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1 Introduction and outline
The main goal of this document is to construct a topological manifold that admits no PL

structure. We present a construction due to Siebenmann [KS77]. An important step will be
finding a PL automorphism α : D2 × Tn → D2 × Tn that fixes boundary and satisfies certain
properties. This automorphism will be used to create a TOP pseudoisotopy that Siebenmann
referred to as a catastrophe, referencing French mathematician René Thom’s catastrophe theory
in a broader context [Tho74]. Having this pseudoisotopy, it will be easy to show that a certain
manifold admits no PL structure.

Finding such an automorphism is not only nontrivial, but will yield constructions of some
exotic manifolds as a byproduct. In addition, we will mention another counterexample in Section
4 that followed almost a decade later, by an additional discovery due to Freedman.

2 Constructing an automorphism α

In this section, we follow [KS77, Essay VI, Appendix B]. We will work in categories PL and
DIFF, both of which we refer to as CAT as usual. The first goal is to come up with an explicit
handle construction of an exotic manifold M that has analogous properties to α. This will allow
us to create α, using the s-cobordism theorem on M that is regarded as an s-cobordism.

First, we want to recall some notions that define the ‘exoticity’ of a manifold. We shall start
with the structure set.

Definition 2.1. The structure set S(M) of a manifold Mn is defined as the set of equivalence
classes

(2.2) S(M) := {(N
n, f : N '−→M)}�(h-cobordism)

As we shall consider maps that fix boundary throughout the section, we want to restrict
ourselves to manifolds that are homotopy equivalent toM relative to boundary. That is, we want
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2 EKIN ERGEN

the boundary (and also a collar neighbourhood of it) to be fixed by the homotopy equivalence h.
Therefore it is natural to consider the notion
(2.3)

S(Mn rel ∂) := {(N
n, f : N '−→M) : f |∂N×[0,1] : ∂N × [0, 1]

∼=−→ ∂M × [0, 1]}�(h-cobordism)
where ∂N × [0, 1] resp. ∂M × [0, 1] are to be understood as collar neighbourhoods of N resp. M .

The following is our main theorem, in which we construct a manifold M homotopy equivalent
to D3 × Tn.
Theorem 2.4. For 3 + n ≥ 5, there exists an element [M3+n, f ] of S(D3 × Tn rel ∂) that is

(1) nontrivial, i.e. [M ] 6= [D3 × Tn] 1;
(2) invariant under passage to standard finite coverings of D3 × Tn.
We first elaborate on the structure set itself as well as the exact meaning of the second claim.

Remark 2.5. Using previous knowledge from lectures 2 we can conclude that Wh(π(D3× Tn)) =
Wh(Z[Zn]) = 0, so

S(D3 × Tn rel ∂) = {(M,f)}�(h-cobordism)
Wh=0= {(M,f)}�(s-cobordism)

s-cob.=
thm.

{(M,f)}�(∼=CAT)
meaning that the elements of the specific structure set S(D3×Tn) are CAT-isomorphism classes
of homotopy equivalent 3 + n-manifolds rel boundary.

If [(M,f)] = [(M ′, f ′)] ∈ S(D3 × Tn rel ∂), this means that there exists a CAT isomorphism
ϕ : M →M ′ such that, restricting ϕ to ∂M , we obtain the commutative diagram

∂M ∂(D3 × Tn)

∂M ′ D3 × Tn

M D3 × Tn

M ′ D3 × Tn

f |∂M

ϕ|∂M

inc
inc′

Id

f ′|′∂M

inc′f

ϕ Id
f ′

inc

Remark 2.6. In the second part of the theorem, we need to consider the pullback p : M ′ →M of
a covering map p : D3 × Tn → D3 × Tn along the homotopy equivalence f : M → D3 × Tn that
comes from the tuple in the structure set, as shown in the next diagram.

M ′ D3 × Tn

M D3 × Tn

f ′

p p

f

The second part of the theorem claims that [(M,f)] = [(M ′, f ′)] ∈ S(D3 × Tn rel ∂). The
pullback of a covering map along any map is again a covering map, so the map p : M ′ →M is

1From now on, we often suppress the homotopy equivalence in the notation, but we will indeed construct it as
well.

2Topological Manifolds, winter semester 20/21, University of Bonn
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indeed a covering map. Moreover, the pullback of a homotopy equivalence along a fibration
(e.g. a covering map) is again a homotopy equivalence, so f ′ : M ′ → D3 × Tn is also a homotopy
equivalence. As a result, (M ′, f ′) defines an element in the structure set S(Mn rel ∂).

The proof of Theorem 2.4 will be covered by the following three subsections. The construction
is due to A. Casson.

2.1 Construction of M

(1) Recall the Poincaré homology 3-sphere P 3: it is a closed manifold given by SO(3)/A5,
where A5 denotes the rotational symmetry group of an icosahedron. This group is
isomorphic to the alternating group on 5 elements. Therefore P can be interpreted as
the group of the positions of a unit icosahedron up to translation and symmetry. As the
name suggests, Hn(P ) = Hn(S3) for all n ∈ Z. The fundamental group π1(P ) of P is
isomorphic to the binary icosahedron group of order 120 given by the presentation

〈a, b | (ab)2 = a3 = b5〉.
We will denote π1(P ) by π. Note that, as an orientable 3-manifold, P is parallelisable.

(2) Define P 3
0 := P 3#D3. This is homeomorphic to the Poincaré homology 3-sphere minus

an open ball, since the connected sum is created by removing a 3-ball from P 3 and
D3 each, the latter becoming an annulus S2 × D1. This is glued onto P 3 \ D3 along
S2 × {0}, which only adds another collar to P \ D̊3. The boundary of P0 is ∂P0 = S2 as
P is closed.

(3) Take [0, 1]×P0×Dn. To 1×P0×Dn, we will attach handles that kill homotopy groups:3
(a) We have π1(1× P0 ×Dn) ∼= π1(P0) ∼= π1(P 3) =: π. The latter isomorphism follows

by the Seifert-van Kampen Theorem for D3 ∪S2×(−ε,ε) P0. We can derive from the
fibration A5 → SO(3) → P (where A5 is a discrete Lie group) and its associated
long exact sequence
. . .→ π1(A5)︸ ︷︷ ︸

0

→ π1(SO(3))→ π1(P )→ π0(A5)→ π0(SO(3))︸ ︷︷ ︸
0

→ . . .

we obtain the short exact sequence

(2.7) 0→ π1(SO(3)) i−→ π
p−→ A5 → 0.

We know that π1(SO(3)) ∼= Z/2. Take an element γ of π that is not in the subgroup
i(Z/2) and consider the smallest normal subgroup 〈〈γ〉〉 that contains γ. We want to
show that 〈〈γ〉〉 = π. Note that p(〈〈γ〉〉) is a normal subgroup of A5. Because A5 is
simple, this image is either 0 or A5. Because γ /∈ i(Z/2), p(γ) 6= 0 by exactness and
therefore i(〈〈γ〉〉) = A5.This implies that [π : 〈〈γ〉〉] ∈ {1, 2}. If [π : 〈〈γ〉〉] were 2,
then the sequence 2.7 would be split exact. This yields a map s : π → Z/2 such that
s◦i = IdZ/2. This induces maps between abelianisations Z/2 i−→ π/[π, π] s−→ Z/2 such
that the composition is the identity. However, this is not possible: Using Hurewicz’s
Theorem, we see that π/[π, π] ∼= H1(P ) ∼= H1(S3) = 0. Therefore [π : 〈〈γ〉〉] = 1
and π = 〈〈γ〉〉.
We want to attach a 2-handle h2 (∼= D2 × Dn+2) along this loop γ to make the
resulting space simply connected. Up to homotopy, we have |[S1, SO(n+ 2)]| = 2
choices for the attaching map S1 ×Dn+2 → S1 ×Dn+2, where the S1-component
of the target is the image of a loop representing γ. One of these choices indeed
kills the fundamental group and gives rise to another parallelisable manifold: P0 is
parallelisable, as is 1× P0 ×Dn, so it has a trivial tangent bundle. Identifying this

3 In Diff, we need to do smoothing of edges. We will not go into any detail of this, as the primary goal of the
talk is the category PL anyway.
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tangent bundle with the trivial tangent bundle of ∂(D2)×Dn+2 in a compatible
way, we obtain another parallelisable manifold.
The resulting space is a simply connected CAT cobordism rel ∂ from 0× P0 ×Dn

to a simply connected CAT manifold Q. The homology of Q is the same as the
homology of D3+n#(S2 × Sn+l), just as if P0 were D3.

(b) Now that one end of the cobordism is 1-connected, we want to achieve 2-connectivity.
By 1-connectivity and Hurewicz’s theorem,
π2(Q) ∼= H2(Q) ∼= H2(D3+n#(S2 × Sn+1)) ∼= H2(S2 × Sn+1) ∼= Z

so we can glue a 3-handle h3 along a 2-sphere in IntQ that represents a generator
δ of π2(Q) to make Q as well as the entire cobordism 2-connected. Here we use
that n+ 3 ≥ 5 to ensure that the attaching map can be embedded. Note that the
handles are added to the interior, so the boundary has not changed.

(c) After adding h2 and h3, the resulting space is a CAT cobordism rel ∂ from 0×P0×Dn

to an (n+ 3)-manifold that we denote (P0 ×Dn)#. A sketch of this construction is
given in Figure 1.

Figure 1. A visually inaccurate sketch of the construction of (P0 ×Dn)#.

Claim. (P0 ×Dn)# is contractible.

Proof. We already know that (P0 ×Dn)# is 2-connected. Using
H∗(Q) = H∗(D3+n#(S2 × Sn+1))

we will apply Hurewicz’s Theorem to see that all homotopy groups vanish, which
implies that (P0 ×Dn)# is contractible by Whitehead’s Theorem.
For most of the homology groups, the vanishing is obvious. Only possible nontrivial
degrees could be 3 and n+ 1.
− To Q, we glue a 3-handle, i.e. a D3×Dn+1 along the S2-factor of the 2-handle

(this is because the 2-handle generates the nontrivial homotopy group, as
observed above). Doing so, no nontrivial third homology can be created.

− For degree n+ 1, we can use Poincare duality and universal coefficient the-
orem to see that Hn+1((P0 × Dn)#) ∼= H3((P0 × Dn)#) ∼= Hom(H3((P0 ×
Dn)#),Z) = 0.

As a result, πi(P0 ×Dn) = 0 for all i ≤ 1 and therefore (P0 ×Dn)# ' {pt}. �
By an analogous argument, we can see that the CAT cobordism ([0, 1]×P0×Dn)∪h2∪h3

is also contractible.
(4) Identifying Dn = [1/4, 3/4]n and considering it as a subset of Tn by [1/4, 3/4]n ⊂

[0, 1]n/ ∼= Tn, we can include
(2.8) ([0, 1]× P0 ×Dn) ∪ h2 ∪ h3 ↪→ ([0, 1]× P0 × Tn) ∪ h2 ∪ h3 =: Xn+4
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The attaching maps of the handles shall be the same as before. Again, Xn+4 is a
cobordism relative boundary from 0× P0 × Tn to

(P0 × Tn)# := (P0 ×Dn)# ∪∂ (P0 × (Tn \ IntDn))
which gives us the (n+ 3)-manifold M that we claim fulfills the desired properties in
Theorem 2.4. In other words, we define Mn+3 := (P0 × Tn)#. Figure 2 illustrates the
inclusion (2.8).

Figure 2. A visually even more inaccurate sketch of the construction of M =
(P0 × Tn)#.

Claim. M is homotopy equivalent to D3 × Tn rel ∂.

Proof. The boundaries of M and D3 × Tn are homeomorphic because adding the handles has
not changed the boundary. It is therefore immediate that the diagram in Remark 2.5 commutes.

For the homotopy equivalence, consider the pushouts

P0 ×Dn (P0 ×Dn)# D3 ×Dn

P0 × Tn (P0 × Tn)# D3 × Tn

i1 i2

'

i3

f

The top right homotopy equivalence can be defined as the composition (P0 ×Dn)# → pt →
D3 × Dn. The inclusions i2 and i3 are cellular, and hence a cofibration. Therefore f is a
homotopy equivalence. �

2.2 Invariance under coverings

Now we want to verify that [M ′] = [M ] in the pullback in Remark 2.6. In other words, we
want to show that M and M ′ are s-cobordant (which implies that they are isomorphic by the
s-cobordism theorem).
Let c : Tn → Tn be a CAT covering map of degree d. We can consider the corresponding covering
map of Xn+4 = [0, 1]× P0 × Tn ∪ h2 ∪ h3, where the handles are glued onto 1× P0 × Tn. That
means, the total space X̃4+n is a copy of [0, 1] × P0 × Tn with d 2-handles and d 3-handles
attached, all to 1× P0 × Tn. Figure 3 provides a sketch of the construction of this total space.
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Figure 3. The torus-component of the covering space.

Let us glue X to X̃ along their 0-ends (i.e. 0× P0 × Tn) with the identity map to obtain Y n+4.
This is a CAT cobordism rel ∂ from M to M ′. Moreover, Y is an h-cobordism as the union of
two h-cobordisms. By applying Seifert-van Kampen’s theorem on X and X̃ at neighbourhoods
of h2 and copies of h2, respectively, we see that π1(Y ) is free abelian. Therefore τ(Y ) = 0.As a
result, Y is an s-cobordism and M ∼= M ′ as desired.

2.3 Interlude: Milnor’s E8 plumbing

We mention some concepts that will be key to obtaining contradictions in the next subsection.

Definition 2.9. [Bro69, Chapter V] Let ζni be a rank n vector bundle over an n-dimensional
smooth manifold Mi for i = 1, 2. Let Ei be the total space of the associated disk bundle and
suppose ζi, Mi and Ei are oriented in a compatible way. If we pick x1 ∈M1 and X2 ∈M2, and
consider a ball neighbourhood of xi inMi, the preimage of these will be Dn

i ×Dn
i , neighbourhoods

of the fiber over xi. Let h : Dn
1 → Dn

2 and k : Dn
2 → Dn

1 be two diffeomorphisms, either both
orientation preserving or both orientation reversing. Then we can define the plumbimg of the
spaces E1 and E2 to be the quotient space P = E1 ∪(k,h) E2.

Remark 2.10. One can inductively plumb more than two total spaces, as well as two different
points in one space. In the first case, one can use graphs (in particular, trees) to determine the
pairs of spaces that will be plumbed.

Definition 2.11. The Dynkin diagram E8 looks like this:

Consider the disc bundle over S2 with Euler number 2. We can plumb 8 copies of this bundle
according to the Dynkin diagram given above to obtain Milnor’s E8 plumbing, which we denote
by PE8 . As a smooth 4-manifold, this can also be considered as a PL manifold.
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Remark 2.12. The intersection form on PE8 is given by the matrix

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 0 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


Rows and columns are identified with the enumeration in the figure.

This matrix is positive definite, therefore the signature σ(PE8) of PE8 is 8. Moreover, it is
unimodular. It is well-known that the map H2(PE8) → H2(PE8 , ∂PE8) from the long exact
homology sequence can be identified with this intersection form because H1(PE8) is torsion-free.
As a result, H2(∂PE8) = 0 = H2(∂PE8). The boundary ∂PE8 is connected and oriented, therefore
it is a homology sphere. In fact, it is CAT isomorphic to the Poincaré homology sphere P 3.

2.4 Proof of nontriviality

Finally we show that [M ] 6= [D3 × Tn] ∈ S(D3 × Tn rel ∂), where the right hand side is
represented by the canonical CAT structure on D3 × Tn. In other words, we want to prove that
M � D3 × Tn rel ∂.

For the sake of contradiction, we assume that M ∼= D3 × Tn rel ∂. Then we could glue M to
D3 × Tn along their common boundary to obtain M2 := M ∪S2×Tn D3 × Tn ∼= S3 × Tn.

Next, we consider PE8×Tn. Its boundary is ∂PE8×Tn ∼= P ×Tn. To P ×{pt} ⊂ ∂(PE8×Tn)
we can attach handles as in the construction in Section 2.1. This way, we obtain a new space
PE8 × Tn ∪∂ h2 ∪∂ h3 =: V .

Claim. ∂V ∼=CAT M2.

Proof. First, recall that P0 = P#D3 which is CAT homeomorphic to P minus a 3-ball. This
implies P = P0 ∪S2 D3 and hence ∂(PE8 ×Tn) ∼= P ×Tn ∼= (P0 ∪S2 D3)×Tn ∼= P0×Tn ∪S2×Tn

D3 × Tn. The gluing of handles is identical as in the construction of M . Moreover, we may
assume that the handles are attached to P0 × Tn, so if we consider ∂V as a cobordism relative
boundary, this is equal M ∪S2×Tn D3 × Tn by definition of M . �

Assuming M2 ∼= S3 × Tn and using the CAT homeomorphism in the above claim as the
attaching map, we can glue a D4 × Tn, which yields a closed CAT manifold W . To express the
homotopy type of W , we introduce E := PE8�∂PE8

.

Claim. W ' E × Tn.

Proof. PE8 × Tn can include in both W = V ∪M2 D
4 × Tn and E × Tn. The remainder (i.e. the

space that is glued to Q× Tn to yield the respective space) in W is h2 ∪ h3 ∪D4× Tn. Consider
the map f : W → E × Tn constructed as follows: We idenfify IntPE8 × Tn with (E \ {pt})× Tn
by the inclusions of IntPE8 × Tn into both spaces as described above. The handles h2 and h3
are contracted to a point in S3 × Tn ⊆ D4 × Tn,which is then collapsed to {pt} × Tn ⊂ E × Tn
by the contraction of the D4 component. One can show that f induces isomorphisms under Hk

for all k using the Mayer-Vietoris exact sequence.
If W and E × Tn were simply connected, Hurewicz’s Theorem would directly imply that

f is a homotopy equivalence; however, this is evidently not the case. Therefore we consider
the lift f̃ : W̃ → Ẽ × Tn of f along universal coverings of both spaces. The identifications
of PE8 × Tn are again identifications when lifted, and the collapses mentioned above also lift
to nullhomologous maps. Using Mayer-Vietoris exact sequence, we can see that Hk(f) is an
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isomorphism for all k. This implies πk(W̃ ) ∼= πk(Ẽ × Tn) ∼= πk(W ) ∼= Hk(E × Tn) for k ≥ 2.
Therefore, f is a homotopy equivalence. �

Theorem 2.13 (Farrell). [Far67] Let f : Mm → S1 be a map of compact CAT manifolds such
that f |∂M is a CAT locally trivial fibration. Then f is homotopic rel f |∂M to a CAT locally
trivial fibration if the following hold:

(1) dimM ≥ 6.
(2) The covering M̃ from the pullback

M̃ R

M S1

f̄

p̄ p

f

where p : R→ S1 denotes the standard universal covering, has finite homotopy type.
(3) π1(M) is free abelian.

Note that condition (2) is assured if M ' X × S1 for X homotopy equivalent to a finite
CW-complex. Using the proof of Claim 2.4 as well as the observation above, we observe that
conditions (2) and (3) are satisfied for W 4+n '−→ E8 × Tn

proj−−→ S1 so that we can use Farrell’s
Theorem to promote this map to a CAT locally trivial fibration. Then we take a fiber Wn+3,
which should factor through E × Tn−1, again homotopy equivalent to Wn+3. Iterating this
process, we can create a chain of closed subsets
(2.14) W 4+n ⊃W 3+n ⊃ ... ⊃W 5 ' E4 × S1.

Finally we need a 4-manifold X4 to finish our claim, but cannot use Farrell’s Theorem anymore,
so we just make the map W 5 '−→ E×S1 proj−−→ S1 transverse to 0 to obtain an orientable manifold
W 4 ⊂W 5 which we assert contradicts the following theorem due to Rochlin.

Theorem 2.15 (Rochlin). Every closed, oriented, smooth or PL 4-manifold W 4 with second
Stiefel-Whitney class w2(W ) zero has signature σ(M) ∈ Z divisible by 16.

Next week’s talk will be about the proof of this theorem. We are rather interested in deriving
the following, which will lead to a contradiction:

Claim.
(1) w2(W 4) = 0.
(2) σ(W 4) = 8.

Proof. (1) Recall that parallelisable manifolds have trivial Stiefel-Whitney classes. PE8 is
parallelisable by construction and hence so is PE8 ×Tn. In particular, w2(PE8 ×Tn) = 0.

The map j∗ : H2(Wn+4,Z/2)→ H2(PE8 × Tn,Z/2) is injective, since the map
j∗ : H2(PE8 × Tn,Z/2)→ H2(Wn+4,Z/2)

induced by j : PE8 ↪→Wn+4 is surjective. Therefore the preimage of w2(Q× Tn) is also
0. This is precisely w2(Wn+4) by the naturality of Stiefel-Whitney classes.

Inductively, we can argue that each W k has w2(W k) = 0 as follows: Consider the map
i∗ : H2(Wn+1,Z/2Z)→ H2(Wn,Z/2) induced by inclusion i : Wn ↪→Wn+1. Since Wn

is bicollared in Wn+1,
TWn ⊕ ε ∼= TWn+1|Wn

⇒ w2(TWn ⊕ ε) ∼= i∗(w2(TWn+1))
⇒ w2(TWn) ∼= i∗(w2(TWn+1))
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As a result, w2(TWn+1) = 0 implies i∗(w2(TWn+1)) = w2(TWn) = 0, which yields the
induction step. After finitely many steps, we reach w2(W 4) = 0.

(2) Recall some properties of σ:
(a) Signature is cobordism invariant,
(b) σ(CP 2) = 1 and therefore σ(X × CP 2) = σ(X).
So first, σ(W 4) = σ(W 4×CP 2). The latter space is cobordant to a space V 8 ' CP 2×P∗.
We obtain V 8 by applying Farrell’s Theorem to the map CP 2×W 5 '−→ CP 2×P∗×S1 → S1.
The cobordism lies e.g. in the infinite cyclic covering of CP 2 ×W 5. Therefore

σ(W 4) = σ(W 4 × CP 2) = σ(V 8) = σ(CP 2 × E) = σ(E) = 8

The last equality follows because the intersection pairing of P∗ is the matrix E8. In fact
P∗ is an important example of why we use manifolds and not homology manifolds in
Rochlin’s Theorem.

�

The above claims imply that our assumption M ∼= D3 × Tn rel ∂ cannot hold. We have found
a representative for a nontrivial element in S(D3 × Tn rel ∂)!

2.5 Applications with the nontrivial element

After having found an exotic homotopy D3 × Tn that we have called M3+n, we want to
proceed to produce further exotic spaces.

Theorem 2.16 (Exotic homotopy S3 × Tn). If we glue D3 × Tn to M along the common
boundary, we obtain4 a CAT manifold homotopy equivalent to S3 × Tn but not CAT isomorphic
to S3 × Tn.

Proof. The first assertion is clear with the canonical homotopy equivalence between the assembled
homotopy equivalent parts, i.e. M ∪∂D3×Tn ' D3×∪∂D3×Tn. The fact thatM ∪∂D3×Tn 6∼=
S3 × Tn follows by the above proof, as M ∪∂ D3 × Tn ∼= S3 × Tn was assumed from the second
step onwards, which has lead to a contradiction. �

The following application can be found in [KS77].

Theorem 2.17 (Exotic homotopy torus). Identifying opposite ends of the three interval factors
D3 ∼= [0, 1]3, we derive from M a CAT exotic homotopy T 3+n.

Another interesting construction regarding Dk × Tn, k ≤ 3 is given in [Sie70, Section 5].

2.6 Finding α at last

Recall that we are looking for α : D2 × Tn → D2 × Tn fixing boundary such that
(1) identifying the opposite endpoints of D2 to obtain a torus T 2 induces a map ᾱ : Tn+2 →

Tn+2 that has a mapping torus T (ᾱ) := [0, 1] × Tn+2/((0 x) = (1 β(x))) not CAT
isomorphic to Tn+3, and

(2) for any 2n-fold standard covering map p : D2×Tn → D2×Tn, the covering automorphism
α′ that comes from the lifting

D2 × Tn D2 × Tn

D2 × Tn D2 × Tn

α′

p p

α

4We may need to smooth corners in DIFF.
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is PL pseudoisotopic to α rel boundary. That is, there exists a PL automorphism H
of ([0, 1], {0, 1}) ×D2 × Tn fixing [0, 1] × ∂D2 × Tn such that H0×D2×Tn = 0 × α and
H1×D2×Tn = 1× α′.

By Claim 2.1, M = (P 3
0 × Tn)# is homotopy equivalent to D3 × Tn rel ∂, in particular, ∂M ∼=

S2×Tn, soM can be seen as an h-cobordism relative boundary from 0×D2×Tn to 1×D2×Tn.
Moreover, the Whitehead torsion τ(M) vanishes, so that M is an s-cobordism. As 2 + n ≥ 5,
the s-cobordism theorem gives rise to a PL homeomorphism h : [0, 1]×D2 × Tn

∼=−→M .
Note that by choosing h|0×D2×Tn to be the identity by precomposition with (Id[0,1]×h|0×D2×Tn),

we induce another automorphism at the other end 1×D2 × Tn, which we name α : D2 × Tn →
D2 × Tn. Indeed, this map cannot have a mapping torus homeomorphic to T 3+n, which can be
seen by Theorem 2.17.

Finally we need to show the second property. But we have almost established this in Section
2.2 : We have constructed an s-cobordism Y between M and a covering space M ′ induced by
an arbitrary covering map of Tn. By s-cobordism theorem, this gives us a CAT isomorphism
k : M ′ → M . Following this construcion, the map α′ can be created just like α, i.e. if we
consider M ′ ∼= [0, 1]×D2 × Tn as an s-cobordism, this yields an isotopy h′ from α′ to IdD2×Tn .
Concatenating h with h′, we obtain a pseudoisotopy from α to α′.

3 The catastrophe
The next goal is to construct a PL pseudoisotopy rel ∂ from α to IdD2×Tn . In Thom’s

terminology, this would be referred to as a catastrophe.
Let p : D2 × Tn → D2 × Tn be derived from scalar multiplication by 2. Define α0 := α and
H0 := H as in the second property of α. Iteratively, pick αi to be the lift of αi−1 and Hi to be
the pseudoisotopy rel ∂ from αi to αi+1. Here it is worth noting that, as [M ] = [M ′], the covers
are always exotic and the maps αi with mapping tori not PL homeomorphic to the standard
T 3+n, by induction.
Next, define a PL automorphism H ′ of [0, 1)×D2× Tn as follows: for ak := 1− 1

2k , consider the
oriented linear bijection lk : [ak, ak+1]→ [0, 1]. Let H ′(x, d, t) = Hk(lk(x), d, t) for x ∈ [ak, ak+1].
As the Hk fix boundaries, this map is well defined for x = ak for some k.
Extend H ′ to [0, 1)× R2 × Tn by the identity (which is again possible because the boundaries
are fixed).
Define φ : [0, 1) × D2 × Tn → [0, 1) × D2 × Tn by φ(t, x, y) = (t, (1 − t)x, y) Define another
continuous bijection of [0, 1)×D2 × Tn by H ′′ := φH ′φ−1.

Claim. H ′′ is a well-defined continuous bijection.

Proof. Contunuity as well as bijectivity are obvious. We should see that φ−1(t, x, y) = (t, 1
1−tx, y).

If |x| ≥ 1− t, H ′ maps φ−1(t, x, y) to itself by construction, so such points are fixed by H ′′. If
x ≤ 1− t, H ′ maps the second component to again something in D2, and so does φ afterwards.
This shows that the map is well-defined. �

The proof also shows that H ′′ fixes the boundary, setting x = 1 and t = 0.
The following figure from [Sie77] sketches the map H ′′ on [0, 1]×D2 × Tn, each factor shown
by one dimension. Note that in the figure, the number of segments that are mapped via α, i.e.
the “squares” that are marked with α are doubled for each k. If the figure were dimensionally
accurate, they would be multiplied by 2n instead.
Finally, we extend H ′′ to a bijection H ′′ : [0, 1]×D2 × Tn → [0, 1]×D2 × Tn by H ′′|1×D2×Tn =
Id1×D2×Tn . It is immediate that bijectivity and well-definedness are preserved. Moreover, the
domain is compact and the codomain Hausdorff, so that by the compact-Hausdorff argument5,

5A continuous bijective map f : A → B where A is compact and B is Hausdorff is a homeomorphism.
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Figure 4. Schematic description of H ′′.

we only need to show that this map is continuous at 1×D2 × Tn in order to prove that it is a
TOP homeomorphism.

Claim. H ′′ is continuous at 1×D2 × Tn.

Proof. By construction, the part of the D2-component of [0, 1]×D2 × Tn that is not fixed by
H ′′, which is [ak, ak+1] shrinks strictly for t→ 1. Therefore, at t = 1, (t, x, y) is fixed everywhere
with x 6= 0.

Let (qi)i∈N be a sequence of points converging to q = (1, 0, y). Let pi denote the projection onto
the i-th component (i = 1, 2, 3). Then pi(H ′′(qi))→ pi(H ′′(1, 0, y∗)), showing the convergence
in the first two factors.

To see the convergence in the third factor, let H̃k be the lift

[0, 1]×D2 × Rn [0, 1]×D3 × Rn

[0, 1]×D2 × Tn [0, 1]×D2 × Tn

H̃k

p p

Hk

of Hk that fixes [0, 1]× ∂D2 × Rn. For z ∈ [0, 1]×D2 × Rn,

(3.1) sup |p3(z)− p3(H̃k(z))| =: dk
is finite. Moreover, H̃k can be expressed as θ−1

k ◦ H̃0 ◦ θk with θk(t, x, y) = (t, x, 2ky) by
construction of the Hk. Therefore

(3.2) |p3(z)− p3(H̃k(z))| = |p3(z)− p3(θ−1
k ◦ H̃0 ◦ θk)(z)| ≤

1
2k d0

which can be seen by induction: k = 0 is obvious and conjugation by θk = θ1 ◦ · · · ◦ θ1︸ ︷︷ ︸
k times

means

that the image will be shrunk by a factor of 2. As a result, we see that dk → 0 as k → ∞.
Passing to Hk, we see that lim p3(H ′′(qi)) = p3(Hk(qi))

k→∞−−−→ p3(lim qi) = p3(q) = p3(H ′′(q)),
as desired. �

We see that H ′′|0×D2×Tn = 0× α and H ′′|1×D2×Tn = IdD2×Tn . In particular, this gives the
pseudo-isotopy that we wanted at the beginning of the section. As a result of the s-cobordism
theorem, we conclude M2 ∼=TOP D

2 × Tn. However, this means that the construction of Wn+4
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as in 2.4 carries through in the category TOP. In other words, the topological manifold Wn+4

exists, but its PL-ability is a contradiction to Rochlin’s theorem, so it is not PL-able.

4 Freedman’s work 10 years later
So far, we have been able to construct a manifold that does not admit a PL structure. The

key point to non-PL-ability was the contradiction to Rochlin’s Theorem, where we used the
homotopy type of the E8 plumbing modulo boundary, which we called E. Instead of this, one
might have been tempted to show analogous assertions for E. However, at the time Siebenmann
described the above counterexample, it was not known whether P∗ is indeed homotopy equivalent
to a manifold.

Theorem 4.1. [Fre82] Every homology 3-sphere bounds a fake 4-ball, i.e.a 4-dimensional,
compact, contractible manifold.

Using the theorem above, we can start with Milnor’s plumbing P 4
E8
, which has boundary

the Poincare homology sphere P 3. To PE8 , we shall glue a fake 4-ball that also has P 3 as
its boundary, along the boundary with the identity map. This way, we obtain a manifold E′
homotopy equivalent to E. In particular, it is homotopy equivalent to a manifold. If this was
known in 1970, one could have avoided the construction above by directly showing analogous
claims to Claim 2.4 with E′, instead of W 4. In other words, we immediately see that X has no
CAT structure by Rochlin’s Theorem. On the other hand, the construction we have presented is
still considered the easiest, as proving Theorem 4.1 requires more technical work and knowledge.

An immediate consequence of the non-PL-ability of the manifold E′ is that Rochlin’s Theorem
does not hold for the category TOP, as then E′ is a spin topological manifold of dimension 4
that has signature 8. Again, it is worth noting that this was not known at the time [KS77] was
published; indeed, it is noted in the aforementioned chapter that Rochlin’s Theorem is undecided
in the category TOP.

It is also worth noting that E′ is also non-triangulable even without requiring the triangulation
to be a PL triangulation, as shown in [Fre82].

References
[Bro69] W. Browder. Surgery on Simply Connected Manifolds. Department of Mathematics, Princeton University,

1969.
[Far67] F. Farrell. The obstruction to fibering a manifold over a circle. Bulletin of the American Mathematical

Society, 73:737–740, 1967.
[Fre82] Michael Hartley Freedman. The topology of four-dimensional manifolds. Journal of Differential Geometry,

17(3):357 – 453, 1982.
[KS77] Robion C. Kirby and Laurence C. Siebenmann. Essay VI, Foundational essays on topological manifolds,

smoothings, and triangulations. Princeton University Press, 1977.
[Sie70] Laurence Siebenmann. Disruption of low-dimensional handlebody theory by Rochlin’s Theorem. Topology

of Manifolds, 01 1970.
[Sie77] L. C. Siebenmann. Annex C. Topological Manifolds. Foundational Essays on Topological Manifolds,

Smoothings, and Triangulations. (AM-88), page 307–337, 1977.
[Tho74] René Thom. Stabilité structurelle et morphogenèse. Poetics, 3(2):7–19, 1974.

Universität Bonn
Email address: ekinergen@uni-bonn.de


	1 Introduction and outline
	2 Constructing an automorphism 
	2.1 Construction of M
	2.2 Invariance under coverings
	2.3 Interlude: Milnor's E8 plumbing
	2.4 Proof of nontriviality
	2.5 Applications with the nontrivial element
	2.6 Finding  at last

	3 The catastrophe
	4 Freedman's work 10 years later

