4-manifold topology

Lecture I: the Disc Embedding Theorem

Mark Powell

Intersection form:

$$
\lambda: H_{2}\left(M, \partial M ; \mathbb{Z} \pi_{1}(M)\right) \times H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M)
$$

Intersection form:

$$
\lambda: H_{2}\left(M, \partial M ; \mathbb{Z} \pi_{1}(M)\right) \times H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M)
$$

Self intersections:

$$
\mu: H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M) / \sim
$$

Intersection form:

$$
\lambda: H_{2}\left(M, \partial M ; \mathbb{Z} \pi_{1}(M)\right) \times H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M)
$$

Self intersections:

$$
\mu: H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M) / \sim
$$

Theorem (The disc embedding theorem, Freedman '82)
Let M be a topological 4-manifold with $\pi_{1}(M)$ good. Let

$$
f:\left(D^{2}, \partial D^{2}\right) \rightarrow(M, \partial M)
$$

be a generic immersion and let $g: S^{2} \rightarrow M$ be such that $\lambda(f, g)=1 \in \mathbb{Z} \pi_{1}(M)$ and $\lambda(g, g)=\mu(g)=0$.

Intersection form:

$$
\lambda: H_{2}\left(M, \partial M ; \mathbb{Z} \pi_{1}(M)\right) \times H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M)
$$

Self intersections:

$$
\mu: H_{2}\left(M ; \mathbb{Z} \pi_{1}(M)\right) \rightarrow \mathbb{Z} \pi_{1}(M) / \sim
$$

Theorem (The disc embedding theorem, Freedman '82)
Let M be a topological 4-manifold with $\pi_{1}(M)$ good. Let

$$
f:\left(D^{2}, \partial D^{2}\right) \rightarrow(M, \partial M)
$$

be a generic immersion and let $g: S^{2} \rightarrow M$ be such that $\lambda(f, g)=1 \in \mathbb{Z} \pi_{1}(M)$ and $\lambda(g, g)=\mu(g)=0$.
Then there is a locally flat embedding

$$
\bar{f}:\left(D^{2}, \partial D^{2}\right) \hookrightarrow(M, \partial M)
$$

with a geometric dual $\bar{g}: S^{2} \rightarrow M$ such that $\left.f\right|_{\partial D^{2}}=\left.\bar{f}\right|_{\partial D^{2}}$, $|\bar{f} \pitchfork \bar{g}|=1$, and $g \sim \bar{g}$.

The Disc Embedding Theorem (DET) realises algebraic intersection data by topology.

The Disc Embedding Theorem (DET) realises algebraic intersection data by topology.

It allows us to perform the Whitney trick in special situations.

The Disc Embedding Theorem (DET) realises algebraic intersection data by topology.

It allows us to perform the Whitney trick in special situations.
It underpins all of topological 4-manifold theory.

The Disc Embedding Theorem (DET) realises algebraic intersection data by topology.

It allows us to perform the Whitney trick in special situations.
It underpins all of topological 4-manifold theory.
The aim of this talk is to outline a proof of the disc embedding theorem.

Let $F=$ Freedman and $Q=$ Quinn.
Corollaries of DET include:

Let $F=$ Freedman and $Q=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism ($W^{5} ; M^{4}, N^{4}$) with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism ($W^{5} ; M^{4}, N^{4}$) with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).

Let $F=$ Freedman and $Q=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).
- Surgery exact sequence; all maps are defined and the sequence is exact (F).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).
- Surgery exact sequence; all maps are defined and the sequence is exact (F).
- Classification of 1-connected closed 4-manifolds up to homeomorphism, in particular the 4DTPC (F).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).
- Surgery exact sequence; all maps are defined and the sequence is exact (F).
- Classification of 1-connected closed 4-manifolds up to homeomorphism, in particular the 4DTPC (F).
- If $K \subseteq S^{3}$ is a knot with $\Delta_{K}(t)=1$, then K is slice (F).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).
- Surgery exact sequence; all maps are defined and the sequence is exact (F).
- Classification of 1-connected closed 4-manifolds up to homeomorphism, in particular the 4DTPC (F).
- If $K \subseteq S^{3}$ is a knot with $\Delta_{K}(t)=1$, then K is slice (F).
- Exotic $\mathbb{R}^{4} \mathrm{~s}$ (F and Donaldson).

Let $\mathrm{F}=$ Freedman and $\mathrm{Q}=$ Quinn.
Corollaries of DET include:

- The s-cobordism theorem. Every h-cobordism $\left(W^{5} ; M^{4}, N^{4}\right)$ with Whitehead torsion $\tau(W, M)=0$ is homeomorphic to $M \times I(F)$.
- Connected noncompact 4-manifolds are smoothable (Q).
- Locally flat surfaces $\Sigma^{2} \hookrightarrow M^{4}$ have normal bundles (Q).
- Topological transversality (Q).
- 5-manifolds have handle decompositions (Q).
- Surgery exact sequence; all maps are defined and the sequence is exact (F).
- Classification of 1-connected closed 4-manifolds up to homeomorphism, in particular the 4DTPC (F).
- If $K \subseteq S^{3}$ is a knot with $\Delta_{K}(t)=1$, then K is slice (F).
- Exotic $\mathbb{R}^{4} \mathrm{~s}$ (F and Donaldson).
- There are non-triangulable manifolds (F and Casson).

Step 1: Tubing.
We want to replace f by a capped surface $f^{\prime \prime}$ in M.

Turn $f \rightsquigarrow f^{\prime}$ with algebraically trivial self-intersections.

An idealised tubing (with g embedded).

More tubing to convert f^{\prime} to a capped surface $f^{\prime \prime}$.

The arcs persist in the past and future, so also represent sheets of surfaces.

A schematic of a capped surface $f^{\prime \prime}$ with a dual sphere g. The caps still have intersections, but they are 'higher order' intersections. I claim this constitutes progress.

Note that $\partial f^{\prime \prime}=\partial f$.

Step 2: Towers.
We want to upgrade the capped surface to an infinite tower in M.

Step 2: Towers.
We want to upgrade the capped surface to an infinite tower in M.
Casson's idea: push intersection problems 'to infinity'.

Definition

A (finite) tower is a compact 4-manifold $G \cong t^{k} S^{1} \times D^{3}$ with a preferred attaching region

$$
\partial_{-}: S^{1} \times D^{2} \hookrightarrow \partial G
$$

and a decomposition as a union of standard pieces:
(s) thickened surfaces $\Sigma_{g, 1} \times D^{2}$;
(c) thickened discs $D^{2} \times D^{2}$ (caps) with self-plumbings.

(C)

Definition

A (finite) tower is a compact 4-manifold $G \cong t^{k} S^{1} \times D^{3}$ with a preferred attaching region

$$
\partial_{-}: S^{1} \times D^{2} \hookrightarrow \partial G
$$

and a decomposition as a union of standard pieces:
(s) thickened surfaces $\Sigma_{g, 1} \times D^{2}$;
(c) thickened discs $D^{2} \times D^{2}$ (caps) with self-plumbings.

Each piece has an attaching region (s) $\partial \Sigma_{g, 1} \times D^{2}$; (c) $\partial D^{2} \times D^{2}$,

Definition

A (finite) tower is a compact 4-manifold $G \cong \square^{k} S^{1} \times D^{3}$ with a preferred attaching region

$$
\partial_{-}: S^{1} \times D^{2} \hookrightarrow \partial G
$$

and a decomposition as a union of standard pieces:
(s) thickened surfaces $\Sigma_{g, 1} \times D^{2}$;
(c) thickened discs $D^{2} \times D^{2}$ (caps) with self-plumbings.

Each piece has an attaching region (s) $\partial \Sigma_{g, 1} \times D^{2}$; (c) $\partial D^{2} \times D^{2}$, and a collection of tip regions, shown in yellow;
(s) symplectic basis of curves; (c) double point loops.

A tower has stages, (s) surfaces stage; (c) cap stages.

A tower has stages, (s) surfaces stage; (c) cap stages.
We glue the tip regions of each stage to the attaching regions of the next stage.

A tower has stages, (s) surfaces stage; (c) cap stages.
We glue the tip regions of each stage to the attaching regions of the next stage.

A tower has stages, (s) surfaces stage; (c) cap stages.
We glue the tip regions of each stage to the attaching regions of the next stage.

(i) A tower of type $s \ldots s$ with k stages is a grope G_{k} of height k.

A tower has stages, (s) surfaces stage; (c) cap stages.
We glue the tip regions of each stage to the attaching regions of the next stage.

(i) A tower of type $s \ldots s$ with k stages is a grope G_{k} of height k.
(ii) A tower of type $s \ldots$...sc with k surface stages is a capped grope G_{k}^{c} of height k.

A tower has stages, (s) surfaces stage; (c) cap stages.
We glue the tip regions of each stage to the attaching regions of the next stage.

(i) A tower of type $s \ldots s$ with k stages is a grope G_{k} of height k.
(ii) A tower of type $s \ldots$...sc with k surface stages is a capped grope G_{k}^{c} of height k.
(iii) A tower of type $s \ldots s c \ldots s \ldots s c$ with k cap stages is a k-storey tower \mathcal{T}_{k}. Each storey is a capped grope.

Theorem (Grope height raising)
Given a height k capped grope $G_{k}^{c}, k \geq 2$, for all $r \in \mathbb{N}$ there exists an embedding $G_{r}^{c} \hookrightarrow G_{k}^{c}$ with the same attaching region ∂_{-}.

Definition

The fundamental group $\pi_{1}(M)$ is good if for all

$$
\left(G_{k+2}^{c}, \partial_{-}\right) \hookrightarrow(M, \partial),
$$

there exists

$$
\left(G_{k}^{c}, \partial_{-}\right) \hookrightarrow\left(G_{k+2}^{c}, \partial_{-}\right)
$$

with the same attaching region and

$$
\pi_{1}\left(G_{k}^{c}\right) \xrightarrow{0} \pi_{1}(M)
$$

i.e. a π_{1}-null grope.

Definition

The fundamental group $\pi_{1}(M)$ is good if for all

$$
\left(G_{k+2}^{c}, \partial_{-}\right) \hookrightarrow(M, \partial),
$$

there exists

$$
\left(G_{k}^{c}, \partial_{-}\right) \hookrightarrow\left(G_{k+2}^{c}, \partial_{-}\right)
$$

with the same attaching region and

$$
\pi_{1}\left(G_{k}^{c}\right) \xrightarrow{0} \pi_{1}(M)
$$

i.e. a π_{1}-null grope.

Theorem (Freedman-Quinn)
Virtually solvable groups are good.

Definition

The fundamental group $\pi_{1}(M)$ is good if for all

$$
\left(G_{k+2}^{c}, \partial_{-}\right) \hookrightarrow(M, \partial),
$$

there exists

$$
\left(G_{k}^{c}, \partial_{-}\right) \hookrightarrow\left(G_{k+2}^{c}, \partial_{-}\right)
$$

with the same attaching region and

$$
\pi_{1}\left(G_{k}^{c}\right) \xrightarrow{0} \pi_{1}(M)
$$

i.e. a π_{1}-null grope.

Theorem (Freedman-Quinn)
Virtually solvable groups are good.

Unknown whether all groups are good.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.
- Apply grope height raising to get G_{k+2}^{c}.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.
- Apply grope height raising to get G_{k+2}^{c}.
- Use that $\pi_{1}(M)$ is good to obtain a π_{1}-null $G_{k}^{c} \hookrightarrow G_{k+2}^{c}$.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.
- Apply grope height raising to get G_{k+2}^{c}.
- Use that $\pi_{1}(M)$ is good to obtain a π_{1}-null $G_{k}^{c} \hookrightarrow G_{k+2}^{c}$.
- Use null-homotopies of double point loops to obtain $\left(G_{k}^{c}\right)^{c}$, with a second layer of caps.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.
- Apply grope height raising to get G_{k+2}^{c}.
- Use that $\pi_{1}(M)$ is good to obtain a π_{1}-null $G_{k}^{c} \hookrightarrow G_{k+2}^{c}$.
- Use null-homotopies of double point loops to obtain $\left(G_{k}^{c}\right)^{c}$, with a second layer of caps.
- Convert the last cap stage to gropes, as in Step 1. Obtain \mathcal{T}_{2}.

Proposition

If $\pi_{1}(M)$ is good, there exists an infinite tower

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

with infinitely many storeys and arbitrarily many surface stages in each storey.

Sketch of proof.
Start with the capped surface from Step 1.

- Repeat the Step 1 arguments on the caps, to get G_{2}^{c}.
- Apply grope height raising to get G_{k+2}^{c}.
- Use that $\pi_{1}(M)$ is good to obtain a π_{1}-null $G_{k}^{c} \hookrightarrow G_{k+2}^{c}$.
- Use null-homotopies of double point loops to obtain $\left(G_{k}^{c}\right)^{c}$, with a second layer of caps.
- Convert the last cap stage to gropes, as in Step 1. Obtain \mathcal{T}_{2}.
- Iterate, applying this argument to top storey.

Proposition

There exists an embedding

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

as before, such that

$$
\overline{\mathcal{T}}_{\infty}=\widehat{\mathcal{T}}_{\infty}
$$

i.e. the closure in M equals the Freudenthal endpoint compactification.

Proposition

There exists an embedding

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

as before, such that

$$
\overline{\mathcal{T}}_{\infty}=\widehat{\mathcal{T}}_{\infty}
$$

i.e. the closure in M equals the Freudenthal endpoint compactification.

The proof uses the infinitely many cap stages. Note that $\widehat{\mathcal{T}}_{\infty} \backslash \mathcal{T}_{\infty}$ is a Cantor set.

Proposition

There exists an embedding

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

as before, such that

$$
\overline{\mathcal{T}}_{\infty}=\widehat{\mathcal{T}}_{\infty}
$$

i.e. the closure in M equals the Freudenthal endpoint compactification.

The proof uses the infinitely many cap stages. Note that $\widehat{\mathcal{T}}_{\infty} \backslash \mathcal{T}_{\infty}$ is a Cantor set.

We obtain an embedding:

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

Proposition

There exists an embedding

$$
\left(\mathcal{T}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

as before, such that

$$
\overline{\mathcal{T}}_{\infty}=\widehat{\mathcal{T}}_{\infty}
$$

i.e. the closure in M equals the Freudenthal endpoint compactification.

The proof uses the infinitely many cap stages. Note that $\widehat{\mathcal{T}}_{\infty} \backslash \mathcal{T}_{\infty}$ is a Cantor set.

We obtain an embedding:

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \hookrightarrow(M, \partial f)
$$

A priori $\widehat{\mathcal{T}}_{\infty}$ need not be a manifold.

Step 3: Skyscrapers.

Definition
An infinite compactified tower $\widehat{\mathcal{T}}_{\infty}$ is called a skyscraper.

Step 3: Skyscrapers.

Definition
An infinite compactified tower $\widehat{\mathcal{T}}_{\infty}$ is called a skyscraper.

We have reduced to proving:

Theorem
There is a homeomorphism of pairs

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

Step 3: Skyscrapers.

Definition
An infinite compactified tower $\widehat{\mathcal{T}}_{\infty}$ is called a skyscraper.

We have reduced to proving:

Theorem
There is a homeomorphism of pairs

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

Then

$$
D^{2} \times\{0\} \hookrightarrow \widehat{\mathcal{T}}_{\infty} \hookrightarrow M
$$

gives the desired locally flat embedding

$$
\bar{f}:\left(D^{2}, \partial\right) \rightarrow(M, \partial M)
$$

Write $\mathcal{T}_{[k, \ell]}$ for storeys k through ℓ of $\widehat{\mathcal{T}}_{\infty}$ and let $\left\{\mathcal{T}_{[k, k+1]}(m)\right\}$ be the path components of $\mathcal{T}_{[k, k+1]}$.

Write $\mathcal{T}_{[k, \ell]}$ for storeys k through ℓ of $\widehat{\mathcal{T}}_{\infty}$ and let $\left\{\mathcal{T}_{[k, k+1]}(m)\right\}$ be the path components of $\mathcal{T}_{[k, k+1]}$.

Proposition (Self-replicating)

For every path-component $\mathcal{T}_{[k, k+1]}(m)$ of $\mathcal{T}_{[k, k+1]}$ there is an embedding

$$
\hat{\mathcal{T}}_{\infty}^{\prime} \hookrightarrow \mathcal{T}_{[k, k+1]}(m)
$$

with the same ∂_{-}.

Write $\mathcal{T}_{[k, \ell]}$ for storeys k through ℓ of $\widehat{\mathcal{T}}_{\infty}$ and let $\left\{\mathcal{T}_{[k, k+1]}(m)\right\}$ be the path components of $\mathcal{T}_{[k, k+1]}$.

Proposition (Self-replicating)

For every path-component $\mathcal{T}_{[k, k+1]}(m)$ of $\mathcal{T}_{[k, k+1]}$ there is an embedding

$$
\hat{\mathcal{T}}_{\infty}^{\prime} \hookrightarrow \mathcal{T}_{[k, k+1]}(m)
$$

with the same ∂_{-}.
We use this to fill our initial $\widehat{\mathcal{T}}_{\infty}$ as much as possible, with a Cantor set's worth of embedded $\widehat{\mathcal{T}}_{\infty}$ s.

Call the yellow subset,
$\mathfrak{D}_{\infty}:=\partial_{-} \times I \cup \bigcup_{\text {sub-towers }}$ tapered collar of horiz. bdy $\cup\{$ endpoints $\}$
the design.

Call the yellow subset,
$\mathfrak{D}_{\infty}:=\partial_{-} \times I \cup \bigcup_{\text {sub-towers }}$ tapered collar of horiz. bdy $\cup\{$ endpoints $\}$
the design.
This is a "known" subset.

Step 5: shrinking.

Step 5: shrinking.
We want identify the connected components of $\widehat{\mathcal{T}}_{\infty} \backslash \mathfrak{D}_{\infty}$ to points, show this does not change the homeomorphism type, and recognise the quotient space as $D^{2} \times D^{2}$.

Interlude on shrinking.

Interlude on shrinking.
Let X be a compact metric space.

Interlude on shrinking.
Let X be a compact metric space. Suppose

$$
X=\bigcup_{i \in \mathcal{I}} \Delta_{i}
$$

where $\Delta_{i} \subseteq X$, and

$$
\Delta_{i} \cap \Delta_{j}=\emptyset \text { for } i \neq j
$$

Interlude on shrinking.
Let X be a compact metric space. Suppose

$$
X=\bigcup_{i \in \mathcal{I}} \Delta_{i}
$$

where $\Delta_{i} \subseteq X$, and

$$
\Delta_{i} \cap \Delta_{j}=\emptyset \text { for } i \neq j
$$

Write

$$
\mathcal{D}:=\left\{\Delta_{i}\right\}_{i \in \mathcal{I}}
$$

Interlude on shrinking.
Let X be a compact metric space. Suppose

$$
X=\bigcup_{i \in \mathcal{I}} \Delta_{i}
$$

where $\Delta_{i} \subseteq X$, and

$$
\Delta_{i} \cap \Delta_{j}=\emptyset \text { for } i \neq j
$$

Write

$$
\mathcal{D}:=\left\{\Delta_{i}\right\}_{i \in \mathcal{I}} .
$$

We consider the decomposition space

$$
X / \mathcal{D}
$$

in which each we identify each Δ_{i} to a point.

Interlude on shrinking.
Let X be a compact metric space. Suppose

$$
X=\bigcup_{i \in \mathcal{I}} \Delta_{i}
$$

where $\Delta_{i} \subseteq X$, and

$$
\Delta_{i} \cap \Delta_{j}=\emptyset \text { for } i \neq j
$$

Write

$$
\mathcal{D}:=\left\{\Delta_{i}\right\}_{i \in \mathcal{I}} .
$$

We consider the decomposition space

$$
X / \mathcal{D}
$$

in which each we identify each Δ_{i} to a point.
We will usually equate a decomposition with its non-singleton sets.

We want to be able to show, in favourable cases, that the quotient map

$$
q: X \rightarrow X / \mathcal{D}
$$

is approximable by homeomorphisms (ABH).

We want to be able to show, in favourable cases, that the quotient map

$$
q: X \rightarrow X / \mathcal{D}
$$

is approximable by homeomorphisms (ABH).
i.e. There is a sequence of homeomorphisms

$$
f_{i}: X \xrightarrow{\cong} X / \mathcal{D}
$$

converging uniformly to q.

We want to be able to show, in favourable cases, that the quotient map

$$
q: X \rightarrow X / \mathcal{D}
$$

is approximable by homeomorphisms (ABH).
i.e. There is a sequence of homeomorphisms

$$
f_{i}: X \xrightarrow{\cong} X / \mathcal{D}
$$

converging uniformly to q.
In particular X and X / \mathcal{D} are homeomorphic.

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.
$\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i}$ for all j

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.

$$
\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i} \text { for all } \mathrm{j}
$$

and such that $h_{i} \rightarrow h$ uniformly, where

$$
h: X \rightarrow X
$$

is a map with the same inverse sets as $q,\left\{h^{-1}(x)\right\}=\left\{\Delta_{j}\right\}$.

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.

$$
\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i} \text { for all } \mathrm{j}
$$

and such that $h_{i} \rightarrow h$ uniformly, where

$$
h: X \rightarrow X
$$

is a map with the same inverse sets as $q,\left\{h^{-1}(x)\right\}=\left\{\Delta_{j}\right\}$.
We have q, h :

$$
\begin{gathered}
X \xrightarrow{q} X / \mathcal{D} \\
h \forall_{k} \prime^{\prime} \bar{h} \\
X^{\prime}
\end{gathered}
$$

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.

$$
\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i} \text { for all } \mathrm{j}
$$

and such that $h_{i} \rightarrow h$ uniformly, where

$$
h: X \rightarrow X
$$

is a map with the same inverse sets as $q,\left\{h^{-1}(x)\right\}=\left\{\Delta_{j}\right\}$.
We have q, h :

As h is constant on the fibres of q we get an induced map \bar{h}.

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.

$$
\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i} \text { for all } \mathrm{j}
$$

and such that $h_{i} \rightarrow h$ uniformly, where

$$
h: X \rightarrow X,
$$

is a map with the same inverse sets as $q,\left\{h^{-1}(x)\right\}=\left\{\Delta_{j}\right\}$.
We have q, h :

As h is constant on the fibres of q we get an induced map \bar{h}. Cts bijection, compact \rightarrow Hausdorff $\Rightarrow \bar{h}$ a homeomorphism.

To prove that a quotient map $q: X \rightarrow X / \mathcal{D}$ is ABH :

- Choose a sequence $\varepsilon_{i} \rightarrow 0$.
- Produce homeomorphisms $h_{i}: X \rightarrow X$ shrinking the decomposition elements, i.e.

$$
\operatorname{diam} h_{i}\left(\Delta_{j}\right)<\varepsilon_{i} \text { for all } \mathrm{j}
$$

and such that $h_{i} \rightarrow h$ uniformly, where

$$
h: X \rightarrow X
$$

is a map with the same inverse sets as $q,\left\{h^{-1}(x)\right\}=\left\{\Delta_{j}\right\}$.
We have q, h :

As h is constant on the fibres of q we get an induced map \bar{h}. Cts bijection, compact \rightarrow Hausdorff $\Rightarrow \bar{h}$ a homeomorphism.

$$
\bar{h}^{-1} \circ h_{i} \rightarrow \bar{h}^{-1} \circ h=\bar{h}^{-1} \circ \bar{h} \circ q=q,
$$

so q is $A B H$.

Example:

- $X=[0,1]$,

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $\overline{X \backslash \mathfrak{C}}$.

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $\overline{X \backslash \mathfrak{C}}$.
- Fix a sequence $\varepsilon_{i} \rightarrow 0$.

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $\overline{X \backslash \mathfrak{C}}$.
- Fix a sequence $\varepsilon_{i} \rightarrow 0$.

Consider a piecewise linear homeomorphism $[0,1] \rightarrow[0,1]$ that shrinks $\left[\frac{1}{3}, \frac{2}{3}\right]$ very small near $\frac{1}{2}$ and stretches $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ to fill most of $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$ respectively.

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $X \backslash \mathfrak{C}$.
- Fix a sequence $\varepsilon_{i} \rightarrow 0$.

Consider a piecewise linear homeomorphism $[0,1] \rightarrow[0,1]$ that shrinks $\left[\frac{1}{3}, \frac{2}{3}\right]$ very small near $\frac{1}{2}$ and stretches $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ to fill most of $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$ respectively.

The remaining largest gaps were diameter $1 / 9$, now become diameter at most $\frac{3}{2} \cdot \frac{1}{9}=\frac{1}{6}$. So largest gap diameter halved.

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $\overline{X \backslash \mathfrak{C}}$.
- Fix a sequence $\varepsilon_{i} \rightarrow 0$.

Consider a piecewise linear homeomorphism $[0,1] \rightarrow[0,1]$ that shrinks $\left[\frac{1}{3}, \frac{2}{3}\right]$ very small near $\frac{1}{2}$ and stretches $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ to fill most of $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$ respectively.

The remaining largest gaps were diameter $1 / 9$, now become diameter at most $\frac{3}{2} \cdot \frac{1}{9}=\frac{1}{6}$. So largest gap diameter halved.

Iterate until all gaps are smaller than ε_{1}, to obtain h_{1}. Now repeat to obtain $\left\{h_{i}\right\}$.

Example:

- $X=[0,1]$,
- $\mathfrak{C}=$ middle thirds Cantor set,
- $\mathcal{D}=$ connected components of $\overline{X \backslash \mathfrak{C}}$.
- Fix a sequence $\varepsilon_{i} \rightarrow 0$.

Consider a piecewise linear homeomorphism $[0,1] \rightarrow[0,1]$ that shrinks $\left[\frac{1}{3}, \frac{2}{3}\right]$ very small near $\frac{1}{2}$ and stretches $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ to fill most of $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$ respectively.

The remaining largest gaps were diameter $1 / 9$, now become diameter at most $\frac{3}{2} \cdot \frac{1}{9}=\frac{1}{6}$. So largest gap diameter halved.

Iterate until all gaps are smaller than ε_{1}, to obtain h_{1}. Now repeat to obtain $\left\{h_{i}\right\}$.
We see that

$$
[0,1] \cong[0,1] / \mathcal{D} .
$$

Proposition (Bing, Ancel-Starbird)

The frontier of each $\widehat{\mathcal{T}}_{\infty}$ is homeomorphic to $S^{3}=\partial_{-} \cup D^{2} \times S^{1}$ provided that $\sum_{i} \frac{a_{i}}{2^{i}}$ diverges, where a_{i} is the number of surface stages in the ith storey of $\widehat{\mathcal{T}}_{\infty}$.

Proposition (Bing, Ancel-Starbird)

The frontier of each $\widehat{\mathcal{T}}_{\infty}$ is homeomorphic to $S^{3}=\partial_{-} \cup D^{2} \times S^{1}$ provided that $\sum_{i} \frac{a_{i}}{2^{i}}$ diverges, where a_{i} is the number of surface stages in the ith storey of $\widehat{\mathcal{T}}_{\infty}$.

We can arrange that $\sum_{i} \frac{a_{i}}{2^{i}}$ diverges in the construction of $\widehat{\mathcal{T}}_{\infty}$ using grope height raising.

Proposition (Bing, Ancel-Starbird)

The frontier of each $\widehat{\mathcal{T}}_{\infty}$ is homeomorphic to $S^{3}=\partial_{-} \cup D^{2} \times S^{1}$ provided that $\sum_{i} \frac{a_{i}}{2^{\prime}}$ diverges, where a_{i} is the number of surface stages in the ith storey of $\widehat{\mathcal{T}}_{\infty}$.

We can arrange that $\sum_{i} \frac{a_{i}}{2^{i}}$ diverges in the construction of $\widehat{\mathcal{T}}_{\infty}$ using grope height raising.

Thus the design contains a Cantor set's worth of copies of $D^{2} \times S^{1}$.

Proposition (Bing, Ancel-Starbird)

The frontier of each $\widehat{\mathcal{T}}_{\infty}$ is homeomorphic to $S^{3}=\partial_{-} \cup D^{2} \times S^{1}$ provided that $\sum_{i} \frac{a_{i}}{2^{\prime}}$ diverges, where a_{i} is the number of surface stages in the ith storey of $\widehat{\mathcal{T}}_{\infty}$.

We can arrange that $\sum_{i} \frac{a_{i}}{2^{i}}$ diverges in the construction of $\widehat{\mathcal{T}}_{\infty}$ using grope height raising.

Thus the design contains a Cantor set's worth of copies of $D^{2} \times S^{1}$.
So we already have many embedded discs, just none are yet known to be locally flat.

Sketch proof that $\mathrm{Fr}_{\boldsymbol{\mathcal { T }}}^{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

Sketch proof that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

(s) $\bigsqcup^{2 g} S^{1} \times 0 \hookrightarrow S^{\prime} \times 0^{2}$
$\sum_{g, 1} \times 0^{2}$

(c) $\bigsqcup^{d} S^{\prime} \times 0 \hookrightarrow S^{1} \times 0^{2}$
d sett-plumbings.

Sketch proof that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

The cores of the last T_{i} thought of as a dotted link.

Sketch proof that $\mathrm{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

The cores of the last T_{i} thought of as a dotted link. Then $\mathcal{T}_{k} \cong D^{4} \backslash 2$-handles and $\partial \mathcal{T}_{k}=0$-surgery on ∂ 2-handles.

Sketch proof that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

The cores of the last T_{i} thought of as a dotted link.
Then $\mathcal{T}_{k} \cong D^{4} \backslash 2$-handles and $\partial \mathcal{T}_{k}=0$-surgery on ∂ 2-handles.
Let $\mathcal{D}:=\bigcap_{i=1}^{\infty} T_{i}$. Then $\operatorname{Fr} \mathcal{T}_{\infty} \cong S^{3} \backslash \mathcal{D}$, and $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3} / \mathcal{D}$.

Sketch proof that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

$$
\sum_{g, 1} \times D^{2}
$$

d selt-plumbings.

The cores of the last T_{i} thought of as a dotted link. Then $\mathcal{T}_{k} \cong D^{4} \backslash 2$-handles and $\partial \mathcal{T}_{k}=0$-surgery on ∂ 2-handles. Let $\mathcal{D}:=\bigcap_{i=1}^{\infty} T_{i}$. Then $\operatorname{Fr} \mathcal{T}_{\infty} \cong S^{3} \backslash \mathcal{D}$, and $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3} / \mathcal{D}$. Reposition each T_{i+1} iteratively in T_{i} to shrink connected components of \mathcal{D}.

Sketch proof that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3}$.
A Kirby diagram of \mathcal{T}_{k} is built from nesting unions of solid tori, Stage of tower \leftrightarrow Stage of nested solid tori T_{i} in S^{3}.

The cores of the last T_{i} thought of as a dotted link. Then $\mathcal{T}_{k} \cong D^{4} \backslash 2$-handles and $\partial \mathcal{T}_{k}=0$-surgery on $\partial 2$-handles. Let $\mathcal{D}:=\bigcap_{i=1}^{\infty} T_{i}$. Then $\operatorname{Fr} \mathcal{T}_{\infty} \cong S^{3} \backslash \mathcal{D}$, and $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong S^{3} / \mathcal{D}$. Reposition each T_{i+1} iteratively in T_{i} to shrink connected components of \mathcal{D}. Obtain that $S^{3} \rightarrow S^{3} / \mathcal{D}$ is ABH .

End of Disc Embedding Theorem proof.

Recall we need to show

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong(H, \partial H):=\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

End of Disc Embedding Theorem proof.
Recall we need to show

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong(H, \partial H):=\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

There are embeddings

Constructing $\mathfrak{D}_{\infty} \hookrightarrow H$ uses that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong \partial_{-} \cup D^{2} \times S^{1}$.

End of Disc Embedding Theorem proof.
Recall we need to show

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong(H, \partial H):=\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

There are embeddings

Constructing $\mathfrak{D}_{\infty} \hookrightarrow H$ uses that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong \partial_{-} \cup D^{2} \times S^{1}$. Define decompositions via:

$$
\mathcal{G}:=\overline{\widehat{\mathcal{T}}_{\infty} \backslash \mathfrak{D}_{\infty}} \text { and } \mathcal{H}:=\overline{H \backslash \mathfrak{D}_{\infty}} .
$$

End of Disc Embedding Theorem proof.
Recall we need to show

$$
\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong(H, \partial H):=\left(D^{2} \times D^{2}, S^{1} \times D^{2}\right)
$$

There are embeddings

Constructing $\mathfrak{D}_{\infty} \hookrightarrow H$ uses that $\operatorname{Fr} \widehat{\mathcal{T}}_{\infty} \cong \partial_{-} \cup D^{2} \times S^{1}$. Define decompositions via:

$$
\mathcal{G}:=\overline{\mathcal{T}_{\infty} \backslash \mathfrak{D}_{\infty}} \text { and } \mathcal{H}:=\overline{H \backslash \mathfrak{D}_{\infty}} .
$$

(Should really talk about slight modifications \mathcal{G}^{+}and \mathcal{H}^{+}here, omitted for time reasons.)

There is a common quotient:

There is a common quotient:

Theorem
The maps α and β are $A B H$.

There is a common quotient:

Theorem
The maps α and β are $A B H$.

$$
\begin{array}{cc}
\widehat{\mathcal{T}}_{\infty} \longleftrightarrow S^{1} \times D^{2 C} & H \\
\bar{\beta} \mid \cong & \triangleq \mid \bar{\alpha} \\
\widehat{\mathcal{T}}_{\infty} / \mathcal{G} \cong \mathfrak{D}_{\infty} / \partial \mathcal{G} \cong \mathfrak{D}_{\infty} / \partial \mathcal{H} \rightleftarrows H / \mathcal{H}
\end{array}
$$

Thus $\left(\widehat{\mathcal{T}}_{\infty}, \partial_{-}\right) \cong(H, \partial H)$ as desired.

This was a stand-alone lecture. The next two lectures will be somewhat distinct from this one. It won't be necessary to know anything about the proof of DET to follow them.

