg´1 is extended linearly to the group ring. Apply the augmentation map
ε : Zrπ1M s Ñ Z to this equation, to see that modulo 2, εpλpf, fqq ” epfq only depends on
the homotopy class of f . This is also the Stiefel-Whitney number w2pfq P Z{2 of νpfq which
will be used in the assumption of the next theorem. As in the discussion above one sees that
w2paq “ 0 if and only if a P π2pMq is represented by a generic immersion f : S2 í M that
can be framed, i.e. whose normal bundle is trivial.

1.3. The sphere embedding theorem. Most applications of the disc embedding the-
orem, including the existence and exactness of the topological surgery sequence and the
s-cobordism theorem, involve changing a collection of generically immersed spheres with
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vanishing intersection and self-intersection numbers, by a regular homotopy, to pairwise dis-
joint embedded spheres. The sphere embedding theorem, which we shall deduce from the
disc embedding theorem in Section 8, describes precisely when such embedded spheres may
be found, with the main assumption being the existence of algebraically dual spheres and
the output giving geometrically dual spheres.

Theorem B (Sphere embedding theorem with framed duals). Let M be a connected 4-
manifold with good fundamental group and consider a continuous map

F “ pf1, . . . , fkq : pS
2 \ ¨ ¨ ¨ \ S2q ÝÑM

satisfying rµpfiq “ 0 for every i and λpfi, fjq “ 0 for i ‰ j, with a collection of algebraically
dual spheres tgiu

k
i“1 with w2pgiq “ 0 for each i. Then there is a locally flat embedding

F “ pf1, . . . , fkq : pS
2 \ ¨ ¨ ¨ \ S2q ãÑM

with F homotopic to F and with a generically immersed, geometrically dual collection of
framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion and epfiq P Z is the Euler number of the normal
bundle νpfiq, then f i is regularly homotopic to fi if and only if epfiq “ λpfi, fiq.

Remark 1.3. The assumption rµpfiq “ 0 implies that λpfi, fiq P Z ¨ 1 Ď Zrπ1M s, by (1). In
this case, (1) gives an equation of integers λpfi, fiq “ 2 ¨ µpfiq1 ` epfiq and hence the last
condition epfiq “ λpfi, fiq in Theorem B is equivalent to the vanishing of µpfiq.

The geometrically dual spheres in the conclusion imply that inclusion induces an isomor-
phism π1pMq – π1pMz

Ť

i f iq. We refer to a collection of immersed surfaces whose removal
does not change the fundamental group as π1-negligible.

Theorem B is the key input in the proof of the existence and exactness of the topologi-
cal surgery sequence in dimension 4. Indeed, the sphere embedding theorem is integral to
any known classification result for topological 4-manifolds, including those that use Kreck’s
modified surgery theory [Kre99], for example [HKT09]. Another example is the main step
in [HK88, Lemma 4.1], which uses sphere embedding to move from the easier stable classi-
fication up to connected sums with copies of S2 ˆ S2 to unstable classification results.

If λpfi, fiq “ 0 for all i, the sphere embedding theorem is equivalent to the decomposition
of M as a connected sum with copies of S2ˆS2, as explained in Remark 8.3. An important
special case of this decomposition occurs when the tgiu also form a Lagrangian.

Corollary 1.4. Let M be a connected 4-manifold with good fundamental group and let H be
a hyperbolic form in pπ2pMq, λM , rµM q, meaning that H is a Zrπ1M s-submodule of π2pMq,
generated by a hyperbolic basis consisting of classes a1, . . . , ak, b1, . . . , bk P H with

λpai, bjq “ δij , λpai, ajq “ 0 “ λpbi, bjq and rµpaiq “ 0 “ rµpbiq for all i, j.

Then there is a homeomorphism M « p#k
i“1S

2 ˆ S2q#M 1 with a connected sum that on π2

sends ai to rS2
i ˆ tptius and bi to rtptiu ˆ S

2
i s. In particular, H is an orthogonal summand

freely generated by tai, biu and π2pMq – H K π2pM
1q.

Corollary 1.4 was stated on the first page of Freedman’s ICM talk [Fre84]. Together
with Donaldson’s theorem on definite intersection forms for smooth 4-manifolds [Don83],
it implies the existence of infinitely many non-smoothable 4-manifolds. For example, a
simply connected, closed 4-manifold with intersection form E8#E8 can be obtained from
the K3 surface by removing a hyperbolic form of rank 6. Since this form is definite but not
diagonalisable, it cannot be realised smoothly. We deduce the corollary from Theorem B in
Section 8, and describe an alternative proof in the next remark.

Remark 1.5. In this paper we give a proof of the disc embedding theorem with geometri-
cally dual spheres, and then use it to prove the sphere embedding theorem with geometrically
dual spheres. Since the former is used throughout [FQ90], our proof shows that there is no
gap in that source. However, for applications in surgery theory, one begins with a dual
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spherical sublagrangian of the intersection form, as in Corollary 1.4. In this case, the follow-
ing proof of Corollary 1.4 is available, which applies the disc embedding theorem without
geometrically dual spheres. The idea comes from Casson [Cas86]; we thank an anonymous
referee for reminding us of it.

Suppose we are given classes a1, . . . , ak, b1, . . . , bk P π2pMq for a topological 4-manifold
M with good fundamental group satisfying

λpai, bjq “ δij , λpai, ajq “ 0 “ λpbi, bjq and rµpaiq “ 0 “ rµpbiq for all i, j.

Assume taiu and tbiu are represented by immersed spheres tAiu and tBiu respectively. Let
tA`i u and tB`i u denote push-offs of tAiu and tBiu respectively. For each i, choose small
4-discs around the unpaired intersection point between Ai and Bi, not intersecting tA`i u
and tB`i u. Tube the discs together using embedded 1-handles in M without intersecting
tAiu Y tA

`
i u Y tBiu Y tB

`
i u, and call the result D. The portion of tAiu and tBiu lying

in MzD are immersed discs tA0
i u and tB0

i u with trivial intersection and self-intersection
numbers, equipped with algebraically dual spheres tB`i u Y tA

`
i u. Apply local cusp moves

to tA0
i u and tB0

i u to ensure that the unreduced self-intersection numbers vanish. Apply the
version of [FQ90, Corollary 5.1B] without geometrically dual spheres to tA0

i u and tB0
i u, to

produce regularly homotopic, disjoint, embedded discs with the same framed boundary. Re-
placing the portions of tAiu and tBiu within D produces the desired geometrically transverse
embeddings in the classes a1, . . . , ak, b1, . . . , bk P π2pMq.

It is tempting to attempt a similar strategy to prove the general disc and sphere embedding
theorems with geometrically dual spheres. However, this does not work, even for sphere
embedding. In the general sphere embedding scenario, one set of spheres may not have the
requisite triviality of intersection and self-intersection numbers. This arises in applications,
for example in the construction of star partners for 4-manifolds with odd intersection form.
Also, it was essential that we were working with spheres, since ‘dual discs’ are not as helpful.

Conventions. All manifolds are assumed to be based, in order to define homotopy groups
and equivariant intersection numbers. Topological embeddings are always assumed to be
locally flat.

Outline. In Section 2 we list some of the occurrences of the geometrically dual spheres
from [FQ90, Theorem 5.1A and Corollary 5.1B] in the literature. In Section 3 we discuss
generic immersions, show that every continuous map of a surface is homotopic to a generic
immersion, and prove Theorem 1.2 ([FQ90, Proposition 1.6]).

In Section 4, we review the objects and geometric constructions required for our proofs. In
Section 5 we recall some further results needed for the proof of the disc embedding theorem.

Section 6 contains the main technical results needed for the construction of geometrically
dual spheres. These results are then applied in Section 7 to prove the disc embedding
theorem (Theorem A). Section 8 deduces a variant of the disc embedding theorem ([FQ90,
Corollary 5.1B]) and the sphere embedding theorem (Theorem B), and proves Corollary 1.4.
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we are grateful to an anonymous referee for helpful comments that helped improve the
exposition.
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2. Geometrically dual spheres in the literature

We discuss where the geometrically dual spheres in the outcome of the disc embedding
theorem appear in the literature. We focus first on the book [FQ90], which has generally
replaced the original papers of Casson [Cas86], Freedman [Fre82, Fre84], and Quinn [Qui82,
Qui88] as the canonical source material on the results and ramifications of Freedman’s work
on topological 4-manifolds.

2.1. The Freedman-Quinn book [FQ90]. The geometrically dual spheres in the conclu-
sion of Theorem 5.1A were used to produce geometrically dual spheres in Corollary 5.1B.
This in turn was the key theorem cited to prove that the topological surgery sequence for
good fundamental groups is exact. In fact, the sphere embedding theorem was needed
twice, to define the action of Ls5pZrπ1pXqsq on the simple structure set of X and to show
exactness of the surgery sequence at the normal invariants (see [BKKPR, Chapter 20] for
more details). The proof of Theorem 11.3A omitted the observation that geometrically dual
spheres are essential for performing surgery in 4-manifolds without inadvertently modifying
the fundamental group.

The geometrically dual spheres in Corollary 5.1B also arose in the proofs of the π1-
negligible embedding (Theorem 10.5A, p. 177), the geometric plus construction (Theo-
rem 11.1A), the π´π lemma (p. 216), the technical controlled h-cobordism theorem (Theo-
rem 7.2C), and the annulus conjecture (Theorem 8.1A, p.114-6). The annulus conjecture was
used to prove topological transversality (Section 9.5), existence and uniqueness of normal
bundles (Section 9.3), and smoothing results (Chapter 8).

2.2. Casson and Freedman papers. Casson’s construction [Cas86, Lecture I] of a Cas-
son handle in a 4-manifold with boundary was closer in spirit to [FQ90, Corollary 5.1B]
than [FQ90, Theorem 5.1A] (see Section 8). The construction crucially used the fact that
the ambient manifold is simply connected. Casson applied his embedding theorem to repre-
sent a hyperbolic pair in the surgery kernel for a simply connected manifold by geometrically
dual Casson handles whose base stages are spheres, as in Remark 1.5.

In [Fre82, Theorem 1.2], Freedman claimed to prove the exactness of the surgery sequence
by embedding half of each hyperbolic pair representing the surgery kernel in a simply con-
nected manifold by an embedded sphere. As shown by Sato’s example, this is not sufficient:
we also need to construct geometrically dual spheres. However, this is possible in the sim-
ply connected case by applying Casson’s construction of geometrically dual Casson handles
mentioned above. This construction was known to Freedman, since he mentioned it in the
paragraph immediately following his proof of the exactness of the surgery sequence, in the
proof of the Addendum to [Fre82, Theorem 1.2]. Thus the combination of Casson’s con-
struction and Freedman’s proof that Casson handles are homeomorphic to standard handles
provides embedded spheres with geometric duals in the simply connected case.

2.3. Quinn’s paper. Quinn’s proof from [Qui82] that non-compact, connected 4-manifolds
admit smooth structures relies on Freedman’s proof that Casson handles are standard, but
does not rely on the dual spheres constructed in this paper. This also applies to topological
transversality (Theorem 3.3) and the existence and uniqueness of normal bundles.

2.4. Elsewhere. In a similar manner to classical surgery theory, the use of Kreck’s modified
surgery [Kre99] to obtain classification results on 4-manifolds, for example in [HK88], [HK93]
and [HKT09], needs geometrically dual spheres to avoid changing the fundamental group
by surgery on embedded spheres obtained using the sphere embedding theorem.

Finally, in knot concordance geometrically dual spheres are needed to show that the
complement of the topological slice disc produced in [GT04] for a knot with Alexander
polynomial one has fundamental group Z, and similarly in [FT05] for slice disc exteriors
with fundamental group Z˙ Zr1{2s.
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3. Generic immersions in smooth and topological 4-manifolds

The goal of this section is to prove Theorem 1.2, rectifying another omission in [FQ90].
Recall that for a compact surface Σ and 4-manifold M , a generic immersion in the smooth
category, written f : Σ2 í M4, is a smooth map which is an embedding, except for a finite
number of transverse double points in the interior. This means that f is an embedding on
BΣ and there are coordinates on Σ and on M such that restricted to the interior, f coincides
in local coordinates in M with either the inclusion R2 ˆ t0u Ă R4 or a transverse double
point R2 ˆ t0u Y t0u ˆ R2 Ă R4.

In a smooth 4-manifold M , the set of generic immersions is open and dense in the Whitney
topology on C8pΣ,Mq [GG73, Chapter III, Corollary 3.3]. These are exactly the stable maps
in the smooth mapping space [GG73, Chapter III, Theorem 3.11] where a map f is said to
be stable if it has a neighbourhood in C8pΣ,Mq such that every map in the neighbourhood
can be obtained by pre-composing with a diffeomorphism of Σ and post-composing with a
diffeomorphism of M , with both diffeomorphisms isotopic to the identity. It is well known
that any continuous map between smooth manifolds is arbitrarily close to a smooth map (see,
for example, [Lee03, Theorem 10.21]). Since moreover the collection of generic immersions
is open and dense in C8pΣ,Mq, a smooth map can be further perturbed to a (smooth)
generic immersion. Since the perturbations may be chosen to be small, a proper continuous
map may be perturbed to a proper smooth generic immersion (see [Spr72, Lemma 1]).

A continuous map between topological manifolds is called an immersion if it is locally
an embedding. A continuous map of a surface to a topological 4-manifold with the same
local behaviour as a smooth generic immersion will be called a generic immersion in the
topological category. Note that this implies that the map is a locally flat embedding near
points with a single inverse image.

A smooth homotopy H between smooth maps Σ Ñ M is said to be generic if the corre-
sponding map Σˆ r0, 1s Ñ M ˆ r0, 1s is a generic smooth map. Whitney’s classification of
singularities [Whi43, Whi44] of generic maps from 3-manifolds to 5-manifolds implies that
the singularities of the track of a generic homotopy H as above consist of finger moves,
Whitney moves and cusps. These arise at finitely many times t P I, when Ht : Σ Ñ M is
not a generic immersion but either:

(i) Ht has a tangency, increasing or decreasing the double point set by a pair with opposite
signs, corresponding to a finger/Whitney move, or

(ii) the rank of the derivative of Ht drops at a single point, creating a cusp where one
double point appears or disappears.

A topological generic homotopy is defined to be a concatenation of finger moves, Whitney
moves, and cusps.

A continuous homotopy between smooth maps Σ ÑM may be perturbed (rel. boundary)
to produce a smooth generic homotopy. Since the perturbation may be chosen to be small,
a proper homotopy may be perturbed to a proper smooth generic homotopy. Here is the
main technical result of this section.

Proposition 3.1. Let Σ be a compact surface and let M be a 4-manifold.

(1) Every continuous map f : pΣ, BΣq Ñ pM, BMq is homotopic to a generic immersion,
smooth in Mztqu for some point q PM .

(2) Every continuous homotopy H : pΣ, BΣqˆr0, 1s Ñ pM, BMq that restricts to a smooth
generic immersion on Σˆtiu for each i “ 0, 1, with respect to some smooth structure
on M minus a point q, is homotopic rel. Σ ˆ t0, 1u to a generic homotopy, that is
smooth in some smooth structure on Mztru for some point r PM .

Proof. First we prove (1). We may assume without loss of generality that M is connected.
Choose a smooth structure on Σ. The complement of a point p in the interior of M is
smoothable relative to any fixed chosen smoothing of the boundary of M [FQ90, Theo-
rem 8.2], [Qui82, Qui86]. Choose a smooth structure on Mztpu.
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Homotope the restriction of f to BΣ to a smooth embedding, and extend this to a ho-
motopy of Σ supported in a collar near the boundary (or use a given embedding to start
with and work rel. boundary). Consider the smooth surface Σp :“ Σ r f´1ppq which comes
with a proper map f | : Σp Ñ M r tpu that is properly homotopic to a smooth proper map
f 1. By Sard’s theorem, some point q in the interior of M r tpu does not lie in the image of
f 1. Moreover, because Σ is compact and the homotopy was proper, f 1 maps each end of Σp
to p (as did f). Send all of f´1ppq to p to extend f 1 to a continuous map Σ Ñ M r tqu,
homotopic in M to the original map f . The latter homotopy is produced from the proper
homotopy between f | and f 1| by mapping every end to p.

Now as explained above, the map f 1 is homotopic to a smooth generic immersion f2 : Σ í

M r tqu. Add q back in and forget the smooth structure to yield a topological generic
immersion, noting that as required f2 is smooth in some structure on Mztqu by construction.

Now, to prove (2), consider a homotopyH : Σˆr0, 1s ÑM whose restrictionH| : Σˆtiu Ñ
M is a smooth generic immersion in some smooth structure on Mztqu for some q P M , for
each i “ 0, 1. We follow a similar strategy as the proof of (1). Use a smoothing of M away
from q, and consider

pΣˆ r0, 1sqq :“ pΣˆ r0, 1sqzH´1ptquq ĎM r tqu.
The proper map pΣ ˆ r0, 1sqq Ñ Mztqu is properly homotopic rel. Σ ˆ t0, 1u to a proper
smooth map H 1 : pΣ ˆ r0, 1sqq Ñ Mztqu, that by Sard’s theorem misses at least one point
r P M . Since Σ ˆ r0, 1s is compact and the homotopy was proper, H 1 maps each end of
H´1pqq to q. Extend H 1 to a continuous map H2 : Σ ˆ r0, 1s Ñ Mztru. Choose a smooth
structure on Mztru, such that H| “ H2| : Σˆt0, 1u ÑM is a smooth generic immersion. To
achieve this, start with the original smooth structure onMztqu restricted to a neighbourhood
of H2pΣˆ t0, 1uq ĎMztq, ru, and extend that structure to a smooth structure on Mztru.

Now homotope H2|Σˆr0,1s rel. Σ ˆ t0, 1u to a smooth generic homotopy in Mztru. Add
r back in and forget the smooth structure to yield a topological generic homotopy, noting
that as required H2 is smooth in some smooth structure on Mztru. �

Remark 3.2. Let us discuss some consequences of Proposition 3.1 for normal bundles of
generic immersions. A generic immersion f : Σ í M has a linear normal bundle νpfq Ñ Σ,
in both the smooth and topological categories [FQ90, Section 9.3]. However Proposition 3.1
tells us that f is generically homotopic to a smooth immersion in some smooth structure on
Mztqu, so this gives an easier proof that up to homotopy f has a linear normal bundle. Then
f comes with a map νpfq ÑM of the total space into M , which is an embedding away from
a finite number of plumbings near the double points of f . In the case that Σ has nonempty
boundary, assume that f´1pBMq “ BΣ and that we are given a fixed framing of the normal
bundle restricted to the boundary. We call f framed if νpfq comes with a trivialisation
and twisted if the (relative) Stiefel-Whitney class w2pfq :“ w2pνpfqq P H

2pΣ, BΣ;Z{2q is
nonzero. If Σ is oriented, f |BΣ is framed and f is not twisted, then one can add local
cusps to f (corresponding to a non-regular homotopy between generic immersions) until the
relative Euler number in H2pΣ, BΣ;Zq of νpfq vanishes and hence νpfq becomes trivial and
the framing on f induces the given framing on BΣ.

Now we prove Theorem 1.2 about homotopy classes rΣ,M s of maps f : Σ ÑM , when Σ
is a union of spheres or discs. We write tΣ,MuB for the subspace of all continuous maps
that restrict on BΣ to locally flat embeddings disjoint from the image of the interior of Σ,
and rΣ,M sB for the set of homotopy classes of such maps. In this theorem we do not assume
that f´1pBMq “ BΣ.

Choose a local orientation of M at the basepoint and assume that Σ comes with a whisker
to the basepoint. The proof will use topological transversality, which we state first.

Theorem 3.3 ([Qui82, Qui88] (see also [FQ90, Section 9.5])). Let Σ1 and Σ2 be locally flat
proper submanifolds of a topological 4-manifold M that are transverse to BM . There is an
isotopy of M , supported in any given neighbourhood of Σ1XΣ2, taking Σ1 to a submanifold
Σ11 transverse to Σ2.
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Theorem 1.2. Let Σ be a disjoint union of discs or spheres, and let M be a 4-manifold.
The subspace of generic immersions in the space of all continuous maps leads to a bijection

F “ tpf1, . . . , fmq : Σ “ Σ1 \ ¨ ¨ ¨ \ Σm í M | µpfiq1 “ 0, i “ 1, . . . ,mu

tisotopies, finger moves, Whitney movesu
ÐÑ rΣ,M sB,

where µpfiq1 P Z denotes the signed sum of double points of fi whose double point loops
are trivial in π1pMq, and rΣ,M sB denotes the set of homotopy classes of continuous maps
that restrict on BΣ to locally flat embeddings disjoint from the image of the interior of Σ.
Moreover, any such homotopy between generic immersions is homotopic rel. Σˆ t0, 1u to a
sequence of isotopies, finger moves and Whitney moves.

Theorem 1.2 could be rephrased more succinctly, but perhaps less transparently, as the
statement that the inclusion of the space of generic immersions into tΣ,MuB is a 1-connected
map. Note that the theorem implies [FQ90, Proposition 1.6], no proof of which has previ-
ously appeared.

Proof. The map is well-defined since any isotopy, finger move, or Whitney move is a ho-
motopy. Note that for each i, µpfiq1 can be changed arbitrarily by (non-regular) cusp
homotopies. Therefore by Proposition 3.1(1) the map is surjective.

For injectivity, consider generic immersions F, F 1 : Σ í M , which restrict to embeddings
on BΣ that miss the image of the interior, and assume that F and F 1 are homotopic.
Using topological transversality, we can assume that F and F 1 intersect transversely after
performing an isotopy. Choose a point q P M disjoint from the image of both F and F 1.
Since F and F 1 are generic immersions intersecting transversely, there is a neighbourhood,
namely the union of the images of the normal bundles, within which F and F 1 are smooth
generic immersions. Extend this smooth structure over M r tqu.

Now by Proposition 3.1(2), we can replace the homotopy from F to F 1 by a smooth
generic homotopy, by performing a homotopy rel. Σˆ t0, 1u. Then we saw earlier that the
singularities of the track of this homotopy consists of finger moves, Whitney moves and cusps.
If µpfiq1 “ µpf 1iq1 for every i then the cusps arising in H can be cancelled in pairs [FQ90,
p. 23], leading to a regular homotopy, which as desired is a sequence of isotopies, finger
moves, and Whitney moves. �

4. Geometric definitions and operations

4.1. Conventions regarding Whitney discs. We shall assume that a Whitney disc is a
generic immersion W : D2 í M , which in particular implies that the boundary is embedded,
with each Whitney arc lying on one of the sheets whose intersection points are paired by W .
We allow interior self-intersections of W as well as intersections with other surfaces (and
other Whitney discs) but assume that these are transverse, using topological transversality.

As usual, a Whitney disc W is said to be framed if the Whitney section of the normal
bundle νpW q of W restricted to its boundary extends to a non-vanishing section of νpW q.
The relative normal Euler number of W in Z is by definition the unique obstruction for the
existence of a framing of νpW q extending the Whitney section. The framing of a Whitney
disc can be altered by interior twists and boundary twists; see [FQ90, Section 1.3].

Given two Whitney discs, the corresponding Whitney circles may a priori intersect one
another. We can ensure that Whitney circles are disjoint by pushing one Whitney circle
along the other. From now on, we will assume that Whitney circles are pairwise disjoint
and embedded.

4.2. Intersection and self-intersection numbers. Let M be a connected, based 4-
manifold, and choose a local orientation of M at its basepoint. Suppose we are given
two generic immersions Σ,Σ1 from discs or spheres to M , intersecting transversely and only
in their interiors, with whiskers γ, γ1 : r0, 1s Ñ M joining the base point of M to the base-
points of Σ and Σ1 respectively, as well as orientations of Σ and Σ1. Then the equivariant
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intersection number

λpΣ,Σ1q P Zrπ1M s

can be defined as in [Wal99, Chapter 5], [FQ90, Section 1.7] as the sum of contributions ˘g
from intersection points between Σ and Σ1 with:

‚ the sign ˘ obtained from comparing the local orientation at the intersection point
induced by the orientations of Σ and Σ1 with the orientation obtained from trans-
porting the orientation at the basepoint of M along γ and along a path in Σ to the
intersection point;

‚ an element g of π1pMq obtained from the concatenation, in order, of γ, a path in Σ
to the intersection point, a path in Σ1 from the intersection point to the basepoint
of Σ1, and finally the reverse of γ1.

When Σ “ Σ1, we set λpΣ,Σq :“ λpΣ,Σ`q, where Σ` is a push-off of Σ along a section of
the normal bundle νpΣq, transverse to the zero section. In the case of a disc, where Σ: D2 í

M , this requires a choice of framing of the normal bundle restricted to the boundary. By
Theorem 1.2, it is easy to see that λpΣ,Σ1q is unchanged under homotopies that restrict to
isotopies on the boundary and that keep the interior of Σ disjoint from BΣ1, and vice versa,
at all times. In particular, if both surfaces are spheres, then λpΣ,Σ1q only depends on the
equivalence classes rΣs, rΣ1s P π2pMq.

Given the image Σ of a generic immersion of a disc or sphere into M , with a whisker γ,
the self-intersection number

µpΣq P Zrπ1M s{xg ´ wpgqg
´1y,

is the sum of contributions ˘g, summing over the double points of Σ, with g P π1pMq
obtained by the concatenation, in order, of γ, a path in Σ to the intersection point, a path
in Σ from the intersection point to the basepoint of Σ, and finally the reverse of γ [Wal99,
Chapter 5], [FQ90, Section 1.7]. The choice of sheet on which to approach a given intersection
point gives rise to the indeterminacy g´wpgqg´1, where recall that w : π1pMq Ñ t˘1u is the
orientation character of M . Again using Theorem 1.2, one sees that µpΣq is unchanged under
regular homotopies that restrict to isotopies on the boundary and that keep the interior of
Σ disjoint from BΣ at all times. A non-regular homotopy that runs through a single cusp
singularity changes µpΣq by ˘1. In particular, if Σ: S2 í M is a sphere, the reduced
self-intersection invariant

rµpΣq P Zrπ1M s{xg ´ wpgqg
´1,Z ¨ 1y

depends only on the homotopy class rΣs P π2pMq.
Next we investigate the relationship between λ and µ. Define the involution on Zrπ1M s

by g :“ wpgqg´1 P Zrπ1M s.

Lemma 4.1. Let Σ be a generic immersion of either a disc with framed boundary or a
sphere, in a 4-manifold M . Let Σ1 be a generic immersion of a sphere in M .

(1) The self-intersection number is a quadratic refinement of λ:

µpΣ` Σ1q “ µpΣq ` µpΣ1q ` rλpΣ,Σ1qs P Zrπ1M s{xg ´ gy.

(2) We have

λpΣ,Σq “ µpΣq ` µpΣq ` epΣq ¨ 1,

where epΣq is the (relative) Euler number of the normal bundle νpΣq.

Proof. Computing µ of an ambient connected sum, performed along the whiskers yields the
first relation. Count the intersections that arise when using connecting tubes that miss the
interiors.

For the second equality, each double point of Σ contributing ˘g to µpΣq gives rise to
two intersection points between Σ and a push-off Σ` along a generic section of the normal
bundle, contributing ˘g and ˘g. The remaining intersections between Σ and Σ` come from
the zeros of the generic section, and contribute epΣq ¨ 1. �
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Note that in the case of a disc, Σ: D2 í M , the left hand side of the second formula
depends on the framing on the boundary and so does the normal Euler number on the right
hand side. The case of a sphere is quite different. The left hand side depends only on
the homotopy class rΣs P π2pMq, whereas all terms on the right hand side depend on the
regular homotopy class of the generic immersion Σ: S2 í M . We also remark that when
M is orientable, λpf, fq “ 0 implies µpfq “ 0 for a generically immersed, based, oriented
disc or sphere f in M , but this does not hold in general; see [BKKPR, Corollary 11.9].

4.3. Gropes and towers. In our proofs, we will seek to construct gropes and ultimately
towers, as defined in [BKKPR, Chapter 11] (see also [FQ90, Chapters 2 and 3]). We remark
that our definitions match the ones in [BKKPR] but the definition of tower is slightly
different from that in [FQ90]. We refer the reader to [BKKPR, Chapter 11] for the complete
definitions, but we give a quick summary below.

Gropes and towers are 4-dimensional objects, obtained as thickenings of underlying 2-
complexes. When we describe operations on embedded or immersed gropes and towers,
such as pushing, tubing, and contracting, we often do so in terms of operations on the 2-
complex. Provided that framings are controlled carefully, these operations naturally extend
to the 4-dimensional thickenings, and it is these extended operations that we really use.

To define gropes and towers, first we consider model stages. A surface block is Σ ˆD2,
where Σ is a compact orientable surface with a single boundary component. A disc block is
a self-plumbed handle D2 ˆD2, with algebraically zero count of double points. A stage is
a union of blocks of the same type, that is, a stage is a union of disc blocks or a union of
surface blocks. A generalised tower T is a 4-manifold with boundary, which is diffeomorphic
to a boundary connected sum of copies of S1 ˆD3, along with the following data.

(i) A decomposition of T into stages.
(ii) The attaching region B´T of T , which is the image of a given embedding φ : S1ˆD2 ãÑ

BT . The core of the attaching region is called the attaching circle.

(iii) Tip regions, namely the image of a given embedding ψ :
Ůi

S1 ˆD2 ãÑ BT .

The tip regions of a tower may be identified with attaching regions of other towers to form
larger towers.

A generalised tower T is said to be properly embedded in a 4-manifold M is there is a
map pT , B´T q ãÑ pM, BMq.

The objects that we build are all special cases of generalised towers, as we now describe.
In what follows, tip regions, to which we attach higher stages, are always obtained by taking
certain described curves on the underlying 2-complex, pushing them to the boundary, and
then thickening.

(1) A grope is a generalised tower consisting of only surface stages, each attached to
a full symplectic basis of curves for H1 of the surfaces Σ underlying each block of
the previous stage (after pushing the curves to the boundary and thickening). The
number of surface stages is called the height of the grope. A sphere-like grope is a
grope where the bottommost stage is a single connected surface with no boundary.

(2) A capped grope is a grope with a disc stage attached to the final surface stage, after
further plumbings and self-plumbings among the constituent blocks of the final stage.
These disc blocks, or often, their underlying discs, are called the caps of the capped
grope. Note that the caps may intersect themselves and one another arbitrarily. A
capped grope with precisely one surface stage will often be referred to as a capped
surface. A capped grope is union-of-discs-like, union-of-spheres-like, sphere-like, or
disc-like, according to the topology of the immersed surface obtained by totally
contracting (Section 4.4 defines contraction). The body of a capped grope consists
of all the stages other than the final cap stage. The height of a capped tower is the
height of its body.

(3) A tower consists of a sequence of capped gropes, called the storeys of the tower,
each attached to a (thickening of a) full collection of double point loops (i.e. tip
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regions) associated with the plumbings of the caps of the previous capped grope.
The caps of the constituent capped gropes are only allowed to have self-plumbings,
which must further be algebraically cancelling, i.e. the caps form a disc stage. The
stages of the constituent capped gropes are called the stages of the tower and are
naturally enumerated.

(4) A capped tower is obtained by adding one further disc stage to a tower, along (a
thickening of) a full collection of double point loops for the caps of the top storey,
followed by further plumbings and self-plumbings among the constituent blocks of
the final stage. As before, the discs in the final stage are called the caps of the
capped tower, and the caps may intersect themselves or one another arbitrarily.
The body of a capped tower consists of all the stages other than the final cap stage.
The height of a capped tower is the height of its body.

For generalised towers A and B such that A Ă B and m ě 1, we say that the first m
stages of A and B coincide, or are the same, if the underlying 2-complexes of the first m
stages of A and B coincide, the inclusion of the first m stages of A into B is isotopic to a
diffeomorphism with image the first m stages of B, and the attaching regions of A and B
coincide. If A and B are both capped gropes or towers with height m and the first m stages
coincide, we say that A and B have the same body.

Figure 1. Schematic picture of the 2-dimensional spine of a height three grope.

Figure 2. Schematic picture of the 2-dimensional spine of a height two
capped grope.



14 MARK POWELL, ARUNIMA RAY, AND PETER TEICHNER

Figure 3. Schematic picture of the 2-dimensional spine of a 2-storey tower
with one surface stage in each storey.

Within our proofs, at intermediate steps, we will construct generalised towers that do not
fit into any of these categories. For example a capped grope obtained by attaching a capped
grope of height n to a half-basis of curves for H1 of a surface Σ, and attaching a capped
grope of height m to the symplectically dual basis.

We will also need the following generalisation of the notion of dual spheres in the intro-
duction.

Definition 4.2 (Dual capped gropes and surfaces). Let tAiu be a collection of immersed
discs, gropes, or towers, with or without caps. A collection tT ci u of (sphere-like) capped
gropes is said to be (geometrically) dual to tAiu if T ci &Aj is a single transverse point when
i “ j, located in the bottom stages of T ci and Ai, and T ci &Aj is empty otherwise. For tAiu
a generically immersed collection of discs, the bottom stage of Ai is simply itself. Note that
all the caps of tAiu are required to be disjoint from the caps of tT ci u. Additionally, note
that intersections are allowed within the collection tT ci u. If each T ci is a capped grope of
height one, then we say that tT ci u is a collection of dual capped surfaces for tAiu.

4.4. Contraction. The process of contraction and push-off is introduced in [FQ90, Sec-
tion 2.3] and [BKKPR, Section 14.1]. It will be very important in our main proof, so we
recall it here. Contraction converts a capped surface into an immersed disc using two paral-
lel copies each cap. One could only surger using one disc per dual pair in a symplectic basis
of curves on the surface, but this would not enable the pushing off procedure described in
the next paragraph. Given a capped grope, we can iteratively contract caps, to eventually
obtain a collection of immersed spheres or discs called the total contraction.

After contracting a surface, any other surface that intersected the caps can be pushed
off the contraction, as shown in Figure 5. This reduces the number of intersection points
between the resulting contraction and the pushed off surfaces. In other words, we gain
some disjointness at the expense of converting a capped surface into an immersed disc. An
additional cost is as follows. Suppose that a surface A intersects a cap of the capped surface,
and a surface B intersects a dual cap. Then after pushing both A and B off the contraction,
we obtain two intersection points between A and B. The contraction push-off operation is
shown in Figure 5.

Lemma 4.3. The homotopy class of the sphere or disc resulting from symmetric contraction
of a fixed surface is independent of the choice of caps, provided the boundaries of the different
choices of caps coincide.

Proof. As explained in [FQ90, Section 2.3], an isotopy in the model induces a homotopy of
the immersed models, so the symmetric contraction is homotopic to the result of surgery



THE DISC EMBEDDING THEOREM AND DUAL SPHERES 15

Figure 4. (Symmetric) contraction of a capped surface. Here we show the
situation for embedded caps.

(a) Before contraction of a surface.

(b) After contraction of a surface, and pushing other surfaces off the caps.

Figure 5. Contraction and push-off. Note the intersections of pushed-off
surfaces that occur between diagrams one and two and between diagrams
four and five in the bottom row of figures, namely one intersection in the
past and one intersection in the future between each pair of surfaces pushed
off dual caps.

along one cap per dual pair. Now let tCi, Diu
g
i“1 and tC 1i, D

1
iu
g
i“1 be two sets of caps for

a surface of genus g, such that BCi “ BC 1i and BDi “ BD1i are a dual pair of curves on
the surface for each i. Then symmetric surgery on tCi, Diu

g
i“1 is homotopic to surgery on

the tCiu, which is homotopic to symmetric surgery on tCi, D
1
iu
g
i“1. This is homotopic to

asymmetric surgery on the caps tD1iu, which finally is homotopic to the result of symmetric
surgery on tC 1i, D

1
iu
g
i“1, as asserted. �
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5. Further ingredients

We will also need to apply the following results from [Fre82, FQ90]; see also [BKKPR].
We collect them here for the convenience of the reader. The next lemma trades intersections
between distinct surfaces for self-intersections.

Lemma 5.1 (Geometric Casson lemma). Let F and G be transverse generic immersions
of compact surfaces in a connected 4-manifold M . Assume that the intersection points
tp, qu Ă F&G are paired by a Whitney disc W . Then there is a regular homotopy from
F YG to F YG such that F&G “ pF&Gqr tp, qu, that is the two paired intersections have
been removed. The regular homotopy may create many new self-intersections of F and G;
however, these are algebraically cancelling.

Applications of this lemma, proven inductively on the number of intersection points,
include the following.

(i) Making F and G disjoint, assuming that all intersection points F X G are paired by
Whitney discs.

(ii) Turning a collection G of algebraically dual spheres for F into geometrically dual
spheres G.

G

G

F

F

G

G

F

F

Figure 6. Pushing down a sheet of F into itself.

Proof of Lemma 5.1. First add boundary twists to make W framed. Push each intersection
point of F with the interior of W down into F and each intersection point of G with W
down into G, as shown in Figure 6. This uses that W pairs intersections between F and G
and is a regular homotopy of F Y G, since it is a sequence of finger moves. It introduces
many new self-intersections of F and of G. However, doing the immersed Whitney move,
another regular homotopy, on the new Whitney disc W 1 removes the pair of points tp, qu
as required, while introducing yet more algebraically cancelling intersection points of F or
G. �

Proposition 5.2 (Grope height raising). Given a capped grope Gpmqc of height m P 1
2Z,

where m is at least 1.5, and a positive integer n ě m, there exists a capped grope Gpnqc of
height n embedded in Gpmqc such that the first m stages of Gcpnq and Gcpmq coincide.

Proof. See [FQ90, Section 2.7] or [BKKPR, Chapter 16] for a proof. �

Lemma 5.3 (Sequential contraction lemma). Let Gpm` 1qc be a height pm ` 1q capped
grope. There exists an embedding of a height m capped grope Gpmqc into Gpm` 1qc, where
all the caps of Gpmqc are mutually disjoint and have algebraically cancelling double points,
such that the body of Gpmqc coincides with the first m stages of Gpm` 1qc.

Proof. Enumerate the top stage surfaces of Gpm` 1qc. Iteratively, contract the ith surface,
and push the caps of the surfaces numbered greater than i off the contraction. At the end
of this procedure, we obtain the desired Gpmqc. �
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An infinite tower, constructed as a colimit of finite towers, will be denoted T8. We
denote the Freudenthal endpoint compactification (see [FQ90, Section 3.8] or [BKKPR, Sec-

tion 11.2]) of such a tower by pT8.

Theorem 5.4 (Tower embedding theorem). Let T c
1 be a 1-storey capped tower with at least

four surface stages. Within T c
1 there exists an embedding of an infinite compactified tower pT8

with the same attaching region as T c
1 , such that the following holds.

(1) (Replicable) Each storey of pT8 has at least four surface stages.

(2) (Boundary shrinkable) For each connected component of pT8, the series
ř8

j“1Nj{2
j

diverges, where Nj is the number of surface stages in the jth storey of the component.

(3) (Squeezable) For each n ě 3, the connected components of the nth storey of pT8 lie
in arbitrarily small mutually disjoint balls.

Proof. See [FQ90, Chapter 3] or [BKKPR, Chapter 17] for a proof. �

The names for the properties in Theorem 5.4 are deliberately evocative: a replicable
infinite tower contains another such compactified infinite tower within any two consecutive
storeys, while a boundary shrinkable tower has boundary homeomorphic to S3. See [FQ90]
or [BKKPR] for more details.

Theorem 5.5. Every connected compactified infinite tower pT8 satisfying the three properties

in Theorem 5.4 is homeomorphic, relative to its attaching region B´ pT8, to the standard
handle pD2 ˆD2, S1 ˆD2q.

Proof. This is proven in [FQ90, Chapter 4] and [BKKPR, Part IV]. �

Remark 5.6. Combining Theorems 5.4 and 5.5, we see that any disc-like 1-storey capped
tower T c

1 with at least four surface stages contains an embedded disc whose framed boundary
coincides with the attaching region of T c

1 .

Definition 5.7 (Good group [FT95b]). A group Γ is said to be good if for every height
1.5 disc-like capped grope G and for φ : π1pGq Ñ Γ a group homomorphism, there exists an
immersed disc D í G whose framed boundary coincides with the attaching region of G,
such that the double point loops of D, considered as fundamental group elements by making
some choice of basing path, are mapped to the identity element of Γ by φ.

It is easy to see by contraction that the attaching circle of a capped grope G is null-
homotopic in G. Thus, there is always some immersed disc in G with the same framed
boundary as G. For a good group Γ we get further control on the double points of such an
immersed disc.

Since every homomorphism to the trivial group is trivial, the trivial group is good. We
also know that groups of subexponential growth are good [FT95a, KQ00], and that the
class of good groups is closed under subgroups, quotients, extensions, and colimits [FQ90,
p. 44], [BKKPR, Chapter 18]. In particular, all finite groups, abelian groups, and solvable
groups are good.

6. Constructing capped gropes and towers with dual spheres

Our main technical lemma, given below, shows how to upgrade a collection of immersed
discs with certain types of dual capped surfaces to a collection of gropes whose attaching
regions coincide with the framed boundary of the original discs, as well as the same dual
capped surfaces. The requirement on the dual capped surfaces is that the bodies be located
close to the boundary of the ambient manifold. This property enables us to find Whitney
discs which do not intersect the bodies, at various steps of the argument.

Recall that given two generically immersed transversely intersecting oriented discs C1

and C2 in M , if λpC1, C2q “ 0, all the intersection points between C1 and C2 may be paired
up by immersed Whitney discs in M . If λpC1, C1q “ µpC1q “ 0, then the self-intersection
points of C1 may be paired similarly.
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Lemma 6.1. Consider a generically immersed collection of discs in a 4-manifold M

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q í pM, BMq.

Suppose that tΣciu is a dual collection of capped surfaces for the tfiu such that

λpC`, Cmq “ µpC`q “ 0

for every pair of caps C` and Cm of tΣciu. Assume in addition that the body Σi of each Σci
is contained in a collar neighbourhood of BM .

Then there exists a collection of mutually disjoint capped gropes tGciu, properly embedded
in M , with arbitrarily many surface stages and pairwise disjoint caps with algebraically
cancelling double points, such that tΣciu, after a regular homotopy of the caps, provides a
dual collection of capped surfaces for the tGciu. Moreover, for each i, the attaching region of
Gci coincides with the framed boundary of fi.

In the upcoming proof, the capped surfaces will act as dual sphere factories. That is, we
will use them to produce a dual sphere for an fi whenever we need one, taking advantage
of the extra power of a dual capped surface versus a dual sphere.

Proof. Convert each fi to a capped surface by tubing all the intersections among the tfiu,
including self-intersections, into parallel copies of the dual surfaces tΣiu, as shown in Fig-
ure 7. This produces surfaces tf 1iu with the same framed boundaries as tfiu. Since tΣiu is a
mutually disjoint collection of embedded surfaces, so is tf 1iu. Use parallel copies of the caps
tC`u of the tΣiu to obtain caps tC 1nu for the surfaces tf 1iu. Note that the interiors of the
caps tC 1nu are disjoint from the surfaces tf 1iu. Such a capped surface is shown in Figure 8.

Figure 7. Producing capped surfaces. The self-intersection of the disc f
(black) is tubed into the dual capped surface Σ (green). This disc is thus
converted into a capped surface, when endowed with parallel copies of the
caps for Σ.

Now we will separate the caps tC`u of tΣiu from the caps tC 1nu for the surfaces tf 1iu. For
this, we will need a dual sphere for each f 1i , so we turn to our dual sphere factory: for each
i, take a parallel copy of Σi along with its caps, and contract to obtain a sphere Si (we do
not push anything off the contraction), as shown in Figure 8. Since tΣiu is a geometrically
dual collection of capped surfaces for the tfiu, we see that tSiu is a geometrically dual
collection of framed immersed spheres for the tf 1iu. Here we are using the fact that the caps
tC`u and the surfaces tf 1iu do not intersect. However note that the spheres tSiu do have
intersections among themselves, coming from the intersections among the caps tC`u, and
they also intersect the caps of the surfaces tf 1iu and the caps of the tΣiu.

Recall that λpC`, Cmq “ µpC`q “ 0 for every pair of caps C` and Cm of the dual surfaces
tΣiu. Since each cap C 1n for some f 1i is obtained as a parallel copy of a cap for some Σi, we
see that λpC 1, Cq “ 0 for each cap C 1 for some f 1i and for each cap C for some Σi. Thus the
intersection points between C and C 1 are paired by framed Whitney discs. Let D1 be such
a Whitney disc. We shall assume that D1 X Σi “ H for all i since tΣiu is contained within
a collar neighbourhood of BM ; this follows since the disc D1 is obtained as a track of a null
homotopy, which may be assumed to lie away from BM . For each intersection of D1 with
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Figure 8. A single capped surface f 1, whose caps intersect the caps of Σ.
The dual sphere S for f 1 is produced by contraction of Σ.

f 1i , tube D1 into Si. We obtain a new Whitney disc, which we still call D1, having possible
intersections only with the caps of tΣiu and the caps of tf 1iu (as well as self-intersections).

Now, for each Whitney disc D1, by the geometric Casson lemma (Lemma 5.1) there is a
regular homotopy of the caps making the interior of D1 disjoint from both types of caps at
the expense of introducing new (algebraically cancelling) cap intersections among the tC`u
and among the tC 1nu. These last two steps are illustrated in Figure 9.

Figure 9. Separating the caps of tΣiu and tf 1iu.

A subsequent (immersed) Whitney move over D1 ensures that C 1 and C are disjoint.
Repeat this process for all the Whitney discs D1 to ensure that the caps tC`u of the tΣiu
are pairwise disjoint from the caps tC 1nu for the surfaces tf 1iu, as shown in Figure 10.

Depending on whether the Whitney move was performed on C or C 1, there are new inter-
sections between C and tSiu, or C 1 and tSiu, due to the intersections and self-intersections
of tSiu. But we shall forget the tSiu from now on anyway.

Figure 10. After separating the caps of tΣiu and tf 1iu.

Now push the intersections and self-intersections of the caps tC 1nu for the surfaces tf 1iu
down into the surface and then tube into parallel copies of the dual surfaces tΣiu, as shown
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in Figure 11, to promote the collection tf 1iu to height two gropes tf2i u. Parallel copies of the
caps tC`u of the tΣiu provide caps tC2pu for the tf2i u. Observe that f2i has the same framed
attaching region as fi.

Figure 11. Push down the cap intersections of f 1 and tube into the dual
capped surface.

Remark 6.2. We will soon apply grope height raising to each member of the collection
tf2i u (using their caps), and use the good fundamental group hypothesis to upgrade to a
collection of 1-storey capped towers. Some extra care will be needed, as we now describe,
since we want to produce dual spheres as well. As noted earlier, the tSiu have some unknown
number of geometric intersections with caps of tf 1iu or caps of tΣiu. By the construction of
tf2i u, in either case, there is now an unknown number of geometric intersections among the
members of tf2i u and tSiu. In other words, tSiu is not a geometric dual collection for the
gropes tf2i u. By our construction, the collection tSiu is algebraically dual to the collection
of gropes tf2i u. However, our usual technique for upgrading algebraic duals to geometric
duals, namely the geometric Casson lemma, produces intersections within the family tf2i u,
and these are undesirable because we wish to construct embedded capped gropes. This is
why we need a dual sphere factory (namely the dual surfaces tΣiu along with their caps
tC`u) rather than a single dual sphere – at multiple points of the proof we produce a dual
sphere and then use it up, so we need the ability to find a new one each time.

With the remark above in mind, the next step is to separate our dual sphere factory from
the gropes tf2i u. To achieve this, we only need to ensure that there are no intersections
between the caps tC`u of the tΣiu and the caps tC2pu of the gropes tf2i u. The procedure will
be similar to the previous step and can safely be skipped by experts. As before, for each i,
take a parallel copy of Σi along with its caps, and contract to obtain a sphere S1i, as shown
in Figure 12 (as before, do not push anything off the contraction). Observe as above that
tS1iu is a geometrically dual collection of spheres for tf2i u. Here we are using the fact that
the caps tC`u and the gropes tf2i u do not intersect. However note that the spheres tS1iu do
have intersections among themselves, coming from the intersections among the caps tC`u,
and they do intersect the caps of the gropes tf2i u and the caps of the tΣiu.

Since the grope caps for tf2i u arose as parallel copies of the caps for the dual surfaces
tΣiu, we see that λpC2, Cq “ 0 for every cap C2 for some f2i and every cap C for some Σi.
Thus the intersection points between C and C2 are paired by Whitney discs. Let D2 be
such a Whitney disc. As before, D2 X Σi “ H for all i. For each intersection of D2 with
some f2i , tube D2 into the dual sphere S1i. We obtain a new Whitney disc, which we still
call D2, having possible intersections only with the caps of tΣiu and the caps of tf2i u. Do
this for all the Whitney discs tD2t u, so they are all disjoint from the tf2i u.

Now, for each Whitney disc D1, by the geometric Casson lemma (Lemma 5.1) there is a
regular homotopy making the interior of D2 disjoint from both types of caps, at the expense
of creating more cap intersections among the tC`u and among the tC2pu i.e. push the caps off
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Figure 12. A dual sphere S1 for f2 has been produced.

D2 over the correct part of the boundary of D2. A subsequent (immersed) Whitney move
over D2 reduces the number of intersections between the collections of grope caps tC2pu for
tf2i u and the caps tC`u for the dual surfaces tΣiu. Repeat this process for all the Whitney
discs D2 pairing intersection points of C and C2, to ensure that the grope caps for tf2i u and
the caps tC`u for the dual surfaces tΣiu are pairwise disjoint. This completes the separation
of the caps in our dual sphere factory from the caps tC2pu of the gropes tf2i u.

Apply grope height raising (Proposition 5.2) followed by the sequential contraction lemma
(Lemma 5.3) to the capped gropes tf2ci u, where each f2ci is the union of f2i with its latest
caps. We obtain a collection of capped gropes tGciu with the same framed attaching region
as the tf2i u, arbitrarily many surface stages, and pairwise disjoint caps with algebraically
cancelling double points, as shown in Figure 13. Additionally, the surfaces tΣiu are geo-
metrically dual to tGciu. Moreover, the first two stages of each Gci coincide with the first
two stages of f2ci , for each i, and the caps of tGciu do not intersect the caps of tΣiu, since
the caps tC2pu for tf2i u and the caps tC`u for tΣiu are pairwise disjoint. This completes the
proof of Lemma 6.1. �

Next, we show that a collection of capped gropes with certain types of dual capped
surfaces, such as those produced by the previous lemma, can be replaced by a collection
of 1-storey capped towers, with the same framed attaching region as the original capped
gropes, and with geometrically dual spheres. The following lemma is the only point in this
paper that uses the hypothesis that the fundamental group of the ambient manifold be good.
Recall that, roughly speaking, a 1-storey capped tower can be built from a capped grope,
all of whose cap intersections are self-intersections, by adding a second layer of caps to the
double point loops of the caps of the grope i.e. to the tip regions on the disc stage of the
capped grope.

Lemma 6.3. Let M be a connected 4-manifold with π1pMq good. Let n be a non-negative
integer. Let tGciu be a collection of capped gropes with height n` 2.5 and mutually disjoint
caps, properly embedded in M , with a geometrically dual collection of capped surfaces tΣciu,
such that the body Σi of each Σci is contained in a collar neighbourhood of BM .

Then there exists a collection of 1-storey capped towers tT c
i u, properly embedded in M ,

where the first storey grope has height n, with a geometrically dual collection of spheres tRiu,
such that T c

i and Gci have the same attaching region for each i. Moreover, the first n surface
stages of Gci and T c

i coincide and each Ri is obtained from Σci by contraction.
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Figure 13. The result of grope height raising followed by the sequential
contraction lemma. The caps of Σ may have changed by a regular homotopy
of the interior.

Remark 6.4. At first glance Lemma 6.3 seems remarkably close to [FQ90, Proposition 3.3],
which claims to replace a collection of properly immersed discs in a 4-manifold M with a
collection of π1-null geometrically transverse capped surfaces with 1-storey capped towers
with arbitrary grope height, the same framed attaching region, and further equipped with
geometrically dual spheres. However, the proof of [FQ90, Proposition 3.3] does not construct
the claimed geometrically transverse spheres.

Proof. Consider the union of the top 1.5 stages of the gropes tGciu. Since π1pMq is good
and the caps are mutually disjoint, each component contains an immersed disc whose dou-
ble point loops are null homotopic in M , and whose framed boundary coincides with the
attaching region of the old top 1.5 stages. Attach these discs to the lower stages, producing

capped gropes t rGciu of height n`1. Contract the top stage to obtain capped gropes of height
n, whose double point loops are still null-homotopic in M , with caps still mutually disjoint,
and such that the caps have algebraically cancelling self-intersection points, since they arose
from a symmetric contraction. Here we are using the fact that the new double point loops
are parallel push-offs of the previous double point loops (see, for example, [BKKPR, Chap-
ter 19]).

Null homotopies for the double point loops produce immersed discs trδαu bounded by
the double point loops of the new caps. Note that the new discs may be assumed to not
intersect tΣiu, since the collection tΣiu is located close to the boundary of M , and any null
homotopy may pushed off a collar of BM . On the other hand the discs coming from the null

homotopies might intersect t rGciu arbitrarily, as shown in Figure 14.
We use our dual sphere factory as before: take a parallel copy of each Σi along with its

caps and contract, to produce a family of spheres tS2i u, as shown in Figure 14 (do not push

anything off the contraction). Boundary twist the discs trδαu to achieve the correct framing
and then push down and tube into tS2i u to remove any intersections of the resulting discs
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Figure 14. Obtaining discs (light green) from null homotopies of the double

point loops. We have produced a dual sphere S2 (blue) for rG (black).

with t rGciu. Glue the resulting discs tδαu to t rGciu to produce the 1-storey capped towers
tT c
i u.
Note that at this point the caps for tΣiu only (possibly) intersect tT c

i u in the tower caps.
Destroy the dual sphere factories: contract each Σi along its caps and call this family of
spheres tRiu. Push all intersections with tower caps off the contraction. This produces
more intersections among the tower caps of tT c

i u. The family of dual spheres tRiu is then
geometrically dual to the resulting 1-storey capped towers tT c

i u as desired. We show the
end result of this procedure in Figure 15. �

The combination of Lemmas 6.1 and 6.3 yields the following proposition, which will be
our main tool going forward.

Proposition 6.5. Let M be a connected 4-manifold with good fundamental group and con-
sider a generically immersed collection of discs

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q í pM, BMq.

Suppose that tΣciu is a geometrically dual collection of capped surfaces for tfiu such that

λpC`, Cmq “ µpC`q “ 0

for each pair of caps C` and Cm of tΣciu. Assume in addition that the body Σi of each Σci is
contained in a collar neighbourhood of BM .

Then there exists a collection of 1-storey capped towers tT c
i u, properly embedded in M ,

with arbitrarily many surface stages, such that the attaching region of T c
i coincides with the

framed boundary of fi, with a geometrically dual collection of spheres tRiu. Moreover, each
Ri is obtained from Σci by contraction, after changing the caps of tΣciu by a regular homotopy
in the interior.

We need one more lemma, that we shall use to control the homotopy classes of the
geometrically dual spheres in the output of the disc embedding theorem.
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Figure 15. A 1-storey capped tower T c with a geometrically dual sphere R.

Lemma 6.6. Let N be a 4-manifold and let

D “ pD1, . . . , Dmq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q Ñ pN, BNq

be a generic immersion of a collection of discs that admits a geometrically dual, generically
immersed collection tEiu

m
i“1 of framed spheres in N . Let Σc Ă Nz

Ťm
i“1 νDi be a capped

surface constructed by taking a Clifford torus corresponding to an intersection point between
Di and Dj, where i “ j is permitted, and tubing meridional caps obtained from meridional
discs for Di and Dj into parallel copies of Ei and Ej. Let S : S2 Ñ Nz

Ťm
i“1 νDi be the

2-sphere obtained by contracting Σc. Then ι˚rSs “ 0 P π2pNq, where ι : Nz
Ťm
i“1 νDi Ñ N

is the inclusion map.

Lemma 6.6 implies in particular that each of the spheres tRiu in Proposition 6.5 is null
homotopic in M .

Proof. By Lemma 4.3, and as explained in [FQ90, Section 2.3], the homotopy class of a
2-sphere obtained by contracting a torus along caps is independent of the choice of caps,
provided the boundaries of the different choices of caps coincide. Therefore in N we may
replace the caps constructed from Ei and Ej by the meridional caps. The sphere S1 resulting
from contraction along the meridional caps is contained in a D4 neighbourhood in N of the
intersection point giving rise to the Clifford torus. So S1 is null homotopic in N . It follows
that ι ˝ S is null homotopic as desired. �

7. Proof of the disc embedding theorem

In this section we prove Theorem A, which is [FQ90, Theorem 5.1A]. For the convenience
of the reader we recall the theorem, inserting the condition that F be an immersion, which
we may do according to Theorem 1.2.
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Theorem A ([FQ90, Theorem 5.1A]). Let M be a connected 4-manifold with good funda-
mental group. Consider a continuous map

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q ÝÑ pM, BMq

that is a locally flat embedding on the boundary and that admits algebraically dual spheres
tgiu

k
i“1 satisfying λpgi, gjq “ 0 “ rµpgiq for all i, j. Then there exists a locally flat embedding

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q ãÑ pM, BMq

such that F has the same boundary as F and admits a generically immersed, geometrically
dual collection of framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion, then it induces a framing of the normal bundle
of its boundary circle. The embedding f i may be assumed to induce the same framing.

Proof. By Theorem 1.2, we may assume that the collection tfi, gjui,j is generically immersed.
Since λpgi, gjq “ 0 “ rµpgiq for all i, j “ 1, . . . , k, all the intersections and self-intersections
within tgiu are paired by Whitney discs, after possibly adding cusps to gi that achieve
µpgiq “ 0. Similarly, since λpfi, gjq “ δij , all but one intersection point between each fi and
gi are paired by Whitney discs, for each i, and all intersections between fi and gj , for i ‰ j,
are paired by Whitney discs.

Tube each intersection and self-intersection within tfiu into tgiu using the unpaired inter-
section point, as shown in Figure 16. We then obtain a collection of discs, which we still call
tfiu, where λpfi, fjq “ µpfiq “ 0 for each i, j. This follows since now all the intersections
within the tfiu are paired by Whitney discs, obtained as parallel copies of the previous
Whitney discs. Note also that the framing on the boundary of each fi is unchanged since
all gj are framed.

Figure 16. Modify f using g to get µpfq “ 0.

Since the new intersections between tfiu and tgiu arise in algebraically cancelling pairs,
we still have λpfi, gjq “ δij . Use the geometric Casson lemma (Lemma 5.1) to make tfiu
and tgiu geometrically dual. Since the lemma provides a regular homotopy, the intersection
and self-intersection information does not change.

Use that λpfi, fjq “ µpfiq “ 0 to pair up all the intersections and self-intersections among
the tfiu with Whitney discs. Consider one such a Whitney disc D pairing up intersections
between fi and fj , where possibly i “ j. Boundary twist to ensure that the Whitney disc
is framed, potentially introducing new intersections of D with the tfiu. The resulting disc
may intersect itself, the tfiu and the tgiu, and any number of other Whitney discs.

For each intersection of D with f`, for some `, tube D into a parallel push-off of the
geometric dual g`. This introduces potentially many new intersections between D and
anything that intersected g` (including g` itself), as well as new self-intersections of D
coming from the self-intersections of g`. However, D is still framed and the interior of D
no longer intersects tfiu, since the collection tgiu is geometrically dual. Repeat this for all
the Whitney discs so that the resulting discs have interiors in the complement of the tfiu.
Call this collection of framed Whitney discs tD1ju. Note that if these tD1ju were disjointly
embedded, we could use them to perform Whitney moves on tfiu and obtain the embedded
discs f i we seek.
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We wish to apply Proposition 6.5 to the complement of the tfiu. First we check that
the fundamental group of the exterior of the tfiu is good. This follows by observing that
for each i the meridian of fi is null homotopic in the exterior of fi, via the geometric
dual sphere gi punctured at the intersection point with fi (see [FQ90, p. 26]). That is,
the collection tfiu is π1-negligible, which means that the inclusion induces an isomorphism
π1pMz

Ť

fiq – π1pMq. Since π1pMq is good, π1pMz
Ť

fiq is also good, as desired. This
group is also the fundamental group of the 4-manifold M 1 :“ Mz

Ť

νpfiq in which the
following constructions take place.

Now, we want to find appropriate dual capped surfaces for the tD1ju in M 1. Let Σj be

the Clifford torus at one of the double points paired by D1j . Observe that Σj intersects D1j
exactly once, and the collection of such Clifford tori are embedded, framed, and disjoint.
Cap each Σj with meridional discs to tfiu, i.e. the embedded discs described in Figure 17.
Each cap has a unique intersection point with tfiu and no other intersections. Tube these
intersections of the meridional caps with tfiu into parallel copies of the dual spheres tgiu.
The resulting capped surfaces tΣcju then lie in M 1 as desired. Let C` and Cm be two caps
of tΣcju. Since λpgi, gjq “ µpgiq “ 0 for all i, j and the fundamental group does not change

from M to M 1, we see that λpC`, Cmq “ µpC`q “ 0.

Figure 17. The top shows a (red) Clifford torus with a single intersec-
tion point with the (grey) Whitney disc D1 pairing intersection points of f
(black). In the bottom we see that each (blue) meridional disc intersects
exactly one fi once.

Note that in M 1, the caps of tΣcju may intersect tD1ju, due to the original intersections

between tD1ju and tgiu. Contract a parallel copy of each Σcj to produce a dual sphere Sj
for D1j in M 1, and push the collection tD1ju off the contraction (do not push off anything

else). This results in a collection of Whitney discs tD2j u, with more self-intersections than

the tD1ju but with tSju geometrically dual spheres for tD2j u.
By construction, each Sj is disjoint from the bodies tΣju but may intersect the caps of

tΣcju. Tube all intersections of these caps with tD2j u into parallel copies of tSju. This gives
new caps for Σi with more self-intersections but we have ensured that this new collection
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tΣcju of capped surfaces in M 1 is geometrically dual to tD2j u. They are also framed since the
Clifford tori and the tgiu were framed. Moreover, the Clifford tori are located close to the
original tfiu, that is within a collar neighbourhood of the boundary of M 1. Additionally,
the latest caps for tΣju have vanishing intersection and self-intersection numbers.

Therefore we can apply Proposition 6.5 to M 1, to replace the discs tD2j u with 1-storey
capped towers tT c

j u whose framed attaching regions coincide with the framed boundary of

tD2j u and that have geometrically dual spheres tRju, as shown in Figure 18.

Figure 18. Before (left) and after (right) applying Proposition 6.5 to
Mz

Ť

νfi “: M 1.

If some gi intersects some T c
j , push down the intersection into the base surface and tube

into Rj , as shown in Figure 19; note that an intersection between gi and T c
j may occur at

any surface, disc, or cap stage of T c
j , so we may need to push down the intersection several

times before reaching the base surface and tube all the resulting intersections into parallel
copies of Rj . Call the resulting spheres tgiu.

Next we argue that gi is homotopic in M to gi for each i. Observe that to obtain gi, we
have:

(i) homotoped gi by an application of the geometric Casson lemma, and then
(ii) tubed into parallel copies of the dual spheres tRju for the towers tT c

j u.

However, Rj was obtained by contracting Σcj , whose body is a Clifford torus for an inter-
section point among the tfiu. Therefore by Lemma 6.6, Rj is null homotopic in M , i.e.
rRjs “ 0 P π2pMq. (Note that Rj is nontrivial in π2pM

1q.) It follows that gi is homotopic
in M to gi, as desired.

Now we return to replacing the tfiu by embedded discs. By construction, the collection
tT c
j u is properly embedded in M 1 and is disjoint from the dual spheres tgiu. We also have

that the tfiu and the tgiu are geometrically dual.
By Remark 5.6, every 1-storey capped tower with at least four surface stages contains

a locally flat embedded disc whose framed boundary coincides with the attaching region
of the capped tower. This produces mutually disjoint, embedded and framed Whitney
discs pairing the intersections and self-intersections of the tfiu away from tgiu, as shown
in Figure 20. Perform Whitney moves guided by these discs to produce embedded discs
tf iu with corresponding geometrically dual spheres tgiu. In the case that fi was initially
generically immersed, we obtain the same framing on the boundary of f i since these are
regular homotopies in the interior. This completes the proof of the disc embedding theorem
with geometrically dual spheres. �

8. The sphere embedding theorem

Next we deduce [FQ90, Theorem 5.1B], whose statement we recall for the convenience
of the reader. The main difference from Theorem A ([FQ90, Theorem 5.1A]) is that the
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Figure 19. Tube to remove intersections of g with T c, ensuring that the
interior of T c lies in the complement of f and g.

Figure 20. An embedded Whitney disc whose interior is in the complement
of f and g has been produced.

intersection conditions are on the tfiu instead of on the tgiu, and that we obtain embedded
discs tf 1iu regularly homotopic to the original immersed discs tfiu. Unlike Theorem A, there
is no assumption on the intersections among tgiu in the next theorem. The spheres tgiu are
still required to be framed.

Note that there is no assumption on λpfi, fiq, even though µpfiq “ 0 is required. Indeed
in order to define λpfi, fiq “ λpfi, f

`
i q, we would have to fix a framing of Bfi. Then the

relative Euler number of the normal bundle of fi would equal λpfi, fiq P Z Ď Zrπ1M s.

Theorem 8.1 ([FQ90, Theorem 5.1B]). Let M be a connected 4-manifold with good funda-
mental group and consider a generically immersed collection of discs

F “ pf1, . . . , fkq : pD
2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q í pM, BMq

satisfying µpfiq “ 0 for all i and λpfi, fjq “ 0 for all i ‰ j, with a generically immersed
collection of framed algebraically dual spheres tgiu

k
i“1. Then there exist mutually disjoint

locally flat embeddings

F “ f1, . . . , fk : pD2 \ ¨ ¨ ¨ \D2, S1 \ ¨ ¨ ¨ \ S1q ãÑ pM, BMq

with f i regularly homotopic rel. boundary to fi for each i, and with a generically immersed,
geometrically dual collection of framed spheres tgiu

k
i“1 such that gi is homotopic to gi for

each i.

Proof. Since λpfi, gjq “ δij , we may apply the geometric Casson lemma (Lemma 5.1) to
arrange that tfiu and tgiu are geometrically dual (note that the dual collection of spheres
tgiu may have any kind of intersections amongst themselves). Since λpfi, fjq “ 0 for all i ‰ j
and µpfiq “ 0 for all i, the intersections and self-intersections amongst the tfiu are paired
by immersed Whitney discs. Consider one such Whitney disc D pairing up intersections
between fi and fj , where possibly i “ j. Boundary twist to ensure that the Whitney disc
is framed, potentially introducing new intersections of D with the tfiu. Such a resulting
disc may intersect itself, any number of the tfiu and the tgiu, and any number of other
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Whitney discs. For each intersection of D with f`, for some `, tube D into a parallel push-
off of the geometric dual g`. This introduces potentially many new intersections, between D
and anything that intersected g` (including g` itself), as well as new self-intersections of D
coming from the self-intersections of g`. However, the interior of D no longer intersects any
fi, since g` intersects exactly one of the tfiu, namely f`, at the intersection point we used
for tubing.

Do this for all the Whitney discs pairing intersections among tfiu. Now our Whitney
discs are more complicated, but their interiors lie in the complement of the tfiu. Call this
collection of Whitney discs tDju. Note that if these Whitney discs were embedded, we could
perform the Whitney trick along them to obtain the embedded discs we seek.

We wish to apply Theorem A to the 4-manifold with boundary Mz
Ť

νfi. First we
check that the fundamental group of Mz

Ť

νfi is good. As before, this follows by observ-
ing that each fi has a geometrically dual sphere, and as a result there is an isomorphism
π1pMz

Ť

νfiq Ñ π1pMq. Since π1pMq is good, we conclude that π1pMz
Ť

fiq is also good,
as desired.

Next, find algebraically dual spheres for tDju. As before, these will arise from Clifford tori.
Let Σj be the Clifford torus at one of the two double points paired by some Dj . Recall that
Σj intersects Dj exactly once, and the collection of such Clifford tori are embedded, framed,
and pairwise disjoint. Cap each Σj with meridional discs to tfiu, i.e. the discs described in
Figure 17. Each cap has a unique intersection with tfiu, and neither cap intersects tDju.
Tube these intersections of the meridional caps with tfiu into parallel copies of the dual
spheres tgiu. Now contract these capped surfaces to produce algebraically dual spheres thju
for the discs tDju. Since the collection thju is produced by contraction of capped surfaces
with disjoint bodies, we see that λphj , hkq “ µphjq “ 0 for all j, k. Moreover note that by
Lemma 6.6, we have rhjs “ 0 P π2pMq.

Apply Theorem A to replace the immersed Whitney discs tDju, with algebraic duals hj ,

by disjointly embedded, framed Whitney discs tDju and geometrically duals thju with hj
homotopic to hj , in Mz

Ť

νfi. For every intersection of some gi with Dj , tube that gi into

hj . This transforms the geometrically dual collection tgiu for tfiu to a collection tgiu, that
may have more intersections among themselves, but that are still geometrically dual to the
tfiu. Since hj is null homotopic in M for every j, so is hj . It follows that gi is homotopic
to gi for each i.

Moreover, the Whitney discs tDju for the intersections among the tfiu now have interi-
ors in Mz p

Ť

fi Y
Ť

giq. Perform the Whitney move along these Whitney discs to obtain
embedded discs tf iu, regularly homotopic (rel. boundary) to the tfiu, with the same framed
boundary as the tfiu, and with geometrically dual spheres tgiu. �

Now we show that the above variant of the disc embedding theorem is in fact equivalent
to the original disc embedding theorem.

Proposition 8.2. Theorem 8.1 and Theorem A are equivalent.

Proof. Since we already deduced Theorem 8.1 from Theorem A, it suffices to prove that
Theorem 8.1 implies Theorem A. Perform the first steps of the proof of Theorem A, until
we tube each intersection and self-intersection within tfiu into tgiu using the unpaired
intersection points (see Figure 16). This replaces tfiu with a collection of discs, which we
still call tfiu and with the same framed boundaries satisfying λpfi, fjq “ µpfiq “ 0 for all i, j.
Moreover, we still have that λpfi, gjq “ δij . Apply Theorem 8.1 to achieve the conclusion of
Theorem A. �

It is fairly straightforward to deduce the sphere embedding theorem from Theorem 8.1.

Theorem B (Sphere embedding theorem with framed duals). Let M be a connected 4-
manifold with good fundamental group and consider a continuous map

F “ pf1, . . . , fkq : pS
2 \ ¨ ¨ ¨ \ S2q ÝÑM
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satisfying rµpfiq “ 0 for every i and λpfi, fjq “ 0 for i ‰ j, and with a collection of al-
gebraically dual spheres tgiu

k
i“1 with w2pgiq “ 0 for each i. Then there is a locally flat

embedding

F “ pf1, . . . , fkq : pS
2 \ ¨ ¨ ¨ \ S2q ãÑM

with F homotopic to F and with a generically immersed, geometrically dual collection of
framed spheres tgiu

k
i“1, such that gi is homotopic to gi for each i.

Moreover, if fi is a generic immersion and epfiq P Z is the Euler number of the normal
bundle νpfiq, then f i is regularly homotopic to fi if and only if epfiq “ λpfi, fiq.

Proof. By Theorem 1.2, we may assume that the entire collection tfi, gjui,j is generically
immersed, so in particular all intersections among these spheres are transverse. Add local
cusps to the fi if necessary to obtain homotopic generic immersions f 1i with µpf 1iq “ 0, or
equivalently epf 1iq “ λpf 1i , f

1
iq as in the assumption of theorem.

For each i, find a point on f 1i which is far from all intersections and self-intersections
of f 1i . Choose a small open ball Bi around this point. Let M 1 :“ clpMz

Ť

iBiq. Since
π1pM

1q – π1pMq and removing the Bi does not change any intersection and self-intersection
numbers, we may apply Theorem 8.1 to M 1 to find a regular homotopy from F 1 to an
embedding, with geometric duals homotopic to the original duals. �

Remark 8.3. If we assume in addition to the hypotheses of Theorem B that λpfi, fiq “ 0
for all i, then we can get disjointly embedded framed spheres f i as an output, since then
w2pf iq “ w2pfiq ” εpλpfi, fiqq “ 0 for all i, by (1) in the discussion just before Section 1.3.
As a consequence, we can do surgery on M along the f i to obtain a 4-manifold M 1. The
existence of the geometric duals gi implies that π1pM

1q – π1pMq, but we claim that much
more is true: each intersection (or self-intersection) of some gj with a fixed gi can be tubed

into the unique intersection point between gi and (a parallel copy of) f i. The result are
geometric duals hi to f i that are now disjointly embedded. This means that each pair
pf i, hiq has a regular neighbourhood that is a sphere bundle over S2, with a 4-ball removed.
The sphere bundle is trivial if and only if w2phiq “ w2pgiq “ 0.

So in the setting of Theorem B where all w2pgiq are assumed to vanish, we get a connected
sum decomposition as in Corollary 1.4, which explains the sentence preceding the statement
of this corollary in the introduction. Note that the ai :“ rfis form the first Lagrangian, but
the second Lagrangian generated by bi :“ rhis is formed by linear combinations of the rgis
and rfis induced by the geometric manoeuvres above.

Next we deduce Corollary 1.4, after recalling the statement.

Corollary 1.4. Let M be a connected 4-manifold with good fundamental group and let H be
a hyperbolic form in pπ2pMq, λM , rµM q, meaning that H is a Zrπ1M s-submodule of π2pMq,
generated by a hyperbolic basis consisting of classes a1, . . . , ak, b1, . . . , bk P H with

λpai, bjq “ δij , λpai, ajq “ 0 “ λpbi, bjq and rµpaiq “ 0 “ rµpbiq for all i, j.

Then there is a homeomorphism M « p#k
i“1S

2 ˆ S2q#M 1 with a connected sum that on π2

sends ai to rS2
i ˆ tptius and bi to rtptiu ˆ S

2
i s. In particular, H is an orthogonal summand

freely generated by tai, biu and π2pMq – H K π2pM
1q.

Proof of Corollary 1.4. Represent the ai and bi by framed generic immersions, using Propo-
sition 3.1 and the fact that in Z{2 we have w2paiq ” εpλpai, aiqq “ 0 and w2pbiq ”
εpλpbi, biqq “ 0 for all i. Apply Theorem B to these framed generic immersions. The output
is as in Remark 8.3, except that we have the additional information that λpbi, bjq “ 0 “ rµpbiq

for all i, j. This means that the operations of tubing into the tf iu occur in such a way that
up to homotopy there is no effect, i.e. the resulting disjointly embedded spheres thiu still
represent the tbiu. �
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