
On the Geometric and Topological Rigidity of Hyperbolic 3-Manifolds 

Author(s): David Gabai 

Source: Journal of the American Mathematical Society , Jan., 1997, Vol. 10, No. 1 (Jan., 
1997), pp. 37-74  

Published by: American Mathematical Society 

Stable URL: https://www.jstor.org/stable/2152902

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

American Mathematical Society  is collaborating with JSTOR to digitize, preserve and extend 
access to Journal of the American Mathematical Society

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 19:32:12 +00:00������������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2152902


 JOURNAL OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 10, Number 1, January 1997, Pages 37-74
 S 0894-0347(97)00206-3

 ON THE GEOMETRIC AND TOPOLOGICAL RIGIDITY
 OF HYPERBOLIC 3-MANIFOLDS

 DAVID GABAI

 0. INTRODUCTION

 The main result of this paper asserts that if N is a closed hyperbolic 3-manifold
 satisfying a certain geometric/topological insulator condition (Conjecture 0.6 says
 that it always happens), then N is both topologically and geometrically rigid. As
 a special case we have

 Theorem 0.1. Let N be a closed hyperbolic 3-manifold containing an embedded
 hyperbolic tube of radius (log 3)/2 = .549306... about a closed geodesic. Then

 i) Iff : M - N is a homotopy equivalence where M is an irreducible 3-manifold,
 then f is homotopic to a homeomorphism.

 ii) If f, g: M -s N are homotopic homeomorphisms, then f is isotopic to g.
 iii) The space of hyperbolic metrics on N is path connected.

 Remarks 0.2. i) If M is hyperbolic, then conclusion i) follows from Mostow's rigidity
 theorem [Mo]. Actually [Mo] implies that f is homotopic to an isometry. If N is
 instead Haken, then conclusions i)-ii) are due to Waldhausen [W]. If N is Haken
 and hyperbolic, then conclusion iii) follows by combining [Mo] and [W]. Conclusions
 i), ii)-iii) can be viewed as a 2-fold generalization of [Mo]. See ?5.

 ii) There are only six known closed 3-manifolds which are probably hyperbolic
 and have a shortest geodesic 6 with tube radius (6) < log(3)/2. The first,
 known as Vol 3, was found using Jeff Weeks' tube radius/ortholength program
 [We]. Nathaniel Thurston very recently found 5 other such manifolds. All six
 of these manifolds appear to satisfy the insulator condition.

 iii) An application of the hyperbolic law of cosines shows that if the shortest
 geodesic 6 in N has length > 1.353, then tube radius (6) > log(3)/2. See
 Remark 5.11.

 iv) If N has a geodesic 6 of length < .0978, then Meyerhoff's tube radius formula
 [Me] implies that tube radius (6) > log(3)/2. See Remark 5.11. Combined
 with the work of Jorgensen [Gr], we obtain Corollary 5.12 which asserts that
 for any n > 0, all but finitely many hyperbolic 3-manifolds of volume < n are
 both topologically and geometrically rigid.

 v) Farrell and Jones [FJ] showed that if f: M -* N is a homotopy equivalence
 between closed manifolds and N is a hyperbolic manifold of dimension; > 5,
 then f is homotopic to a homeomorphism.

 Received by the editors October 1, 1993 and, in revised form, September 1, 1995.
 1991 Mathematics Subject Classification. Primary 57M50.
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 38 DAVID GABAI

 The theme of this paper is to abstract the ideas of the following example to the

 setting of homotopy hyperbolic 3-manifolds.

 Example 0.3. Let 6 be a simple closed geodesic in the hyperbolic 3-manifold N.

 6 lifts to a collection A = { i} of hyperbolic lines in H3. To each pair bi, bj, there
 exists the midplane Dij, i.e. the hyperbolic halfplane orthogonal to and cutting the
 middle of the orthocurve (i.e. the shortest line segment) between bi and 6j. Each
 Dij extends to a circle Ai on S2, which separates 06i from 0bj. Now fix i. Let H%i
 be the closed H3-halfspace bounded by Dij containing bi. wi = n Hij = x R

 is the Dirichlet torus domain associated to the geodesic bi. Wi projects to an open
 solid torus containing 6 as its core. In fact W = Wi/(%i) is a solid torus with
 boundary a finite union of totally geodesic polygons.

 Definition 0.4. Let G be a group of homeomorphisms of S2 and A = {Ai} a
 countable set of pairwise disjoint G-equivariant pairs of points of S2, i.e. if g C
 G,Ai z A, then g(Ai) cz A. Let {Aij} be a collection of smooth simple closed
 curves in S2. {Aij } is called a (G, A) insulator family and each Aij is an insulator
 if

 i) Separation: If i ,$ j, then Aij separates Ai from Aj.
 ii) Equivariance: If g c G, then g(Aij) is the curve associated to the pair

 g(Ai), g(Aj). Also Aij = Aji.
 iii) Convexity: To each Aij there exist round circles respectively containing Ai

 and Aj and disjoint from Aij.
 iv) Local Finiteness: For every e > 0 there exist only finitely many Aij such that

 i is fixed and diam(Aij) > e.

 Definition 0.5. A (G, A) insulator family is noncoalescable if it satisfies the fol-

 lowing no trilinking property. For no i, does there exist Aij1, Aij2I Aii3 whose union
 separates the points of Ai. See Figure 0.1. A hyperbolic 3-manifold satisfies the
 insulator condition if there exists a geodesic 6 in N and a (7r (N), {6bi}) noncoa-
 lescable insulator family. Here {&i} is the set of lifts of 6 to H3.

 Conjecture 0.6. Every closed hyperbolic 3-manifold satisfies the insulator condi-
 tion.

 Definition 0.7. If 6 is a geodesic in the hyperbolic 3-manifold N, then the insu-

 lator family {Aij } constructed as in Example 0.3. is called the Dirichlet insulator
 family.

 Strong conjecture 0.8. The Dirichlet insulator family associated to a shortest
 geodesic in a closed hyperbolic 3-manifold, is noncoalescable.

 Lemma 5.9. If a geodesic 6 has tube radius > (log 3)/2, then its Dirichlet insulator
 family is noncoalescable.

 Theorem 0.9. Let f : M -* N be a homotopy equivalence, where M is a closed,
 connected, irreducible 3-manifold and N is a hyperbolic 3-manifold. If N possesses

 a geodesic 6 with a noncoalescable insulator family, then f is homotopic to a home-
 omorphism.

 Outline of the proof. Let f : M -* N be a homotopy equivalence. M and N are
 covered by the same hyperbolic manifold X [G3]. In ?1 we show that we can assume
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 GEOMETRIC AND TOPOLOGICAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS 39

 Trilinking

 FIGURE 0.1

 that the homotopy equivalence lifts and extends to a mapping f: B3 - B3, where

 B3 = H3 U S2, so that f I S2 = id. Furthermore the group actions on S2
 defined by 7l(M) and 7ri(N) are identical. In ?2 we show that if there exists a
 simple geodesic 6 in N and a simple closed curve a in M such that the B3-link A
 is equivalent to the B3-link F, then f is homotopic to a homeomorphism. Here A
 is the preimage of 6 in H3 extended to B3 and F is defined similarly. These links

 are equivalent means that there exists a homeomorphism k: (B3, F) -* (B3, A) so
 that k I S2 _ id. To prove that equivalent links imply topological rigidity we show
 that f can be homotoped to a map which sends N(y) homeomorphically onto N(6)

 a a

 and restricts to a homotopy equivalence between M - N(y) and N - N(6). By

 Waldhausen [W], f is homotopic to a homeomorphism.
 In ?3 we establish technical lemmas about least area planes, discs and laminations

 in H3. In particular we show that to each smooth simple closed curve Aij in SC,
 there exists a lamination cij by injectively immersed least area (with respect to
 the metric induced by M) planes in H3, with limit set Aij such that aij lies in a
 fixed width hyperbolic regular neighborhood of the hyperbolic convex hull of Aij.
 Here {Aij} is the (71(N), {Obi}) and hence (71(M), {Obi}) noncoalescable insulator
 family. Fix i. Let Hij be the H3-complementary region of cij containing the ends

 of bi. In ?4 we show that nHi% contains a -i = D2 x R which projects to an
 open solid torus in M. (It is this step that requires the noncoalescable insulator
 hypothesis.) Define -y to be the core of this solid torus and yi the lift which lives
 in Vi. We show that the isotopy class of a is independent of all choices, i.e. the

 metric on M and the choice of {aij } for a fixed metric. Let To be the link in X
 which is the preimage of -y, so {'yi} is also the set of lifts of components of To to H3.

 The Riemannian metric ou0 on X induced from M and the hyperbolic metric ALl on
 X induced from N are connected by a smooth path tit of metrics. These metrics
 lift to 7rw(X) equivariant metrics jti on H3, so the above construction applied to
 the (1r (X), {Obi}) insulator family {Aij } with respect to the f-t metric yields a link
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 40 DAVID GABAI

 Tt in X. Since the isotopy class of rt is independent of t, ro is isotopic to r1, the
 preimage of 6 in X. We conclude that the B3-link r is equivalent to the B3-link A
 and so by ?2 f is homotopic to a homeomorphism. L

 Theorem 0.10. If N is a closed hyperbolic 3-manifold possessing a geodesic 6 with
 a noncoalescable insulator family, and f: N -+ N is a homeomorphism homotopic
 to id, then f is isotopic to id.

 Idea of the proof. Let po denote the hyperbolic metric on N. Let P1 be the pull back
 hyperbolic metric on N induced via f, which we can assume is a diffeomorphism.
 These metrics are connected by a family Pt of Riemannian metrics. As in the proof
 of Theorem 0.9, to each pt there is associated an oriented simple closed curve at
 where -Yo = 6 and -yi = f -1 (6) and that all of these 'yt's are isotopic. Therefore f is
 isotopic to a map which fixes 6 pointwise. A theorem of Siebenmann [BS] implies
 that f is isotopic to id. L

 Corollary 5.3. If N satisfies the insulator condition, then Homeo(N)/ Homeoo(N)
 - Out(7r, (N)) = Isom(N).

 Section 5 contains the proofs of Theorem 0.1, Corollary 5.3 and some concluding
 results, remarks and conjectures.

 1. PRELIMINARY RESULTS AND NOTATION

 From now on we will assume that all 3-manifolds in this paper are connected,
 irreducible, and orientable. Recall that by Remark 0.2 i), we can assume that M
 is non-Haken and hence orientable.

 Proposition 1.1. If f : M -* N is a homotopy equivalence, where M is a closed
 3-manifold and N is a hyperbolic 3-manifold, then there exists a closed hyperbolic
 3-manifold X and regular covering maps P1 . X -* M, q : X -- N such that f op,
 is homotopic to ql. A lift f: H3 - H3 extends to id: S2 -+ S.2. Furthermore the
 action of 7rw (M) on H3 extends to a Mobius action on S2 which is identical to the
 action of 7ri(N) on S,2.

 Proof. By the Proof of Theorem 1.1 [G3], there exists a hyperbolic 3-manifold X
 and regular covering projections P1 : X -* M, q, : X -> N such that fi: X -X
 a lift of f to X, is homotopic to a homeomorphism h. By replacing P1 by P1 o h-'
 and fi by fi o h-', we can assume that fi is homotopic to id. Let x e X. Fixing
 m = Pi (x), n = qi (x) and modifying f via a homotopy we can assume that f (m) =
 n and the homotopy F1 of id to fi is rel x. L

 Let r: H3 -* X be the universal covering projection. Let p: H3 -+ M, q : H3 -*
 N be the induced coverings. If g E 7ri (M, m), then let g' denote f# (g) E -ri (N, n).
 Fix e e 7r-r(x). Let g -* g denote the canonical 1-1 correspondence between
 7r(M, m) and points of p-1(m) such that e -e ); g' -4g' has the similar meaning.
 The distance between points 4,4' of H3 differs by a bounded amount, i.e. the
 diameter of F1 homotopy tracks. More generally the action of 7r (M) on g differs
 from the corresponding action of 7ri(N) on 4' by this same amount. Since the
 action of rl (M) on H3 is approximated by the action on the points corresponding
 to 7r (M)I it follows that the actions of 7r(M), 7r,(N) on S,2, are identical. Here
 are more details.

 In what follows dp (resp. d, ) will denote distance with respect to the hyperbolic
 metric p (resp. the metric yt induced from M) between points in H3.
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 GEOMETRIC AND TOPOLOGICAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS 41

 Claim. There exists k < oo such that if g c 7ri(M, m) and y c H3, then

 dp (g(y), f# (g) (y)) < k.

 Proof of the Claim. Let F denote the lift of F1 to H3 and f the lift of f to H3 such

 that F(z, 0) = z and f (z) = F(z, 1).
 The compactness of X implies the following facts i)-iii) and the covering space

 theory implies iv)-v).

 i) There exists bo = sup{diamp(F(z x I)) I z c H3}. So Z/ = f(z) implies
 dp(z, z') < bo.

 ii) There exists b1 such that for each y c H3 there exists r c p-1(m) such that

 d.1 (r, y) < bi.
 iii) There exists b2 such that d,1(yo, yi) < bi implies dp(yo, yi) < b2.

 iv) If g, r c 7ri (M), then f (g(r)) = g'(r'), so dp(g(r), g'(r')) < bo. (Recall that
 g(r) = j(1), where j: [0, 1] - M, [j] = g * r cz 7r (M, m), and j(0) = e. Since

 [g' * r'] = [f#[g * r]], it is represented by f o j, so g'(r') f(j(1)). Now apply
 i).)

 v) The covering transformation associated to g cz 7r (M, m) (resp. g' c 7r, (N, n))
 is an isometry in the ,t (resp. p) metric.

 If y c H3, then dp (g (y), g'(y)) < dp (g (y), g (r) +pgr) g'r') +d 'r' g()
 <b2+bo+dp(r',y) <b2+bo+dp(r',r) +dp(r-,y) <bo +[b2+bo +[b2. E

 Since the actions of 7rw(M), 7r1(N) on H3 differ by a hyperbolically bounded
 amount, the action of 7ri(M, m) extends to the same action on S2 as that of

 7ri(N,n). Le., for each gz 7rc (M) and y c S2, g(y) = g'(y). Also bo < oo implies
 that id f S2 , S2.

 Notation 1.2. M H3/G,N = H3/H, where 7ri(M) = G H = 7ri(N), G c
 Homeo+(B3), H c Isom+(H3) c Homeo+(B3), G IS2 H IS2,G and H are
 naturally identified via the 7ri-isomorphism q f#* The space X and the maps

 p, q, P1, ql, wr will be as in Proposition 1.1; ,u (resp. p) will denote the metric induced
 on X or H3 from M (resp. N). In particular p will always represent the hyperbolic
 metric. We abuse notation by letting H and G simultaneously denote the actions

 on H3 B3 or S2

 Unless otherwise indicated we will assume that all maps on 3-manifolds without
 boundary are smooth.

 B3

 H3

 x f
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 42 DAVID GABAI

 N(E) denotes regular neighborhood of E. If E c Y, then N(k, E) = {y E Y I
 d(y, E) < k}. Similarly if x E Y, then B(k, x) {y C Y I d(y, x) < k}. We will
 use notations such as Np (k, E), di, (x, y) or r-least area when the metric is not clear

 from the context. JEj denotes the number of components of E, and E denotes the
 interior of E.

 2. A CRITERION FOR HOMEOMORPHISM

 Proposition 2.1. Let f: M -* N be a homotopy equivalence between the closed
 hyperbolic 3-manifold N and the irreducible 3-manifold M. If there exists a simple

 closed curve y C M, a geodesic 6 c N and a homeomorphism k: (B3,p-y(7))
 (B3, q-1(6)) such that k j 9B3 = id, then f is homotopic to a homeomorphism.

 Definition 2.2. A B3-link is a collection {fi} of properly embedded arcs in B3
 whose restriction to H3 is locally finite. Two B3-links are said to be equivalent if
 there exists a homeomorphism k: B3 --* B3 taking one link to the other such that

 k I S2 = id.

 Remarks. i) Each component of p-1 (y) extends to a properly embedded arc ^yj in
 B3. We will abuse notation by also referring to -yi as an arc in H3. Proposition
 2.1 says that if the B3-link {p-1(-y)} is equivalent to the link {q-1(6)}, then f is
 homotopic to a homeomorphism.

 ii) The H3-link determined by 6 is the trivial link on infinitely many components.

 Thus Proposition 2.1 crucially depends on the condition k I aB3 - id.

 Notation 2.3. Let r = p-1 (y) with components Q-Yi}, A = q-1(6) with components
 {6i},V = p-1(N(y)) with components {Vi} = {N(yi)}, W = q-1(N(6)) with
 components {Wi} = {N(6i)}. Indices are chosen so that i j if and only if
 09yi = O6i. Recall that if g e G, then the associated map g: B3 -* B3 has two
 fixed points, one attracting and one repelling. Thus the correspondence of -yi to bi
 is determined by Q.

 O

 Idea of the proof. We show that f is homotopic to a map h: (M, M - N(-y), N(y))
 (N, N - N(6), N(6)) which restricts to a homeomorphism on N(y) and a 71-

 injective map on M - N(-y). The map f is homotopic to a homeomorphism, since
 [W] implies that h is homotopic to a homeomorphism rel N(-y). Given a handle
 structure on M which contains N(y) as a 1-handle we use k to define h so that

 0

 the other handles miss N(b), approximately by considering q o k o p-1 restricted
 to a handle. There is never a problem with the 1-handles. The difficulty is that
 the image of the 2-handles might cross 6, e.g. consider the case that 6, y are
 distinct knots in S3 = -N. In our setting this difficulty vanishes if for each

 0

 g C G, q(g) o k o g-1 o k-1 I H3 - N(A) is homotopic to id rel 49N(A). We show
 that k can be chosen so that this holds.

 The following result follows by the usual isotopy/uniqueness of regular neighbor-
 hood arguments.

 Lemma 2.4. Under the hypothesis of Proposition 2. 1, k: B3 -* B3 can be chosen

 so that for eachg E G,k og VUSg = 0(g) ok kVUS.

 LI
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 Twist Roll

 FIGURE 2.1

 Remark 2.5. Replace the covering projection p: H3 > M by p o k-1 H3 > M.
 The effect on covering transformations is to replace each g e G by k o g o k-1. We

 now assume that V = W, k = id and g I V U S2 = (g) I W U S2

 Definition 2.6. (Interesting self-maps of B3 fixing 60 U S2 pointwise.) Parame-
 trize H3 by (r, 0, s), r > 0,0 e S1, s E R. Here 60 consists of those points with

 parameters {(, , s) I s E R}, the s parameter denoting parametrization by arc
 length. The plane Pt orthogonal to 6o at t has s _ t and is parametrized by polar
 coordinates via the (r, 0) coordinates. Finally the parametrization of H3 is chosen

 so that the (r, 0) parameters are preserved under pure translation along 60. Call

 0 e 6o, the point with s-parameter equal to 0. Assume that Wo = {(r, 0, s) I r < c}.
 Let a, 3: [0, oo] -* [0, 1] be smooth maps such that a I [0, c] = 1, a I [2c, oo] = 0,
 3 [0, 2c] = 0, and / 3 [3c, oo] = 1.

 For a$ 0, define Ta:B3 B3 by Ta S2 =id, Ta(r, 0, s) = (r, 0 + ax(r)2irs/a, s).
 Define R: B3 -* B3 by R S2 = id, and R(r, 0, s) = (r, 0 + 3(r)2ir, s).

 Define a twist to be a map conjugate to Ta, and a roll a map conjugate to R. In

 particular a twist or roll about say Wj, should be viewed as being supported very
 close to WjV. See Figure 2.1. Figure 2.2 suggests the twist-image of a standardly

 0

 embedded disc in B3 - Wo.

 Lemma 2.7. a) If h: B3 -* B3 issuchthath W0 U S2 = id, then hc~ R' rel

 Wo U S2 for a unique integer n.
 b) If W' = {W1, . . , Wr} is a finite subset of W, and h: B3 -* B3 a map such

 that h I S2 U W' = id, then h is homotopic rel S2 U W' to a composit of rollings
 about elements of W'.

 c) If h: (B3, W0) -* (B3, W0) is a homeomorphism, then h o R' R' o h rel
 W0 U S2.

 d) If h is a hyperbolic isometry fixing Wo with real length a $& 0, then Ta` o
 h-1 oTa' o h - R` rel WO US .

 Proof. a) The value of n is determined by the class h({(r, 0,0) r E R}) e

 7r (B3, Wo U S2 ). For the correct n, the straight line homotopy of J-n o h to
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 44 DAVID GABAI

 0

 FIGURE 2.2. a, bounds an embedded disc in B3 - W

 id in the appropriately parametrized universal cover of B3 - Wo projects to a
 homotopy of R-' o h to id.

 0

 b) Let {Ak} be a set of annuli properly embedded in B3 - W' which cut off
 the ends of {W%}. There are two Ak'S for each Wi4. If B3 is the unit ball in R,
 and e is an end of W%, then the Ak associated to e is the intersection of a very

 0

 small Euclidean sphere centered at e, with B3 - Wi. After a preliminary homotopy
 we can assume that h fixes each Ak setwise. After precomposing h by rollings
 the resulting function also called h can be homotoped to fix the Ak'S pointwise.
 Each Ak together with a meridian disc of W' cuts off a halfball Bi containing
 no other Aj's. Homotop h I Bi to id rel OBi U W47. As in the first paragrpah, this
 homotopy can be expressed as the projection of a straight line homotopy assoicated

 to a lift of h to an appropriately parametrized covering of B - W2. The manifold
 0 0

 H = B3 -(Ui B~ iU W') is a handlebody, for a finite set of hyperbolic geodesics in
 B3 are unlinked. Since h IOH = id, h I H is isotopic to id rel OH, e.g. by [W].
 c) The action of R' a h a a- - on 7rr (B, W0 U S.2) is trivial.
 d)

 Ta- oh-1oT anoh(r,0,0)=Ta oh-1oTjjn,(r,b,a)
 =TJaoh-1(r, b +na(r)27ra/a, a)

 = Ta (r,naQ(r)27r,0) =(r,nta(r)27r,0).

 Similarly Ta a h-1 an a h I Wo = id. Now apply a).D
 0 0

 Proposition 2.8. 1f f: (B3, B3 W, W) --+ (B3, B3 _ W, W) is a map such that
 0 0

 f 0S U W = id, and for each i, f : (B3, B3 Wi IWi) -*- (B3B - WBW~ iS
 homotopic to id rel W47 U S,,2, then f is homotopic to id rel W U S02.

 Proof If W' is a finite subset of components of W, then f : (B 3, B3 - W', W') -

 (B 3, B3 - W',I W') is homotopic to id rel W', for by Lemma 2.7 b) f is homotopic
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 GEOMETRIC AND TOPOLOGICAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS 45

 to a composite of ni-rolls supported near components Wi of W'. By hypothesis
 each ni=O.O

 0

 Next we show that if a is a properly embedded closed interval in H3 - W, then
 0

 f a id inB3 -W, rel W U S2*. Let B C H3 be a round ball centered at 0,
 transverse to /\ containing a and f (c). Let W' be the components of W whose cores
 hit B. By viewing W as a thin hyperbolic neighborhood of A, we can assume that

 W' is exactly the set of components of W which hit B, and W' is transverse to B
 0 0

 with each component hitting &9B irn meridional 2-discs. Now (H3 -B, (H3 -B) nW')
 is homeomorphic to (S2 X [0, 1), J), where J is a neighborhood of vertical arcs in

 S2 X [0,1), and under this identification S2 X 0 = aB. By the first paragraph
 0

 f I a - id I a in B3 - WI rel aac. By composing this homotopy with the retraction
 of H3 onto B, which retracts each [0,1) fibre to 0, we see that f I ae id I a rel aac

 0

 in B3 - W.
 0

 Now consider any handle decomposition of H3 - W by handles of bounded
 hyperbolic diameter. The previous paragraph really showed that if h is any 1-

 handle, then f I h is homotopic to id rel ah (i.e. the attaching region to W) via
 0

 a homotopy supported in B n H3 - W, where B is any closed smooth convex re-

 gion of H3 containing both h and f(h). Thus f can be homotoped to fl, where
 fi I (W U 1-handles) = id via a homotopy restricting the trace of each 1-handle h
 to a neighborhood of the convex hull of h U f(h). In a similar way homotope fi to
 id on the 2- and 3-handles. D]

 Remark. In what follows we will be only using the homotopy described in the first
 two paragraphs of the proof of Proposition 2.8.

 Lemma 2.9. k can be chosen so that for every -yi e F and every g e G,

 (*) k o g - (g) o k relViUS2.

 Proof. Let go e G be a generator of Stab(Qyo). Suppose that Re(length(-yo))=a.
 We first show how to adjust k so that (*) holds for g = go and Vi = Vo. We let
 g' denote 0(g). By Lemma 2.7 go - g' o RT. Replace k (which is id, by Remark
 2.5) by Tan near Vo and conjugates of Tan near each Vi (so that Lemma 2.4 still
 holds). With respect to this new k, k-1 o 9 0 k o g - TaJn o go-l o Tan O go
 Tao go o To 0Rn R-n oRn = id. All homotopies taken rel Vo U S0.

 We show that (*) holds for g e Stab(-yi) and Vi. If g(-yi) = -yi, then g = g- ogUnog,
 for some 9i taking -yi to -yo. For some m, k - gf- okogi oRm rel V US2, where Rm
 is an m-roll about Vi . Therefore g'ok g g ogi -okogioRm -1o g. n okogioRm
 ti-l okog ?9ogi oRm = gi- okogiogoRm - koR-mogoRm - kog rel Vi US2 .
 For each i, pick gi e G such that gj(-yi) = -yo. Let nr be such that g'-1 o k o gi

 ok rel Vi U S2 . Again Rn* denotes an ni-roll about Vi. The value n- is a

 function of i rather than g9, for if g(-yi) = yo, then g gn o gi and g'9- o k o =
 g-1 O g0-n o k o gon g g gl-l O k o gi Rn* o k. For each i, replace k near Vi
 by Rn* o k. By Lemma 2.7 c), this change does not effect the validity of (*) for
 g, Vi where g e Stab(Vi). However, (*) now holds for g, Vi where g(Vi) = Vo or
 g(Vo) = Vi. This in turn implies that (*) holds in general. D]
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 Lemma 2.10. Let r9 =(g) o k o g- o k-1 (resp. 19 = g o k-1 o (g-1) o k). If a
 0 0

 is a properly embedded closed interval in H3 - W (resp. H3 - V), then rg I a IV id
 o 0

 in H3 - W, rel aW (resp. lg I a - id in H3 - V, rel Wv).

 Proof of Lemma 2.10. By Lemma 2.7 b), for each i, rg is homotopic rel Wi US Q
 to an ni-roll supported near Wi. By Lemma 2.9 ni=0. Now apply Proposition 2.8.
 The argument for 19 is similar. O

 0

 Proof of Proposition 2.1. We construct maps f (M, M- N(-y), N(y))
 o 0

 (N, N - N(6), N(6)), g: (N, N - N(S), N(6)) -- (M, MN - N N),N(y)) such that
 g o f I M- = id. Here M has a handlebody structure with a unique 0-handle and
 M1 is the union of the 0- and 1-handles. Also N( y) c M is the union of the

 0-handle and a single 1-handle. It will then follow that degree-f = 1, f I N(-y) is
 0 0

 a homeomorphism onto N(6) and (g o f)# : rl(M - N(y)) -- -7ri(M - N(y) )= id

 and hence f: M - N(y) -> N - N(6) is 7r1-injective and restricts to a homeomor-

 phism on &N(-y). Waldhausen [W] implies that f I M - N(y) is homotopic to a
 homeomorphism rel boundary and hence f is homotopic to a homeomorphism.

 The map k induces a homeomorphism f: N(^y) - N(6). We extend this map
 to M as follows. By restricting the size of V, we can assume that k o g I N(V) =
 q(g) o k I N(V), where N(V) is an H3 regular neighborhood of V. Give M a
 handlebody decomposition with a unique 0-handle A and 1-handles {Bo,.. ., B,J
 such that A U Bo = N(-y). If i > 0, let Bi be a lift of Bi to H3 and define
 f I Bj = q o k o pj, where p = p-1 with the range restricted to Bi. By perturbing
 the handle structure slightly we can assume that f I M1 is an embedding. Let Cj
 be a 2-handle, Cj any lift to H3. Define fj = q o k o pj, where pj: Cj - Cj is
 given by-P1. Let cj = Cj n M1. This annulus is a union of solid squares which
 alternately lie in 0 and 1-handles. By Lemma 2.4 if s is a square of cj lying in A
 or B_O, then fj I s = f I s, however that conclusion may be false for squares in
 Bi, i > 0. See Figure 2.3. To define the desired extension of f to Cj, i.e. so that

 f(C) C N-N(6), it suffices to show that for each square s, f I s fj f s rel s n A
 0

 via a homotopy in H3 - W. s = a x I where a is an embedded path in Bi with
 endpoints in A. a has two lifts, ai determined by Bi and aj determined by Cj.
 For some g c G, aj = g(ai). By Lemma 2.10 it follows that when restricted to a,
 fj = qok opj- qor(g) o kopj = qo q(g) o kog-1 ok-1 okop = qoa (g) o kopi=
 q o k opi = fi rel aa.

 The map f extends across the 3-handle of M since ir2(N- N(6)) = 1. Construct

 a handle decomposition of N with a single 0-handle E and 1-handles {Fo ... , F,}

 such that E = f(A) and for i < r, Fi = f(Bi). Construct g: (N, N-N(6), N(6)) >
 0

 (M, M - N(y), N(^y)) in a manner similar to the construction of f, taking care to
 use the lifts k(Bi) for Fi, i < r. By construction g o f I Ml = id. O

 The methods of this section lead to an elementary proof of the following Propo-
 sition 2.11, ati unpublished circa 1981 theorem of Siebenmann [BS] communicated
 to the author by Rancis Bonahon. Siebenmann's proof employed Thurston's ge-
 ometrization theorem, [Th], Mostow's rigidity theorem [Mo], Waldhausen's isotopy
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 theorem [W] and the following theorem of Neumann [Ne]: id is the only periodic
 homeomorphism of B3 which fixes S2 pointwise. Here is the idea. N - 6 has a
 hyperbolic structure [Th], hence f IN - 6 is homotopic [Mo], hence isotopic [W]
 to an isometry, which is necessarily periodic. A lift f extends to a periodic map of
 B3 pointwise fixing S2, so f = id by [Ne].

 Proposition 2.11. If f N -* N is a homeomorphism homotopic to id anid

 f I 6 = id, where N is a closed hyperbolic 3-manifold and 6 is a simple closed
 geodesic in N, then f is isotopic to id.

 Proof. After a preliminary isotopy we can assume that f is smooth by [Mu], [Ki].
 We will show that either N is Haken or f is isotopic to a map g such that

 gN() = id and g I N - N(S) is homotopic to id rel _N(S). In either case
 f is isotopic to id by [W].
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 We can assume that either A' is Haken or f I N(6) = id. In fact, a standard
 argument shows that f I N(S) is :sotopic to Dehn twists about the meridian of N(6).
 For homological reasons there E;xists an essential simple closed curve a C AN(6),

 0

 unique up to isotopy, such thau some power is homologically trivial in N - N(S).

 Therefore, f I N(6) has nontrivial Dehn twisting only if a is a meridian, which
 implies that H2(N) ; 0, which implies that N is Haken.

 Let W = U Wi = q-1(N(S)). Since f fixes N(S) pointwise and f is homotopic
 to id, there exists a lift f such that f I W = id. By applying Lemma 2.7 a)
 and isotoping f to achieve a rolling of N(S), we can assume that for each i, f

 (B3, B3 -Wi , Wi) -* (B3, B3-W, Wi) is homotopic to id rel 42 U S2 . Construct

 arelative handle decomposition of N- N(). Let h be a 1-handle and h a lift to

 H3. By Proposition 2.8 f I h is homotopic to id rel hn w, via a homotopy which
 does not cross W. Project this homotopy into N to obtain a homotopy of f I h to
 idi h which does not cross N(S). Construct a similar homotopy on each 1-handle.

 0

 The vanishing of ir2, ir3 on N - N(S) allows us to extend the homotopy over the 2-

 and 3-handles. Therefore f I N - N(S) id rel O9N(S). By [W] f is isotopic to id
 rel N(S).

 3. MINIMAL SURFACE LEMMAS

 The main results of this section, Propositions 3.9 and 3.10, assert that given a

 Riemannian metric r on H3 arising from the closed hyperbolic 3-manifold X and
 a simple closed curve A in S2, there exists a lamination a by r-least area planes in

 H3 which spans A. A sequence of such laminations, with underlying metrics st -+s,
 converges to a spanning lamination by s-least area planes.

 In the setting r is the hyperbolic metric, Anderson [A] showed "A bounds a least
 area properly embedded plane". Our a will be the limit of a sequence of compact
 r-least area discs in H3 whose boundaries approach A. Unlike [A] the restriction of
 our sequence to a fixed compact region of H3 may not have uniformly bounded area.
 As a consequence the leaves of our laminations may not be properly embedded. See
 Conjecture 3.12.

 All the background needed to read this section is contained in pp. 89-99 of Joel

 Hass' and Peter Scott's sharp and to the point paper [HS]. Our arguments rely on
 the foundational results of [Mor], [MSY] and [S].

 Definition 3.1. Let p,p, q, M,IX) B3,S2 , etc. be as in Notation 1.2. If E c B3,
 then C(E) denotes its hyperbolic convex hull. We abuse notation by letting a
 Riemannian metric on M or X also denote the induced metric on X or H3. An
 immersed disc with boundary -y is a least area disc if it is least area among all
 immersed discs with boundary y. An injectively immersed plane is a least area
 plane if each compact subdisc is a least area disc.

 A codimension-k lamination a in the n-manifold Y is a codimension-k foliated

 closed subset of Y, i.e. Y is covered by charts of the form Rn-k x Rk and a
 Rn-k x Rk is the product lamination on Rn-k x C, where C a closed subset of
 Rk. Here and later we abuse notation by letting ar also denote the underlying space
 of its lamination, i.e. the points of Y which lie in leaves of a. Laminations in this
 paper will be codimension-1 in manifolds of dimension 2 or 3.
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 A complementary region J is a component of Y - a. Given a Riemannian metric
 on Y, J has an induced path metric, the distance between two points being the
 infimum of lengths of paths in J connecting them. A closed complementary region
 is the metric completion of a complementary region with the induced path metric.
 As a manifold with boundary, a closed complementary region is independent of
 metric.

 Definition 3.2. The sequence {Si} of embedded surfaces or laminations in a Rie-
 mannian manifold Y converges to the lamination a if

 ia) a = {x = LimiO,xi I xi E Si and {xi} a convergent sequence in Y};
 ib) f = {x = Lim,,j xn X {ni} an increasing sequence in N,xnt c Sn, and

 def

 {Xni} a convergent sequence in Y} = Lim{Si}.
 ii) Given x, {xi} as above, there exist embeddings fi: D2 -* Lxi which converge

 in the C'-topology to a smooth embedding f: D2 -- Lx, where xi E fi(D2), L

 is the leaf of Si through xi, and Lx is the leaf of a through x, and x e f(D2).

 The following result is more or less well known to experts.

 Lemma 3.3 (convergence of least area discs). i) Let r be a Riemanninan metric
 on H3 which is the lift of a metric on a closed hyperbolic manifold X. If {Si} is
 a sequence of embedded least area discs in H3 with the r-metric, where &Si -* 00,
 then after passing to a subsequence {Si} converges to a (possibly empty) lamination
 by r-least area planes.

 ii) Let rt be a [0, 1] -parameter family of Riemannian metrics on H3 obtained
 by lifting a [0, 1] -parameter family on a closed hyperbolic manifold X. If Si is a
 sequence of embedded least area discs in H3 with the rt -metric, where aSi -* ox
 and Lim'ti = t, then after passing to a subsequence {Si} converges to a (possibly
 empty) lamination by rt-least area planes.

 Proof. We first give the proof of i).

 Step 1. After passing to a subseqence Lim{Si} = {x = Limi,xi I xi c Si and
 {xi} a convergent sequence in H3} = Z, a closed subset of H3.

 Proof of Step 1. For each j subdivide H3 into a finite number of closed regions,
 such that the j + l'st subdivision subdivides the j'th one and such that for each
 closed ball B in H3, the mesh of these subdivisions restricted to B converges to
 0. Choose a subsequence of {Si} so that if i > j and Si hits a region of the j'th
 subdivision, then so does Sk, if k > i. L

 Step 2. Let {z;} be a countable dense subset of Z. There exists e > 0 such that
 after passing to a subsequence of {Sj} the following holds. For each i there exists
 a sequence of embedded discs Di. c Sj which converges to a smoothly embedded
 least area disc Di such that zi c Di and ODi n Br(E, zi) = 0.

 Proof of Step 2. The compactness of X and Theorem 3 of [S] imply that there exist
 n, e > 0 such that if x E H3 and if S is an embedded r-least area compact disc such
 that AS n Br(ne, x) = 0, then after deleting isolated points S n Br(2E, x) is a union
 of properly embedded discs of bounded second fundamental form. (Informally,
 Schoen's local theorem asserts that a least area surface restricted to a sufficiently
 small ball B does not bend very much provided that the boundary is sufficiently far
 from B. The bound on bending depends only on the local curvature tensor. Since
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 the r-metric on H3 is induced from a closed manifold, we can make the above global
 statement.) By reducing the size of E, if necessary, we can assume that all closed
 balls of r-radius a, a < ne, are B3's with strictly convex boundary. Fix i. For j

 sufficiently large let Dij be a component of Sj n Br(2E, zi) such that d(zi, Di) j 0.
 Since the Dij's are r-least area, they have area bounded above by Sup 1/2{Area
 &Br (2E, x) I x E H3}. By Lemma 3.3 [HS] after passing to a subsequence and
 restricting to Br(6, zi) the Di 's converge (in the sense of Definition 3.2) to the
 desired Di. Since this is true for each i, the usual diagonal subsequence argument
 completes the proof of Step 2. LI

 Step 3. There exists a lamination a with underlying space Z, such that each Di is
 contained in a leaf. Furthermore {Si } converges to a.

 Proof of Step 3. By Step 1, i) of Definition 3.2 holds. By Step 2, for each i, Di C Z.
 0 0

 If x E Di n Dj, then Di and Dj coincide in a neighborhood of x. Otherwise
 being minimal surfaces, Di and Dj would cross transversely at some point close
 to x (e.g. Lemma 3.6 [HS]), which would imply that Sk was not embedded for k
 sufficiently large. If z E Z, then the argument of Step 2 shows that there exists
 a convergent sequence {Dz I} -3 Dz, where D,i is a subdisc of some Dj, z E Dz
 and aDz n r (e, z) = 0. Again since the Di's pairwise either locally coincide or are
 disjoint, Dz is uniquely determined in an e-neigborhood of z. Thus Z = UZEZ D,.
 Using the D,'s to define a topology on Z, it follows that connected components
 are leaves of a lamination a with underlying space Z. The uniquenss of Dz in
 Br(e, z) implies that near z leaves of a are graphs of functions over Dz and that
 {Si } converges to a.

 Since {Si} converges to a, we obtain

 Step 4. If g: D -* L is an immersion of a disc into a leaf L of a, then for all i
 sufficiently large there exists an immersion gi: D -- Si such that gi --* g in the C?
 topology. 1

 Step 5. Each leaf L of a is a least area plane.

 Proof of Step 5. Let T be an essential simple closed curve in L and A c L a thin
 (e.g. < .5e) regular neighborhood of r. Let B c H3 be a 3-ball transverse to U Si

 0

 such that A C B. Let g: D -* L be an isometric immersion of a disc such that
 g(D) = A and Area(D) >Area(OB). (Think of D as being a long thin rectangle.)
 By Step 4, for i sufficiently large, 9 is closely approximated by an isometric im-
 mersion of a 2-disc, i.e. gi: Di -* Si and Area(Di) >Area(oB). For i sufficiently
 large gi(Di) is an annulus which closely approximates A. Otherwise gi(Di) is an
 embedded disc which spirals around and closely approximates A. This contradicts
 the fact that if B is a ball and aSi n B = 0, then Arear(P) < 1/2Arear(9B), where
 P is a component of Si n B. Thus for each sufficiently large i, there exists an em-
 bedded simple closed curve Ti C Si such that {ri} converges to T. Each ri bounds
 a disc Ei c Si of uniformly bounded area. The sequence of discs {Ei} converges
 to a disc in L bounded by T via arguments similar to those of the proof of Step
 3. Thus L is simply connected. L is not a sphere else for i sufficiently large each
 Si would be a sphere. Since each embedded subdisc of L is the limit of least area
 discs by Step 4, each embedded subdisc of L is least area and hence L is a least
 area plane. [1
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 Proof of ii). The proof of ii) follows exactly as the proof of i). Perhaps only Step 2

 requires some clarification. Again by [S], there exists an e > 0 independent of x, such

 that if j is sufficiently large (so that tj is very close to t and aSj nB (nE, x) = 0),
 then each component of Sj n Brt (26, x) is a properly embedded disc of uniformly
 bounded second fundamental form. Similarly given 6 > 0, then for j sufficiently

 large Areartj (Dij) is bounded above by 1/2Areart (O(Brt (2E, zi))) + 6 and hence the
 Dij's can be parametrized to have uniformly bounded energy with respect to the
 rt-metric. These are the facts needed to invoke the proof of Lemma 3.3 [HS]. D

 Remark. The lemma could have been stated in more generality by allowing each

 Si to be a finite union of pairwise disjoint least area discs such that OSi -x oc.

 Definition 3.4. A lamination a which is a limit as in Lemma 3.3 of a sequence

 of embedded least area discs {Sj} (or more generally a lamination by finite unions
 of pairwise disjoint least area discs) such that OSi -* ox will be called a D2-limit
 lamination. The D2-limit lamination a spans the simple closed curve T C S2, if

 there exists e > 0 such that a C Np(e, C(T)) and the components of S2 - -r lie in
 different components of B3 - a. Recall that p denotes the hyperbolic metric.

 The following standard result records all the other elementary least area surface

 facts needed in this section. Most of these observations were made either implicitly

 or explicitly in the proof of Lemma 3.3. For convenience we record several D2-limit
 laminations facts too.

 Lemma 3.5. Let X be a closed hyperbolic 3-manifold. Let rt, t E [0, 1] be a family
 of metrics on H3 induced from a 1-parameter family of Riemannian metrics on X.

 i) For each t E [0, 1], the rt -area differs infinitesimally from the p-area by bounded
 factors 1/c2, c2, where C2 > 1 and C2 is independent of t.

 ii) There exist constants co, c1 such that if P is a least area disc or plane in H3
 with the rt-metric, y E P and B = B (co, y) C H3 is such that B n OP = 0, then
 Areap(PnB) > cl.

 iii) If P is an rt-least area disc, y E P and dp(y, OP) > 3co, then dp(y, OP) <
 3co Areap (P) /ci.

 iv) If a is a D2 -limit lamination, then a has no holonomy.
 v) Let W be a smooth compact codimension-0 submanifold of H3 transverse to

 the D2-limit lamination a. Then a I W is a finite union of product laminations.
 Le. there exist finitely many pairwise disjoint submanifolds Wi of W of the form

 Fi x I, where Fi is a compact surface, (Fi x I) n Ow = (pFi) x I and a I Fi x I is
 the product lamination Fi x Ci, where Ci C I is compact.

 In particular the leaves of a I W have uniformly bounded area and the leaves of
 a I OW are simple closed curves of uniformly bounded length.

 vi) Each leaf L of a D2 -limit lamination a has an exhaustion by compact discs

 Pi, such that OPi -x oc. Furthermore if a = Lim{Sj}, then for each i, there exist
 least area discs {Eij } converging to Pi, such that Eij C Sj.

 vii) If, for i = 1, 2, Lj is a leaf of the D2-limit lamination vi, then no component
 of L1 n L2 contains a simple closed curve.

 viii) If, for i = 1, 2, vi is a D2-limit lamination spanning Ai c S2 and a1 nU2 t
 0, then A, nA2 t 0

 ix) If a is a codimension-1 lamination in the 3-manifold Y, then there exists a
 possibly empty, nowhere dense sublamination , such that each closed complementary

 region of a is a closed complementary region of s.
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 x) If z'N is a nowhere dense lamination in the 3-manifold Y and W is a compact
 codimension-0 submanifold of Y, then W can be isotoped slightly to be transverse
 to K.

 Proof. i) The metrics on H3 arise from a [0, 1]-family of metrics on a closed mani-
 fold.

 ii) follows from i) and the monotonicity formula (e.g. Lemma 2.3 [HS]).
 iii) Apply ii).
 iv) Since each leaf is simply connected, this follows from the Reeb stability

 theorem applied to laminations. E.g. see [GO].
 v) We first show that each leaf of a W is compact. Let B be a ball such that

 0

 W c B and B is transverse to a except possibly at finitely many points. At these

 points the tangencies should be Morse like. If a leaf P of a I B was noncompact,
 then P would pass through a lamination chart in B infinitely often and so P would
 have infinite area. By Step 4 of the proof of Lemma 3.3, compact regions of P

 are closely approximated by compact regions of Sj for j sufficiently large. This
 0

 contradicts the fact that the rt-area of components of Sj n B is bounded above by
 c2Areap(OB). Since each leaf of a I W is contained in a leaf of a I B, the leaves of
 a I W are compact and of uniformly bounded area.

 By the Reeb stability theorem and iv) each leaf F of a I W has a neighborhood
 Wi c W such that a I Wi is a product lamination. Conclusion v) now follows

 from the compactness of a I W. The condition Ci c I follows if one uses maximal
 product laminations. In reality, by ix)-x), our laminations will never be locally

 dense, so the condition Ci C I is essentially automatic.
 vi) Fix x E L. Using the proof of v) construct Pj, j E N so that for each

 i, Pi C Pi+1 and 9P% c L n Bp(i, x). The second part follows from Step 4 of the
 proof of Lemma 3.3.

 vii) If such a curve exists, then apply the Meeks-Yau exchange roundoff trick to
 show that one of L1, L2 is not least area.

 viii) Proof by contradiction. If x E a, nU2, then let B be a ball such that x E B
 and OR n Np(el, C(A1)) n Np(e2, 0(A2)) = 0. The ei > 0 are chosen to have the
 property that, for i = 1, 2, vi c Np(ei, C(Ai)). If for i = 1, 2 there exists a leaf Li
 of vi I B such that x E Li, then L1 n L2 contains a circle of intersection, for each
 Li is compact. (Recall 2.6 [HS].) This contradicts vii).

 ix) Take r, to be the closure of all the boundary leaves of a. This lemma allows
 us to avoid some technicalities in the very unlikely event that a lamination arising
 from Propositions 3.9 and 3.10 is somewhere locally dense. I.e. we can treat the
 lamination more like a properly embedded surface than like a foliation.
 x) Use general position. D

 Definition 3.6. Let -a be an unknotted simple closed curve in H3 with the r-
 0

 metric. Change the r-metric of U = H3 - N(a) by one which coincides with r
 away from a very small neighborhood of OU and which gives U a strictly convex
 boundary. It follows by [MSY] that an essential simple closed curve on ON(a), also
 called a, bounds a properly embedded disc D C U, least area among all immersed
 discs E C U with OE C OU and OE essential in OU. Call a disc that arises from
 this construction a relatively least area disc in H3.
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 Lemma 3.7. Let rt be a [0, 1]-parameter family of Riemannian metrics on H3

 obtained by lifting a [0, 1] -parameter family on a closed hyperbolic manifold X.
 There exists e > 0 such that if S is a relatively least area disc in H3 with the

 ri -metric, then S c Np (e, C(OS)) .

 The proof we give is a technically simpler version of the following more concisely

 stated outline. Either Lemma 3.7 holds or by applying Lemma 3.3 to a sequence of

 discs we obtain an embedded least area plane lying in a horoball based at a point

 in S2 . Such a plane can be chosen to be disjoint from all its translates under G.

 The projection to X is a leaf of an essential lamination n by least area planes. By

 Imanishi (see [G2]) only the 3-torus has an essential lamination by planes.

 Proof of Lemma 3.7. Step 1. There exists an r-least area plane L which is a leaf of
 a D2-limit lamination and which lies in a horoball of H3.

 Proof of Step 1. Suppose that for each i, there exists a relatively ri-least area disc

 D' such that D' V Np(i, C(OD')). Let zi E D' be a point farthest from C(OD'). A
 covering transformation of q: H3 -* X is an isometry in both the ri and hyperbolic
 metrics. Therefore by replacing each D' by a covering translate and passing to
 a subsequence, we can assume that the zi converge to a fixed z E H3. After
 reparametrizing H3 and using the unit disc model, we can assume that z = 0. By
 passing to another subsequence we can assume that Lim{C(O(D/))} = w c S2

 Conclude that Lim{DI} C H, the horoball which contains both 0 and w. [Note
 that if y E H3 - H and t E H3 c B3 is sufficiently Euclidian close to w, then

 dp (O, t) < dp (y, t).]
 Cut down the size of the DI and pass to a subsequence to obtain a new sequence

 as above, called {Di}, such that for each i, Di is an ri-least area disc (i.e. rather
 than just relatively least area). To prove this use the following observations. For

 N E N let B(N) denote Bp(N, 0) perturbed slightly to be transverse to U DI.
 If T is a component of DI n OB(N) and i is sufficiently large, then the subdisc

 E of DI bounded by T is an ri-least area disc. Otherwise, since Arear,(E) <
 1/2Arear,(OB(N)), any least area disc F with OF = OE (which exists by [Mor]
 (see [HS])) must be somewhat close to 0 by Lemma 3.5 iii) and hence be disjoint
 from ODI for i sufficiently large. Since DI is relatively least area, F and E have the
 same ri-area and hence E is ri-least area. Finally observe that

 Lim dp C(OB(N) n H)) -x oc.
 Apply Lemma 3.3 ii) to pass to a subsequence of the Di and obtain the D2-limit

 lamination a, each of whose leaves is an r-least area plane. Let L be the leaf which
 contains 0. By Lemma 3.5 vi) L is a union of embedded nested least area discs
 whose boundaries go to infinity. Replace the old sequence of discs by this sequence,

 also denoted {Di}. }

 Step 2. Let Gx denote the group of covering translations of H3 associated to X.
 There exists an r-least area plane Q such that for each g E Gx, either g(Q) = Q

 or g(Q) n Q = 0. Furthermore either g(Q) n L = 0 or g(Q) = L.

 Proof of Step 2. If w is not the fixed point of any element of Gx, then L is the
 desired Q, otherwise there exists g E Gx such that g t id and g(L) n L {r0, L}.
 Since g(w) t w, there exists some i such that g(Di)Dn Di 0 but g(ODi)fn(ODi) = 0.
 This leads to a contradiction by the exchange roundoff trick.
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 The other possibility is that w is the fixed point of some primitive element f of

 Gx. We find Q as follows. Let Af denote the hyperbolic axis of f. There does not

 exist N > 0 such that L c Np(N, Af ). Otherwise, for any t E Af, each component
 of Ht n L would have area bounded by c2 (area of the hyperbolic disc of radius N).
 Here Ht is the B3 halfspace disjoint from w and bounded by the hyperbolic plane
 orthogonal to Af at t. This contradicts Lemma 3.5 iii), for t close to w.

 Let {yj} be a sequence of points in L such that d(yi, Af ) > i. Let gi E Gx be
 such that gi(yi) = vi lies in a fixed X-fundamental domain V in H3. By passing
 to a subsequence we can assume that vi -* v E H3 and gi(w) -* w'. By passing

 def
 to another subsequence we can assume that i $ j implies that wi = gi(w) $

 gj()def g9j(W) d fwj. Suppose on the contrary that for all i, j, gi (w) = 9j(w). Then
 gi(w) = gj(w) ==. 1 7ogi(w)=w = - 91 g 0 fni = gj o fni. Now
 gi(yi) C V =? Yi E g- 1(V) = f -niogj3l (V) ==* d(yi,Af) ?max{d(g1-(z),Af) I
 z E V}. The finiteness of the latter contradicts the choice of yi, for i large.

 Let Q be a least area plane passing through v, obtained by applying Lemma 3.3 to

 the sequence gi (L) = Li, or more precisely to {gi (Dni) }, where {ni } is a sufficiently
 fast growing sequence. There exists no h E Gx such that h(Q) n Q f {0, Q}; else

 for sufficiently large i,j, h(Lj) n Li $ 0. Therefore there exists i,j such that
 h(Lj) n Li $6 0 and wi tL h(wj). This implies that g1 o h o gj(L) n L 7L 0 and
 g71 o h a gj (w) t w, which is a contradiction. A similar argument shows that

 h(L) n Q e{0, Q}

 Step 3. There exists an r-least area properly embedded plane P contained in a

 horoball in H3 such that for each g E Gx, g(P) = P or g(P)nP = 0. If r: H3 __ X
 is the covering projection, then 7r(P) projects to a leaf P of an essential lamination
 i' in X. Finally the leaves of i, lift to r-least area planes in H3 and each leaf of ,
 is dense in s.

 Proof of Step 3. Let A be the lamination in X obtained by taking the closure of

 the injectively immersed surface Q which is the projection of Q. We show that

 A is essential by showing that each leaf is incompressible and end incompressible

 [GO]. Each leaf Q, of A lifts to a surface Q, in H3 which is a limit of translates

 of subdiscs of Q, hence Q, is a leaf of a D2-limit lamination and hence is a least
 area plane, so Q, is incompressible. An end compression of Qa would imply the
 existence of a monogon in H3 connecting two very close together subdiscs of Q of

 very much larger area, contradicting the fact that Q, is least area as in Figure 4 of
 [HS].

 Let r, be a nontrivial sublamination of A such that each leaf of i, is dense in ,'.
 The lift k of r, to H3 is a sublamination of the lamination which is the closure of

 all the Gx-translates of Q. Since L is either disjoint from i or a leaf of i, it follows
 that L = 7r(L) is either a leaf of , or disjoint from K. By construction K c L since
 Q is in the closure of Gx (L).

 If L is a leaf of i, then Step 3 holds with P = L. In that case since L is the lift
 of a leaf of an essential lamination, it follows by [GO] that L is properly embedded
 in H3.

 Next consider the case that L C J is a closed complementary region of i,. The
 proof of Step 3 follows from the following
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 0 0

 Claim. J = D2 x I and L is homotopic to D x 1/2 via a homotopy in J in which
 points of L are moved by homotopy tracks of uniformly bounded length.

 Proof of the Claim. As in [GO] J is of the form A U Z, where each component of
 A is an I-bundle over a noncompact surface, Z is a connected compact 3-manifold
 and A n z is a union of annuli. Since X is of finite volume, by taking Z to be
 sufficiently big (by reducing the size of A) we can assume that the I-fibres are
 very short p-geodesic arcs nearly orthogonal to OJ. Recall that by [S] L and hence
 L have bounded second fundamental form. This implies that if the I-fibres are
 sufficiently short, then they must be transverse to L. Thus we can assume that L
 is transverse to the I-fibres of A.

 Assume A t 0. If E is a vertical annulus in A, i.e. a union of I-fibres, then
 either E spans a D2x I c J or E n L = 0. Otherwise E lifts to an I x R whose
 core a is properly homotopic (by the previous paragraph) to a curve lying in L,
 contradicting Step 1, for a has distinct endpoints in S.2. Since K c L, it follows
 that some component A1 of A and hence each component of A1 n Z nontrivially
 intersect L and hence A1 = A and J is obtained by attaching 2-handles to A along

 A Z z. Since each vertical annulus in A bounds a D2 x I, it follows that J = D2 x I.
 Since J is simply connected, it lifts to H3 and hence L is embedded in J since L
 is embedded in H3. Therefore if E c A is a vertical annulus, then E n L is a
 union of embedded circles. Each such circle bounds a disc in L which is isotopic
 rel boundary to a horizontal disc in the associated D2 x I. If P is a component of
 aJ, then vertical projection of L n A to P n A extends to an immersion of L to P.
 P being simply connected implies that this is in fact a diffeomorphism. Again as
 in [GO] each lift of P is properly embedded.

 If A = 0, derive a contradiction as follows. In this case K is a closed 7r,-injective
 surface S0. Consider an incompressible surface Si in X split open along So which
 nontrivially intersects So and consider LnS1 to argue that the limit set of L consists
 of more than a point.

 Since each leaf of r, is dense in , the above argument shows that i, has no closed
 leaves. D

 Step 4. Proof of Lemma 3.7.

 Proof of Step 4. Note that P could have been chosen so that w E S2 is the base- - 0 -
 point of the horoball containing P. If B is the region in B3 bounded by P such that

 B n S2 = w, then GB = {g E Gx I g(B) n B t 0} is a subgroup of the stabilizer
 GW of w. Since GW is generated by f, GB is generated by ffn for some n E Z. First

 suppose that GB t id. We can assume that fn (B - w) c B. Since P is proper,
 each z E P has a neighborhood W c H3 such that W n (ffn(p) U f-n(p)) = 0 and
 hence {g E Gx I g(P) n W t 0} = id. This implies that P is isolated, contradicting
 the fact that each leaf of i, is dense and i, has no closed leaves. Finally consider

 0

 the case GB = id. In this case B n K = 0, otherwise P is dense in K, implies that

 some covering translate of P lies in B. Let I be an I-fibre of A and let I be the lift

 which intersects P. Since P is nonisolated, I c B, with one endpoint i E B. We
 obtain the contradiction i n B 4 0. D
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 Lemma 3.8 (Convex hull facts). Let t be a smooth simple closed curve in S2 and
 k > 0. Then

 0

 i) Np(k, C(r)) is a convex, smooth, properly embedded D2 x I.
 ii) The product structure can be chosen so that for every e > 0, {x E D2

 lengthp(x x I) > 2k + e} is bounded.
 iii) If Te C B3 is a Eucllidean e-neighborhood of T, then Np(k,C(r =

 n,,>O Np (k, C (,r,)).

 Proof. A proof of smoothness of 9N(k, C(T)) due to Bowditch can be found in [EM,
 p. 119]. The remainder is an elementary exercise in hyperbolic geometry. Use the
 fact that if x E C(r) n H3 and x is Euclidean very close to T, then in the visual
 sphere of x, T approximates a great circle. O

 Proposition 3.9 (Least area spanning laminations exist). Let T be a smooth sim-
 ple closed curve in S2 and r a Riemannian metric on H3 induced from a metric
 on a closed hyperbolic 3-manifold. Then there exists a D2-limit lamination a C H3
 by r-least area planes spanning r. Furthermore there exists e > 0, which depends
 only on r (and hence independent of r), such that if a is any spanning lamination

 by r-least area planes, then a c Np(e, C(T)).

 Proof. Let e > 0 be as in Lemma 3.7. Let w be a properly embedded path in B3
 connecting points in distinct components of S2 - r.

 Step 1. There exists a sequence of relatively least area discs {Ei} such that for

 each i, Ei c Np(2e, (T)), OEi -t o0, and I(Ei,w)I 5 0. Here (,) denotes oriented
 intersection number.

 Proof of Step 1. By Lemma 3.8 Np(e, C(T)) has an exhaustion by regions Ro C
 R1 C * *, where Ri = D2 x I and 6RT = (t9D2) x I. Here MRi denotes the relative
 boundary of R,. Choose Ro such that wnNpN(e, C(T)) C Ro. The disc Ei is obtained
 by applying the procedure of Definition 3.6 to an essential circle in 6Ri. By Lemma
 3.7 Ei C Np(2e, C(r)).

 Step 2. There exists a sequence {Di} of least area discs such that for each i, Di c
 Np(2e, C(r)),9Di -* oo, and I(Di, w) $ 0.

 Proof of Step 2. Apply a procedure, similar to the one of the second paragraph of

 the proof of Lemma 3.7, to obtain the sequence {Di} from the sequence {EA}. L

 Step 3. After passing to a subsequence, {Di} converges to a lamination a by r-least
 area planes which spans T.

 Proof of Step 3. Let ar be a D2-limit lamination obtained by applying Lemma 3.3
 to {Di}. We need to show that each component of S2 - r lies in a different
 complementary region of a, the other conditions being self evident. If w1 C B3_- a
 is a properly embedded path connecting these two components, then since w1 n

 Np(2e, C(r)) is compact and disjoint from cr, it follows that for i sufficiently large
 Di nw = 0. This contradicts the fact that for i sufficiently large, I (w,Di) =
 I(W1I Diz) L

 Step 4. If a spans T, then ar C Np(e, C(T)).
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 Proof of Step 4. If L is a leaf of a, then by Lemma 3.5 vi) L has an exhaustion
 by compact discs Pi such that 9Pi %-* ox. Hence for each e > 0, there exists N,
 such that if i > Ne, then 9Pi C NE(E, T) C B3, where E denotes Euclidean metric.
 Therefore by Lemmas 3.7 and 3.8 iv), L C Np(e, C(T)). D

 Proposition 3.10 (Convergence of spanning laminations). Let rt, t E [0, 1] be a
 smooth family of Riemannian metrics on H3 induced from Riemannian metrics
 on a closed hyperbolic 3-manifold and let {ti} be a sequence in [0, 1] such that

 Limti = t. Let ri (resp. r) denote the rt, (resp. rt) metric. Let T be a smooth
 simple closed curve in S2. If {ai} is a sequence of D2-limit laminations by ri-least
 area planes spanning T, then after passing to a subsequence {ai} converges to a
 D2-limit lamination a by r-least area planes which spans T.

 Proof. Let e > 0 be as in Lemma 3.7 for the metrics rs, s E [0, 1]. The proof of
 Lemma 3.3 works equally well for sequences of D2-limit laminations as it does for
 sequences of least area discs. In fact suppose that for each i, Di is chosen to be a
 finite union of discs embedded in leaves of vi which are 2-i dense in a n Bp(i, O)
 (i.e. vi n Bp(i, 0) C Np(2-, Di n Bp(i, 0))) and 9Di x-* oc. Then the subsequence
 {Di} of {Di} converges to the lamination a if and only if the subsequence {a }
 of {ai} converges to the lamination a.

 Now suppose that {ai} converges to the D2-limit lamination a. Again, we need
 to show that each component of S2 - T lies in a different complementary region
 of a, the other conditions being self evident. Let Ri be as in the proof of Step 1
 of Proposition 3.9. After a small perturbation assume further that Ri is transverse

 to U ai. Since vi separates the components of S2 - T, some leaf (i of vi I 8Ri
 is essential in MRi. (i bounds a disc Fi c vi. Thus I(Fi,)I = 1. As in the
 proof of the previous lemma, a subsequence of {Fi} limits on a lamination a' which
 separates the components of S2 - T. Since a' is a sublamination of a, a separates
 the components of S2 - T. D

 Corollary 3.11. A limit of D2-limit laminations is a D2-limit lamination.

 Conjecture 3.12. Let r be a Riemannian metric on H3 induced from a Riemann-
 ian metric on a closed hyperbolic 3-manifold. If A is a smooth simple closed curve

 in S0, then A spans a properly embedded r-least area plane in H3.

 Remarks 3.13. i) Freedman and He [FH] have constructed an example of a non-
 properly-embedded plane which is least area with respect to the hyperbolic metric
 on H3.

 ii) A result similar to Proposition 3.9 can be found in [L2]. The lamination
 that arises there is properly embedded but not necessarily by planes. On the other
 hand, it is a theorem about all dimensions and codimensions and requires only
 that the Riemannian metric induce a topological metric Lipshitz equivalent to the
 hyperbolic metric. I suspect that under this weaker hypothesis on the Riemannian
 metric, the planes that span A c S2 need not be properly embedded. One can
 deduce an independent proof of Lemma 3.7 from the proof of Theorem 2 of [L1].

 Remark 3.14. In a natural way the results of this section generalize to 3-manifolds
 with negatively curved fundamental group.
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 4. CONSTRUCTING THE TUBES

 Lemma 4.1. Let /t be a Riemannian metric on H3 induced from a closed hyperbolic
 3-manifold. Let {ai} be a locally finite set of D2-limit laminations of H3 by 1u-least
 area planes. If J is a component of H3 - U ai, then

 i) 7ri(J) = 1.
 ii) If J * is the metric completion of J with the induced path metric, then J * is

 a manifold with boundary.

 iii) The natural map H: J* H3 is an injective immersion.

 Proof of i). Let T be a closed curve in J and f: D2 - H3 be transverse to each

 vi such that f I OD2 = T. Then f (D2) n = 0 for all but finitely many i,

 E qv = L, . . . ,. jcr,jll.m?: t f isJ cbacsJe t'Q mIiDimizmv .. 0- If" -o thTen T is
 homotopically trivial in J. If n > 0 we obtain a contradiction as follows. By
 Lemma 3.5 a has no holonomy, so f-1 (Un) is a lamination by circles so there is

 a finite number of outermost circles T,, ... , Tm Of f-1 (Un) bounding discs in D
 whose union contains f-1 (Un). Each Tr maps to an immersed curve ar in a leaf
 Li Of on. Li is a least area plane and ar is disjoint from fk for k > n imply
 that ar is homotopically trivial in Li via a homotopy disjoint from fk, k > n. In
 fact, the outermost component of 9N(ar) c Li bounds an embedded disc E whose
 boundary is disjoint from Uk, k > n, hence E is disjoint from Uk, k > n. Being

 outermost, f (T,) lies on the boundary of a closed complementary region of an. By
 replacing the image of the subdisc of D bounded by each Ts with a disc close to but

 disjoint from on, we obtain a new immersed disc spanning T intersecting at most
 ai, 1? i < nr-1. D

 Proof of ii). By Lemma 3.5 ix) we can assume that each vi is nowhere dense. Given
 x E U ai, there exists a short geodesic arc a passing through x and transverse to

 U vi with Oa n (U ui) = 0. Let &i denote vi I D2 x I, the D2 x I being a regular
 neighborhood of a where O x 1/2 = x. If the D2 factor is sufficiently small, then each

 leaf of any &i is the graph of a function g: D2 I and vi is a product lamination.
 Also the projection of the intersection of any two leaves Li c &i,Lj c Qj into
 the D2 factor is either empty or a smooth properly embedded arc or n properly

 embedded arcs which intersect at a single point in D2, the arcs having distinct

 slopes at the common point. The latter occurs if Li and Lj are tangent and uses
 the normal form theorem for tangencies between least area surfaces, e.g. Lemma

 2.6 [HS]. By local finiteness and reindexing we assume that D2 x I intersects only

 ai, 1 < i < q.
 Let K be a component of D2 x I - U vi. To prove ii) it suffices to show that

 H I K* is injective and H(K*) is a manifold with boundary. For each i < q there
 exist leaves Ai, Bi of &i such that K lies in the complementary region of &i defined
 by points lying above Ai and below Bi, though possibly one of Ai, Bi = 0. The
 region above the leaves A1,... , Aq (resp. below B1,..., Bq) is the region above
 (resp. below) the graph of a function A: D2 __ I (resp. B: D2 __ I). So A (resp.
 B) is the maximum (resp. minimum) of a finite set of smooth functions. Therefore
 each component K of D2 x I - U vi either lies between the graph of two functions
 defined over an open subset U of D2, or lies either above or below the graph of a

 function on D2. The proof of ii) in the latter case is clear. To show that HI 1 K*
 is injective and H(K*) is a manifold with boundary it suffices to show that U is

 a manifold with boundary. The projection cij of Ai n Bj into D2 has a natural
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 normal orientation, i.e. the normal points into the side where the region below Bj
 and above Ai is nontrivial. U is the closure of a connected region defined by the

 cij, with all normals pointing in. Since Li n Lj contains no embedded circles, the
 region U is a disc. It is routine to check that U is topologically a closed disc. D

 Proof of iii). Proving that H is an injective immersion reduces to showing that if
 0

 the discs U1 and U2 in D2 are defined by the same leaves B1,.. ., Bq and A1,-.. , Aq,
 and Ui n U2 t 0, then the regions K1 and K2 associated to them lie in distinct

 path components of H3 - U a,. If not, then one could pass to a minimal example
 of the saddle or spike type which are described and dispatched in the following

 paragraphs.

 Saddle example. U vi = U1 U U2 and Ui n U2 correspond to a saddle tangency
 between leaves A1 c a1 and B2 C U2, where B1 = A2 = 0. See Figure 4.3(b). A
 down isotopy of a1 near the saddle creates a non-simply-connected component of
 H3 -a, U U2, where a' denotes the isotoped a1. The intersection of a leaf A of
 a/ and a leaf B of U2 must contain a simple closed curve; else one could argue as
 in the proof of i) to conclude that each component of H3 - (a/ U U2) was simply
 connected. Since a1 (resp. U2) is isolated above (resp. below) A1 (resp. B2), the
 only possibility is that A is the isotoped A1 and B = B2. This implies that A1 n B2
 contains a simple closed curve, again contradicting Lemma 3.5 vii).

 Spike example. Here U vi = u1 UU2 UU3; A1, B2, B3 t 0 and the lines A1nB2, A1n
 B3 intersect tangentially at a single point x E U1 n U2. See Figure 4.1. A small

 down isotopy of a1 creates a non-simply-connected component of H3- U1 U U2 U U3
 where a/ denotes the isotoped a1. On the other hand, since a1 is transverse to

 U2 U U3 near x, a/ n j contains a simple closed curve if and only if a1 n j contains
 a simple closed curve, for j = {2, 3}. Thus one obtains a contradiction as in the
 saddle example.

 Remark 4.2. The following observations follow from the proof of Lemma 4.1.
 i) If K1 and K2 are distinct connected complementary regions of D2 x I - U a,

 which limit on x, then one of the f-ollowing three situations occur, up to reversing
 the parametrization on I.

 a) There exists j such that K1 and K2 lie in distinct complementary regions of

 Ij I D2 x I. In this case oj I D2 x I has an isolated leaf separating K1 and K2.
 Therefore K1, K2 lie in distinct complementary regions of H3 - fj

 b) There exist j, k, leaves A3 C j I D2 x I, Bk C Uk I D2 x I, such that A3 and
 Bk have a saddle tangency at x, K1, K2 lie above Aj and below Bk, and K1, K2 lie
 in distinct components of D2 x I - (oj U Uk).

 c) There exist j, k,l leaves Aj C oj I D2 x I, Bk C Uk I D2 x I, B1 c a, I D2 x I
 such that K1,K2 lie above Aj and below Bk,Bl. Finally K1,K2 lie in different
 components of H3 -_ U U Uk U Ul.

 ii) If J1, . . . , Jn are finitely many components of H3 - (oj U Uk U Ul) such that
 for each r t s each point of H(Jr ) n H(Js ) occurs at a saddle or spike as in i),
 then U H(Ji*) is simply connected. Otherwise one obtains a contradiction as in the
 proof of Lemma 4.1.
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 A spike

 FIGURE 4.1

 Lemma 4.3. Let x, y E S2, r a Riemannian metric on H3 induced from the closed
 3-manifold M or X, and A,...-, A smooth simple closed curves in S2 _ {X, y}
 such that no Ai separates x from y. For each i, let oi be a lamination by r-least
 area planes which spans Ai and let Hi be the complementary region of B3 -_ which
 contains x, y. Then either

 i) x, y lie in the same component H of nfl=1 Hi, or
 ii) there exist Ai, Aj, Ak such that Ai U Aj U Ak separate x from y in S.

 Proof. If m < 3 and ii) does not hold, then x, y lie in the same component of

 S2 - U Ai, so i) holds. Assuming inductively that the lemma is true for n < m, we
 will establish it for cardinality m. Therefore either ii) holds or

 (*) for every j < m, x and y lie in the same component of n H
 isi

 We show that if (*) holds, then either i) holds or for each j, k, Aj n Ak $ 0. Let

 i-j C nifj Hi (resp. Tk C niOk Hi) be a path from x to y transverse to cfj (resp.
 Ork). By Lemma 4.1 i), there exists h: I x I -) nil{j,k} Hi, a homotopy from ij to
 -rk, which is transverse to both ofj and Sk. Either ak n aj 7& 0 and hence Tk nf Tj # 0
 by Lemma 3.5 viii) or h-1(0k U aj) is a lamination by circles and arcs. Each arc
 has both endpoints on one of I x 0 or I x 1. Thus Tk nf Tj = 0 implies that there
 exists an embedded path from 0 x I to 1 x I disjoint from h-1 (aj U ak) and hence
 conclusion i) holds.
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 Either i) holds or there exists a minimal s > 0 and a reordering of the Ai so that
 A1 U U U A, separate x from y in SI . Minimality implies that some component f
 of A. - (A1 U ... U A,-l) has the property that T U A1U ... U A,-I separate x, y and
 there exists a path ae C S2 from x to y such that at intersects T U A1 U ... U As-l

 transversely exactly once in T. The closure of r has endpoints on Ai and Aj, where
 i, j < s - 1. Since Ai n Aj =A 0, there exists a simple closed curve / C Ai U Ai U T
 such that T C /3. Therefore Ai U Aj U A. separate x from y. D

 0

 Definition 4.4. If Y = D2 x S1 or D2 x S1, then a core of Y is a curve of the
 0

 form z x S1, where z C D2.

 Lemma 4.5. i) Cores of solid tori are uiipque up to isotopy.
 ii) If h: Y2 - * Y1 is a covering map between solid tori, then c is a core of Y1 if

 and only if h-(c) is a core of Y2.

 iii) If Y1 and Y2 are D2 x S1 's, such that c1 C Y2 C Y1, where c1 is a core of Y1,
 then c1 is a core of Y2.

 iv) Let {Di} be a locally finite collection of pairwise disjoint properly embedded
 0 0

 planes in Y2 = x S1. If Y1 is a D2 x S1 component of Y2-U Di, then any core
 of Y1 is a core of Y2.

 v) Let Y2, Y3 be D2 x S1 's embedded in the 3-manifold Y and let c1 be a core of
 0

 Y3. If c1 C Y2 and there exists an embedded 2-disc E C DY3 such that Y2 nDY3 C E,
 then c1 is a core of Y2.

 Proof. We first establish versions of i)-iii) in the case of closed solid tori.
 ic) Here is a hint to this well known result. Let cl and c2 be cores of Y, the

 c2 being an S1 fibre of Y = D2 x S1. First isotope c1 to be transverse to this
 D2-fibration. Then isotope c1 to c2. The first isotopy follows from the existence of
 an embedded annulus connecting c to a simple closed curve d in DD2 x S1 and the
 isotopy classification of simple closed curves on the torus.

 iic) The product structure of Y1 lifts to a product structure on Y2, so a core
 of Y1 lifts to a core of Y2. Conversely suppose that h-1(c) = d is a core of Y2.
 Let R be a connected embedded orientable surface of maximal Euler characteristic

 with two boundary components, one boundary component c and one boundary
 component on aY1. The curve c is necessarily a generator of r1 (Y1) so R exists for
 homological reasons. The surface R lifts up to f in Y2. Each primitive element of

 H2 (Y2 -N(d), aY2U i9N(d)) and in particular [R] is represented by an annulus. By

 [Gi, Corollary 6.13] deg(h)x(R) = x(R) = 0, therefore R is an annulus and c is a
 core of Y1.

 0

 iiic) Here we are assuming that Y1, Y2 are D2 x S1's and c1 C Y2 C Y2 C Y1

 and c1 is a core of Y1. DY2 is incompressible in N(Y1) - N(c) = T2 x I, so by [W],

 aY2 is isotopic in N(Y1) - N(c) to T2 x 1/2. Therefore Y2 has a product structure
 which restricts to a product structure on N(c).

 We now prove i)-iv) for open solid tori.
 iii) For i = 1, 2, let ci be a core of Y%. Let N2 C Y2 be a large regular neighborhood

 of c2 such that c1 C N2. Let N1 C Y1 be a large regular neigborhood of c1 such
 that N2 C N1. Then iiic) applied to the inclusions c1 C N2 C N1 yields that c1 is
 a core of N2. By ic) c1 is isotopic to c2 and hence c1 is a core of Y2.
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 i) Apply iii).

 ii) Suppose c c Y1 lifts to a core d C Y2 and let N1 be a regular neighborhood
 of a core of Y1 such that d C int(N1) where N1 is the lift of N1 to Y2. By iii) d is
 a core of N1 and so c is a core of N1 and hence Y1 by iic).

 iv) Let N2 be a large standardly embedded D2 x S1 C Y2 such that c1 C N2
 and N2 is transverse to U Dj. Since c1 is homotopically nontrivial in Y2, any disc
 component of Dj n N2 must separate off a ball in N2 disjoint from c1. On the other

 0

 hand, a subdisc D of Dj with AD C N2, D n N2 = 0 together with a subdisc of

 aN2 bounds a ball in Y2 - N2. Therefore the usual innermost disc (in Dj) and an
 isotopy argument allows us to assume, after isotopy of N2, that c1 c N2 C Yi. Now
 apply iii).

 v) By doing a finite sequence of compressions and 2-handle attachments to Y2 in
 a small neighborhood of E, we obtain a new manifold W such that c1 C W C Y3.
 Topologically W must be a D2 x S1, possibly with some balls removed, otherwise one

 obtains a rr1 contradiction. The contradiction depends on whether I 7rw(W) I< ??
 or W = S2 x S1-3-balls. Therefore every compression or 2-handle attachment was
 trivial. Since c1 is a core of W if and only if c1 is a core of Y2, v) follows from
 iii). C1

 If 6 C H3 is a geodesic, then S2 -06 is naturally parametrized by S1 x R, where
 each x x R lies in the ideal boundary of a hyperbolic half-plane bounded by 6, and
 the R parameter is given by the hyperbolic nearest point projection of B3 - 06 to
 6.

 Definition 4.6. If R c S2 - 06, then define 6-visual angle(R) = inf{02 -01 mod
 2 I R C [01,02] x R} E [0, 27r]. The possible choice of 0 or 2wr is made in the
 obvious manner.

 Lemma 4.7. If P C H3 is a hyperbolic plane with ideal boundary A and Pn6 = 0,
 then 6-visual angle(A) = 2 sin-1(1/ cosh(d)), where d is the hyperbolic distance
 between 6 and P.

 Proof. Let 'r be the orthogonal geodesic segment between 6 and P, x = 6 nr T and
 y = P n T. Let Q be the hyperbolic plane orthogonal to 6 containing r and
 = Q f P. The H2 visual angle of a viewed from x E Q is equal to the 6-visual
 angle of A. Now apply the formula (e.g. [F], p. 92) sin(a) cosh(d) = 1 associated
 to the right angle triangle xyz, where z is an endpoint of a, d = dp(x,y) and a is
 the angle zxy. C1

 Corollary 4.8. If P C H3 is a geodesic plane with ideal boundary A and dp (6, P) =
 (log(3))/2 = .549306 .., then 6-visual angle(A) = 27r/3.

 Mark Culler told me that .549306.. =(log(3))/2.

 Proofs of Theorems 0.9 and 0.10. By hypothesis there exists a (7rw(N), {6aj}) non-
 coalescable insulator family {JkA}, where 6 is a closed geodesic in N and {6j} =
 q-1 (6). To prove Theorem 0.9 it suffices by Proposition 2.1 to find a simple closed
 curve -y in M, such that the B3-link p-1 (y) = r is isotopic rel S2 to the B3-link
 q-1(6) = A. In the context of Theorem 0.10 M = N and f is a homeomorphism
 homotopic to id. To prove Theorem 0.10 it suffices by Proposition 2.11 to show
 that f-1(6) is isotopic to 6.
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 Our terminology will follow that of Notation 1.2. In particular G denotes the
 action of 7ri(N),nri(M) on S2 as well as the action of 7ri(M) on B3.

 Step 1. We can assume that, with only finitely many G-orbits of exceptions, each
 A/ is the ideal boundary of the midplane (see Example 0.3) Dij between 6i and
 5j. If Eij denotes the component of S2 -A'j which does not contain a6i, then
 S2 -a6i = Uj Eij-

 Proof of Step 1. By convexity and local finiteness there exists 3 < 7r such that
 for each j, 6i-visual angle(A'j) < 3. Let a = min{27r - 2,3, 27r/3} and let d =
 cosh-1(1/ sin(a/2)). Define a new (7r,(N), {a6j}) insulator family by the rule

 A/ = |i dpQ(6i, 6j) < d,

 = {DDij, otherwise.

 Using Lemma 4.7 and the choice of d it follows that this family satisfies the
 no-trilinking condition of Definition 0.3 hence is noncoalescable. The first part of
 Step 1 is established by replacing {A'j} by {Aij.}

 Let x E S2 - Mi. Let T be a geodesic from x to &i, which is orthogonal to
 #i. An extended hyperbolic plane P C B3 disjoint from 6i U x separates 6i from
 x if and only if P n T =A 0. If C = 2(diamp(X)), then there exists a 6j such that
 dp(6j, T) < C, but dp(6j, 6i) > max (1OC, d). The midplane Dij between 6. and 6i
 crosses T and hence 9DDi separates x from M#i. By definition Dij = A-. LI

 From now on i will denote a fixed integer and g E G will denote a fixed generator
 of Stab(D6i) = (g). By the equivariance and local finiteness properties of insulator
 families, there exists an integer n > 0 such that gn E 7r,(X) and for all j and all
 r 7 0, grn(Aij) n = 0. By Step 1, the compactness of (S2 _- D6)/(gn) and
 the G-equivariance of insulator families, there exists only finitely many outermost
 (gn)-orbits of {Ail, Ai2, ... }. Ai is outermost means that there exists no Eik such

 0

 that Eij C Eik. From now on n will be the integer determined as above.
 Fix a Riemannian metric ,u on M and let ,u denote the induced metric on H3.

 For each j, k, let %'jk be a lamination spanning Ajk by ,u-least area planes. The
 cxjk should be chosen G-equivariantly, i.e. h(Ajk) = Ars implies h(ajk) = ars and
 Oxkj = cJjk. Let Hjk denote the H3-complementary region of %'jk which contains the
 ends of #j. Let Hj = nk Hjk.

 Reorder the 65j's so that {Ail,. . ., Aim} denote representatives of the outermost
 (gn)-orbits of Aij's. By Lemma 3.5 viii) it follows that Hi = njm=1 nfrEZ grn(Hij).
 By equivariance, h E G, h(6i) = #j implies that h(Hi) = Hj.

 Step 2. Establish the following properties of the Hj.
 i) There exists a > 0 such that Hi C Np(a, 6i).
 ii) Hi n Hj =A 0 if and only if #i = 6j.
 iii) If h E G, then h(Hi) n Hi =A 0 if and only if h = gk for some k.
 iv) If J is a component of Hi, then for each x E J, there exists a standard D2 x I

 neighborhood of x as in the proof of Lemma 4.1 with the following additional
 properties. J n D2 x I is the region which lies above the leaves A1, . . . , Aq and
 below the leaves B1,...,Bq, notation as in the proof of Lemma 4.1 ii). Both
 J n D2 x I and J n (DD2) x I are connected. Finally if C =A D where C, D C
 {Al, ... , Aq, Bi, ... , Bq} then AC is transverse to AD in DD2 x I.
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 v) If J is a component of Hi and J* is the metric completion of J with the
 induced path metric, and 11: J* -> H3 is the natural map, then 11 is an embedding
 (rather than injective immersion) of J* onto J C H3.
 vi) If J is a component of Hi and h E (g), then h(J) n J E {J, 0}.
 vii) There exists N1 such that every x E H3 lies in the closure of at most one
 component of Hi having p-diameter > N1. Each bounded component of Hi has
 p-diameter < N1.

 Proof of Step 2. i) Consider a fundamental domain F of (B3 -84)/(gn). FnS, is
 covered by a finite number of Eij, hence a B3-neighborhood N of F n S.2 is covered
 by a finite number of Hij, where Hij is the component of B3 -Np(e, C(Aij)) which
 does not contain 0ai. By Proposition 3.9 Hi n cri = 0, so Hij n Hi = 0. Choose
 a to be sufficiently large so that F - N c Np(a, bi). Using the equivariance of
 insulator families and the fact that gn is an isometry in both the p and ,i metrics,
 i) follows.

 ii) If i 7& j, then Aij separates 86i from 96j. By definition of spanning lamination,
 the complementary regions of Uij which contain 864 and iMj are distinct and hence
 Hi nH. c H3j nH3i = 0.

 iii) The uij were chosen to be G-equivariant, hence h(9bi) = 8i% implies that
 h(Hi) = Hj. Conversely if h ? (g), then h(a6i) =A 86bi, so by ii) h(Hi) n Hi = 0.

 iv) By Lemma 3.5 ix) we can assume that each crij is nowhere dense. Let x E H3.
 Here we are identifying, via Lemma 4.1, J* with the region II(J*) c H3. Let
 x E vij n aJ*. Let B C H3 be a large ball such that x E B, B is transverse to
 Uj oij, and Np(a, 5i) n aB n Np(e, C(A2j)) = 0. Let L be the leaf of aij I B which
 contains x. By Lemma 3.5 v) L is compact and has a neighborhood of the form L x I
 such that oij I L x I = L x C, with the product lamination, where C is compact. (It
 is this technical point which allows us to treat oij as though it is a proper plane.)
 Thus if y, z C Hi n L x I and y, z lie in distinct complementary regions of x,,j I L x I,
 then y and z lie in distinct components of Hi for (9L) x I n Hi = 0. Therefore any
 sufficiently small D2 x I neighborhood of x satisfies the second sentence of iv).

 By making the D2 x I sufficiently small, both i n D2 x I and J n 8D2 x I
 are connected. See Remark 4.2. By making 8D2 transverse to the various C n D
 arcs of intersection as well as choosing 9D2 to avoid the finitely many tangencies
 among the leaves {A1,. . ., Aq, B1, ... , Bq}, 8D2 x I has the desired transversality
 property.

 v) This follows by iv) and Lemma 4.1.
 vi) Let D2 x I be a small neighborhood of x E h(J) n J as in iv), i.e. such

 that each of h(J), J intersects D2 x I in a single component. By the proof of iv)
 h(J) n D2 x I is not separated from J n D2 x I by a leaf of some vii I D2 x I.

 Therefore, by Remark 4.2 i), if x c h(J) n J 4 J, then J, h(J) meet at a spike
 or saddle point created by the laminations vij ,1 < s < k e {2, 3}. If Jr is the

 component of H3-(Uk=1 orij) containing hr(J), then for some finite t, U'=- 11(Jr)
 is connected but not simply connected. A nontrivial cycle passing through x is

 obtained as follows. First chain together a path, through x and all the II(J,*),
 from II(JIt) to H1(Jt*). This path (which has endpoints near 864) together with a

 path ";near" S2, and disjoint from Uk1 Aij2, yields the desired cycle, contradicting

 Remark 4.2 ii). This uses the fact that U,=1 Aij,, does not separate 864 in S2 .
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 vii) By equivariance, local finiteness and the last conclusion of Proposition 3.9,

 there exists an No > 0 such that the image under orthogonal projection of any
 oij into 6i has p-diameter bounded above by No. As in vi), if there exist two
 components JI, J2 of Hi which limit on the same point x and are sufficiently large,
 e.g. p-diameter > 2(a + No) = N4, one can find a cycle contradicting Remark

 4.2 ii). In fact say J1, J2 are locally separated near x by Uk=1 Uij, where k < 3.
 If x projects to y C &i, via orthogonal projection, then Uk= crij, projects into
 Bp (No, y) n 6i, for each of these k laminations have the point x in common. If for
 r = 1, 2, diam(Jr) > N4, then since Jr C Np(a, 6i) the orthogonal projection of Jr
 is not contained in Bp (No, y) n 5i. Therefore J1, J2 lie in the same component of
 H3 - Uk= vij and one constructs the desired cycle.

 By iv), any x E H3 has a standard D2 x I neighborhood whose boundary
 intersects at most finitely many components of Hi. This together with Step 2
 i) implies that given 6> 0, then modulo the action of (gn) which acts isometrically
 in both the ,u and p metrics, there are only finitely many components of Hi with

 p-diameter > e. Therefore there exists an N2 such that the p-diameters of bounded
 Hi components are uniformly bounded by N2. Finally take N1 = max(N2, N4). E

 Step 3. Let P': B3 96% D- 2 x S1 be the quotient map under the action of (g).
 Then P'(Hi) is the union of open balls and exactly one open solid torus, whose
 closures are respectively closed balls and one solid torus T. Therefore Hi C H3
 is a union of uniformly bounded open balls and exactly one component Vi whose

 H3-closure is a D2 x R whose ends limit on D5i. Finally p(Vi) = V is a D2 x S1,
 where p: H3 -* M is the universal covering map.

 Proof of Step 3. Each component Z of P'(H,) has -ri(Z) E {1, Z} since it is covered
 by a simply connected component of Hi, by Lemma 4.1, with covering translations
 contained in (g). Z is a compact manifold with boundary by Lemma 4.1 and v)-
 vii) of Step 2. Z is irreducible since it is covered by an irreducible manifold [MSY].
 Therefore Z is a closed ball or solid torus.

 0

 We show that there exists some D2 x SI component of P'(Hi). Parametrize

 B3-Doi by D2x R so that g acts by (x, t) -* (x, t+1). If P'(Hi) contains no D2x S1
 component, then by Step 2 vii) the components of Hi have uniformly bounded p-
 diameter. Hence there exists an integer N3 > 0 such that if Z is a component of

 Hi and ZnD2 x 0 =A 0, then Z C D2 x (-N3,N3). By Step 1 and Lemma 3.5 viii),
 Hi n (D2 x [-N3,N3]) = Z, n (D2 x [-N3,N3]) where Zc, = njkE, Hijk for some
 finite set a = {ji. .. X Jr}. By Lemma 4.3 some component Z,B of Zc, contains an
 embedded path T connecting the points of M6i. This implies that some component
 of Hi nontrivially intersects D2 x (-N3) and D2 x N3 and hence D2 x 0, which is
 a contradiction.

 Suppose that P'(Hi) had two solid tori T1 and T2. Their cores C1, C2 would
 lift to paths al A2 between the elements of 96i such that for some component S
 of Z, n D2 x 0, (S, ,) = 1 and S n c2 = 0. Again (,) denotes the algebraic
 intersection number. Since the ends of a, and a2 lie in a neighborhood of 96i
 contained in Z, the ends can be truncated and fused to create a closed curve T in
 Zc, such that (T, S) = 1, contradicting the simple connectivity of Z, established in
 Lemma 4.1. D
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 Definition. The solid torus V constructed above is said to arise from the insulator
 construction.

 Let P: B3 - 96i -* Y = D- x S1 be the quotient map given by the action of
 (gn). Let -y be a core of V = p(ri). (Recall Notation 1.2.) For each j let -yj denote
 the lift of -y to Vj extended to be a properly embedded arc in B3.

 Step 4. The isotopy class of -y and hence the B3-link {yj } = F is independent of
 the choice of {}ij}.

 Proof of Step 4. Let {aoj} be another collection of laminations spanning {Aij}, with
 associated regions {H'j}, {Hi'}. Let H'j = Hij n H0 j and Hi" = nj Ho'j. The
 arguments of Steps 1-3 show that Hi,Hi',Hi" each contain a unique unbounded
 0 2
 D x R respectively called V, Vi', Vi", which project respectively to open solid tori
 V, V', V" in M such that V" C V and V" c V'.

 To prove Step 4 we will pass to the n-fold cyclic covering space Yo C Y of V

 and there find Ym c Yin-i C ... C Yo which are respectively open solid tori with
 a common core. Ym will be the n-fold cyclic covering space of V". Since a core c
 of V" lifts to a core of Ym, which is a core of Yo, this curve c when viewed in V is
 therefore a core by Lemma 4.5 ii). A similar argument shows that any core of V"
 is a core of V'. Therefore V and V' have common cores. Since cores are unique up
 to isotopy (Lemma 4.5 i)), Step 4 is established.

 Recall that Ail, . .. , Aim are representatives of the distinct outermost (gn)-orbits

 of {Aij} and that n was chosen so that r =A 0 implies that for all k, grn(Aik)nAik = 0.
 For 1 < j < m let ij = U 9rn(a) and H$i - ri00 9rn(H') . Again by

 Lemma 3.5 viii) Hil = n=I Hi j. For 1 < t < m, let Wt = nr=WHi2j n Hi, so
 Wm = Hi". Define Wo = Hi. As in the proof of Steps 1-3, each Wj contains a

 unique D2 x R component Vi3 which projects via P to a Dx S called Yj. Step
 4 will follow from the following claim, for when combined with Lemma 4.5 iii) it

 asserts that for all j, any core of Yj+1 is a core of Yj, and hence any core of Ym is
 a core of Yo.

 Claim. Each leaf La of P(zj+i) I Yj is a properly embedded separating disc, exactly
 0

 one complementary component being a B3. The collection {L,o } of outermost such
 discs is locally finite in Yj. (Outermost means, maximal in the partial order defined

 0

 by inclusion of complementary B3's.) Finally Yj+I = n co, where C,B is the non-
 simply-connected component of Yj - D, and D,o is an outermost disc.

 Proof of the Claim. By Lemma 3.5 vi) and Step 2 i) each leaf L of kj+1 = Ij+
 is a properly embedded planar surface. By Lemma 3.5 vii) L must be a disc. It

 follows from the choice of n that for each j, P Aij -* P(Aij) and hence P ij -*
 P(oij) were embeddings. Arguing as in the proofs of Steps 1)-3), it follows that
 the H3-closures of the components of Vi3 - L consist of a B3 called BL and a
 properly embedded D2 x R. Finally by the choice of n, the complementary regions

 of P(L) c Yj consist of an D2 x S1 and a B]3 = P(BL) = P(Ur??-,,(grn(BL)))
 By Lemma 3.5 v) Vij is covered by a locally finite (gn)-equivariant collection of

 lamination charts {U,} such that each leaf L of ki+1 passes through U, at most
 once. To see this, apply Lemma 3.5 v) where W is a large ball transverse to rj+1

 such that DW n 0j+l Vni = 0 and argue as in the proof of Step 2 iv). Since at
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 most 2 outermost leaves can pass through a given U, , local finiteness of outermost
 leaves is established.

 Again by the choice of n, if L and L are distinct leaves of kj+1, then they bound
 balls BL, BL C Vij which are either disjoint or nested. Thus Vi+ = -BL),
 the intersection taken with respect to outermost leaves of kj+i. By projecting into
 P(B3 - 196) the last assertion follows. LI

 Remark. An isotopy of -y to a core -y' of V' can be expressed as the composition of
 two isotopies, the first (resp. second) of which is supported in V (resp. V').

 Step 5. The isotopy classes of -y C M and the B3-link F are independent of the
 choice of metric on M.

 Proof. Since the space of Riemannian metrics is path connected, it suffices to show

 that if it, is a [0, 1]-family of smooth metrics and -y, is a core curve arising from
 the insulator construction with respect to A,, then the isotopy class of y, C M
 is locally constant as a function of s. (For fixed s the isotopy class of -y, is well
 defined by Step 4.) Suppose that there exists a sequence tk -* t such that for each

 k, Ytk is not isotopic to yt. Let uk be a lamination spanning Aij by itk-least area
 planes. By Proposition 3.10 after passing to a subsequence we can assume that

 for]j = 1, . . . ,m, - cij, where uk (resp. uij) is a lamination spanning Aij by
 -tk least area (resp. ,ut-least area) planes. Using {okj} (resp. {oij}) the insulator

 construction associates to each tk (resp. t) a Vk - D2 x R (resp. Vi) which covers
 0

 Vk C M (resp. V), where Vk, V are D2 x S1's. Let Tk (resp. T) denote the

 D x Si whose interior is P(Vik) (resp P(Vi)).
 Let t' be the lift of yt to Y. To complete the proof of Step 5 it suffices to show

 that for k sufficiently large, t' is a core of Tk. For by Lemma 4.5 ii) for k sufficiently

 large ayt would be a core of Vk. By Lemma 4.5 i) cores are unique up to isotopy, so
 we conclude that -ytk is isotopic to yt, a contradiction.

 By Lemma 4.5 v) it suffices to find a regular neighborhood N(T) of T, and a
 disc E C AN(T) such that for k sufficiently large t' C Tk and AN(T) n Tk C E.
 Reconcile our notation here with that of Lemma 4.5 by letting c1 = l ', Y2 = Tk, Y3 =
 N(T),Y = Y and E = E.

 Let -yi be the lift of t' to Vi. For fixed j and for k sufficiently large yi n0 = 0;
 else by Definition 3.2 tyi n oij 7 0, a contradiction. The finiteness of m (recall Step
 2) and the (gn)-invariance of yi imply that for k sufficiently large -yi C f/k and

 0

 hence t' C Tk.
 We now find the desired N(T) and E. Let N1 (T) C Y be a regular neighborhood

 of T transverse to P(Uj aij).

 Claim 1. i) There exist properly embedded compact separating surfaces SI,... , Sm
 C N1 (T) such that for p < m there exists a closed complementary region Jp C
 N1 (T) of Sp such that T c np=- Jp = J. Each Sp is a (possibly disconnected)

 surface lying in leaves of P(aip) and T n P(aip) = 0.
 ii) Fix e > 0. For k sufficiently large, there exist properly embedded compact

 separating surfaces Sk, ... , Sm C N1 (T) such that for p < m there exists a closed
 complementary region Jk C N1 (T) of Sk such that Tk C jl2ik Jk. Each Sk
 is a (possibly disconnected) surface lying in leaves of P(oJH ). Finally for every], Sk
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 is e-close to Sj in the c2 topology and jk is e-close to J with respect to Hausdorff
 distance.

 Proof of Claim 1. i) Fix j E {1,... , m}. Let N1 (T) be the lift of N1 (T) to H3 which

 contains Vi. Using Lemma 3.5 v), the closure of the component of Hij nNl (T) which
 contains Vi intersects aij nN1 (T) in a compact surface Lj lying in leaves of Uij. Part
 i) follows by taking Sj = P(Lj) and Jj the closed complementary region containing

 ii) Since oJikj-* uij and N1 (T) n ij is compact, it follows that for k sufficiently

 large aku N1 (T) very closely approximates cij I N1 (T). In particular oij I N1 (T)
 consists of finitely many families of parallel compact surfaces, so ak N1 (T) consists

 of parallel families which approximate in a bijective fashion the rij families. In
 fact by Definition 2.2 for k sufficiently large, each x E 0k N1 (T) must lie very
 close to a uij family. Conversely a aij family is a product lamination of the form

 0

 F x C c F x I, C compact, and the proof of Lemma 3.3 shows that for k sufficiently

 large ak n F x I C F x I and each connected leaf is a compact surface transverse
 to the I-fibres. Therefore ak j F x I is isotopic to a product lamination of the

 form F x C', C' 4 0. Hence for k sufficiently large, the component of Hn N1(T)

 which contains f7k, intersects okn nN (T) in a compact surface Lk which is e-close

 to Lj. Part ii) follows by taking Sk - P(L.) and Jj the closed complementary
 region containing Tk. By construction for k sufficiently large, then for every j, Jk

 3

 is c-close to J3 and jk is e-close to J. LI

 Claim 2. There exist an e > 0, a neighborhood N(T) of T and an embedded disc

 E c AN(T) such that if x E AN(T) - E, then there exists j such that dp(x, Jj) > C.

 Proof of Claim 2. Let S = U -1 S.. Each x E AT has a D2 x I C N1 (T) neighbor-
 hood satisfying the conclusion of Step 2 iv). In our context S. n D2 x I = Aj U B3
 where at most one of Aj, Bj is nonempty. The last conclusion of Step 2 iv) implies
 that associated to D2 x I n AT is a small annulus Fx c (8D2) x I such that if
 F, = S' x I, then F nT = ST x 0, and if y c S1 x t, t > 0, then there exists j
 such that dp(y, Jj) > 0. See Figure 4.2. From a finite collection of curves of the
 form ((0D2) x I) nOT, we obtain a 1-complex C c AT whose complement is a union

 of D2's. By the usual transversality arguments there exists a regular neighborhood
 N(T) c N1 (T), a regular neighborhood N(C) c AT and an e > 0 such that if

 y E N(C), then there exists j such that dp(y x 1, Jj) > e. Here N(T) - T (resp.
 AT) is identified with AT x I (resp. AT x 0). Finally let E c &9N(T) be a 2-disc

 such that &N(T) - (N(C) x 1) C E. E.

 To complete the proof of Step 5, let N(T) and E be as in Claim 2. By Claim
 0

 1, if k sufficiently large, then for each y E AN(T) - E there exists j such that
 0 0

 dp(y, Jj) > c/2. Therefore (9N(T) - E) n Tk c (&N(T) - E) n jk = 0. L

 Remark. i) Near saddle tangencies Tk may spill way out of T. In Figure 4.3 14k
 (resp. Vi) is locally defined by two leaves, whose 1ik (resp Vi) sides are indicated
 by arrows. Tk may also spill out near spikes of T. Compare Figure 4.1.

 ii) The isotopy from at to 4tk was supported in Vk.
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 x is a saddle point x is a spike point

 x is a generic point

 FIGURE 4.2

 (a) (b)

 FIGURE 4.3

 iii) One could alternatively show that ~' is a core of Tk by first showing that
 -~is a core of Y and then invoking Lemma 4.5 iii) with respect to the inclusion
 c Tk C y.

 Step 6. Steps 1-5 applied to the (-ri (X), {aOi }) insulator family {Aij } yields the
 isotopy class of the link o iC X and the isotopy class of the B3-link
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 F. These classes are independent of the metric on X and the choice of spanning

 laminations. C

 Remark. We leave it to the reader to check that the analogues of Steps 1-5 work

 in the context of the (iri(X), {06}) insulator family {IAj}. In particular Steps
 1-3 show that a metric ,u on X and a collection {la. } of ,u-least area laminations

 spanning {Aij } give rise to a finite set Vi of pairwise disjoint D2 x S1's in X. Each
 isotopy required in the proofs of Steps 4-5 can be expressed as the composition

 of isotopies each of which is supported in some V,. Each component of V,
 supports the isotopy restricted to exactly one component of the link. See the

 remarks following Steps 4-5.

 Step 7. (Proof of Theorem 0.9.) Using the hyperbolic metric on H3, the

 (ri (X), {0bi}) insulator family {Aij } yields the B3-link A. The B3-link F is isotopic
 to the B3-link A.

 Proof of Step 7. By the convexity property of Definition 0.4 there exists, for each j,

 a hyperbolic half-plane Pij separating 0%i from Aij. Thus Pij separates 6i from any
 p-least area lamination cij which spans Aij. Applying the insulator construction
 to the (7ri(X), {0bi}) insulator family {Aij } using the hyperbolic metric on H3, we
 get for each j: 6j c Vj and A1 = 7r(A) = qj1(6) are cores of the tori ir({?}).
 To see that ir(6j) is a core of 7r(Vj), consider Pi: (H3 -06) -* (H3 - 3bj)/(gj)

 0

 = = D2 x S1, where gj generates Stab,,(x)(6j). Apply Lemma 4.5 iii) to
 P(6j) c PJ(Vj) c YP. By Step 6, A1 is isotopic to IF = pj (Qy). Lift this isotopy
 to H3 to complete the proof of Theorem 0.9. C

 Step 8. (Proof of Theorem 0.10.) The curve f-1(6) is isotopic to 6.

 Proof of Step 8. In the context of Theorem 0.10 M = N and f is a diffeomorphism

 (after a preliminary isotopy) homotopic to id. M has two Riemannian metrics,
 the given hyperbolic metric p and the pullback metric f* (p). The construction of

 Hi 0 Hi =0

 (The arrows point to the Hi,-side of ir*) p

 With the hyperbolic metric With the ,u-metric

 FIGURE 4.4
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 Steps 1-5 using the metric p yields the geodesic 6 and using the metric f * (p) yields
 the curve f-1 (6). Since the isotopy class is independent of metric, it follows that
 f-1(6) is isotopic to 6. C

 Remark 4.9. (Why a coalescable insulator is bad.) It is possible that the Hi result-
 ing from the construction applied to a coalescable insulator family would contain

 0

 no unbounded D2 x R component, i.e. Step 3 fails. Perhaps even Hi= 0. It is
 conceivable that, as in [GS], using the wrong metric some p-totally geodesic plane
 P transverse to 8i may be disjoint from Hi. See Figure 4.4.

 5. APPLICATIONS AND CONCLUDING REMARKS

 Mostow's Rigidity Theorem [Mo]. If f: M -* N is a homotopy equivalence
 between closed hyperbolic manifolds of dimension > 2, then f is homotopic to an
 isometry.

 Remark 5. 1. (What Mostow does not say.) If po is a hyperbolic metric on N, then
 associated to a nontrivial element a of 7r, (N), there exists a unique geodesic 6 C N
 which is freely homotopic to a. Mostow does not rule out the possibility that with
 respect to a different hyperbolic metric Pi, the geodesic 8' associated to a would
 lie in a different isotopy class than 8. What Mostow does assert is that there exists
 a diffeomorphism f: N -* N, homotopic to id, such that f (6) = 8'.

 If N satisfies the insulator condition, then this diffeomorphism is isotopic to id,
 by Theorem 0.10, so we obtain

 Theorem 5.2. Let N be a closed hyperbolic 3-manifold satisfying the insulator
 condition. If po and Pi are hyperbolic metrics on N, then there exists a diffeomor-
 phism f: N -* N isotopic to id such that f*(p1) = po. In particular the space of
 hyperbolic metrics on N is path connected. [1

 Remark. So for manifolds satisfying the insulator condition, hyperbolic structures
 are unique up to isotopy.

 Corollary 5.3. Let N be a closed orientable 3-manifold satisfying the insulator
 condition. Then Homeo(N)/ Homeoo (N) = Out(7r, (N)) = Isom(N). (Homeoo (N)
 is the group of homeomorphisms isotopic to id.)

 Proof. The second equality folows from Mostow. Let XH: Homeo(M)/Homeoo(N)
 -- Out 7r1(N) be the map induced by the action of 7rr1(N). Since N is a k(-ir, 1),
 it follows that X([h]) = X([g]) if and only if h is homotopic to g. By Mostow XH
 is surjective and by Theorem 0.10 X- is injective. Homeo(N)/Homeoo(N) is often
 called the mapping class group of N. [1

 Definition 5.4. i) Call a finite set of pairwise disjoint simple closed curves in N
 a homotopy essential link if each component is homotopically nontrivial in N and
 no two components lie in the same Z subgroup of ri(N)1.
 ii) If q: H3 -- N is the universal covering projection of a hyperbolic 3-manifold

 N, then q-1 induces the map Q: {isotopy classes of homotopy essential links in N}
 *{isotopy classes of B3-links}. If qx: X -- N is a finite covering map, then
 qj1 induces the map Qx: {isotopy classes of homotopy essential links in N}
 *{isotopy classes of homotopy essential links in X}.
 Recall that isotopies of B3-links are required to fix S2 pointwise.

 Conjecture 5.5A. Q is injective.
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 Conjecture 5.5B. Qx is injective.

 Corollary 5.6. Let 6 be a simple closed geodesic and 8' a simple closed curve in
 N such that Q(6) = Q(8'). Then 6 is isotopic to 8' if N satisfies the insulator
 condition.

 Proof. Apply Proposition 2.1 to find a homeomorphism f: N -* N such that
 f(6) = 8'. By construction f fixes S2 pointwise, so f is homotopic to id. Now
 apply Theorem 0.10. O

 Remark 5.7. By Corollary 5.6 if N satisfies the insulator condition, then Conjec-
 ture 5.5A is true for geodesics. Also if X satisfies the insulator condition, then
 Conjecture 5.5B implies Conjecture 5.5A for geodesics.

 Definition 5.8. If 6 is a closed geodesic in the hyperbolic 3-manifold N, then
 the tube radius of 6 = Sup {radii of embedded hyperbolic tubes about 8} =

 1/2 min{d(8i, j) j &i, 7j are distinct preimages of 6 in H3}.

 Lemma 5.9. If the hyperbolic manifold N has a geodesic 6 with tube radius

 > (log 3)/2, then the Dirichlet insulator family associated to 6 is noncoalescable. In
 particular N satisfies the insulator condition.

 Proof. By Corollary 4.8, if tube radius(6) > (log 3)/2 and 8i is a lift of 6, then 8i-
 visual angle(Aij) < 27r/3 where Aij is the ideal boundary of the Dirichlet midplane
 between &i and 6j. Therefore for no j, k, I does AU U Aik U Ail separate &8i. El

 Corollary 5.10. Each hyperbolic 3-manifold N is covered by a hyperbolic 3-mani-
 fold X satisfying the insulator condition.

 Proof. By [G3] for every e > 0, there exists a finite regular cover X of N such that
 tube radius (6) > e, where 6 is a shortest geodesic in X. Cl

 Proof of Theorem 0.1. Combine Theorems 0.9, 0.10, and 5.2 with Lemma 5.9. O

 Remark 5.11. i) Via a technique called fudging, the inequality given in Lemma 5.9
 can be improved at least to an equality. The idea is that a small perturbation of
 a just barely coalescable Dirichlet insulator would create a noncoalescable insulator
 family.

 ii) An application of the hyperbolic law of cosines shows that if the shortest

 geodesic 6 in N has length L > 1.353, then tube radius(6) > (log 3)/2. One finds a
 right triangle as in Figure 5.1.

 iii) Applying the Meyerhoff tube radius formula, i.e. Corollary of [Me, ?3] with
 n < 8, we conclude that if N has a geodesic 6 of length < .0978, then tube
 radius(6) > (log 3)/2. Combined with the work of Jorgenson [Gr], this shows that
 for n > 0 there are at most finitely many hyperbolic 3-manifolds of volume < n
 which can fail to satisfy the insulator condition.

 Corollary 5.12. For any n > 0, all but at most finitely many closed hyperbolic
 3-manifolds of volume < n are both geometrically and topologically rigid. 0I

 Remark 5.13. A 3-manifold N is topologically rigid means that any homotopy equiv-
 alence between N and an irreducible 3-manifold is homotopic to a homeomorphism.
 The hyperbolic 3-manifold N is geometrically rigid means that its hyperbolic metric
 is unique up to isotopy.
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 L Cosh(d)>Cosh(L)/Cosh(L/2)
 >L

 <L/2

 L

 FIGURE 5.1
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