
1. CW Complex

1.1. Cellular Complex. Given a space X, we call n-cell a subspace that is home-
omorphic to the interior of an n-disk.

Definition 1.1. Given a Hausdorff space X, we call cellular structure on X a
collection of disjoint cells of X, say {{enα}α∈An}n∈N (where the An are indexing
sets), together with a collection of continuous maps called characteristic maps, say
{{Φn

α : Dn
α → X}α∈An}n∈N, such that, if Xn := {ekα|0 ≤ k ≤ n} (for all n), then :

(1) X =
⋃
n∈N

(
⋃

α∈An
enα),

(2) Φn
α �Int(Dn) is a homeomorphism of Int(Dn) onto enα,

(3) and Φn
α(∂Dn) ⊂

⊔
ekα∈Xn−1

ekα.

We shall call X together with a cellular structure a cellular complex.

Remark 1.2. We call Xn ⊂ {enα} the n-skeleton of X. Also, we shall identify Xn

with
⋃

ekα⊂Xn

ekα and vice versa for simplicity of notations. So (3) becomes Φn
α(∂Dn

α) ⊂⋃
Xn−1.

Since X is a Hausdorff space (in the definition above), we have that ekα = Φk
α(Dn)

(where the closure is taken in X). Indeed, we easily have that Φk
α(Dn) ⊂ ekα by

continuity of Φn
α. Moreover, since Dn is compact, we have that its image under

Φk
α also is, and since X is Hausdorff, Φk

α(Dn) is a closed subset containing ekα.
Hence we have the other inclusion (Remember that the closure of a subset is the

intersection of all closed subset containing it). In particular, this implies that ekα is
compact (and hence closed) for every cell ekα in its cellular structure.

Example 1.3. Any Hausdorff space X has a trivial cellular structure. Namely, we
define X0 := X and Φ0

x : {x} → X, for all x ∈ X0.

Example 1.4. We can put on Sn the cellular structure consisting of a single 0-cell,
say e0, together with a single n-cell, say en. The associated characteristic maps are
Φ0 : {∗} → Sn and Φn : Dn → Sn, the quotient map which sends ∂Dn to e0.

Example 1.5. We can also put on S1, S2 and so on, the cellular structures repre-
sented on the following picture.
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Definition 1.6. A subspace A of a cellular complex (X, {enα}, {Φn
α})) is a subcom-

plex if it is a disjoint reunion of cells of X and is such that enα ⊂ A, for all cell
enα ⊂ A.

Example 1.7. Given a cellular complex X, each of its n-skeleton Xn is a subcom-
plex of X.

Example 1.8. In the Example 1.5 we can see S1 as a subcomplex of S2.

Obviously, if we define An := {ekα ∈ Xn|ekα ⊂ A}, for all n, the set
⋃
n∈N

An to-

gether with the corresponding characteristic maps corresponds to a cellular struc-
ture on A. Therefore, A with this cellular structure is a cellular complex in its
own right. Consequently, by a subcomplex A ⊂ X, we shall always mean the cel-
lular complex induced in this way together with the subspace topology. Note that
if A ⊂ X is a disjoint reunion of cells of X and a closed subspace of X, A is a
subcomplex of X, by definition (since the closure of its cells will be included in its
closure, which is itself). However the converse is not necessarily true (think of R
with its canonical cellular structure: any open interval is a subcomplex).

Moreover, by definition of subcomplex, if we allow ∅ to be a subcomplex, we have
that the intersection of any number of subcomplexes of X is again a subcomplex
of X. Therefore, given a subset E ⊂ X, we can define X(E) to be the subcomplex
that corresponds to the intersection of all subcomplexes containing E. This leads
us to defining the following property :

Definition 1.9. We say a cellular complex X is closure finite if X(e) is a finite
subcomplex for all cell e in the cellular structure of X.

Remark 1.10. If p is a point of X contained in the cell e of X, then X(p) =
X(e) = X(e).

In another order of idea, the cellular structure on a space doesn’t impose its
topology to the whole space, just to the closure of the cells. Indeed, a subset
A ⊂ enα is closed in enα if and only if (Φn

α)−1(A) is closed in Dn
α. Hence, the space

doesn’t necessarily have a nice topology relatively to its cells. However, there is a
topology that naturally fits with the cellular structure.

Definition 1.11. We say a cellular complex (X, ({enα}, {Φn
α})) has the weak topol-

ogy relative to its cells, if A ⊂ X is closed (open) if and only if enα ∩ A is closed
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(relatively open) for each cell enα, or equivalently, if and only if (Φn
α)−1(A) is closed

(open) in Dn
α for every characteristic map.

Example 1.12. An example of cellular complex that is closure finite but doesn’t
have the weak topology is S1 with the trivial cellular structure.

Example 1.13. An example of cellular complex that has the weak the weak topol-
ogy but isn’t closure finite is D2 with a single 2-cell and the trivial cellular complex
on ∂D2.

Definition 1.14. Given a cellular complex X, we say it is a CW complex if it is
closure finite and X has the weak topology relative to its cells.

1.2. Subcomplexes.

Proposition 1.15. Given a CW complex X, F ⊂ X is closed if and only if F ∩A
is closed in A for every finite subcomplex A ⊂ X.

Remark 1.16. Since a finite subcomplex is compact (being a finite reunion of
compact subspaces) in a Hausdorff space X, it is a closed subspace of X. Therefore,
the preceding characterization of the weak topology says that A ⊂ X is closed in
X relative to the weak topology if and only if its intersection with the closure of
each cell is a closed subspace of X.

Proof. Let F ⊂ X be a closed subset of X. By definition of weak topology on
X, we have that F ∩ e is closed in X, for every cell e. In particular, for a finite
subcomplex A, we have that F ∩ A =

⋃
enα∈A

F ∩ enα, where the reunion is finite.

Hence, it is a closed subset, being the finite reunion of closed subsets. Conversely,
suppose F ⊂ X is such that F ∩ A is closed, for all finite subcomplex A ⊂ X.
Since X is closure finite, we have that X(e) is a finite subcomplex, for all cell e.
Therefore, we have that (F ∩X(e)) ∩ e = F ∩ e is closed, for all cell e. �
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Corollary 1.17. Given a CW complex X, U ⊂ X is open if and only if U ∩ A is
relatively open for every finite subcomplex A ⊂ X.

Corollary 1.18. The 0-skeleton X0, considered as a subspace of X, has the discrete
topology.

Corollary 1.19. Let X be a CW complex and A ⊂ X a subcomplex.

(1) A is closure finite;
(2) The subspace topology of A coincide with its weak topology.

Proof. (1) Let A ⊂ X be a subcomplex. Let e be a cell of A. Then we obviously
have that A(e) ⊂ X(e), since A∩X(e) is a subcomplex of A containing e. Therefore,
since X is closure finite, we deduce that A(e) is a finite subcomplex.
(2) Suppose F ⊂ A is such that F ∩ A0 is closed in X for every finite subcomplex
A0 ⊂ A. Let X0 ⊂ X be a finite subcomplex of X. Then A0 := A ∩X0 is a finite
subcomplex of A and we have that

F ∩A0 = F ∩ (X0 ∩A) = F ∩X0

is closed in X. By generality of the finite subcomplex X0, F is closed in X and
therefore F ∩ A = F is closed in the subspace topology of A. Conversely, suppose
F ⊂ A is closed in A. Then there exist F̃ ⊂ X such that F̃ ∩ A = F and F̃ ∩X0

is closed for every finite subcomplex X0 ⊂ X. Since every subcomplex of A is in
particular a subcomplex of X, we have that F̃ ∩ A0 = F ∩ A0 is closed in X for
every finite subcomplex A0 ⊂ A. �

In particular, part (2) of the proof above shows that every subcomplex of a
CW complex is a closed subspace of X. Therefore, this gives a characterization of
subcomplexes in a CW complex.

Corollary 1.20. Given a CW complex X, a subspace A ⊂ X is a subcomplex if
and only if it is a closed subspace and the disjoint reunion of cells of X.

1.3. Product of CW complexes. Given (X, ({enα}, {Φn
α})) and (Y, ({ẽnα}, {Φ̃n

α}))
two cellular complexes, we define a cellular structure on X × Y by setting

(X × Y )n := {ekα × ẽlβ|0 ≤ k + l ≤ n},

for all n, and

Ψk+l
α,β : Dk+l

α,β → X × Y
(x, y) 7→ (Φk

α(x), Φ̃l
β(y))

for all, k, l, α and β. We easily see that it is a cellular structure, since we have
Dk+l
α,β ≡ D

k
α ×Dl

β topologically.

Moreover, since X(ekα)×Y (ẽlβ) is a subcomplex of X×Y containing ekα× ẽlβ (for

any cell ekα × ẽlβ of X × Y ), we have

X × Y (ekα × ẽlβ) ⊂ X(ekα)× Y (ẽlβ).

Therefore, ifX and Y are closure finite, thenX×Y with the above cellular structure
is closure finite.
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Remark 1.21. Given two cellular complex X and Y , we will always assume X×Y
has the above cellular structure. We will call it the product cellular structure of
X × Y .

Example 1.22. The torus with the product cellular structure induced by S1 as in
Example 1.4.

Unfortunately, it is not necessarily true that X × Y has the weak topology if X
and Y have it (meaning that the product topology on X × Y doesn’t necessarily
coincide with the weak topology of X×Y (relative to its product cellular structure),
even if X and Y are CW complexes). The following counter-example is due to C.
H. Dowker.

Counter-Example 1.23. Consider an uncountable collection of distinct points
together with an uncountable collection of closed intervals, say {x0} ∪ {xi}i∈N∗N
and {Ai}i∈N∗N respectively, and a countable collection of distinct points with a
countable collection of closed intervals, say {y0}∪{yj}j∈N and {Bj}j∈N respectively.
Consider the space X obtained by identifying one end of Ai to x0 and the other to
xi, for all i, and put the obvious cellular structure on the set X. It can be shown
that this is a CW complex (try to picture it for the moment, we shall see later that
a space constructed in such a way is always a CW complex). Consider also the CW
complex Y similarly constructed from the countable set of cells. Since each Ai and
Bj are homeomorphic to [0, 1], we can specify a point of Ai and a point of Bj , by
specifying its value in [0, 1] under some choosen homeomorphism (namely, under
the implicit characteristic map or its reverse, so that x0 and y0 always correspond
to 0).
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Now, for each (i, j) ∈ N∗N × N, let pij be the point corresponding to ( 1
ij
, 1
ij

) in

Ai × Bj and define P := {pij |(i, j) ∈ N∗N × N}. We will show that P is closed in
the weak topology of X × Y , but not in the product topology. First of all, since
P ∩ Ai × Bj = {pij}, for all (i, j) ∈ N∗N × N, we have that P is closed in the
weak topology of X × Y . Now, let us suppose that U × V is some subbasic open
neighbourhood of (x0, y0) in the product topology. Since X has the weak topology,
there exists ai > 0 such that {t ∈ [0, 1]|t < ai} is an open subset of U ∩ Ai, for all

i ∈ N∗N. In other words, there exist a family {ai}i ⊂ (0, 1] such that the reunion⋃
i
{t ∈ [0, 1]|t < ai} ⊂ U is an open neighbourhood of x0 in the weak topology of

X. Similarly, there exists bj > 0, for all j ∈ N, such that
⋃
j
{t ∈ [0, 1]|t < bj} ⊂ V

is an open neighbourhood of y0 in the weak topology of Y . Hence, we have that

W :=
⋃
i

{t ∈ [0, 1]|t < ai} ×
⋃
j

{t ∈ [0, 1]|t < bj} ⊂ U × V

is an open neighbourhood of (x0, y0) in the product topology of X × Y . If we

choose î := (̂i1, · · · , îk, · · · ) ∈ N∗N such that îj > j and îj >
1
bj

, for all j ∈ N, and

if we choose ĵ such that ĵ > 1
aî

, then we have that pîĵ ∈ W . In other words, we

have just shown that, for every subbasic open neighbourhood U × V of (x0, y0),
the intersection U × V ∩ P is not empty. Hence, (x0, y0) is an accumulation point
of P . Since (x0, y0) is not in P , P is not closed in the product topology. �

In what follows, we will show that if X and Y are CW complexes and that at
least one of them is locally compact, then X × Y has the weak topology (and is
therefore a CW complex). The result will follow from the theorem below (shown
in class).

Theorem 1.24. If X is compactly generated and Y is locally compact and Haus-
dorff, then X × Y is compactly generated.

In order to deduce our result from this one, all we have to do is

(1) Show that if X and Y are CW complexes and X×Y is compactly generated,
then X × Y has the weak topology.
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(2) Show that all CW complexes are compactly generated.

Proposition 1.25. If X is a CW complex, X is compactly generated.

Proof. Suppose F ⊂ X is closed in X. Since X is Hausdorff, its intersection with
all compact subset of X is closed. Conversely, suppose F ⊂ X is such that F ∩C is
closed for every compact subset C ⊂ X. Since every finite subcomplex is compact,
F is closed in X. �

Now let us focus on the first of the two assertions above.

Lemma 1.26. If X is a CW complex and C ⊂ X is compact, then X(C) is a finite
subcomplex.

Proof. Since X is closure finite, it suffices to show that every compact subset of X
is contained in a reunion of cells.

Let us proceed by contradiction and suppose there exist a compact subset C ⊂ X
that intersect an infinite number of cells of X, a subset of which is {ei}i∈N. Let
xi be a point in C ∩ ei, for all i, and let P := {xi}i. For every finite subcomplex
X0 ⊂ X, the intersection P ∩X0 consist of a finite number of point and is therefore
closed (since X is Hausdorff). Hence, P is a closed subset of X. Similarly, we
can show that every subset of P is a closed subset. It follows that P has the
discrete topology. Since it is closed and included in the compact subset C, it is
also compact. Therefore P is finite. This is a contradiction. �

Proposition 1.27. If X and Y are CW complexes and X × Y is compactly gen-
erated, then X × Y has the weak topology.

Proof. Let F ⊂ X×Y be such that F∩A is closed in X×Y for all finite subcomplex
A ⊂ X × Y . Let C ⊂ X × Y be a compact subset and Ci := pri(C), for i = 1, 2.
Since the projections pri are continuous, the subsets Ci are compact. Hence, by
the above lemma, X(C1) and Y (C2) are finite subcomplexes. Since C ⊂ C1 × C2,
we have that (X × Y )(C) ⊂ X(C1) × Y (C2) and therefore (X × Y )(C) is a finite
subcomplex of X×Y . It follows by hypothesis on F that F ∩ (X×Y )(C) is closed
and therefore, since C is closed (X is Hausdorff), that

F ∩ C = (F ∩ (X × Y )(C)) ∩ C

is closed. By generality of the compact subset C and since X is compactly gener-
ated, F is closed. �

Hence, we have shown the desired theorem.

Theorem 1.28. If X and Y are CW complexes and that at least one of them is
locally compact, then X × Y has the weak topology and is therefore a CW complex.

Example 1.29. For any CW complex X, we have that X × I is a CW complex,
since I is a locally compact CW complex.

Corollary 1.30. Let X and Y be CW complexes. If one of them is locally finite,
X × Y is a CW complex.
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Proof. By the above theorem, it suffices to show that if Y a locally finite CW
complex (meaning each point of Y has a neighbourhood intersecting only a finite
number of cells of Y ) then Y is locally compact. Suppose we are given a point
p ∈ Y and a neighbourhood V of p intersecting only a finite number of cells. Since
the closure of V (in X) is contained in the reunion of the closure (in X) of the cells
intersecting it, we have that V is a closed subset of this compact set. Hence, V
will be a compact neighbourhood of p. �

1.4. CW complexes are normal. Next, we would like to show that every CW
complex X is normal. In order to do that, we will show how to construct inductively
an ε-neighbourhood of any closed subset of X. First, we fix B ⊂ X, any closed
subset of X.

We start the construction by defining N0
ε (B) := X0 (the set of 0-cells), which is

open in X0 (since it has the discrete topology). Supposing that we have defined an
open neighbourhood of B∩Xn−1 in Xn−1, say Nn−1

ε (B), we define Nn
ε (B) by speci-

fying its pre-image relative to each charateristic map associated to a n-cell. Namely,
for Φn

α, we want (Φn
α)−1(Nn

ε (B)) to be an ε-neighbourhood of (Φn
α)−1(B)\∂Dn

α in
Dn
α\∂Dn

α together with

(1− ε, 1]× ((Φn
α)−1(Nn−1

ε (B)),

where we have assumed the ’spherical’ coordinates on Dn
α (i.e. every points of

Dn
α\{0} express itself as (r, x) ∈ (0, 1]× ∂Dn

α). We then define

Nε(B) :=
⋃
n

Nn
ε (B).

This is an open set in the weak topology since it is relatively open in each cell by
construction.

Remark 1.31. The notation used above is a bit unfortunate (but practical) since
we could have chosen different ε = εnα for every cell enα and the resulting neighbour-
hood would still be open, by the same argument. We will exploit this construction
in the next proposition.

Proposition 1.32. If X is a CW complex, then X is a normal space.
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Proof. Let A, B ⊂ X be two disjoint closed subsets. Suppose we have constructed
disjoint ε-neighbourhoods Nn

ε (A) and Nn
ε (B) in Xn.

Let en+1
α be a (n + 1)-cell of characteristic map Φn+1

α : Dn+1
α → Xn+1. Since

(Φn+1
α )−1(A) and (Φn+1

α )−1(B) are disjoint compact subsets of the metric space
Dn+1
α , we can find εA > 0 and εB > 0 such that the εA-neighbourhood of (Φn+1

α )−1(A)\∂Dn+1
α

in Dn+1
α \∂Dn+1

α , say VεA , is disjoint from its homonym for (Φn+1
α )−1(B)\∂Dn+1

α ,
say VεB . The problem that may occur is that the

(1− εA, 1]× ((Φn+1
α )−1(Nn

ε (A)))

part that we want to add (to proceed as in the construction above) may intersect
VεB (and vice versa changing the role of A and B). In order to avoid that, we only
have to see that (Φn+1

α )−1(Nn
ε (A)) and B are a positive distance appart (and same

thing for (Φn+1
α )−1(Nn

ε (B)) and A) so that, choosen small enough, εA > 0 and
εB > 0 are such that Nn+1

εA
and Nn+1

εB
misses each other. If it wasn’t the case

(meaning that the distance from B to (Φn+1
α )−1(Nn

ε (A)) is zero), then we could
find a sequence in (Φn+1

α )−1(Nn
ε (A)) converging to some point of B ∩ ∂Dn+1

α (by
compactness of ∂Dn+1

α ). Therefore, we would have that (Φn+1
α )−1(Nn

ε (A)) intersect
(Φn+1

α )−1(Nn
ε (B)), which is a contradiction of the induction hypothesis. �

1.5. Construction of CW complex.

Proposition 1.33. Let X be a CW complex with cellular structure given by ({enα}, {Φn
α}).

If we define φnα : ∂Dn
α → Xn−1, for all n,α, by restricting Φn

α to ∂Dn
α, then we have

X ∼= (
⊔
α,n

Dn
α)/(x ∼ φnα),

where the space on the right has the quotient topology.

Proof. This is a simple application of the fact that X has the weak topology relative
to its cells (Remember that if q :

⊔
α,n

Dn
α → (

⊔
α,n

Dn
α)/(x ∼ φnα) is the quotient map,

then U is open in (
⊔
α,n

Dn
α)/(x ∼ φnα) if and only if its pre-image is open in

⊔
α,n

Dn
α,

or equivalently U is open if and only if q−1(U)∩Dn
α is open in Dn

α, for all n, α). �

For the sake of seing the concept of CW complex from a different perspective
we would like to give a constructive, yet equivalent, way to define a CW complex.
In the paragraph that follows, we describe the said construction and we establish
that every cellular complex constructed in this way is indeed a CW complex. The
converse is given by Proposition 1.33.

We start by defining X0 to be any set of points with the discrete topology. Its
underlying cellular structure is the trivial one. Then we suppose we already have
defined its n− 1-skeleton Xn−1 together with its underlying cellular structure and
that we are given a set {enα}α of n-disks and a set of continuous maps (called
attaching maps) {φα}α of the form φnα : ∂Dn

α → Xn−1. We then define

Xn := (Xn−1
⊔
α

Dn
α)/(x ∼ φα(x))
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with the quotient topology. The cells of Xn are the ones in Xn−1 together with
the image of Int(Dn

α) (which we shall denote enα) under the characteristic map Φn
α

defined as the following composition :

Φn
α : Dn

α
// Xn−1

⊔
α
Dn
α

// Xn

[To actually be able to talk about cells, we need to show that Φn
α is a homeomor-

phism of Int(Dn
α) onto its image in Xn. Lets investigate the characteristic maps

defined above. The first map is the inclusion. It is obviously a homeomorphism onto
its image when restricted to Dn

α (and in particular when restricted to Int(Dn
α)).

The second map is the quotient map which is injective on Int(Dn
α) and therefore

a homeomorphism onto its image by definition of the quotient topology. ] We can
continue this process of adjunction of cells as long as we want and in the end we
define X :=

⋃
n
Xn with the weak topology relative to the subsets Φn

α(Dn
α) = enα.

We would like to see that a space constructed in such a way is indeed a CW
complex, but first, to be able to speak of cellular structure on the space X, we have
to see that X is Hausdorff. This is simple since the proof given above that CW
complexes are normal spaces also give that the space X is normal (and Hausdorff).
Therefore, to show that X is a CW complex, it suffices to show that such a space
X is closure finite.

Proposition 1.34. The cellular complex X is closure finite.

Proof. Let us show by induction on the dimension that any cell is contained in a
finite subcomplex. The case of the 0-cells is trivial. Suppose that every n−1-cell is
contained in a finite subcomplex. By an argument similar to the one given above,
we can show that every compact subset of X is contained in a finite number of cells.
Therefore, for any cell enα, since ∂enα is compact, it is contained in a finite number
of cells of dimension n− 1. By the induction hypothesis, we have our result. �

1.6. Homotopy Extension Property.

Proposition 1.35. Let X be a CW complex. A map f : X → Y is continuous if
and only if f �enα is continuous for every cell enα.

Corollary 1.36. Let X be a CW complex. A map F : X × I → Y is continuous if
and only if F �enα×I is continuous for every cell enα.

Proof. Since I is locally compact and Hausdorff, F is continuous if and only if the
adjoint map F : X → Y I is continuous. Since X has the weak topology, this means
that F is continuous if and only if F �enα is continuous for every cell enα. Finally,

since I is locally compact and Hausdorff, F �enα is continuous if and only if F �enα×I
is continuous, for every enα. �

Theorem 1.37. Let X be a CW complex and A ⊂ X be a subcomplex. Then the
inclusion i : A→ X is a cofibration.

Proof. Let f : X → Y and F : X × I → Y be continuous maps such that f �A=
F �A×{0}. Suppose we have constructed a continuous map F (k) : (A∪Xk)×I → Y ,
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for some k ≥ −1, where F (−1) := f �A and X−1 := ∅, and F (k) �(A∪Xk)×{0}=
f �A∪Xk , for k > −1.

Let ek+1
α be a random k + 1-cell of X. Since the inclusion ∂Dk+1

α → Dk+1
α is

a cofibration (by an exercice of the problem sheet 1) and since the push-outs of a

cofibration is a cofibration (by a proposition in the course), we can extend F (k) to a

continuous map, say F
(k)
α , on ((A∪Xk)∪ek+1

α )× I such that F
(k)
α �(A∪Xk)×I= F (k)

and f �A∪Xk∪ek+1
α

= F
(k)
α �(A∪Xk∪ek+1

α )×{0}.

∂Dk+1
α

g:=Φk+1
α �

∂Dk+1
α ��

cofibration // Dk+1
α

��
A ∪Xk

��

cofibration // A ∪Xk ∪ ek+1
α

��

f�
A∪Xk∪ek+1

α

ww
Y

(A ∪Xk)× I //

F
(k)
α

99

(A ∪Xk ∪ ekα)× I

F
(k)
α

gg

[Let us note that we used the fact that there is an homeomorphism between (A ∪
Xk) ∪g Dk+1

α and A ∪Xk ∪ ek+1
α in the diagram above.] Hence, we can take these

extensions F kα , for all ek+1
α , and put them together to define

F k+1 : (A ∪Xk+1)× I → Y
(x, t) 7→ F kα(x, t)

,

for x ∈ A ∪ Xk ∪ ek+1
α . This is a continuous map by corollary 1.36 and it satis-

fies F k+1 �(A∪Xk)×I= F k and F k+1 �(A∪Xk+1)×{0}= f �A∪Xk+1 , by construction.
Therefore, we can suppose we have such extensions of F for all k ≥ −1 and define
F̃ : X × I → Y has the map F̃ (x, t) := F k(x, t), for x ∈ Xk. This is the extension
we were looking for. �

Remark 1.38. For an alternate proof, Hatcher shows in his book that X × I
(strongly) deformation retracts on A× I ∪X × {0}.

1.7. Quotient of CW Pairs. Let (X,A) be a CW pair (meaning that X is a CW
complex and A ⊂ X a subcomplex) where the cellular structure of X is given by
({enα}, {Φn

α}). We will define a cellular on X/A called the quotient cellular structure
such that X/A together with this cellular structure is a CW complex.

First, consider the quotient map q : X → X/A. It is obvious that q is a bijection
(and hence an homeomorphism) of X\A onto X/A. Hence, if we compose Φn

α with

q, where the associated n-cell enα is not in A, it gives us a map Φ̃n
α : Dn

α → X/A
that is still a homeomorphism when restricted to Int(Dn

α). Therefore, we say that
the following cells are the cells of the quotient cellular structure of X/A

{Φ̃n
α(Int(Dn

α))}(n,α)∈{n,α|enα⊂X\A} t e
0,
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where e0 := q(A), and that the associated characteristic maps are

{Φ̃n
α}(n,α)∈{n,α|enα⊂X\A} t {Φ̃

0 : {∗} 7→ q(A)}.
If we see X/A as the quotient of the quotient space X = (

⊔
n,α

Dn
α)(x ∼ φnα), we see

that X/A is indeed a CW complex (Exercice).

Example 1.39. Consider the CW pair (X,A) := (SntSm, {∗Sn , ∗Sm}), where Sk

has the cellular structure of Example 1.4 (for k = n,m) and ∗Sk denotes the unique
0-cell in the cellular structure of Sk (for k = n,m). The quotient space X/A is the
wedge Sn ∨ Sm. Therefore the wedge of the sphere can be seen as a CW complex
with the cellular structure defined above.

Example 1.40. Consider the CW pair (X,A) := (Sn × Sm, Sn ∨ Sm), where the
cellular structure of Sk is the one of Example 1.4. The quotient space X/A is the
smash product Sm ∧ Sm, and by looking closely to the cellular structure defined
above, we see that is is Sn+m. More importantly, this also means that Sn ∧ Sm is
a CW complex with the cellular structure defined above.

By generalizing the argument of Example 1.39 we can actually show that the
wedge of two CW complex is always a CW complex (when the wedge is done
by identifying two 0-cells and when we put the quotient cellular structure on it).
Similarly, if reconsider Example 1.40, when one of the space is locally compact
and Hausdorff (since the product of two CW complex is a CW complex with its
product cellular structure (defined above)) we can generalize the argument to show
that the smash product is a CW complex (when the wedge is a subcomplex of the
product and when the smash product has the quotient cellular structure). Another
nice example is the following.

Example 1.41. Given a CW complex X, the product X × I (with its product
cellular structure) is a CW complex since I is locally compact and Hausdorff.
Hence, since X × {1} is a subcomplex of X × I (Exercice) we have that the pair
(X × I,X × {1}) gives us a CW complex structure on the cone CX.
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