
FINDING A BOUNDARY FOR AN OPEN MANIFOLD
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1 The result
This chapter is based on a paper by W. Browder, J. Levine and G.R. Livesay [BLL65]. The

aim is to (partially) answer the following question:

When is an open manifold the interior of a compact manifold with boundary?

In this chapter all manifolds are PL or smooth. Therefore by isomorphism we will mean an
isomorphism in the appropriate category.

Definition 1.1. A topological space X is said to be simply connected at ∞ if for any compact
C ⊆ X there exists a compact D, C ⊆ D ⊆ X such that XrD is simply connected.

Theorem 1.2. Let W be a connected, orientable, non-compact n-manifold without boundary,
with n ≥ 6. Then there exists a compact manifold U with simply connected boundary such that
W = IntU if and only if H∗(W ) is finitely generated and W is simply connected at ∞. Moreover
such a U is unique up to isomorphism.

Remark 1.3. Notice that if W is the interior of a compact manifold with boundary U then
H∗(W ) is finitely generated. Moreover if the boundary ∂U is simply connected then of course W
is simply connected at ∞ as a consequence of the collaring theorem. In fact for every compact
C ⊆W , one can always find an open collar V of the boundary of U which does not intersect C.
Let V ′ ( V be a subcollar of V such that V ′ corresponds to ∂U × (1

2 , 1] inside of V ∼= ∂U × (0, 1].
Notice that that there is an isomorphism U

∼−→ Ur V ′ that is the identity on Ur V and shrinks
the collar V inside V ′. Then Ur V ′ is compact and is contained in W . Set D = Ur V ′, then
C ⊂ D and WrD ∼= ∂U × (0,+∞) is simply connected, hence W is simply connected at ∞.

2 Proof of uniqueness
Theorem 2.1. Let U1 and U2 be compact oriented n-manifolds with simply connected boundaries.
Suppose that U1 is embedded in IntU2 and the inclusion is a homology isomorphism. Suppose as
well that V := U2r IntU1 is simply connected. Then V is a h-cobordism between ∂U1 and ∂U2.

Proof. By excision H∗(V, ∂U1) ∼= H∗(U2, U1) and both are trivial since H∗(U1) ∼−→ H∗(U2) by
hypothesis. Since π1(V, ∂U1) = 0 and ∂U1 is simply connected, Hurewicz theorem in the relative
form implies that πi(V, ∂U1) ∼= Hi(V, ∂U1) = 0 for all i. Hence By Whitehead’s theorem it
follows that the inclusion of ∂U1 in V is a homotopy equivalence. By relative Poincaré duality

Hj(V, ∂U2) ∼= Hn−j(V, ∂U1) = 0

and therefore with a similar process we obtain that the inclusion of ∂U2 in V is a homotopy
equivalence. �
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Figure 1. The manifolds U1, U2 and V in Theorem 2.1.

Corollary 2.2. If W ∼= IntU1 ∼= IntU2, where U1 and U2 are compact manifolds of dimension
n ≥ 6, with simply connected boundaries, then U1 and U2 are isomorphic.

Proof. We can embed U1 in its interior using a collar of the boundary A ∼= ∂U1 × [0, 1]. Let A′
be the subcollar corresponding to ∂U1× [1

2 , 1] inside A. Then there is an embedding U1 → IntU1
that is the identity on U1r A and that shrinks the collar A inside A′. Moreover notice that this
embedding is homotopic to the identity. Since IntU1 ∼= W , we obtain an embedding U1 ↪→W .
Then U1 ↪→ W ↪→ U2, where the second map is the embedding induced by W ∼= IntU2 ⊆ U2.
Notice that both maps are homotopy equivalences. If we identify U1 with its image in U2, it
follows that V := U2r IntU1 is homotopy equivalent to a collar of ∂U1 and hence is simply
connected. Hence by Theorem 2.1, V is an h-cobordism and therefore V ∼= ∂U1 × [0, 1] and
U1 ∼= U2 by the h-cobordism theorem [Sma62]. �

3 Proof of Theorem 1.2
Theorem 1.2 is a direct consequence of the following proposition:

Proposition 3.1. Let W be an oriented open n-manifold, with n ≥ 6. Suppose H∗(W ) is finitely
generated and W is simply connected at ∞. Then given a compact set C there is a connected
compact n-manifold U , with simply connected boundary, such that U ⊆W , C ⊆ IntU and the
inclusion induced map

H∗(U)→ H∗(W )

is an isomorphism.

Proof of Theorem 1.2. Let C1 ( C2 ( . . . ( W be a sequence of compact sets such that

W =
∞⋃
i=1

Ci. Since W is simply connected at ∞ we may suppose that W r Ci is simply

connected. By Proposition 3.1 for every i we can find a manifold with boundary Ui such that
Ui−1 ∪ Ci ⊆ IntUi, ∂Ui is simply connected and the inclusion induced map in homology is an
isomorphism.
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Figure 2. The compact sets Ci and the compact manifolds Ui in the proof of
Theorem 1.2.

Then

W =
∞⋃
i=1

Ci ⊆
∞⋃
i=1

Ui = W.

Set Vi = Ui+1r Ui. Since ∂Vi consists of ∂Ui and ∂Ui+1 which are simply connected, by the
Seifert-van Kampen theorem

π1(Wr Ci) ∼= π1(Uir Ci) ∗ π1(Vi) ∗ π1(Wr Ui+1)

for each i.

 

Figure 3. The compact manifold Vi.

Since Wr Ci is simply connected, it follows that π1(Vi) is trivial. In fact the free product of
non-trivial groups is always non-trivial. By Theorem 2.1, Vi is an h-cobordism between ∂Ui and
∂Ui+1, which are simply connected and of dimension bigger or equal to 5. By the h-cobordism
theorem [Sma62] there are isomorphisms fi : Vi

∼−→ ∂Ui× [0, 1] that are the identity on ∂Ui. Call

ϕi : ∂Ui+1
∼−→ ∂Ui

the isomorphism induced by fi(_, 1) and let

Fi : ∂Ui+1 × [0, 1]→ ∂Ui × [1, 2]

send (x, t) in (ϕi(x), t+1). By uniqueness up to isotopy of collars, we can suppose that fi∪Fi+1 is
an isomorphism between Ui+1r Ui−1 and ∂Ui−1× [0, 2]. Hence for every i there are isomorphisms

Ui
∼−→ U1 ∪ ∂U1 × [0, i− 1]
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obtained by gluing the at each step the maps as shown above. Therefore

W =
∞⋃
i=1

Ui =
∞⋃
i=1

U1 ∪ ∂U1 × [0, i− 1] = U1 ∪ ∂U1 × [0,+∞)

and W is isomorphic to the interior of U1. �

4 Proof of Proposition 3.1
The following lemma allows us to find a compact n-manifold U ⊆W with simply connected

boundary and such that Wr U is simply connected as well.

Lemma 4.1. Let W be a connected manifold of dimension n ≥ 5, simply connected at ∞ and
such that H∗(W ) is finitely generated. Then for C ⊆W a compact subset there exists a compact
n-manifold U with simply connected boundary such that C ⊆ IntU and WrU is simply connected
and the inclusion induced map in homology

H∗(U)→ H∗(W )

is surjective.

Proof. Since H∗(W ) is finitely generated we can always find a compact set K ⊆W such that

H∗(K)→ H∗(W )

is onto. In fact, we just need to take a representative for each element of a finite set of generators
of H∗(W ). Therefore if O is any subset of W such that K ⊆ O ⊆ W , the following diagram
commutes:

H∗(K) H∗(W )

H∗(O)

and hence H∗(O)→ H∗(W ) is surjective too.
Let D be compact so that C ∪K ⊆ D ⊆W and WrD is simply connected. Such a D always

exists because W is simply connected at ∞. We can find a compact manifold with boundary U1

with D ⊆ IntU1:
− In the smooth case by choosing a proper smooth function f : D → R such that f|D ≡ 0.

We can pick a regular value ε and fix U1 := f−1([0, ε]);
− In the PL case D lies in a finite subcomplex of W : we take U1 to be a regular neigh-

bourhood of K in W .
We can assume U1 to be connected by taking ambient connected sums along the boundary: in
fact we can join the connected components by arcs and then add to U1 a regular neighbourhood
for each arc.

Figure 4. Ambient connected sum along the boundary.
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By the fact that W is connected at ∞ it follows that all but one of the connected components
of Wr U1 are compact. Let U2 be the union of U1 and the compact components of Wr U1, so
that both U2 and Wr U2 are connected.

SinceWrU2 is a connected manifold, then it is path connected and we can join the components
of ∂U2 by disjoint arcs with their interiors contained in Wr U2. We define U3 to be the union
of U2 and closed regular neighbourhoods of these arcs. Notice that U3 and ∂U3 are connected.
Observe that Wr U3 is connected as well: in fact Wr U2, which is connected, can be obtained
by gluing back the regular neighbourhoods of the arcs, which are isomorphic to Dn−1×D1 along
a piece of the boundary isomorphic to ∂Dn−1 ×D1 which is also connected because n is strictly
bigger than 2 and this easily implies by a Mayer-Vietoris argument that Wr U3 is connected.

Now we want to do surgery on the boundary of U3 to make it simply connected. Let γ be
a generator of π1(∂U3). We can suppose that γ is a simple closed curve and that it is smooth
(respectively PL) if we are in the smooth case (respectively PL) since dim(∂U3) ≥ 3.

Since WrD is simply connected, there is a map f : D2 →WrD that restricts to γ on the
boundary. Since the dimension n ≥ 5 we can approximate this map relative to the boundary
with a smooth embedding and we can also suppose it is transverse to ∂U3. Consider the inverse
image of f(D2) ∩ ∂U3 in D2: this is a collection of simple closed curves in the interior of D2.
Take an innermost one δ; this curve bounds a disc ∆ ⊆ D2 whose image is either contained in
U3 or in Wr U3. If it is contained in U3 we carve a regular neighbourhood of f(∆) out of U3,
otherwise, when the image of the disc ∆ is contained in Wr U3 we add a regular neighbourhood
N ∼= D2 ×Dn−2 of f(∆) to U3. Call the new manifold U4. Suppose now f(∆) ⊆ U3, the other
case being analogous. Observe that U3r IntU4 is homotopy equivalent to ∂U3 ∪ f(∆) and
therefore

π1(U3r IntU4) ∼= π1(∂U3)/〈δ〉.
Call B = {0} ×Dn−2 ⊂ N the cocore of the regular neighbourhood and notice that U3r IntU4

is homotopy equivalent to
∂U4 ∪B.

Since n ≥ 5, the boundary of this disc is simply connected and Seifert-van Kampen theorem
implies

π1(∂U4) ∼= π1(∂U4 ∪B) ∼= π1(U3r IntU4) ∼= π1(∂U3)/〈δ〉
We can keep on carving out or adding a regular neighbourhood of the disc bounded by the
innermost curve until we reach and kill γ. Repeating the same process for a finite set of generators
of π1(∂U3), which exists because ∂U3 is compact, we obtain a compact manifold U with simply
connected boundary. Notice that

π1(Wr U) ∗ π1(UrD) = π1(WrD) = 1

and therefore W r U is simply connected as well. Since K ⊆ U , then H∗(U) → H∗(W ) is
onto. �

We now prove a weaker version of Proposition 3.1.

Proposition 4.2. Let W be a connected and orientable open n-manifold, with n ≥ 6. Suppose
H∗(W ) is finitely generated and W is simply connected at ∞. Then given a compact C ⊆ W
and k ≤ n− 3, there is a compact n-manifold with boundary U , with C ⊆ IntU , such that ∂U
and Wr U are simply connected and such that the inclusion induced homomorphisms

Hi(U)→ Hi(W )

are isomorphisms when i < k and are onto for all i.

We will prove Proposition 4.2 by induction and we shall show now the base case of the
induction.
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Figure 5. The procedure described in the proof of Theorem 4.1: at first there
is a curve γ which is non-trivial in π1(∂U3), in the second step we carved out a
regular neighbourhood of f(∆). At last, after applying repeatedly the described
procedure, we obtain U with simply connected boundary.

Proof of Proposition 4.2.

Base case: i = 0,1,2
Thanks to Lemma 4.1 we may find a compact manifold U1 ⊆ W with simply connected

boundary, such that C ⊆ IntU1, the manifold WrU1 is simply connected and H∗(U1)→ H∗(W )
is onto. Notice that by construction both U1 and W are connected and that π1(U1) ∼= π1(W ),
hence

Hi(U1) ∼−→ Hi(W ) for i=0,1.
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Let V1 := Wr U1 and consider the following commutative diagram with exact rows:

· · · Hk+1(V1) Hk+1(V1, ∂U1) Hk(∂U1) Hk(V1) · · ·

· · · Hk+1(W ) Hk+1(W,U1) Hk(U1) Hk(W ) · · ·

j′ ∂′

∼=

i′

j ∂ i

The second vertical arrow is an isomorphism for all k due to excision. Therefore, since i is onto
for all k, the map j is trivial and also j′ needs to be trivial for all k. Similarly if i′ is injective
then ∂′ is trivial and ∂ must be trivial too, hence i is injective for all k. Therefore we just need
to kill the kernel of i′, and this will kill the kernel of i. Let x ∈ H2(∂U1) be a generator of ker(i′).

Note that, since ∂U1 is simply connected, the Hurewicz theorem implies that an element
x ∈ H2(∂U1) can be represented by a map f : S2 → ∂U1.
Moreover, since V1 is simply connected too, if i′x = 0 in H2(V1) then f is homotopic to a
constant in V1.
In the smooth case, since the dimension of ∂U1 is n − 1 ≥ 5, by a general position argument
f is homotopic to an embedding g : S2 → ∂U1. If n > 6, since i′x = 0 this map extends to
an embedding g : D3 → V1 which meets ∂U1 transversally in ∂D3 = S2 only. When n = 6 we
can suppose g is an immersion with only transverse double points: these intersections can be
removed by applications of the Whitney trick and therefore we can suppose g is an embedding.
The PL case can be handled similarly using analogous results of Irwin [Irw62].

Define U ′1 as U1 ∪ N, where N ∼= D3 ×Dn−3 is a regular neighbourhood of gD3. Notice that
the intersection of V1r gD3 and the regular neighbourhood N is homotopy equivalent to Sn−4.
Since n ≥ 6

1 ∼= π1(V1) ∼= π1(V1r gD3) ∗ π1(N).
Notice that WrU ′1 and V1r gD3 are homotopy equivalent and hence WrU ′1 is simply connected.
Similarly ∂U ′1 is homotopy equivalent to ∂U1 ∪ Nr gD3 and

1 ∼= π1(∂U1) ∗ π1(N) ∼= π1(∂U1 ∪ N) ∼= π1(∂U1 ∪ Nr gD3) ∗ π1(N).

Therefore ∂U ′1 is simply connected as well. Let V ′1 = Wr U ′1 and k′ : H∗(∂U ′1)→ H∗(V ′1) be the
inclusion induced homomorphism. Notice that

Hj(∂U ′1) ∼= Hj(∂U1)

for j 6= 2, n− 3 and
H2(∂U ′1) ∼= H2(U1)/(x)

and by Poincaré duality a similar result holds for j = n− 3.
Then ker(k′)2 ∼= ker(i′)2/(x) and we did not increase the number of generators of ker(i′)j

for j 6= 2. Iterating this procedure we arrive at U2 ⊃ U1 such that H2(U2) → H2(W ) is an
isomorphism, and both ∂U2 and V2 := Wr U2 are simply connected, proving the statement of
Proposition 4.2 for k = 2.

Inductive step: k =⇒ k + 1
We will need the following:

Lemma 4.3. Let X be an n-manifold with boundary with n ≥ 6, ∂X = M tN , where M , N
and X are simply connected. Suppose πj(X,M) = 0 for 2 ≤ j < k − 1 < n − 4. Then any
element w ∈ Hk+1(X,M) can be represented by a properly embedded disc Dk+1 ⊆ X.

Proof. We will just prove the theorem in the smooth case, using the handlebody theory of Smale
[Sma62]; the PL case follows from analogous facts proven by Stallings [Sta62].
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Figure 6. Two discs Dα1 and Dα2 connected by a tube Dk × I.

By a theorem of Smale [Sma62] we can say that X has a handle decomposition relative to M

X =
n⋃

i=k−1
Xi

where Xk−1 = M × I and Xj is obtained from Xj−1 attaching j-handles on ∂Xj−1rM × {0}.
Since Xj has the homotopy type of Xj−1 with some j-discs attached, it follows that

Hi(Xj ,M)→ Hi(X,M)

is an isomorphism for i < j and surjective for i = j. Therefore there exists w′ ∈ Hk+1(Xk+1,M)
such that w′ is sent to w in Hk+1(X,M). Consider the long exact sequence in homology of the
triple (Xk+1, Xk,M):

· · · → Hk+1(Xk+1,M) k∗−→ Hk+1(Xk+1, Xk)
∂−→ Hk(Xk,M)→ · · ·

Let y = k∗w
′. Notice that Hk+1(Xk+1, Xk) ∼= Zp where p is the number of (k + 1)-handles and

it is freely generated by the cores of the (k + 1)-handles.
Recall that our goal is to represent w by a properly embedded disc Dk+1. We start by

representing y as an embedded disc. It is a theorem of Smale [Sma62] (see also Wallace [Wal61])
that if we are given any basis for Hk+1(Xk+1, Xk) we may find some handles H1, . . . ,Hr in Xk+1
attached to Xk so that Xk+1 = Xk ∪

⋃r
i=1Hi and the cores of the Hi’s yield the given basis of

Hk+1(Xk+1, Xk).
Hence we may assume that y = mz, z being the core of one of the handles of Xk+1. Since
the codimension is strictly bigger than one, y can also be represented as a properly embedded
disc. In fact, let z be the core of a handle Hi

∼= Dk+1 × Dn−k−1. Pick m different points
pα ∈ Dn−k−1, and let Dα = Dk+1 × {pα} ⊆ Hi. Since n − k − 1 > 1 the boundaries of the
Dα’s do not separate ∂Dk+1 × Dn−k−1. Hence we can join Skα = ∂Dα by tubes Sk−1 × I in
Sk ×Dn−k−1 to form the connected sum of the Skα’s and the Dα’s can be connected by tubes
Dk × I in Hi

∼= Dk+1×Dn−k−1 to form the connected sum along the boundaries of the Dα with
the proper orientation and we can call the resulting disc D.

Then D has the homology class of y in Hk+1(Xk+1, Xk). This disc is attached to ∂Xk rather
than M × {1} so it remains to show that it can be chosen to miss the handles of Xk.

If the boundary on the disc does not meet the belt sphere of any k-handle in ∂Xk by handle
sliding it can be moved off these handles by an isotopy. Suppose now that the algebraic
intersection of ∂D with one belt sphere is zero. Then, taken two intersection points with opposite
sign we can apply the Whitney trick to lower the number of intersection points: iterating this
procedure we obtain that ∂D does not intersect the belt spheres of the k-handles.
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Figure 7. If the algebraic intersection of boundary of the disc D and the belt
sphere of a k-handle is zero we can find a Whitney disc ∆.

In fact, take a loop γ that goes to one intersection point to the other inside ∂D and then goes
back to the first intersection point inside the belt sphere. Notice that π1(∂Xk) = 1, in fact M
was simply connected and we attached handles of order bigger than 2. Then we can find a disc
∆ in ∂Xk that is bounded by γ. Since the dimension of ∂Xk is at least 5 we can approximate
∆ relative to the boundary with a smooth embedded disc. Since the codimensions of ∂D and
the belt sphere in ∂Xk are both strictly bigger than 2, by a general position argument we can
suppose that ∆ does not intersect them and is a Whitney disc, therefore we can use the disc ∆
to move the belt sphere by an isotopy to remove the two intersection points.

To conclude, just notice that ∂y =
∑
αjhj ∈ Hk(Xk,M), where hj is the homology class of

the core of the k-handles which freely generate Hk(Xk,M) and αj is the intersection number of
∂D and the belt sphere of the j-th k-handle. Therefore, since ∂y = 0, we deduce that αj = 0 for
all j, which concludes the proof. �

Recall that we want to prove Proposition 4.2 by induction and we are left to prove the
inductive step.

Assume now that Proposition 4.2 holds for some k < n− 3, that is for any compact C one can
find U ⊆W , U compact manifold with boundary, with ∂U and V = Wr U simply connected
such that C ⊆ IntU and

i∗ : Hj(U)→ Hj(W )
is an isomorphism for j < k and surjective for all j. Suppose x ∈ ker(i∗)k. Then there is a
compact set D ⊃ U such that, if j : U ↪→ D is the inclusion, j∗x = 0. By assumption, we can
find U ′ with all the required properties and such that D ⊆ IntU ′. Notice that the image of x in
Hk(U ′) must be zero by functoriality. Consider the following commutative diagram:

Hk+1(X, ∂U)

Hk(∂U) Hk+1(V, ∂U) Hk+1(W,U) Hk(U)

Hk(X) Hk+1(V,X) Hk+1(W,U ′) Hk(U ′)

h∗

∼=
∂

∂

∼=
∂′

∂′

where X = U ′r U and the isomorphisms are given by excision. Since x ∈ ker(i∗)k, there is
y ∈ Hk+1(W,U) such that ∂y = x. Notice that both ∂ and ∂′ are injective. Therefore, since the
inclusion of x in Hk(U ′) is zero, it follows that y goes to zero via the map

Hk+1(W,U)→ Hk+1(W,U ′).
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Call z the image of y in Hk(U). Note that h∗z = 0, hence there is an element w ∈ Hk+1(X, ∂U)
that maps to z via the boundary map.

By Lemma 4.3, applied to X with M = ∂U , we can find a properly embedded disc in X
attached to ∂U which represents w, and we can add a regular neighbourhood N of this disc to
U . Therefore z maps to 0 in the homology of U := ∂U ∪ N. Notice that since both k + 1 and
n− k + 1 are strictly bigger than 2 both ∂U and Wr U are still simply connected. Then

ker iUk ∼= ker iUk /(x).

We can apply this procedure to a finite set of generators of ker iUk and obtain a manifold Ũ which
satisfies the inductive hypothesis for i = k + 1. �

Proof of Proposition 3.1. By Proposition 4.2 we can suppose that given a compact C ⊆W we
can find a compact manifold U ⊆W with simply connected boundary and such that V r U is
simply connected as well, C ⊆ IntU and

i∗ : Hi(U)→ Hi(W )

is an isomorphism for i < n− 3 and surjective for all i.
Consider the following diagram with exact rows. Recall that ik onto implies jk onto.

0 Hk+1(V, ∂U) Hk(∂U) Hk(V ) 0

0 Hk+1(W,U) Hk(U) Hk(W ) 0

∂′

∼=

jk

∂ ik

We see that ker ik ∼= ker jk. Notice that Hk+1(W,U) = Hk+1(V, ∂U) = 0 for k < n− 3 since we
know ik is an isomorphism in this case. Since ∂U is simply connected,

Hn−2(∂U) ∼= H1(∂U) = Hom(H1(∂U),Z) = 0.

Therefore Hk+1(W,U) = Hk+1(V, ∂U) = 0 for k = n − 2 too. Since V is a non compact
n-manifold and ∂V = ∂U , we also get Hn(W,U) ∼= Hn(V, ∂U) = 0.

Hence the only potentially nontrivial one is for k = n− 3. Since

Hn−3(∂U) = H2(∂U) ∼= Hom(H2(∂U,Z))

by the universal coefficient theorem, thanks to the fact ∂U is simply connected, we deduce that
Hn−2(V, ∂U) is free. There is a compact set D, such that U ⊆ D ⊆W and (iD)∗(ker in−3) = 0
where iD is the inclusion of U in D. Let U ′ be a manifold as in Proposition 4.2 such that
D ⊆ IntU ′. Then if h is the inclusion of U in U ′, h∗(ker in−3) = 0. It follows from the following
diagram:

0 Hn−2(W,U) Hn−3(U) Hn−3(W ) 0

0 Hn−2(W,U ′) Hn−3(U ′) Hn−3(W ) 0

h∗ Id

that the first vertical map is the trivial map. Define V ′ = Wr U ′, M = ∂U , N = ∂U ′ and
X = U ′r U , so that ∂X = M tN .
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Figure 8. The manifold X in W .

Call lM : M → X and lN : N → X the inclusions. Then

Hn−2(V,M) Hn−2(W,U)

Hn−2(V,X) Hn−2(W,U ′)

∼=

∼=

shows that the first vertical map is trivial too. Since as before Hi(V,X) and Hi(V,M) are either
free (when i = n−2) or trivial (otherwise), this implies that Hn−2(V,X) ∼= Hom(Hn−2(V,X),Z)
and Hn−2(V,M) ∼= Hom(Hn−2(V,M),Z) and therefore

h
∗ : Hn−2(V,X)→ Hn−2(V,M)

is trivial too. The short exact sequence

0→ Hn−3(V )→ Hn−3(X) δ−→ Hn−2(V,X)→ 0

splits since Hn−2(V,X) is free. Call α : Hn−2(V,X)→ Hn−3(X) the splitting morphism. Notice
that l∗M ◦ α = 0. The inclusion h′ : (V ′, N)→ (V,X) is an excision, and therefore

β := l∗N ◦ α ◦ (h′∗)−1 : Hn−2(V ′, N)→ Hn−3(N)

is defined. Call δ′ : Hn−3(N)→ Hn−2(V ′, N) the boundary morphism. Then by construction
δ′ ◦ β = Id, i.e. β is a section for the following short exact sequence:

0→ Hn−3(V ′)→ Hn−3(N) δ′−→ Hn−2(V ′, N)→ 0.

Moreover the image of β is contained in l∗N (ker l∗M ) since the image of α is in the kernel of l∗M .

Lemma 4.4. Capping with the fundamental class:

− a [N ] : Hn−k−1(N)→ Hk(N)

sends l∗N (ker(l∗M )n−k−1) isomorphically onto ker((lN )∗)k.
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Proof. Consider the following commutative diagram with exact rows:

Hn−k−1(X) Hn−k−1(∂X) Hn−k(X, ∂X)

Hk+1(X, ∂X) Hk(∂X) Hk(X)

l∗

aν

δ

aµ

∂ l∗

where ν ∈ Hn(X, ∂X), µ ∈ Hn−1(∂X) are the respective the fundamental classes. Notice that
H∗(∂X) = H∗(N)⊕H∗(M),

the fundamental classes µ and ν are related by:
µ = ∂ν = [N ]− [M ]

and
l∗ = (lN )∗ − (lM )∗
l∗ = (lN )∗ − (lM )∗.

Since − a ν is an isomorphism,
l∗(Hn−k−1(X)) a µ = ker(l∗).

Since the restriction of − a µ to N equals − a [N ], it follows that l∗(Hn−k−1(X))∩Hn−k−1(N)
is mapped isomorphically by − a [N ] onto ker(l∗) ∩Hk(N). But

l∗(Hn−k−1(X)) ∩Hn−k−1(N) = l∗N (ker l∗M )
and similarly

ker l∗ ∩Hk(N) = ker((lN )∗)k.
�

Since Im β is a free direct summand in Hn−3(N), it follows that B = Im β a [N ] is a free
direct summand of H2(N) contained in ker((lN )∗)2. Recall that V = V ′ ∪X, X ∩ V ′ = N and
that V, V ′, N are simply connected. Then Seifert-Van Kampen theorem implies that X is simply
conneted as well. By the Hurewicz theorem

π2(N) ∼−→ H2(N)
and

π2(X) ∼−→ H2(X).
Since (lN )∗B = 0 this means that an element in B is represented by a map f : S2 → N which is
nullhomotopic in X. If n > 6 by a general position argument we can suppose there is a disc D3

smoothly embedded in X such that the boundary of the disc is a representative for f in π2(N),
while if n = 6 we need to use once again the Whitney trick. Taking a regular neighbourhood of
the disc in X we find a 3-handle D3 ×Dn−3. We can apply this procedure to a basis {bj}hj=1
for B. If we add these handles {Hj}hj=1 to V ′ we obtain new manifolds X = Xr ⋃h

j=1 Int(Hj),
V = V ′ ∪

⋃h
j=1Hj and N = X ∩ V .

Recall that Hk(N) ∼= Hk(V ′) for k < n− 3 and that B is a free direct summand of H2(N),
then it is possible to show that Hk(V ) ∼= Hk(V ′) for k 6= 2, 3 and

0→ H3(V ′)→ H3(V )→
h⊕
j=1

Zhj
∂̃−→ H2(V ′)→ H2(V )→ 0

where hj is the attaching sphere of the handleHj , hence ∂ is injective. ThereforeHk(V ′) ∼= Hk(V )
for k 6= 2 and

H2(V ) ∼= H2(V ′)/r∗(B) ∼= H2(N)/B,
where r∗ : H2(N)→ H2(V ′). Recall that r∗ is an isomorphism.



FINDING A BOUNDARY FOR AN OPEN MANIFOLD 13

Notice that N ∪ {cocores of Hj} is homotopically equivalent to N with some D3 attached,
which are the cores of the Hj ’s. By the Mayer-Vietoris sequence and the fact that B is free,

Hk(N) ∼= Hk(N ∪ {cores of the handles})

for k 6= 2 and

H2(N ∪ {cores of the handles}) ∼= H2(N)/B.

Since attaching the cocores of the Hj ’s to N can only modify the homology groups of N in
dimension n− 3 and n− 4, when n > 6 it is a consequence of Poincaré duality and the universal
coefficient theorem that Hj(N) ∼= Hj(N) for j 6= 2, n − 3, and H2(N) ∼= H2(N)/B. The case
n = 6 follows from Lemma 5.6 in [KM63]. By the same arguments we applied to (V, ∂U), it
follows that Hi(V ,N) = 0 for i 6= 2 and Hn−2(V ,N) is free and we have the following short
exact sequence:

0→ Hn−3(V )→ Hn−3(N)→ Hn−2(V ,N)→ 0.

Notice that the image of B via the Poincaré duality isomorphism H2(N)→ Hn−3(N) is indeed
the image of β. Hence

Hn−3(N) ∼= Hn−3(N)/ Im β.

Recall that Hn−3(V ′) ∼= Hn−3(N)/ Im β too, and

Hn−3(V ) ∼= Hn−3(V ′).

Therefore Hn−3(V ) and Hn−3(N) are isomorphic groups. Since they are finitely generated and
we know that Hn−2(V ,N) is free, it follows that Hn−2(V ,N) = 0. By the universal coefficient
theorem Hi(V ,N) = 0 for all i and it follows that U = U ∪X is a compact manifold with simply
connected boundary and

H∗(U)→ H∗(W )

is an isomorphism. Since the compact set C was contained in IntU it will be also contained in
IntU . This proves Proposition 3.1. �

5 The h-cobordism theorem
As an interesting consequence of Theorem 1.2 we obtain an h-cobordism theorem for open

manifolds.

Definition 5.1. Two oriented connected open manifolds M1 and M2 are called h-cobordant
if there exists a manifold with boundary V with ∂V = M1 t (−M2) such that the inclusions
Mi ↪→ V are homotopy equivalences.

Theorem 5.2. Let M1,M2 satisfy the hypothesis of Theorem 1.2 and let V be a h-cobordism
between them which is simply connected at ∞. If N1 and N2 are the manifolds given by Theorem
1.2 for M1 and M2 respectively then they are h-cobordant.

Proof. N1 and N2 are compact manifolds with boundary. Using a collar of the boundary of Ni

we can embed Ni into Mi. Using now a collar C of the boundary of V we get embeddings of
Ni × I ⊆ V , with Ni × I ∩ ∂V = Ni × {0}. We can join N1 × {1} to N2 × {1} by an arc in the
interior of V r C and thickening the arc we get a compact manifold U , ∂U = N1 ∪W ∪N2 and
∂W = ∂N1 t ∂N2.
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Figure 9. The manifold V .

Then, similarly to what we did for the proof of Theorem 1.2 we can enlarge U to get
V ⊆ V , V ∼= IntV just by adding handles far from N1 and N2. Therefore ∂V = N1 ∪W ∪N2,
∂W = ∂N1 t ∂N2. From the diagram:

Ni V

Mi V

it follows that Ni → V is a homotopy equivalence since all other three maps are. We are only
left with showing that W is a h-cobordism between N1 and N2. Now Poincaré-Lefschetz duality
gives

H∗(V ,N1) ∼= H∗(V ,N2 ∪W )
and similarly exchanging N1 and N2. Since Ni → V is a homotopy equivalence the left-hand
side must be trivial. Notice that in

H∗(Ni)
i∗−→ H∗(Ni ∪W ) j∗−→ H∗(V )

both j∗i∗ and j∗ are isomorphisms, hence i∗ is as well. Therefore 0 = H∗(Ni ∪ W,Ni) ∼=
H∗(W,∂Ni) by excision. Since both W and ∂Ni are simply connected it follows by the Hurewicz
theorem that ∂Ni →W is a homotopy equivalence and therefore W is an h-cobordism. �

The following is a direct corollary of the above using the h-cobordism theorem [Sma62].

Corollary 5.3. Let M1, M2, V as in Theorem 5.2 and suppose M1 and M2 are simply connected.
Then M1 and M2 are isomorphic.
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