Arf Invariant Content of the talk

Fanny Desjardins

May 4, 2016

Aim.

- 1. Define the Arf invariant;
- 2. Prove it is well defined;
- 3. Show that $L_2(\mathbb{Z}) \cong \mathbb{Z}/2$.

Remark. Every fact used are a result of Lemme 4.80, p.152 in the Surgery Book [1], except if said otherwise.

Let P be a finitely generated projective \mathbb{Z} -module, let (P, λ) be a nonsingular (-1)-symmetric form over \mathbb{Z} and let $\mu: P \to Q_{(-1)}(\mathbb{Z}) = \mathbb{Z}/2$ be a quadratic refinement of (P, λ) . For every $x \in P$, we have that $\lambda(x, x) = -\lambda(x, x)$. This allows us to state the following fact:

Fact 1. Every nonsingular (-1)-symmetric from (P, λ) admits a symplectic basis $\{e_1, f_1, ..., e_m, f_m\}$, i.e. $\lambda(e_i, f_i) = 1$, $\lambda(e_i, f_j) = 0$ for $i \neq j$ and $\lambda(e_i, e_i) = 0 = \lambda(f_i, f_i)$.

Definition. The Arf invariant of (P, λ, μ) , denoted by $Arf(P, \lambda, \mu)$, is defined by

$$Arf(P,\lambda,\mu) := \sum_{i=1}^{m} \mu(e_i)\mu(f_i) \quad \in \mathbb{Z}/2.$$

Remark. The Arf invariant is additive, i.e. for another quadratic form (P_1, λ_1, μ_1) aver \mathbb{Z} , we have that

$$Arf(P \oplus P_1, \lambda \oplus \lambda_1, \mu \oplus \mu_1) := Arf(P, \lambda, \mu) + Arf(P_1, \lambda_1, \mu_1).$$

Proposition. The Arf invariant is well defined.

Proof. This proof will be separated in two parts. We will first prove that the Arf invariant is well defined on nonsingular (-1)-quadratic forms over \mathbb{Z}^2 and then prove that it is well defined in general.

Part 1. The Arf invariant is well defined on forms over \mathbb{Z}^2 . Let's prove that there are two isomorphisms classes of nonsingular (-1)-quadratic forms over \mathbb{Z}^2 . The first is $H_{-}(\mathbb{Z})$. The second is defined as follow: let $\{e_1, f_1\}$ be a the basis for \mathbb{Z}^2 and define the second isomorphisms class to be $A(\mathbb{Z}) := (\mathbb{Z}^2, \lambda_A, \mu_A)$, where $\lambda_A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and μ_A is such that $\mu_A(e_1) = 1 = \mu_a(f_1)$.

Fact 2. Every nonsingular (-1)-symmetric form (\mathbb{Z}^2, λ) is isomorphic to $H^-(\mathbb{Z})$.

Now let
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$$
. We have that $det(X) = \pm 1$. However,
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & a \\ -d & b \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $= \begin{pmatrix} 0 & ad - bc \\ -ad + bc & 0 \end{pmatrix}$ $= (ad - bc) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

Therefore, det(X) = 1. This and Fact 2 give us that $Aut(H^{-}(\mathbb{Z})) = SL_2(\mathbb{Z})$.

Fact 3. The following statement is not due to lemme 4.80 in the Surgery Book [1]: $Aut(H_{-}(\mathbb{Z})) \subset Aut(H^{-}(\mathbb{Z}))$ and it is a subgroup of index 3.

Since $Aut(H_{-}(\mathbb{Z}))$ is a subgroup of order 3, $H_{-}(\mathbb{Z})$ has 3 quadratic refinements. Adding the one of $A(\mathbb{Z})$, we have 4 quadratic refinements which we expose in the following table:

x =	(0,0)	(1,0)	(0,1)	(1,1)
$\mu_{H_1(x)}$	0	0	0	1
$\mu_{H_2(x)}$	0	0	1	0
$\mu_{H_3(x)}$	0	1	0	0
$\mu_{A(x)}$	0	1	1	1

The $\mu_{H_i(x)}$ s are the quadratic refinements of $H_-(\mathbb{Z})$ and correspond to $Arf(H_-(\mathbb{Z})) =$ 0, while $\mu_{A(x)}$ is the quadratic refinement of $A(\mathbb{Z})$ and corresponds to $Arf(A(\mathbb{Z})) = 1$. Since those four are the only quadratic refinements, the Arf invariant is well defined on nonsingular (-1)-quadratic forms on \mathbb{Z}^2 .

We will need the following fact later in the proof, but stating it now is more convenient.

Fact 4. There are isomorphisms describing the following: $A(\mathbb{Z}) \oplus A(\mathbb{Z}) \cong A(\mathbb{Z}) \oplus -A(\mathbb{Z}) \cong H_{-}(\mathbb{Z}^{2})$, where $-A(\mathbb{Z}) = (\mathbb{Z}^{2}, -\lambda_{A}, \mu_{A})$.

Part 2. We need to prove that the Arf invariant is well defined on nonsingular (-1)-quadratic forms over \mathbb{Z} .

Fact 5. We have the equality $Arf(P, \lambda, \mu) = Arf(\mathbb{F}_2 \otimes (P, \lambda, \mu))$ and therefore, we can apply Fact 4 to \mathbb{F}_2 :

$$A(\mathbb{F}_2) \oplus A(\mathbb{F}_2) \cong A(\mathbb{F}_2) \oplus -A(\mathbb{F}_2) \cong H_-(\mathbb{F}_2^2).$$

Let (Q, λ, μ) be a nonsingular (-1)-quadratic form over \mathbb{F}_2 . We define another invariant of (Q, λ, μ) , which we denote $Arf'((Q, \lambda, \mu))$, by:

$$Arf'((Q,\lambda,\mu)) := \begin{cases} 0 & \text{if } |\mu^{-1}(0)| > |\mu^{-1}(1)| \\ 1 & \text{if } |\mu^{-1}(1)| > |\mu^{-1}(0)| \end{cases}$$

By looking at the table on last page, we see that the case $|\mu^{-1}(1)| = |\mu^{-1}(0)|$ cannot happen, therefore it is not treated. Note that Fact 5 allows us to see the previous listing of quadratic refinements as refinements of nonsingular (-1)-symmetric forms over \mathbb{F}_2^2 instead of over \mathbb{Z}^2 . Thus, we have two isomorphism classes of nonsingular (-1)-quadratic forms over \mathbb{F}_2^2 : $H_-(\mathbb{F}_2)$ and $A(\mathbb{F}_2)$. By looking once again at the table, we get that $Arf'(H_-(\mathbb{F}_2)) = 0$ and $Arf'(A(\mathbb{F}_2)) = 1$.

We now need to prove that for any nonsingular (-1)-quadratic form (Q, λ, μ) , $Arf((Q, \lambda, \mu)) = 1$ if and only if $Arf'(Q, \mu) = 1$.

By looking at the table one last time, we see that

$$|(\mu \oplus \mu_{H_i})^{-1}(1)| = 3|\mu^{-1}(0)| + |\mu^{-1}(1)| \quad \text{for } i = 1, 2, 3$$

and
$$|(\mu \oplus \mu_A)^{-1}(1)| = 3|\mu^{-1}(1)| + |\mu^{-1}(0)|.$$

Hence, Arf' is additive, i.e. $Arf(Q \oplus Q_1, \lambda \oplus \lambda_1, \mu \oplus \mu_1) := Arf(Q, \lambda, \mu) + Arf(Q_1, \lambda_1, \mu_1)$, with $Q_1 = H_-(\mathbb{F}_2)$ or $A(\mathbb{F}_2)$.

Recall Fact 2: $(\mathbb{Z}^2, \lambda) \cong H^-(\mathbb{Z})$ for (\mathbb{Z}^2, λ) a nonsingular (-1)-symmetric form. Using it on nonsingular (-1)-quadratic forms over \mathbb{F}_2 , we get $(Q, \lambda) \cong H^-(\mathbb{Z}^r)$ for some r. Hence, $(Q, \lambda, \mu) \cong \bigoplus_{i=1}^s H_-(\mathbb{F}_2) \oplus \bigoplus_{i=1}^t A(\mathbb{F}_2)$, where r = s + t. Therefore, by the additivity of Arf', we get $Arf'((Q, \lambda, \mu)) \cong t \mod 2$. But, by Fact 5, we have that $A(\mathbb{F}_2) \oplus A(\mathbb{F}_2) \cong H_-(\mathbb{F}_2^2)$. Thus,

$$(Q,\lambda,\mu) \cong \begin{cases} H_{-}(\mathbb{F}_{2}^{r}) & \text{if } Arf'((Q,\lambda,\mu)) = 0\\ A(\mathbb{F}_{2}) \oplus H_{-}(\mathbb{F}_{2}^{r-1}) & \text{if } Arf'((Q,\lambda,\mu)) = 1 \end{cases}.$$

Since Arf is also additive, we also have that $Arf((Q, \lambda, \mu)) \cong t \mod 2$.

Let $B = \{e_1, f_1, ..., e_r, f_r\}$ be any symplectic basis for (Q, λ, μ) .

$$Arf(Q, \lambda, \mu, B) = 1 \Leftrightarrow t \cong 1 \mod 2$$
$$\Leftrightarrow Arf'((Q, \lambda)) = 1.$$

Hence, $Arf(Q, \lambda, \mu, B)$ is independent of B and Arf is well defined.

Theorem. $L_2(\mathbb{Z}) \cong \mathbb{Z}/2$

Proof. This proof will use many results of the one of last proposition.

Let (P, λ, μ) be a nonsingular (-1)-quadratic form over \mathbb{Z} . We have that $(P, \lambda) \cong H^{-}(\mathbb{Z}^{r})$ for some r. Thus, $(P, \lambda, \mu) \cong \bigoplus_{i=1}^{s} H_{-}(\mathbb{Z}) \oplus \bigoplus_{i=1}^{t} A(\mathbb{Z})$, for r = s + t. Therefore,

$$(P,\lambda,\mu) \cong \begin{cases} H_{-}(\mathbb{Z}^{r}) & \text{if } Arf((Q,\lambda,\mu)) = 0\\ A(\mathbb{Z}) \oplus H_{-}(\mathbb{Z}^{r-1}) & \text{if } Arf((Q,\lambda,\mu)) = 1 \end{cases}$$
$$\cong \mathbb{Z}/2.$$

Hence, $L_2(\mathbb{Z}) \cong \mathbb{Z}/2$.

Arf invariant of a knot

Let K be a knot and F its Seifert surface of genus g. Recall that a Seifert surface of a knot is an oriented connected surface with K as boundary.

It is possible to assign a sign to each crossing following their orientation: the crossing is either +1 or -1. The convention is represented on figure 1.

Figure 1

Definition. The linking number of K, denoted by lk(K) is the sum of the signs of each crossing divided by 2.

Definition. A Seifert Matrix V is a $2g \times 2g$ matrix for which $v_{i,j} = lk(a_i, a_j^+)$, where a_i is the *i*-th crossing and a_i^+ is the pushoff of a_j , the *j*-th crossing.

Definition. The Arf invariant of a knot K is

$$Arf(K) = \sum_{i=1}^{2} gv_{2i-1,2i-1}v_{2i,2i} \mod 2$$
$$= \sum_{i=1}^{m} lk(a_i, a_i^+) lk(b_i, b_i^+) \mod 2$$

with $\{a_i, b_i\}$ a sympletic basis for i = 1, ..., g.

Example. The trefoil knot (figure 2a) has Seifert matrix $\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$. And therefore Arf(trefoil) = 1.

Figure 2

However, the unknot has Seifert matrix 0. Thus, Arf(unknot) = 0. Hence the trefoil knot and the unknot are not the same.

References

- [1] Tibor Macko Diarmuid Crowley Wolfgang Lück. Surgery Theory: Foundations. URL: http://www.math.uni-bonn.de/people/macko/surgery-book.html.
- [2] Robion C. Kirby. The Topology of 4-Manifolds. Springer-Verlag, 1980. ISBN: 3-540-51 148-2.