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Aim.

1. Define the Arf invariant;

2. Prove it is well defined;

3. Show that L2(Z) ∼= Z/2.

Remark. Every fact used are a result of Lemme 4.80, p.152 in the Surgery Book [1],
except if said otherwise.

Let P be a finitely generated projective Z-module, let (P, λ) be a nonsingular
(−1)-symmetric form over Z and let µ : P → Q(−1)(Z) = Z/2 be a quadratic refine-
ment of (P, λ). For every x ∈ P , we have that λ(x, x) = −λ(x, x). This allows us to
state the following fact:

Fact 1. Every nonsingular (−1)-symmetric from (P, λ) admits a symplectic basis
{e1, f1, ..., em, fm}, i.e. λ(ei, fi) = 1, λ(ei, fj) = 0 for i 6= j and λ(ei, ei) = 0 =
λ(fi, fi).

Definition. The Arf invariant of (P, λ, µ), denoted by Arf(P, λ, µ), is defined by

Arf(P, λ, µ) :=
m∑

i=1
µ(ei)µ(fi) ∈ Z/2.

Remark. The Arf invariant is additive, i.e. for another quadratic form (P1, λ1, µ1)
aver Z, we have that

Arf(P ⊕ P1, λ⊕ λ1, µ⊕ µ1) := Arf(P, λ, µ) + Arf(P1, λ1, µ1).

Proposition. The Arf invariant is well defined.
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Proof. This proof will be separated in two parts. We will first prove that the Arf
invariant is well defined on nonsingular (−1)-quadratic forms over Z2 and then prove
that it is well defined in general.
Part 1. The Arf invariant is well defined on forms over Z2. Let’s prove that there
are two isomorphisms classes of nonsingular (−1)-quadratic forms over Z2. The first
is H−(Z). The second is defined as follow: let {e1, f1} be a the basis for Z2 and define

the second isomorphisms class to be A(Z) := (Z2, λA, µA), where λA =
(

0 1
−1 0

)
and

µA is such that µA(e1) = 1 = µa(f1).
Fact 2. Every nonsingular (−1)-symmetric form (Z2, λ) is isomorphic to H−(Z).

Now let X =
(
a b
c d

)
∈ GL2(Z). We have that det(X) = ±1. However,

(
a b
c d

)T ( 0 1
−1 0

)(
a b
c d

)
=
(
−c a
−d b

)(
a b
c d

)

=
(

0 ad− bc
−ad+ bc 0

)

= (ad− bc)
(

0 1
−1 0

)
.

Therefore, det(X) = 1. This and Fact 2 give us that Aut(H−(Z)) = SL2(Z).
Fact 3. The following statement is not due to lemme 4.80 in the Surgery Book [1]:
Aut(H−(Z)) ⊂ Aut(H−(Z)) and it is a subgroup of index 3.

Since Aut(H−(Z)) is a subgroup of order 3, H−(Z) has 3 quadratic refinements.
Adding the one of A(Z), we have 4 quadratic refinements which we expose in the
following table:

x = (0,0) (1,0) (0,1) (1,1)
µH1(x) 0 0 0 1
µH2(x) 0 0 1 0
µH3(x) 0 1 0 0
µA(x) 0 1 1 1

The µHi(x)s are the quadratic refinements ofH−(Z) and correspond toArf(H−(Z)) =
0, while µA(x) is the quadratic refinement of A(Z) and corresponds to Arf(A(Z)) = 1.
Since those four are the only quadratic refinements, the Arf invariant is well defined
on nonsingular (−1)-quadratic forms on Z2.

2



We will need the following fact later in the proof, but stating it now is more
convenient.
Fact 4. There are isomorphisms describing the following: A(Z) ⊕ A(Z) ∼= A(Z) ⊕
−A(Z) ∼= H−(Z2), where −A(Z) = (Z2,−λA, µA).
Part 2. We need to prove that the Arf invariant is well defined on nonsingular
(−1)-quadratic forms over Z.
Fact 5. We have the equality Arf(P, λ, µ) = Arf(F2 ⊗ (P, λ, µ)) and therefore, we
can apply Fact 4 to F2:

A(F2)⊕ A(F2) ∼= A(F2)⊕−A(F2) ∼= H−(F2
2).

Let (Q, λ, µ) be a nonsingular (−1)-quadratic form over F2. We define another
invariant of (Q, λ, µ), which we denote Arf ′((Q, λ, µ)), by:

Arf ′((Q, λ, µ)) :=
{

0 if |µ−1(0)| > |µ−1(1)|
1 if |µ−1(1)| > |µ−1(0)| .

By looking at the table on last page, we see that the case |µ−1(1)| = |µ−1(0)| cannot
happen, therefore it is not treated. Note that Fact 5 allows us to see the previous
listing of quadratic refinements as refinements of nonsingular (−1)-symmetric forms
over F2

2 instead of over Z2. Thus, we have two isomorphism classes of nonsingular
(−1)-quadratic forms over F2

2: H−(F2) and A(F2) . By looking once again at the
table, we get that Arf ′(H−(F2)) = 0 and Arf ′(A(F2)) = 1.

We now need to prove that for any nonsingular (−1)-quadratic form (Q, λ, µ),
Arf((Q, λ, µ)) = 1 if and only if Arf ′(Q, µ) = 1.

By looking at the table one last time, we see that

|(µ⊕ µHi
)−1(1)| = 3|µ−1(0)|+ |µ−1(1)| for i = 1, 2, 3

and |(µ⊕ µA)−1(1)| = 3|µ−1(1)|+ |µ−1(0)|.

Hence, Arf ′ is additive, i.e. Arf(Q⊕Q1, λ⊕λ1, µ⊕µ1) := Arf(Q, λ, µ)+Arf(Q1, λ1, µ1),
with Q1 = H−(F2) or A(F2).

Recall Fact 2: (Z2, λ) ∼= H−(Z) for (Z2, λ) a nonsingular (−1)-symmetric form.
Using it on nonsingular (−1)-quadratic forms over F2, we get (Q, λ) ∼= H−(Zr) for
some r. Hence, (Q, λ, µ) ∼=

s⊕
i=1

H−(F2) ⊕
t⊕

i=1
A(F2), where r = s + t. Therefore, by

the additivity of Arf ′ , we get Arf ′((Q, λ, µ)) ∼= t mod 2. But, by Fact 5, we have
that A(F2)⊕ A(F2) ∼= H−(F2

2). Thus,

(Q, λ, µ) ∼=
{
H−(Fr

2) if Arf ′((Q, λ, µ)) = 0
A(F2)⊕H−(Fr−1

2 ) if Arf ′((Q, λ, µ)) = 1 .
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Since Arf is also additive, we also have that Arf((Q, λ, µ)) ∼= t mod 2.
Let B = {e1, f1, ..., er, fr} be any symplectic basis for (Q, λ, µ).

Arf(Q, λ, µ,B) = 1⇔ t ∼= 1 mod 2
⇔ Arf ′((Q, λ)) = 1.

Hence, Arf(Q, λ, µ,B) is independent of B and Arf is well defined.

Theorem. L2(Z) ∼= Z/2

Proof. This proof will use many results of the one of last proposition.
Let (P, λ, µ) be a nonsingular (−1)-quadratic form over Z. We have that (P, λ) ∼=

H−(Zr) for some r. Thus, (P, λ, µ) ∼=
s⊕

i=1
H−(Z)⊕

t⊕
i=1

A(Z), for r = s+ t. Therefore,

(P, λ, µ) ∼=
{
H−(Zr) if Arf((Q, λ, µ)) = 0
A(Z)⊕H−(Zr−1) if Arf((Q, λ, µ)) = 1 .

Hence, L2(Z) ∼= Z/2.

Arf invariant of a knot
Let K be a knot and F its Seifert surface of genus g. Recall that a Seifert surface of
a knot is an oriented connected surface with K as boundary.

It is possible to assign a sign to each crossing following their orientation: the
crossing is either +1 or −1. The convention is represented on figure 1.

+1 -1

Figure 1

Definition. The linking number of K, denoted by lk(K) is the sum of the signs of
each crossing divided by 2.

Definition. A Seifert Matrix V is a 2g×2g matrix for which vi,j = lk(ai, a
+
j ), where

ai is the i-th crossing and a+
j is the pushoff of aj, the j-th crossing.
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Definition. The Arf invariant of a knot K is

Arf(K) =
2∑

i=1
gv2i−1,2i−1v2i,2i mod 2

=
m∑

i=1
lk(ai, a

+
i )lk(bi, b

+
i ) mod 2

with {ai, bi} a sympletic basis for i = 1, ..., g.

Example. The trefoil knot (figure 2a) has Seifert matrix
(
−1 0
1 −1

)
. And therefore

Arf(trefoil) = 1.

(a) Trefoil knot

α1 α2

(b) Its Seifert surface. α1 and α2
are the sympletic basis of the last
definition.

Figure 2

However, the unknot has Seifert matrix 0. Thus, Arf(unknot) = 0. Hence the
trefoil knot and the unknot are not the same.
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