Arf Invariant

Content of the talk

Fanny Desjardins

May 4, 2016

Aim.

1. Define the Arf invariant;
2. Prove it is well defined;
3. Show that $L_{2}(\mathbb{Z}) \cong \mathbb{Z} / 2$.

Remark. Every fact used are a result of Lemme 4.80, p. 152 in the Surgery Book [1], except if said otherwise.

Let P be a finitely generated projective \mathbb{Z}-module, let (P, λ) be a nonsingular (-1)-symmetric form over \mathbb{Z} and let $\mu: P \rightarrow Q_{(-1)}(\mathbb{Z})=\mathbb{Z} / 2$ be a quadratic refinement of (P, λ). For every $x \in P$, we have that $\lambda(x, x)=-\lambda(x, x)$. This allows us to state the following fact:

Fact 1. Every nonsingular (-1)-symmetric from (P, λ) admits a symplectic basis $\left\{e_{1}, f_{1}, \ldots, e_{m}, f_{m}\right\}$, i.e. $\lambda\left(e_{i}, f_{i}\right)=1, \lambda\left(e_{i}, f_{j}\right)=0$ for $i \neq j$ and $\lambda\left(e_{i}, e_{i}\right)=0=$ $\lambda\left(f_{i}, f_{i}\right)$.

Definition. The Arf invariant of (P, λ, μ), denoted by $\operatorname{Arf}(P, \lambda, \mu)$, is defined by

$$
\operatorname{Arf}(P, \lambda, \mu):=\sum_{i=1}^{m} \mu\left(e_{i}\right) \mu\left(f_{i}\right) \quad \in \mathbb{Z} / 2
$$

Remark. The Arf invariant is additive, i.e. for another quadratic form $\left(P_{1}, \lambda_{1}, \mu_{1}\right)$ aver \mathbb{Z}, we have that

$$
\operatorname{Arf}\left(P \oplus P_{1}, \lambda \oplus \lambda_{1}, \mu \oplus \mu_{1}\right):=\operatorname{Arf}(P, \lambda, \mu)+\operatorname{Arf}\left(P_{1}, \lambda_{1}, \mu_{1}\right)
$$

Proposition. The Arf invariant is well defined.

Proof. This proof will be separated in two parts. We will first prove that the Arf invariant is well defined on nonsingular (-1)-quadratic forms over \mathbb{Z}^{2} and then prove that it is well defined in general.
Part 1. The Arf invariant is well defined on forms over \mathbb{Z}^{2}. Let's prove that there are two isomorphisms classes of nonsingular (-1)-quadratic forms over \mathbb{Z}^{2}. The first is $H_{-}(\mathbb{Z})$. The second is defined as follow: let $\left\{e_{1}, f_{1}\right\}$ be a the basis for \mathbb{Z}^{2} and define the second isomorphisms class to be $A(\mathbb{Z}):=\left(\mathbb{Z}^{2}, \lambda_{A}, \mu_{A}\right)$, where $\lambda_{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and μ_{A} is such that $\mu_{A}\left(e_{1}\right)=1=\mu_{a}\left(f_{1}\right)$.
Fact 2. Every nonsingular (-1)-symmetric form $\left(\mathbb{Z}^{2}, \lambda\right)$ is isomorphic to $H^{-}(\mathbb{Z})$.
Now let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{Z})$. We have that $\operatorname{det}(X)= \pm 1$. However,

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{cc}
-c & a \\
-d & b
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & a d-b c \\
-a d+b c & 0
\end{array}\right) \\
& =(a d-b c)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Therefore, $\operatorname{det}(X)=1$. This and Fact 2 give us that $\operatorname{Aut}\left(H^{-}(\mathbb{Z})\right)=S L_{2}(\mathbb{Z})$.
Fact 3. The following statement is not due to lemme 4.80 in the Surgery Book [1]: $\operatorname{Aut}\left(H_{-}(\mathbb{Z})\right) \subset \operatorname{Aut}\left(H^{-}(\mathbb{Z})\right)$ and it is a subgroup of index 3 .

Since $\operatorname{Aut}\left(H_{-}(\mathbb{Z})\right)$ is a subgroup of order $3, H_{-}(\mathbb{Z})$ has 3 quadratic refinements. Adding the one of $A(\mathbb{Z})$, we have 4 quadratic refinements which we expose in the following table:

$x=$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$\mu_{H_{1}(x)}$	0	0	0	1
$\mu_{H_{2}(x)}$	0	0	1	0
$\mu_{H_{3}(x)}$	0	1	0	0
$\mu_{A(x)}$	0	1	1	1

The $\mu_{H_{i}(x)}$ s are the quadratic refinements of $H_{-}(\mathbb{Z})$ and correspond to $\operatorname{Arf}\left(H_{-}(\mathbb{Z})\right)=$ 0 , while $\mu_{A(x)}$ is the quadratic refinement of $A(\mathbb{Z})$ and corresponds to $\operatorname{Arf}(A(\mathbb{Z}))=1$. Since those four are the only quadratic refinements, the Arf invariant is well defined on nonsingular (-1)-quadratic forms on \mathbb{Z}^{2}.

We will need the following fact later in the proof, but stating it now is more convenient.

Fact 4. There are isomorphisms describing the following: $A(\mathbb{Z}) \oplus A(\mathbb{Z}) \cong A(\mathbb{Z}) \oplus$ $-A(\mathbb{Z}) \cong H_{-}\left(\mathbb{Z}^{2}\right)$, where $-A(\mathbb{Z})=\left(\mathbb{Z}^{2},-\lambda_{A}, \mu_{A}\right)$.
Part 2. We need to prove that the Arf invariant is well defined on nonsingular (-1)-quadratic forms over \mathbb{Z}.

Fact 5. We have the equality $\operatorname{Arf}(P, \lambda, \mu)=\operatorname{Arf}\left(\mathbb{F}_{2} \otimes(P, \lambda, \mu)\right)$ and therefore, we can apply Fact 4 to \mathbb{F}_{2} :

$$
A\left(\mathbb{F}_{2}\right) \oplus A\left(\mathbb{F}_{2}\right) \cong A\left(\mathbb{F}_{2}\right) \oplus-A\left(\mathbb{F}_{2}\right) \cong H_{-}\left(\mathbb{F}_{2}^{2}\right)
$$

Let (Q, λ, μ) be a nonsingular (-1)-quadratic form over \mathbb{F}_{2}. We define another invariant of (Q, λ, μ), which we denote $\operatorname{Arf}^{\prime}((Q, \lambda, \mu))$, by:

$$
\operatorname{Ar} f^{\prime}((Q, \lambda, \mu)):=\left\{\begin{array}{ll}
0 & \text { if }\left|\mu^{-1}(0)\right|>\left|\mu^{-1}(1)\right| \\
1 & \text { if }\left|\mu^{-1}(1)\right|>\left|\mu^{-1}(0)\right|
\end{array} .\right.
$$

By looking at the table on last page, we see that the case $\left|\mu^{-1}(1)\right|=\left|\mu^{-1}(0)\right|$ cannot happen, therefore it is not treated. Note that Fact 5 allows us to see the previous listing of quadratic refinements as refinements of nonsingular (-1)-symmetric forms over \mathbb{F}_{2}^{2} instead of over \mathbb{Z}^{2}. Thus, we have two isomorphism classes of nonsingular (-1)-quadratic forms over $\mathbb{F}_{2}^{2}: H_{-}\left(\mathbb{F}_{2}\right)$ and $A\left(\mathbb{F}_{2}\right)$. By looking once again at the table, we get that $\operatorname{Ar} f^{\prime}\left(H_{-}\left(\mathbb{F}_{2}\right)\right)=0$ and $\operatorname{Arf}^{\prime}\left(A\left(\mathbb{F}_{2}\right)\right)=1$.

We now need to prove that for any nonsingular (-1)-quadratic form (Q, λ, μ), $\operatorname{Arf}((Q, \lambda, \mu))=1$ if and only if $\operatorname{Arf}^{\prime}(Q, \mu)=1$.

By looking at the table one last time, we see that

$$
\begin{aligned}
& \left|\left(\mu \oplus \mu_{H_{i}}\right)^{-1}(1)\right|=3\left|\mu^{-1}(0)\right|+\left|\mu^{-1}(1)\right| \quad \text { for } i=1,2,3 \\
\text { and } & \left|\left(\mu \oplus \mu_{A}\right)^{-1}(1)\right|=3\left|\mu^{-1}(1)\right|+\left|\mu^{-1}(0)\right| .
\end{aligned}
$$

Hence, $\operatorname{Ar} f^{\prime}$ is additive, i.e. $\operatorname{Arf}\left(Q \oplus Q_{1}, \lambda \oplus \lambda_{1}, \mu \oplus \mu_{1}\right):=\operatorname{Arf}(Q, \lambda, \mu)+\operatorname{Arf}\left(Q_{1}, \lambda_{1}, \mu_{1}\right)$, with $Q_{1}=H_{-}\left(\mathbb{F}_{2}\right)$ or $A\left(\mathbb{F}_{2}\right)$.

Recall Fact 2 ($\left.\mathbb{Z}^{2}, \lambda\right) \cong H^{-}(\mathbb{Z})$ for $\left(\mathbb{Z}^{2}, \lambda\right)$ a nonsingular (-1)-symmetric form. Using it on nonsingular (-1)-quadratic forms over \mathbb{F}_{2}, we get $(Q, \lambda) \cong H^{-}\left(\mathbb{Z}^{r}\right)$ for some r. Hence, $(Q, \lambda, \mu) \cong \bigoplus_{i=1}^{s} H_{-}\left(\mathbb{F}_{2}\right) \oplus \underset{i=1}{\oplus} A\left(\mathbb{F}_{2}\right)$, where $r=s+t$. Therefore, by the additivity of $\operatorname{Ar} f^{\prime}$, we get $\operatorname{Arf}^{\prime}((Q, \lambda, \mu)) \cong t \bmod 2$. But, by Fact 5, we have that $A\left(\mathbb{F}_{2}\right) \oplus A\left(\mathbb{F}_{2}\right) \cong H_{-}\left(\mathbb{F}_{2}^{2}\right)$. Thus,

$$
(Q, \lambda, \mu) \cong \begin{cases}H_{-}\left(\mathbb{F}_{2}^{r}\right) & \text { if } \operatorname{Arf}^{\prime}((Q, \lambda, \mu))=0 \\ A\left(\mathbb{F}_{2}\right) \oplus H_{-}\left(\mathbb{F}_{2}^{r-1}\right) & \text { if } \operatorname{Arf}^{\prime}((Q, \lambda, \mu))=1\end{cases}
$$

Since Arf is also additive, we also have that $\operatorname{Arf}((Q, \lambda, \mu)) \cong t \bmod 2$.
Let $B=\left\{e_{1}, f_{1}, \ldots, e_{r}, f_{r}\right\}$ be any symplectic basis for (Q, λ, μ).

$$
\begin{aligned}
\operatorname{Arf}(Q, \lambda, \mu, B)=1 & \Leftrightarrow t \cong 1 \bmod 2 \\
& \Leftrightarrow \operatorname{Arf}^{\prime}((Q, \lambda))=1 .
\end{aligned}
$$

Hence, $\operatorname{Arf}(Q, \lambda, \mu, B)$ is independent of B and Arf is well defined.

Theorem. $L_{2}(\mathbb{Z}) \cong \mathbb{Z} / 2$
Proof. This proof will use many results of the one of last proposition.
Let (P, λ, μ) be a nonsingular (-1)-quadratic form over \mathbb{Z}. We have that $(P, \lambda) \cong$ $H^{-}\left(\mathbb{Z}^{r}\right)$ for some r. Thus, $(P, \lambda, \mu) \cong \bigoplus_{i=1}^{s} H_{-}(\mathbb{Z}) \oplus \bigoplus_{i=1}^{t} A(\mathbb{Z})$, for $r=s+t$. Therefore,

$$
(P, \lambda, \mu) \cong\left\{\begin{array}{ll}
H_{-}\left(\mathbb{Z}^{r}\right) & \text { if } \operatorname{Arf}((Q, \lambda, \mu))=0 \\
A(\mathbb{Z}) \oplus H_{-}\left(\mathbb{Z}^{r-1}\right) & \text { if } \operatorname{Arf}((Q, \lambda, \mu))=1
\end{array} .\right.
$$

Hence, $L_{2}(\mathbb{Z}) \cong \mathbb{Z} / 2$.

Arf invariant of a knot

Let K be a knot and F its Seifert surface of genus g . Recall that a Seifert surface of a knot is an oriented connected surface with K as boundary.

It is possible to assign a sign to each crossing following their orientation: the crossing is either +1 or -1 . The convention is represented on figure 1 .

Figure 1

Definition. The linking number of K, denoted by $l k(K)$ is the sum of the signs of each crossing divided by 2 .

Definition. A Seifert Matrix V is a $2 g \times 2 g$ matrix for which $v_{i, j}=l k\left(a_{i}, a_{j}^{+}\right)$, where a_{i} is the i-th crossing and a_{j}^{+}is the pushoff of a_{j}, the j-th crossing.

Definition. The Arf invariant of a knot K is

$$
\begin{aligned}
\operatorname{Arf}(K) & =\sum_{i=1}^{2} g v_{2 i-1,2 i-1} v_{2 i, 2 i} \bmod 2 \\
& =\sum_{i=1}^{m} l k\left(a_{i}, a_{i}^{+}\right) l k\left(b_{i}, b_{i}^{+}\right) \bmod 2
\end{aligned}
$$

with $\left\{a_{i}, b_{i}\right\}$ a sympletic basis for $i=1, \ldots, g$.
Example. The trefoil knot (figure $2 a$ has Seifert matrix $\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$. And therefore $\operatorname{Arf}($ trefoil $)=1$.

Figure 2

However, the unknot has Seifert matrix 0. Thus, $\operatorname{Arf}($ unknot $)=0$. Hence the trefoil knot and the unknot are not the same.

References

[1] Tibor Macko Diarmuid Crowley Wolfgang Lück. Surgery Theory: Foundations. URL: http://www.math.uni-bonn.de/people/macko/surgery-book.html.
[2] Robion C. Kirby. The Topology of 4-Manifolds. Springer-Verlag, 1980. ISBN: 3-540-51 148-2.

