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Intersection form:

λ : H2(M, ∂M;Zπ1(M))× H2(M;Zπ1(M)) → Zπ1(M).

Self intersections:

µ : H2(M;Zπ1(M)) → Zπ1(M)/ ∼ .

Theorem (The disc embedding theorem, Freedman ’82)

Let M be a topological 4-manifold with π1(M) good. Let

f : (D2, ∂D2) → (M, ∂M)

be a generic immersion and let g : S2 ↬ M be such that
λ(f , g) = 1 ∈ Zπ1(M) and λ(g , g) = µ(g) = 0.
Then there is a locally flat embedding

f : (D2, ∂D2) ↪→ (M, ∂M)

with a geometric dual g : S2 ↬ M such that f |∂D2 = f |∂D2 ,
|f ⋔ g | = 1, and g ∼ g.
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The Disc Embedding Theorem (DET) realises algebraic
intersection data by topology.

It allows us to perform the Whitney trick in special situations.

It underpins all of topological 4-manifold theory.

The aim of this talk is to outline a proof of the disc embedding
theorem.
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Let F = Freedman and Q = Quinn.
Corollaries of DET include:

▶ The s-cobordism theorem. Every h-cobordism (W 5;M4,N4)
with Whitehead torsion τ(W ,M) = 0 is homeomorphic to
M × I (F).

▶ Connected noncompact 4-manifolds are smoothable (Q).

▶ Locally flat surfaces Σ2 ↪→ M4 have normal bundles (Q).

▶ Topological transversality (Q).

▶ 5-manifolds have handle decompositions (Q).

▶ Surgery exact sequence; all maps are defined and the
sequence is exact (F).

▶ Classification of 1-connected closed 4-manifolds up to
homeomorphism, in particular the 4DTPC (F).

▶ If K ⊆ S3 is a knot with ∆K (t) = 1, then K is slice (F).

▶ Exotic R4s (F and Donaldson).

▶ There are non-triangulable manifolds (F and Casson).
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Step 1: Tubing.

We want to replace f by a capped surface f ′′ in M.



Turn f ⇝ f ′ with algebraically trivial self-intersections.



An idealised tubing (with g embedded).



More tubing to convert f ′ to a capped surface f ′′.

The arcs persist in the past and future, so also represent sheets of
surfaces.



A schematic of a capped surface f ′′ with a dual sphere g . The
caps still have intersections, but they are ‘higher order’
intersections. I claim this constitutes progress.

Note that ∂f ′′ = ∂f .



Step 2: Towers.

We want to upgrade the capped surface to an infinite tower in M.

Casson’s idea: push intersection problems ‘to infinity’.
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Definition
A (finite) tower is a compact 4-manifold G ∼= ♮kS1 × D3 with a
preferred attaching region

∂− : S1 × D2 ↪→ ∂G

and a decomposition as a union of standard pieces:

(s) thickened surfaces Σg ,1 × D2;

(c) thickened discs D2 × D2 (caps) with self-plumbings.

Each piece has an attaching region (s) ∂Σg ,1 × D2; (c) ∂D2 × D2,
and a collection of tip regions, shown in yellow;
(s) symplectic basis of curves; (c) double point loops.
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A tower has stages, (s) surfaces stage; (c) cap stages.

We glue the tip regions of each stage to the attaching regions of
the next stage.

(i) A tower of type s . . . s with k stages is a grope Gk of height k .

(ii) A tower of type s . . . sc with k surface stages is a capped
grope G c

k of height k .

(iii) A tower of type s . . . sc . . . s . . . sc with k cap stages is a
k-storey tower Tk . Each storey is a capped grope.
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Theorem (Grope height raising)

Given a height k capped grope G c
k , k ≥ 2, for all r ∈ N there

exists an embedding G c
r ↪→ G c

k with the same attaching region ∂−.



Definition
The fundamental group π1(M) is good if for all

(G c
k+2, ∂−) ↪→ (M, ∂),

there exists
(G c

k , ∂−) ↪→ (G c
k+2, ∂−)

with the same attaching region and

π1(G
c
k )

0−→ π1(M)

i.e. a π1-null grope.

Theorem (Freedman-Quinn)

Virtually solvable groups are good.

Unknown whether all groups are good.
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Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.

▶ Iterate, applying this argument to top storey.



Proposition

If π1(M) is good, there exists an infinite tower

(T∞, ∂−) ↪→ (M, ∂f )

with infinitely many storeys and arbitrarily many surface stages in
each storey.

Sketch of proof.

Start with the capped surface from Step 1.

▶ Repeat the Step 1 arguments on the caps, to get G c
2 .

▶ Apply grope height raising to get G c
k+2.

▶ Use that π1(M) is good to obtain a π1-null G
c
k ↪→ G c

k+2.

▶ Use null-homotopies of double point loops to obtain (G c
k )

c ,
with a second layer of caps.

▶ Convert the last cap stage to gropes, as in Step 1. Obtain T2.
▶ Iterate, applying this argument to top storey.



Proposition

There exists an embedding

(T∞, ∂−) ↪→ (M, ∂f )

as before, such that
T ∞ = T̂∞.

i.e. the closure in M equals the Freudenthal endpoint
compactification.

The proof uses the infinitely many cap stages.
Note that T̂∞ \ T∞ is a Cantor set.

We obtain an embedding:

(T̂∞, ∂−) ↪→ (M, ∂f ).

A priori T̂∞ need not be a manifold.
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Step 3: Skyscrapers.

Definition
An infinite compactified tower T̂∞ is called a skyscraper.

We have reduced to proving:

Theorem
There is a homeomorphism of pairs

(T̂∞, ∂−) ∼= (D2 × D2,S1 × D2).

Then
D2 × {0} ↪→ T̂∞ ↪→ M

gives the desired locally flat embedding

f : (D2, ∂) → (M, ∂M).
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Write T[k,ℓ] for storeys k through ℓ of T̂∞ and let {T[k,k+1](m)} be
the path components of T[k,k+1].

Proposition (Self-replicating)

For every path-component T[k,k+1](m) of T[k,k+1] there is an
embedding

T̂ ′
∞ ↪→ T[k,k+1](m)

with the same ∂−.

We use this to fill our initial T̂∞ as much as possible, with a
Cantor set’s worth of embedded T̂∞s.
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Call the yellow subset,

D∞ := ∂−×I ∪
⋃

sub-towers

tapered collar of horiz. bdy ∪ {endpoints}

the design.

This is a “known” subset.
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Step 5: shrinking.

We want identify the connected components of T̂∞ \D∞ to
points, show this does not change the homeomorphism type, and
recognise the quotient space as D2 × D2.
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Interlude on shrinking.

Let X be a compact metric space. Suppose

X =
⋃
i∈I

∆i

where ∆i ⊆ X , and

∆i ∩∆j = ∅ for i ̸= j .

Write
D := {∆i}i∈I .

We consider the decomposition space

X/D

in which each we identify each ∆i to a point.

We will usually equate a decomposition with its non-singleton sets.
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We want to be able to show, in favourable cases, that the quotient
map

q : X → X/D

is approximable by homeomorphisms (ABH).

i.e. There is a sequence of homeomorphisms

fi : X
∼=−→ X/D

converging uniformly to q.

In particular X and X/D are homeomorphic.
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To prove that a quotient map q : X → X/D is ABH:

▶ Choose a sequence εi → 0.
▶ Produce homeomorphisms hi : X → X shrinking the

decomposition elements, i.e.

diam hi (∆j) < εi for all j

and such that hi → h uniformly, where

h : X → X ,

is a map with the same inverse sets as q, {h−1(x)} = {∆j}.
We have q, h:

X
q //

h
��

X/D

h}}
X

As h is constant on the fibres of q we get an induced map h.
Cts bijection, compact → Hausdorff ⇒ h a homeomorphism.

h
−1 ◦ hi → h

−1 ◦ h = h
−1 ◦ h ◦ q = q,

so q is ABH.
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Example:

▶ X = [0, 1],

▶ C = middle thirds Cantor set,

▶ D = connected components of X \ C.
▶ Fix a sequence εi → 0.

Consider a piecewise linear homeomorphism [0, 1] → [0, 1] that
shrinks [13 ,

2
3 ] very small near 1

2 and stretches [0, 13 ] and [23 , 1] to fill
most of [0, 12 ] and [12 , 1] respectively.

The remaining largest gaps were diameter 1/9, now become
diameter at most 3

2 · 1
9 = 1

6 . So largest gap diameter halved.

Iterate until all gaps are smaller than ε1, to obtain h1. Now repeat
to obtain {hi}.
We see that

[0, 1] ∼= [0, 1]/D.
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Proposition (Bing, Ancel-Starbird)

The frontier of each T̂∞ is homeomorphic to S3 = ∂− ∪ D2 × S1

provided that
∑

i
ai
2i

diverges, where ai is the number of surface

stages in the ith storey of T̂∞.

We can arrange that
∑

i
ai
2i

diverges in the construction of T̂∞
using grope height raising.

Thus the design contains a Cantor set’s worth of copies of D2×S1.

So we already have many embedded discs, just none are yet known
to be locally flat.
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Sketch proof that Fr T̂∞ ∼= S3.

A Kirby diagram of Tk is built from nesting unions of solid tori,
Stage of tower ↔ Stage of nested solid tori Ti in S3.

The cores of the last Ti thought of as a dotted link.
Then Tk ∼= D4 \ 2-handles and ∂Tk = 0-surgery on ∂ 2-handles.
Let D :=

⋂∞
i=1 Ti . Then Fr T∞ ∼= S3 \ D, and Fr T̂∞ ∼= S3/D.

Reposition each Ti+1 iteratively in Ti to shrink connected
components of D. Obtain that S3 → S3/D is ABH.
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Then Tk ∼= D4 \ 2-handles and ∂Tk = 0-surgery on ∂ 2-handles.
Let D :=

⋂∞
i=1 Ti . Then Fr T∞ ∼= S3 \ D, and Fr T̂∞ ∼= S3/D.

Reposition each Ti+1 iteratively in Ti to shrink connected
components of D. Obtain that S3 → S3/D is ABH.



End of Disc Embedding Theorem proof.

Recall we need to show

(T̂∞, ∂−) ∼= (H, ∂H) := (D2 × D2, S1 × D2).

There are embeddings

S1 × D2 � � //
� _

��

H

T̂∞ D∞
?�

OO

? _oo

Constructing D∞ ↪→ H uses that Fr T̂∞ ∼= ∂− ∪ D2 × S1.
Define decompositions via:

G := T̂∞ \D∞ and H := H \D∞.

(Should really talk about slight modifications G+ and H+ here,
omitted for time reasons.)
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There is a common quotient:

T̂∞

β
��

S1 × D2? _oo � � // H

α

��
T̂∞/G

∼= // D∞/∂G ∼= D∞/∂H H/H
∼=oo

Theorem
The maps α and β are ABH.
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S1 × D2? _oo � � // H

α∼=
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T̂∞/G
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∼=oo

Thus (T̂∞, ∂−) ∼= (H, ∂H) as desired.
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This was a stand-alone lecture. The next two lectures will be
somewhat distinct from this one. It won’t be necessary to know
anything about the proof of DET to follow them.


