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1 Introduction
The main objects of this text are homology spheres, which are defined below.

Definition 1.1. A manifold M of dimension n is called a homology n-sphere if it has the same
homology groups as Sn; that is,

Hk(M) =
{
Z if k ∈ {0, n}
0 otherwise

A result of J.W. Cannon in [Can79] establishes the following theorem

Theorem 1.2 (Double Suspension Theorem). The double suspension of any homology n-sphere
is homeomorphic to Sn+2.

This, however, is beyond the scope of this text. We will, instead, construct a homology
sphere, the Mazur homology 3-sphere, and show the double suspension theorem for this particular
manifold. However, before beginning with the proper content, let us study the following famous
example of a nontrivial homology sphere.

Example 1.3. . Let I be the group of (orientation preserving) symmetries of the icosahedron,
which we recall is a regular polyhedron with twenty faces, twelve vertices, and thirty edges. This
group, called the icosahedral group, is finite, with sixty elements, and is naturally a subgroup
of SO(3). It is a well-known fact that we have a 2-fold covering ξ : SU(2) → SO(3), where
SU(2) ∼= S3, and SO(3) ∼= RP 3. We then consider the following pullback diagram

S0 S0

Ĩ := ι∗(SU(2)) SU(2)

I SO(3)

ι∗ξ ξ

Then, Ĩ is also a group, where the multiplication is given by the lift of the map µ ◦ (ι∗ξ× ι∗ξ),
where µ is the multiplication in I. Thus, Ĩ defines a subgroup of the compact Lie group SU(2),
called the binary (or extended) icosahedral group. Furthermore, it is clear that this group
consists of 120 elements; it can be further shown that Ĩ = 〈s, t | (st)2 = s3 = t5〉. We now form
the space P 3 = SU(2)�Ĩ, called the Pioncaré homology sphere, and note that it is itself a Lie
group, as being the quotient of a Lie group by a finite subgroup. By covering space theory (more
precisely, Proposition 1.40 from [Hat01]), one can show that π1P

3 ∼= Ĩ. Another way to see this
is via a theorem of Gleason (cf. Corollary 1.4 in [Coh]), which states that p : SU(2)→ P 3 is a
principal Ĩ-bundle. Since this principal bundle has discrete fibre, it is a covering space with the
structure group being isomorphic to the fundamental group. That is, π1(P 3) ∼= Ĩ.

It is a well-known fact that the binary icosahedral group is a perfect group, i.e. Ĩ = [Ĩ , Ĩ]. From
1
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this, it follows that H1(P 3) ∼= πab1 (P 3) = 0. Furthermore, since P 3 is a Lie group, Poincaré
duality holds, so that we get an isomorphism H2(P 3) ∼= H1(P 3); by the universal coefficient
theorem, it also follows that H1(P 3) ∼= Hom(H1(P 3),Z) = 0, so that H2(P 3) = 0. Furthermore,
P 3 is clearly connected, and hence H3(P 3) ∼= Z. Thus, it is a homology sphere.

Remark: There are at least eight different constructions of that manifold, as found in [KS79].
The above description is the most accessible one among them.

The upshot of the above example is that homology equivalence does not classify spaces up to
homotopy equivalence; indeed, P 3 and S3 are homology equivalent, even though S3 is simply
connected, while π1(P 3) ∼= Ĩ 6= 0.

2 Some technical lemmata
We now prove some technical lemmata, the first of which serves as a preliminary reduction of

the double suspension theorem to proving that the double suspension is a manifold, while the
second gives a criterion for a manifold to be a homology n-sphere. The third one will be used to
show that the 4-manifold we construct in the next section is indeed contractible, so that the
conditions of Lemma 2.3 are met.

Lemma 2.1. If a compact manifold of dimension n can be written as M = U1 ∪ U2 where
U1 ∼= U2 ∼= Rn, then M ∼= Sn.

Proof. By invariance of domain, we note that any U1 and U2 as in the above are open in M .
Denote by ϕ the homeomorphism ϕ : U2 → Rn. Observe that M \ U1, being a closed set in the
compact manifold M , is itself compact. Then, ϕ(M \ U1) is a compact subset of Rn, so that,
in particular, it is bounded in Rn. Consider three closed, n-dimensional concentric balls in Rn,
containing ϕ(M \ U1) in their interiors, and let D be the middle ball. Then, ϕ−1(∂D) ⊆ U1
is a bicollared (n − 1)-dimensional sphere in U1. Thus, the Schoenflies theorem tells us that
M \ ϕ−1(int(D)) is itself homeomorphic to Dn. Consequently, we have shown that M can
be written as a union of two homeomorphic copies of the standard disc Dn, attached along
their boundaries. By the Alexander trick, we may extend the homeomorphism ϕ−1|∂D to
homeomorphisms of the discs themselves, and as such, M ∼= Sn. �

Corollary 2.2. If the suspension ΣX of any topological space X is a compact n-manifold, then
ΣX ∼= Sn.

Proof. Consider the coordinate neighborhoods U1 and U2 around the two suspension points
of ΣX, which exist since we assumed that ΣX is a manifold. Then, by stretching these two
neighborhoods along the [−1, 1] coordinate in ΣX = (X × [−1, 1])�∼ , we are reduced to the
setting of Lemma 2.1. Thus, ΣX ∼= Sn, as claimed. �

Lemma 2.3. The boundary of any compact, contractible n-manifold is an (n − 1)-homology
sphere.

Proof. We first recall that any simply connected manifold is orientable. It follows that M is
a compact, orientable manifold with boundary, and thus Poincaré-Lefschetz duality holds, so
that we have isomorphisms Hk(M,∂M) ∼= Hn−k(M), for all k ∈ N. Furthermore, since M is
contractible, it follows that Hk(M) is trivial in all dimensions except 0, where it is infinite
cyclic. Inspecting the homology long exact sequence of the pair (M,∂M), we reach the following
conclusions:
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− For all k > 1, the fact that Hk(M) = Hk−1(M) = 0 implies that the connecting
homomorphism ∂∗ : Hk(M,∂M)→ Hk−1(∂M) is an isomorphism; thus, Hn−1(∂M) ∼= Z,
while Hk(∂M) = 0 for all k /∈ {0, n− 1}

− For k = 1, we have the following exact sequence:

0 = H1(M,∂M) ∂∗−→ H0(∂M) ι∗−→ H0(M) q∗−→ H0(M,∂M) = 0
Thus, ι∗ is an isomorphism between H0(∂M) and H0(M) ∼= Z.

�

Lemma 2.4. If a manifold M has a handle decomposition, then it is homotopy equivalent to a
CW-complex whose cells are in bijection with the handles of M .

Proof. The proof is rather straightforward: for every k-handle Dk ×Dn−k, attached via ϕk :
(∂Dk)×Dn−k →Mk−1, we contract Dn−k to its center 0; the resulting CW-complex will have,
as attaching maps, the restriction of the handle attachments, namely ϕk|Dk×{0}. It then follows
readily that the above two spaces are homotopy equivalent. �

3 Constructions
In light of Lemma 2.3, the Mazur homology 3-sphere will be defined as the boundary of a

compact, contractible 4-manifold. This 4-manifold will be described via a handle decomposition
using a 0-handle, a 1-handle, and a 2-handle. Let B1 and B2 be two disjoint 3-balls in ∂D4,
where D4 is the 0-handle, and let h1 and h2 denote the homeomorphisms hi : D3 → Bi. This
then yields a map f = h1 th2 : S0×D3 → B1 tB2; we now form the manifold D4 ∪f (D1×D3),
which is readily seen to be the manifold S1×D3. This is represented in the following illustration:

Figure 1. Attaching of the 1-handle
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To attach the 2-handle onto the above manifold, we first consider the following inclusions:
S1 ×D2 ↪→ S1 × S2 ↪→ S1 ×D3

The first inclusion is the result of viewing D2 as one of the hemispheres of S2, while the second
follows from the fact that ∂D3 = S2; both maps are the identity on the S1 factor. Thus, we may
view S1 ×D2 as a subspace of ∂(S1 ×D3). Let Γ0 be the standard circle S1 × {0} in S1 ×D2,
and let Γ1 be the knot embedded in S1 ×D2 ⊂ ∂(S1 ×D3) shown in the following figure, taken
from [Fer]

Figure 2. The Mazur link Γ1

Let N be a thickened neighborhood of Γ1, which is clearly homeomorphic to S1 ×D2. On
the boundary of N , we have a pushoff β of Γ1, which has linking number lk(Γ1, β) = 0 with
Γ1. Consider the homeomorphism ϕ : S1 ×D2 → N , mapping Γ0 to Γ1, and mapping a circle
S1 × ∗ on the boundary of S1 ×D2 to a knot of the above type, i.e. having linking number
0 with Γ1. Note that the attaching map of the 2-handle described above is an orientation
preserving homeomorphism, as shown in Lemma 3.1. We now form the 4-manifold W 4 :=
(S1 ×D3) ∪ϕ (D2 ×D2).

Lemma 3.1. ϕ : S1 ×D2 ∼=−→ N is an orientation preserving homeomorphism.

Proof. By the relative Künneth formula, we get isomorphisms
H3(S1 ×D2, ∂(S1 ×D2)) = H3(S1 ×D2, (∅ ×D2) ∪ (S1 × S1))

∼=
⊕
i+j=3

(H i(S1)⊗Z Hj(D2, S1))

∼= H1(S1)⊗Z H2(S2)

Furthermore, we have that H1(S1)⊗Z H2(S2) ∼= H1(S1), via the map x 7→ x⊗ 1. Thus, the
degree of the map ϕ is determined by its restriction onto Γ0; that is, we have the following
diagram.

H3(S1 ×D2, ∂(S1 ×D2)) H3(S1 ×D2, ∂(S1 ×D2))

H1(S1) H1(S1)

ϕ∗

∼= ∼=
(ϕ|Γ0 )∗

A standard computation shows that the degree of the lower horizontal map is the identity; thus,
the upper map also has degree 1, and hence is orientation preserving. �
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Lemma 3.2. W 4 is contractible

Proof. By Lemma 2.4, W 4 is homotopy equivalent to a 2 dimensional CW-complex X; this
CW-complex is constructed using one 0-cell, one 1-cell, and one 2-cell. The 2-cell is attached to
the circle S1 via a degree one map ϕ̃ wrapping ∂D2 = S1 around the 1-skeleton twice in one
direction, and once in the opposite direction, courtesy of the fact that the knot Γ1 winds twice
in one direction, and once in the opposite direction. This CW-complex can be easily shown to
be contractible, as follows. All its reduced homology groups are trivial, since its cellular cochain
complex ends takes the following form

0→ Z id−→ Z ×0−−→ Z→ 0
In the above, the second map is the identity as a result of the local degree formula, and the third
map is trivial since the space is connected. Furthermore, a presentation of the fundamental
group is given by π1(X) = 〈a | a2a−1 = 1〉, which is clearly the trivial group. Consequently, by
successive iterations of the Hurewicz theorem, it follows that πn(X) = 0, for all n ≥ 1. Thus, the
map X → ∗ is a weak homotopy equivalence, so that contractibility follows from the Whitehead
theorem. �

As a consequence of Lemma 2.3, it follows that H3 := ∂W 4 is a homology 3-sphere, called
the Mazur homolgy 3-sphere. We note that in the above, the precise choice of the attaching
map ϕ is irrelevant, as long as ϕ|Γ0 winds, homtopically, once around S1 ×D2.

It is noteworthy to mention that a presentation of π1H
3 is given by

π1H
3 = 〈a, b | a7 = b5, b4 = a2ba2〉

Mazur showed this group is nontrivial, as stated in [Dav87]. Thus, H3 is not homotopy equivalent
to S3.

4 The Giffen disc

In this section, we prove that W 4 contains a 2-cell B inside its interior, called the Giffen
disc, which will play a vital role in the proof of the double suspension theorem, in this setting.
Furthermore, we show that this 2-cell is a pseudo-spine, as defined below.

Definition 4.1. A compact subset X of a manifold with boundary M is called a pseudo-spine
if M \X ∼= ∂M × [0, 1)

We now construct the Giffen disc. Begin by cutting S1 ×D2 along the disc D indicated in
Figure 2, and let {B2

i }i∈N be a countable collection where each of the Bi’s is a cylinder resulting
from the above cutting. Form D2 × [0,∞) by attaching B2

i × [i− 1, i] to B2
i+1[i, i+ 1] in such a

way that the curves inside the cylinders align; finally, let C3 be the one point compactification
of the above space, as represented in the Figure 3, taken from [Dav87]

Let L = (
⋃
i∈N Li) ∪ {∞}, where Li are as in the above figure. Clearly, C3 is a 3-cell (hence

the notation), and L has two connected components; furthermore, the component of ∞ is a
Fox-Artin arc, so that, as a consequence, the embedding L ↪→ R3, resulting from the standard
embedding C3 ↪→ R3, is wild. Let σ : C3 → C3 be the shift homeomorphism defined as
σ(b, t) = (b, t + 1), and σ(∞) = ∞. Form the mapping torus T (σ) = C3 × I�∼, where ∼
identifies points (x, 0) with (σ(x), 1); additionally, let Ω be the mapping torus of σ|L : L→ L.
We first note that T (σ) is homeomorphic to D3 × S1; to see this, observe that C

3 × I�∼ only
skips B2

1 × [0, 1], which can be homeomorphically "flattened", whereby we get a homeomorphism
T (σ) ∼= C3 × I�(C3 × {0} ∼ C3 × {1})

∼= C3 × S1 ∼= D3 × S1. We further claim that Ω is an
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Figure 3. Cone containing a Fox-Artin arc

annulus S1 × I. This follows after straightening both components of L, since L ∼= I1 t I2, where
each Ii is an interval (however, it is of course not ambiently isotopic to it, since the Fox-Artin
arc is wild). Then, Ω is the quotient space represented in the following figure.

Figure 4. Quotient space homeomorphic to the mapping torus Ω

In the figure, I2 is partitioned into countably infinitely many subintervals, where the partition
points lie on the intersetion of the middle part of the Fox-Artin arc with the discs B2

i × {i} in
the above cone. Then, I1 ×{0} is identified with a (strict) subinterval of the first interval in this
partition; furthermore, due to the shift map, the subintervals [i − 1, i] × {0} ⊂ I2 × [0, 1] are
identified with the shifted ones, namely [i, i + 1] × {1} ⊂ I2 × [0, 1]; these are represented on
the above figure by shifted Latin letters. It then follows easoly that Ω is an annulus. Consider
the natural embedding Ω ↪→ T (σ), resulting from the fact that L ⊂ C3; this embedding is such
that Ω ∩ ∂T (σ) = ∂Ω. It is imperative to note that ∂Ω consists of a standard circle on one of
its connected components, and of a Mazur link Γ1 on the other; this can be seen geometrically
from the figure of the cone C3 above, where the standard circle results from the ∞ point. This
embedding (or more precisely a part thereof) is represented in Figure 5
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Figure 5. Transversal cut of T (σ)

In W 4 = (S1 ×D3) ∪ h, where h is a 2-handle such that h ∩ (S1 ×D3) is a neighborhood
as occurring in the above construction, and where Γ1 = ∂D2 × {0} ⊂ D2 × D2 = h, let
B := Ω ∪ (D2 × {0}). By the Alexander trick, B is easily seen to be a 2-cell in int(W 4).

Theorem 4.2. B is a pseudo-spine of W 4.

Before attempting to prove Theorem 4.2, we will have a detour to see some results from
regular neighborhoods and piecewise-linear topology.

5 Regular Neighborhoods
In this section, we will list some definitions and results from PL-topology and regular

neighborhoods, without proofs.

Definition 5.1. A ∆-complex structure on a space X is a collection of maps {σα : ∆nα → X}
from standard simplices to X, where nα depends on α, that satisfy the following

(1) The restriction σα|int(∆nα ) is injective, and each point of X lies in the image of exactly
one such restriction σα|int(∆nα )

(2) Each restriction of σα onto the faces of ∆n is one of the maps σβ : ∆n−1 → X, where we
identify ∆n−1 with a face of ∆n by a linear homeomorphism

(3) A set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for all α.

We will, however, not need this generality; our study restricts to X ⊂ Rn. A finite collection
K of simplices in Rn is called a simplicial complex if for σ ∈ K, and τ < σ, where < means “is
a subface of", then τ ∈ K, and if σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ . In the above case, the
geometric realisation of K is by definition |K| =

⋃
σ∈K σ , and is called a polyhedron, while K is

a triangulation of |K|.

Definition 5.2. A locally finite simplicial complex is a (possibly infinite) collection K of
simplices σ ⊂ Rn such that

(1) If σ ∈ K and τ < σ, then τ ∈ K
(2) If σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ
(3) Every point of K has an open cover that intersects only finitely many of the simplices of

K non trivially.

Two disjoint simplexes σ, τ ⊂ Rn are said to be joinable if there exists a simplex γ that is
spanned by their vertices. In this setting, σ and τ are said to be opposite faces of γ, and γ
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is called the join of σ and τ , denoted γ = σ ∗ τ . We remark that we will later discuss a more
general operation on topological spaces, called join, not to be confused with the one here. Two
finite simplicial complexes K,L are said to be joinable if all σ ∈ K and τ ∈ L are joinable, and
if for σ, σ′ ∈ K and τ, τ ′ ∈ L, we have that σ ∗ τ ∩ σ′ ∗ τ ′ is a common face of σ ∗ τ and σ′ ∗ τ ′.
We now have reached the definition which was behind this entire excursion into PL-topology.

Definition 5.3. − Let K be a simplicial complex, and let L be a subcomplex. We say that
there is an elementary collapse of K onto L if K \ L consists of two simplexes A and B
such that A = a ∗B, where a is a vertex of A. Thus, |K| = |L| ∪A, and |L| ∩A = a ∗ ∂B

− The complex K is said to collapse to the subcompex L if there is a finite sequence of
elementary collapses that eventually land in L.

− If P is a polyhedron in a PL manifold M , then N is a regular neighborhood of P if
(1) N is a closed neighborhood of P
(2) N is a PL manifold
(3) N collapses to L

We now quote the regular neighborhood theorem, as used in the proof of theorem 6.

Theorem 5.4 (Regular Neighborhood Theorem). Let P be a polyhedron in the PL manifold M .
Then, there exists a regular neighborhood N of P in M , that is unique up to PL homeomorphism,
rel. P .

6 Joins
The current section is devoted to a discussion on joins of topological spaces. This operation is

quite interesting in of its own, as it is used in the Milnor construction of universal G-bundles;
furthermore, it is quite relevant to our discussion here.

Definition 6.1. Let X and Y be two topological spaces. We define X ∗ Y as the space
(X × T × I)�∼ where ∼ identifies the following points:

− (x, y1, 0) ∼ (x, y2, 0), for all x ∈ X, and y1, y2 ∈ Y
− (x1, y, 1) ∼ (x2, y, 1), for all x1, x2 ∈ X and y ∈ Y

The first result that we will prove is the fact that joins behave nicely for spheres, in the
following sense

Lemma 6.2. Sn ∗ Sm ∼= Sn+m+1

Proof. Define the map ϕ : Sn × Sm × I → Sn+m+1, mapping (x, y, t) 7→ x cos πt2 + y sin πt
2 ∈

Rn+1 × Rm+1 which has norm 1, i.e. ϕ(x, y, t) ∈ Sn+m+1. First, note that for y1, y2 ∈ Sm, we
have ϕ(x, y1, 0) = ϕ(x, y2, 0) = x, while for x1, x2 ∈ Sn, we also have ϕ(x1, y, 1) = ϕ(x2, y, 1).
Thus, ϕ respects the equivalence relation on Sn ∗Sm, so that ϕ descends to the quotient to a map
ϕ̃ : Sn ∗Sm → Sn+m+1, such that ϕ = ϕ̃ ◦ q, where q is the quotient map. We note that the map
ϕ is surjective. Indeed, let z ∈ Sn+m+1. We first distinguish two cases; if z has all coordinates
of one of the factors Rn+1 or Rm+1 equal to zero when z is seen as an element of Rn+m+2. Let
xz = projn+1(z), and yz = projm+1(z) be the projections in the product Rn+1 × Rm+1. Then,
we have that z = ϕ(xz, y, 0) (for arbitrary y) or z = ϕ(x, yz, 1) (for arbitrary x).
In the second case, both xz and yz are nonzero. Then, we have that |x|2 + |y|2 = 1, so that there
exists a unique t ∈ (0, 1) such that |x2| = cos πt2 and |y|2 = sin πt

2 , with both non zero. In that
setting, it is easy to see that ϕ( x

cos πt2
, y

sin πt
2
, t) = z, and hence surjectivity of ϕ. Since ϕ = ϕ̃ ◦ q,

it follows that ϕ̃ is also surjective.
For injectivity, we note that the only points of z ∈ Sn+m+1 that have |ϕ−1(z)| > 1 are those
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points such that xz = 0 or yz = 0, each having preimages {xz} × Sm × {0} and Sn × {yz} × {1}.
These are precisely those sets that ∼ identifies, and hence ϕ̃ is also injective, and thus a bijective
continuous map. Finally, note that Sn ∗ Sm is a compact space, as being image of a compact
space, while Sn+m+1 is compact. By the compact-Hausdorff lemma, this continuous bijective
map is actually a homeomorphism, and thus Sn ∗ Sm ∼= Sn+m+1. �

The following lemma is the main reason why we included this section in this text:

Lemma 6.3. For any topological space X, ΣX ∼= S0 ∗X. By associativity of the join operator,
it then follows that Σ2X ∼= (S0 ∗ S0) ∗X ∼= S1 ∗X

Proof. Write S0 = {α, β}. The proof follows easily after unraveling what ∼ does in this particular
setting. First, S0 ×X × I is homeomorphic to a disjoint union of two cylinders X × I, which
we write as (X × I)α t (X × I)β. Then, ∼ first identifies all points (α, x, 0) ∼ (α, x′, 0) and
(β, x, 0) ∼ (β, x′, 0), so collapses the 0-th part of both cylinders to a point. Thus, we get a
disjoint union of two cones over X. Then, we identify the points (α, x, 1) ∼ (β, x, 1), i.e. we glue
the full part of the cone together via the identity. The resulting space is clearly the suspension
of X, as being homeomorphic to (X × [0, 2])�(X × {0}), (X × {2}). Below is an illustration of
the proof �

Figure 6. Visual representation of the above proof

In our situation, we note that Σ2H3 = (H3 × I× I)�∼, where ∼ identifies the sets {H3 ×
{0} × {t}}t∈[0,1], {H3 × {1} × {t}}t∈[0,1], H3 × I× {0} and H3 × I× {1} each to a point. Define
Γ ⊂ Σ2H3 as being the following set, where q denotes the quotient map

Γ := q(
⋃

t∈[0,1]
H3 × {0} × {t}) ∪ (

⋃
t∈[0,1]

H3 × {1} × {t}) ∪ (H3 × I× {0}) ∪ (H3 × I× {1})

This set is called the suspension circle, for obvious reasons. Note that away from this set, the
topology of the set H3 × (0, 1)× (0, 1) is unaltered, as the quotient does not affect it, so that
on these points, we do have a manifold of dimension 5. By lemma 1, the proof of the double
suspension theorem for the Mazur homology 3-sphere would follow from showing that the points
in Γ are also manifold points, i.e. have neighborhoods homeomorphic to R5. This, however, is
not as simple as it may sound. It will use the following Proposition 6.4, Theorem 4.2 (which is
yet to proved), and a theorem by Bryant which we will be stated without proof.
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Proposition 6.4. Γ is locally homeomorphic to cone(H3)× R, in the sense that for all x ∈ Γ,
there exists a neighborhood U of x in Σ2H3 such that U ∼= cone(H3)× R

Proof. Let α ∈ Γ ⊂ Σ2H3, which is an element of the form [x, t, s], where [] denotes the equiva-
lence class under the relation ∼. In this setting, we need to distinguish two cases: s /∈ {0, 1},
and s ∈ {0, 1}.
In the first case, we may assume t = 0, as the case t = 1 follows with the same proof. We view
X× I×{s} as a copy of ΣX, along the transversal cut at s. Let cone(x) be the cone p(X× [0, ε]),
for 0 < ε < 1, where p is the quotient map p : X × I → ΣX, centered at that x, which is
clearly an open set containing (x, 0). Since we assumed that s /∈ {0, 1}, then the topology at
that point coincides with the topology of ΣX × I. Let δ < min(s, 1 − s), chosen so that the
following open neighborhood avoids the suspension points, namely the open neighborhood of α
given by cone(x)× (s− δ, s+ δ). This is clearly the required one, as cone(x) ∼= cone(H3) (by
construction), and (s− δ, s+ δ) ∼= R.

Let now s ∈ {0, 1}, i.e. α be one of the suspension points. Again, assume that s = 0, as
the proof works, mutatis mutandis, for s = 1. Again, in this setting, q(X × {1

2} × I) is a copy
of ΣX; let cone(x) be the cone in that copy of ΣX of the pole x. Then, cone(x) is an open
neighborhood covering the X and s factors in the product; taking U := cone(x)× (1

4 ,
3
4), the

result follows. We again include an illustration:

Figure 7. Local neighborhoods homeomorphic to cone(H3)× R
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The green neighborhood corresponds to the construction of the first case, while the blue one
is that of second case. �

7 Proof of the Double Suspension Theorem for H3

We again delay the proof of Theorem 4.2 above, which will be crucial in what follows. We
quote the following result by Bryant, established in [Bry68].

Theorem 7.1. If Mn is an n-manifold, and D ⊂ int(Mn) is homeomorphic to Dk, for k ≤ n,
then M

n
�D × R ∼= Mn × R

The proof of the double suspension theorem for H3 follows easily from Proposition 6.4,
Theorems 4.2 and 7.1; indeed, we have a homeomorphism ϕ : W 4 \B

∼=−→ H3 × [0, 1), since the
Giffen disc B is a pseudo-spine of W 4 by Theorem 4.2. Then, it follows that W

4
�B ∼= cone(H3),

where the homeomorphism Φ : W
4
�D → cone(H3) is defined as being the map ϕ on W 4 \ B,

while mapping [B] (the point onto which B collapses) to the coning point [H3×{1}] in cone(H3).
Another way to see the above homeomorphism is to note that they are both the one point
compactification of H3× [0, 1), and that one point compactification of Hausdorff locally compact
spaces is unique up to homeomorphism.

By Lemma 2.1, it is sufficient to show that Σ2H3 is a manifold, since it is clearly compact.
As mentioned above, all points in H3 \ Γ are clearly manifold points, i.e. have neighborhoods
homeomorphic to 5 dimensional Euclidean space. For points x ∈ Γ, Proposition 6.4 yields a
neighborhood x ∈ U ⊂ H3 such that U ∼= cone(H3)× R. From the above discussion, we note
that U ∼= W 4

�B × R. By Bryant’s Theorem, i.e. Theorem 7.1 above, we get that U ∼= W 4 × R,
which is itself a manifold of dimension 5. Thus, Σ2H3 is locally 5-Euclidean. It is easy to check
that Σ2H3 is second countable and Hausorff, and consequently, Σ2H3 is a 5 dimensional compact
topological manifold, and thus by Lemma 2.1, Σ2H3 ∼= S5.

8 Proof of Theorem 4.2
In this section, we give a sketch of the proof of Theorem 4.2. We begin by showing that T (σ)

collapses to Ω under an infinite sequence of collapses. To see this, consider [0, 1]×B2
1 × [0, 1],

where [0, 1]×B2
1 is as in Figure 3. Then, we have the following collapse in the above set:

[0, 1]×B2
1 × [0, 1]↘ (L1 × [0, 1]) ∪ ([0, 1]×B2

1 × {1}) ∪ ({1} ×B2
1 × [0, 1])

A very rough illustration is given in Figure 8.
Then, taking the image of the above collapse in the mapping torus, this would be the first step
of the collapse T (σ)↘ Ω. That is, for n ∈ N, where all the B2

i , for i ≤ n, have been collapsed
to their underlying subcylinder, we consider the collapse
[n, n+ 1]×B2

n+1× [0, 1]↘ (Ln+1× [0, 1])∪ ([n, n+ 1]×B2
n+1×{1})∪ ({n+ 1}×B2

n+1× [0, 1])
Since W 4 = (S1 ×D3) ∪ϕ (D2 ×D2), we get, by the definition of collapses, that

W 4 ↘ (S1 ×D3) ∪ (D2 × {0})
We thus get the following sequence of collapses:

W 4 ↘ (S1 ×D3) ∪ϕ D2 × {0} ∼= T (σ) ∪ (D2 × {0})↘ Ω ∪ (D2 × {0}) = B

However, the last collapse here differs from our definition, as it is the composition of infinitely
many collapses, namely the ones defined inductively in the above. However, this can be resolved
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Figure 8. Sketch of the above collapse

via the regular neighborhood theorem. Indeed, we have written B as B =
⋂
i∈NKi, where

Ki are the sets above. Then, W 4 collapses to each Ki, as there are finitely many collapses
connecting them. For any small enough regular neighborhood Ni of Ki, which exists by the
regular neighborhood theorem, we have Ni\int(Ni+1) ∼= ∂Ni× [0, 1]. Then, we have the following
equalities

W 4 \B = W 4 \ (
⋂
i∈N

Ki) = W 4 \ (
⋂
i∈N

Ni) =
⋃
i∈N

(W 4 \Ni)

Since W 4 collapses to Ni, we have that W 4 \ Ni
∼= ∂W 4 × [0, 1); but since Ni \ int(Ni+1) ∼=

∂Ni × [0, 1], it follows that the above union is exactly ∂W 4 × [0,∞) = H3 × [0,∞); thus, B is
indeed a pseud-spine, which concludes the proof of the double suspension theorem in the setting
of the Mazur homology 3-sphere.
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