AMERICAN
 MATHEMATICAL
 SOCIETY

On the Geometric and Topological Rigidity of Hyperbolic 3-Manifolds
Author(s): David Gabai
Source: Journal of the American Mathematical Society, Jan., 1997, Vol. 10, No. 1 (Jan., 1997), pp. 37-74

Published by: American Mathematical Society
Stable URL: https://www.jstor.org/stable/2152902

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

ON THE GEOMETRIC AND TOPOLOGICAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS

DAVID GABAI

0. Introduction

The main result of this paper asserts that if N is a closed hyperbolic 3-manifold satisfying a certain geometric/topological insulator condition (Conjecture 0.6 says that it always happens), then N is both topologically and geometrically rigid. As a special case we have
Theorem 0.1. Let N be a closed hyperbolic 3-manifold containing an embedded hyperbolic tube of radius $(\log 3) / 2=.549306 \cdots$ about a closed geodesic. Then
i) If $f: M \rightarrow N$ is a homotopy equivalence where M is an irreducible 3-manifold, then f is homotopic to a homeomorphism.
ii) If $f, g: M \rightarrow N$ are homotopic homeomorphisms, then f is isotopic to g.
iii) The space of hyperbolic metrics on N is path connected.

Remarks 0.2. i) If M is hyperbolic, then conclusion i) follows from Mostow's rigidity theorem [Mo]. Actually [Mo] implies that f is homotopic to an isometry. If N is instead Haken, then conclusions i)-ii) are due to Waldhausen [W]. If N is Haken and hyperbolic, then conclusion iii) follows by combining [Mo] and [W]. Conclusions i), ii)-iii) can be viewed as a 2 -fold generalization of [Mo]. See $\S 5$.
ii) There are only six known closed 3-manifolds which are probably hyperbolic and have a shortest geodesic δ with tube radius $(\delta)<\log (3) / 2$. The first, known as Vol 3, was found using Jeff Weeks' tube radius/ortholength program [We]. Nathaniel Thurston very recently found 5 other such manifolds. All six of these manifolds appear to satisfy the insulator condition.
iii) An application of the hyperbolic law of cosines shows that if the shortest geodesic δ in N has length ≥ 1.353, then tube radius $(\delta)>\log (3) / 2$. See Remark 5.11.
iv) If N has a geodesic δ of length $\leq .0978$, then Meyerhoff's tube radius formula [Me] implies that tube radius $(\delta)>\log (3) / 2$. See Remark 5.11. Combined with the work of Jorgensen [Gr], we obtain Corollary 5.12 which asserts that for any $n>0$, all but finitely many hyperbolic 3 -manifolds of volume $<n$ are both topologically and geometrically rigid.
v) Farrell and Jones [FJ] showed that if $f: M \rightarrow N$ is a homotopy equivalence between closed manifolds and N is a hyperbolic manifold of dimension ≥ 5, then f is homotopic to a homeomorphism.

[^0]The theme of this paper is to abstract the ideas of the following example to the setting of homotopy hyperbolic 3 -manifolds.

Example 0.3. Let δ be a simple closed geodesic in the hyperbolic 3-manifold N. δ lifts to a collection $\Delta=\left\{\delta_{i}\right\}$ of hyperbolic lines in \mathbf{H}^{3}. To each pair δ_{i}, δ_{j}, there exists the midplane $D_{i j}$, i.e. the hyperbolic halfplane orthogonal to and cutting the middle of the orthocurve (i.e. the shortest line segment) between δ_{i} and δ_{j}. Each $D_{i j}$ extends to a circle $\lambda_{i j}$ on S_{∞}^{2}, which separates $\partial \delta_{i}$ from $\partial \delta_{j}$. Now fix i. Let $\bar{H}_{i j}$ be the closed \mathbf{H}^{3}-halfspace bounded by $D_{i j}$ containing δ_{i}. $W_{i}=\bigcap \bar{H}_{i j}=D^{2} \times \mathbf{R}$ is the Dirichlet torus domain associated to the geodesic $\delta_{i} . \stackrel{\circ}{W}_{i}$ projects to an open solid torus containing δ as its core. In fact $W=W_{i} /\left\langle\delta_{i}\right\rangle$ is a solid torus with boundary a finite union of totally geodesic polygons.

Definition 0.4. Let G be a group of homeomorphisms of S^{2} and $\mathcal{A}=\left\{A_{i}\right\}$ a countable set of pairwise disjoint G-equivariant pairs of points of S^{2}, i.e. if $g \in$ $G, A_{i} \in \mathcal{A}$, then $g\left(A_{i}\right) \in \mathcal{A}$. Let $\left\{\lambda_{i j}\right\}$ be a collection of smooth simple closed curves in S^{2}. $\left\{\lambda_{i j}\right\}$ is called a (G, \mathcal{A}) insulator family and each $\lambda_{i j}$ is an insulator if
i) Separation: If $i \neq j$, then $\lambda_{i j}$ separates A_{i} from A_{j}.
ii) Equivariance: If $g \in G$, then $g\left(\lambda_{i j}\right)$ is the curve associated to the pair $g\left(A_{i}\right), g\left(A_{j}\right)$. Also $\lambda_{i j}=\lambda_{j i}$.
iii) Convexity: To each $\lambda_{i j}$ there exist round circles respectively containing A_{i} and A_{j} and disjoint from $\lambda_{i j}$.
iv) Local Finiteness: For every $\epsilon>0$ there exist only finitely many $\lambda_{i j}$ such that i is fixed and $\operatorname{diam}\left(\lambda_{i j}\right)>\epsilon$.

Definition 0.5. A (G, \mathcal{A}) insulator family is noncoalescable if it satisfies the following no trilinking property. For no i, does there exist $\lambda_{i j_{1}}, \lambda_{i j_{2}}, \lambda_{i j_{3}}$ whose union separates the points of A_{i}. See Figure 0.1. A hyperbolic 3-manifold satisfies the insulator condition if there exists a geodesic δ in N and a $\left(\pi_{1}(N),\left\{\partial \delta_{i}\right\}\right)$ noncoalescable insulator family. Here $\left\{\delta_{i}\right\}$ is the set of lifts of δ to \mathbf{H}^{3}.

Conjecture 0.6. Every closed hyperbolic 3-manifold satisfies the insulator condition.

Definition 0.7. If δ is a geodesic in the hyperbolic 3 -manifold N, then the insulator family $\left\{\lambda_{i j}\right\}$ constructed as in Example 0.3. is called the Dirichlet insulator family.

Strong conjecture 0.8. The Dirichlet insulator family associated to a shortest geodesic in a closed hyperbolic 3-manifold, is noncoalescable.

Lemma 5.9. If a geodesic δ has tube radius $>(\log 3) / 2$, then its Dirichlet insulator family is noncoalescable.

Theorem 0.9. Let $f: M \rightarrow N$ be a homotopy equivalence, where M is a closed, connected, irreducible 3-manifold and N is a hyperbolic 3-manifold. If N possesses a geodesic δ with a noncoalescable insulator family, then f is homotopic to a homeomorphism.

Outline of the proof. Let $f: M \rightarrow N$ be a homotopy equivalence. M and N are covered by the same hyperbolic manifold X [G3]. In $\S 1$ we show that we can assume

Figure 0.1
that the homotopy equivalence lifts and extends to a mapping $\tilde{f}: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$, where $\mathbf{B}^{3}=\mathbf{H}^{3} \cup S_{\infty}^{2}$, so that $\tilde{f} \mid S_{\infty}^{2}=$ id. Furthermore the group actions on S_{∞}^{2} defined by $\pi_{1}(M)$ and $\pi_{1}(N)$ are identical. In $\S 2$ we show that if there exists a simple geodesic δ in N and a simple closed curve γ in M such that the \mathbf{B}^{3}-link Δ is equivalent to the \mathbf{B}^{3}-link Γ, then f is homotopic to a homeomorphism. Here Δ is the preimage of δ in \mathbf{H}^{3} extended to \mathbf{B}^{3} and Γ is defined similarly. These links are equivalent means that there exists a homeomorphism $k:\left(\mathbf{B}^{3}, \Gamma\right) \rightarrow\left(\mathbf{B}^{3}, \Delta\right)$ so that $k \mid S_{\infty}^{2}=\mathrm{id}$. To prove that equivalent links imply topological rigidity we show that f can be homotoped to a map which sends $N(\gamma)$ homeomorphically onto $N(\delta)$ and restricts to a homotopy equivalence between $M-\stackrel{\circ}{N}(\gamma)$ and $N-\stackrel{\circ}{N}(\delta)$. By Waldhausen [W], f is homotopic to a homeomorphism.

In $\S 3$ we establish technical lemmas about least area planes, discs and laminations in \mathbf{H}^{3}. In particular we show that to each smooth simple closed curve $\lambda_{i j}$ in S_{∞}^{2}, there exists a lamination $\sigma_{i j}$ by injectively immersed least area (with respect to the metric induced by M) planes in \mathbf{H}^{3}, with limit set $\lambda_{i j}$ such that $\sigma_{i j}$ lies in a fixed width hyperbolic regular neighborhood of the hyperbolic convex hull of $\lambda_{i j}$. Here $\left\{\lambda_{i j}\right\}$ is the ($\pi_{1}(N),\left\{\partial \delta_{i}\right\}$) and hence ($\left.\pi_{1}(M),\left\{\partial \delta_{i}\right\}\right)$ noncoalescable insulator family. Fix i. Let $H_{i j}$ be the \mathbf{H}^{3}-complementary region of $\sigma_{i j}$ containing the ends of δ_{i}. In $\S 4$ we show that $\bigcap H_{i j}$ contains a $\tilde{V}_{i}=\stackrel{\circ}{D}^{2} \times \mathbf{R}$ which projects to an open solid torus in M. (It is this step that requires the noncoalescable insulator hypothesis.) Define γ to be the core of this solid torus and γ_{i} the lift which lives in \tilde{V}_{i}. We show that the isotopy class of γ is independent of all choices, i.e. the metric on M and the choice of $\left\{\sigma_{i j}\right\}$ for a fixed metric. Let τ_{0} be the link in X which is the preimage of γ, so $\left\{\gamma_{i}\right\}$ is also the set of lifts of components of τ_{0} to \mathbf{H}^{3}. The Riemannian metric μ_{0} on X induced from M and the hyperbolic metric μ_{1} on X induced from $\cdot N$ are connected by a smooth path μ_{t} of metrics. These metrics lift to $\pi_{1}(X)$ equivariant metrics $\tilde{\mu}_{t}$ on \mathbf{H}^{3}, so the above construction applied to the $\left(\pi_{1}(X),\left\{\partial \delta_{i}\right\}\right)$ insulator family $\left\{\lambda_{i j}\right\}$ with respect to the $\tilde{\mu}_{t}$ metric yields a link
τ_{t} in X. Since the isotopy class of τ_{t} is independent of t, τ_{0} is isotopic to τ_{1}, the preimage of δ in X. We conclude that the \mathbf{B}^{3}-link Γ is equivalent to the \mathbf{B}^{3}-link Δ and so by $\S 2 f$ is homotopic to a homeomorphism.
Theorem 0.10. If N is a closed hyperbolic 3-manifold possessing a geodesic δ with a noncoalescable insulator family, and $f: N \rightarrow N$ is a homeomorphism homotopic to id, then f is isotopic to id.
Idea of the proof. Let ρ_{0} denote the hyperbolic metric on N. Let ρ_{1} be the pull back hyperbolic metric on N induced via f, which we can assume is a diffeomorphism. These metrics are connected by a family ρ_{t} of Riemannian metrics. As in the proof of Theorem 0.9 , to each ρ_{t} there is associated an oriented simple closed curve γ_{t} where $\gamma_{0}=\delta$ and $\gamma_{1}=f^{-1}(\delta)$ and that all of these γ_{t} 's are isotopic. Therefore f is isotopic to a map which fixes δ pointwise. A theorem of Siebenmann [BS] implies that f is isotopic to id.

Corollary 5.3. If N satisfies the insulator condition, then $\operatorname{Homeo}(N) / \mathrm{Homeo}_{0}(N)$ $=\operatorname{Out}\left(\pi_{1}(N)\right)=\operatorname{Isom}(N)$.

Section 5 contains the proofs of Theorem 0.1, Corollary 5.3 and some concluding results, remarks and conjectures.

1. Preliminary results and notation

From now on we will assume that all 3 -manifolds in this paper are connected, irreducible, and orientable. Recall that by Remark 0.2 i), we can assume that M is non-Haken and hence orientable.

Proposition 1.1. If $f: M \rightarrow N$ is a homotopy equivalence, where M is a closed 3 -manifold and N is a hyperbolic 3-manifold, then there exists a closed hyperbolic 3 -manifold X and regular covering maps $p_{1}: X \rightarrow M, q_{1}: X \rightarrow N$ such that $f \circ p_{1}$ is homotopic to q_{1}. A lift $\tilde{f}: \mathbf{H}^{3} \rightarrow \mathbf{H}^{3}$ extends to id : $S_{\infty}^{2} \rightarrow S_{\infty}^{2}$. Furthermore the action of $\pi_{1}(M)$ on \mathbf{H}^{3} extends to a Möbius action on S_{∞}^{2} which is identical to the action of $\pi_{1}(N)$ on S_{∞}^{2}.
Proof. By the Proof of Theorem 1.1 [G3], there exists a hyperbolic 3-manifold X and regular covering projections $p_{1}: X \rightarrow M, q_{1}: X \rightarrow N$ such that $f_{1}: X \rightarrow X$, a lift of f to X, is homotopic to a homeomorphism h. By replacing p_{1} by $p_{1} \circ h^{-1}$ and f_{1} by $f_{1} \circ h^{-1}$, we can assume that f_{1} is homotopic to id. Let $x \in X$. Fixing $m=p_{1}(x), n=q_{1}(x)$ and modifying f via a homotopy we can assume that $f(m)=$ n and the homotopy F_{1} of id to f_{1} is rel x.

Let $\pi: \mathbf{H}^{3} \rightarrow X$ be the universal covering projection. Let $p: \mathbf{H}^{3} \rightarrow M, q: \mathbf{H}^{3} \rightarrow$ N be the induced coverings. If $g \in \pi_{1}(M, m)$, then let g^{\prime} denote $f_{\#}(g) \in \pi_{1}(N, n)$. Fix $\bar{e} \in \pi^{-1}(x)$. Let $g \rightarrow \bar{g}$ denote the canonical 1-1 correspondence between $\pi_{1}(M, m)$ and points of $p^{-1}(m)$ such that $e \rightarrow \bar{e} ; g^{\prime} \rightarrow \bar{g}^{\prime}$ has the similar meaning. The distance between points $\bar{g}, \bar{g}^{\prime}$ of \mathbf{H}^{3} differs by a bounded amount, i.e. the diameter of F_{1} homotopy tracks. More generally the action of $\pi_{1}(M)$ on \bar{g} differs from the corresponding action of $\pi_{1}(N)$ on \bar{g}^{\prime} by this same amount. Since the action of $\pi_{1}(M)$ on \mathbf{H}^{3} is approximated by the action on the points corresponding to $\pi_{1}(M)$, it follows that the actions of $\pi_{1}(M), \pi_{1}(N)$ on S_{∞}^{2} are identical. Here are more details.

In what follows d_{ρ} (resp. d_{μ}) will denote distance with respect to the hyperbolic metric ρ (resp. the metric μ induced from M) between points in \mathbf{H}^{3}.

Claim. There exists $k<\infty$ such that if $g \in \pi_{1}(M, m)$ and $y \in \mathbf{H}^{3}$, then $d_{\rho}\left(g(y), f_{\#}(g)(y)\right) \leq k$.

Proof of the Claim. Let \tilde{F} denote the lift of F_{1} to \mathbf{H}^{3} and \tilde{f} the lift of f to \mathbf{H}^{3} such that $\tilde{F}(z, 0)=z$ and $\tilde{f}(z)=\tilde{F}(z, 1)$.

The compactness of X implies the following facts i)-iii) and the covering space theory implies iv)-v).
i) There exists $b_{0}=\sup \left\{\operatorname{diam}_{\rho}(\tilde{F}(z \times I)) \mid z \in \mathbf{H}^{3}\right\}$. So $z^{\prime}=\tilde{f}(z)$ implies $d_{\rho}\left(z, z^{\prime}\right) \leq b_{0}$.
ii) There exists b_{1} such that for each $y \in \mathbf{H}^{3}$ there exists $\bar{r} \in p^{-1}(m)$ such that $d_{\mu}(\bar{r}, y)<b_{1}$.
iii) There exists b_{2} such that $d_{\mu}\left(y_{0}, y_{1}\right)<b_{1}$ implies $d_{\rho}\left(y_{0}, y_{1}\right)<b_{2}$.
iv) If $g, r \in \pi_{1}(M)$, then $\tilde{f}(g(\bar{r}))=g^{\prime}\left(\bar{r}^{\prime}\right)$, so $d_{\rho}\left(g(\bar{r}), g^{\prime}\left(\bar{r}^{\prime}\right)\right) \leq b_{0}$. (Recall that $g(\bar{r})=\tilde{j}(1)$, where $j:[0,1] \rightarrow M,[j]=g * r \in \pi_{1}(M, m)$, and $\tilde{j}(0)=\bar{e}$. Since $\left[g^{\prime} * r^{\prime}\right]=\left[f_{\#}[g * r]\right]$, it is represented by $f \circ j$, so $g^{\prime}\left(\bar{r}^{\prime}\right)=\tilde{f}(\tilde{j}(1))$. Now apply i).)
v) The covering transformation associated to $g \in \pi_{1}(M, m)$ (resp. $g^{\prime} \in \pi_{1}(N, n)$) is an isometry in the μ (resp. ρ) metric.
If $y \in \mathbf{H}^{3}$, then $d_{\rho}\left(g(y), g^{\prime}(y)\right) \leq d_{\rho}(g(y), g(\bar{r}))+d_{\rho}\left(g(\bar{r}), g^{\prime}\left(\bar{r}^{\prime}\right)\right)+d_{\rho}\left(g^{\prime}\left(\bar{r}^{\prime}\right), g^{\prime}(y)\right)$ $\leq b_{2}+b_{0}+d_{\rho}\left(\bar{r}^{\prime}, y\right) \leq b_{2}+b_{0}+d_{\rho}\left(\bar{r}^{\prime}, \bar{r}\right)+d_{\rho}(\bar{r}, y) \leq b_{0}+b_{2}+b_{0}+b_{2}$.

Since the actions of $\pi_{1}(M), \pi_{1}(N)$ on \mathbf{H}^{3} differ by a hyperbolically bounded amount, the action of $\pi_{1}(M, m)$ extends to the same action on S_{∞}^{2} as that of $\pi_{1}(N, n)$. I.e., for each $g \in \pi_{1}(M)$ and $y \in S_{\infty}^{2}, g(y)=g^{\prime}(y)$. Also $b_{0}<\infty$ implies that id $=\tilde{f}: S_{\infty}^{2} \rightarrow S_{\infty}^{2}$.

Notation 1.2. $M=\mathbf{H}^{3} / G, N=\mathbf{H}^{3} / H$, where $\pi_{1}(M)=G \cong H=\pi_{1}(N), G \subset$ Homeo $_{+}\left(\mathbf{B}^{3}\right), H \subset$ Isom $_{+}\left(\mathbf{H}^{3}\right) \subset$ Homeo $_{+}\left(\mathbf{B}^{3}\right), G\left|S_{\infty}^{2}=H\right| S_{\infty}^{2}, G$ and H are naturally identified via the π_{1}-isomorphism $\phi=f_{\#}$. The space X and the maps p, q, p_{1}, q_{1}, π will be as in Proposition $1.1 ; \mu$ (resp. ρ) will denote the metric induced on X or \mathbf{H}^{3} from M (resp. N). In particular ρ will always represent the hyperbolic metric. We abuse notation by letting H and G simultaneously denote the actions on $\mathbf{H}^{3}, \mathbf{B}^{3}$ or S_{∞}^{2}.

Unless otherwise indicated we will assume that all maps on 3-manifolds without boundary are smooth.

$N(E)$ denotes regular neighborhood of E. If $E \subset Y$, then $N(k, E)=\{y \in Y \mid$ $d(y, E) \leq k\}$. Similarly if $x \in Y$, then $B(k, x)=\{y \in Y \mid d(y, x) \leq k\}$. We will use notations such as $N_{\rho}(k, E), d_{\mu}(x, y)$ or r-least area when the metric is not clear from the context. $|E|$ denotes the number of components of E, and $\stackrel{\circ}{E}$ denotes the interior of E.

2. A CRITERION FOR HOMEOMORPHISM

Proposition 2.1. Let $f: M \rightarrow N$ be a homotopy equivalence between the closed hyperbolic 3-manifold N and the irreducible 3-manifold M. If there exists a simple closed curve $\gamma \subset M$, a geodesic $\delta \subset N$ and a homeomorphism $k:\left(\mathbf{B}^{3}, p^{-1}(\gamma)\right) \rightarrow$ $\left(\mathbf{B}^{3}, q^{-1}(\delta)\right)$ such that $k \mid \partial \mathbf{B}^{3}=\mathrm{id}$, then f is homotopic to a homeomorphism.

Definition 2.2. A \mathbf{B}^{3}-link is a collection $\left\{\alpha_{i}\right\}$ of properly embedded arcs in \mathbf{B}^{3} whose restriction to \mathbf{H}^{3} is locally finite. Two \mathbf{B}^{3}-links are said to be equivalent if there exists a homeomorphism $k: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ taking one link to the other such that $k \mid S_{\infty}^{2}=\mathrm{id}$.
Remarks. i) Each component of $p^{-1}(\gamma)$ extends to a properly embedded arc γ_{i} in \mathbf{B}^{3}. We will abuse notation by also referring to γ_{i} as an arc in \mathbf{H}^{3}. Proposition 2.1 says that if the \mathbf{B}^{3}-link $\left\{p^{-1}(\gamma)\right\}$ is equivalent to the link $\left\{q^{-1}(\delta)\right\}$, then f is homotopic to a homeomorphism.
ii) The \mathbf{H}^{3}-link determined by δ is the trivial link on infinitely many components. Thus Proposition 2.1 crucially depends on the condition $k \mid \partial \mathbf{B}^{3}=$ id.

Notation 2.3. Let $\Gamma=p^{-1}(\gamma)$ with components $\left\{\gamma_{i}\right\}, \Delta=q^{-1}(\delta)$ with components $\left\{\delta_{i}\right\}, V=p^{-1}(N(\gamma))$ with components $\left\{V_{i}\right\}=\left\{N\left(\gamma_{i}\right)\right\}, W=q^{-1}(N(\delta))$ with components $\left\{W_{i}\right\}=\left\{N\left(\delta_{i}\right)\right\}$. Indices are chosen so that $i=j$ if and only if $\partial \gamma_{i}=\partial \delta_{i}$. Recall that if $g \in G$, then the associated map $g: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ has two fixed points, one attracting and one repelling. Thus the correspondence of γ_{i} to δ_{i} is determined by ϕ.

Idea of the proof. We show that f is homotopic to a map $h:(M, M-\stackrel{\circ}{N}(\gamma), N(\gamma))$ $\rightarrow(N, N-\stackrel{\circ}{N}(\delta), N(\delta))$ which restricts to a homeomorphism on $N(\gamma)$ and a π_{1-} injective map on $M-\stackrel{\circ}{N}(\gamma)$. The map f is homotopic to a homeomorphism, since [W] implies that h is homotopic to a homeomorphism rel $N(\gamma)$. Given a handle structure on M which contains $N(\gamma)$ as a 1-handle we use k to define h so that the other handles miss $\stackrel{\circ}{N}(\delta)$, approximately by considering $q \circ k \circ p^{-1}$ restricted to a handle. There is never a problem with the 1-handles. The difficulty is that the image of the 2 -handles might cross δ, e.g. consider the case that δ, γ are distinct knots in $S^{3}=M=N$. In our setting this difficulty vanishes if for each $g \in G, \phi(g) \circ k \circ g^{-1} \circ k^{-1} \mid \mathbf{H}^{3}-\stackrel{\circ}{N}(\Delta)$ is homotopic to id rel $\partial N(\Delta)$. We show that k can be chosen so that this holds.

The following result follows by the usual isotopy/uniqueness of regular neighborhood arguments.

Lemma 2.4. Under the hypothesis of Proposition 2.1, $k: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ can be chosen so that for each $g \in G, k \circ g\left|V \cup S_{\infty}^{2}=\phi(g) \circ k\right| V \cup S_{\infty}^{2}$.

Figure 2.1

Remark 2.5. Replace the covering projection $p: \mathbf{H}^{3} \rightarrow M$ by $p \circ k^{-1}: \mathbf{H}^{3} \rightarrow M$. The effect on covering transformations is to replace each $g \in G$ by $k \circ g \circ k^{-1}$. We now assume that $V=W, k=\mathrm{id}$ and $g\left|V \cup S_{\infty}^{2}=\phi(g)\right| W \cup S_{\infty}^{2}$.

Definition 2.6. (Interesting self-maps of \mathbf{B}^{3} fixing $\delta_{0} \cup S_{\infty}^{2}$ pointwise.) Parametrize \mathbf{H}^{3} by $(r, \theta, s), r \geq 0, \theta \in S^{1}, s \in \mathbf{R}$. Here δ_{0} consists of those points with parameters $\{(0,0, s) \mid s \in \mathbf{R}\}$, the s parameter denoting parametrization by arc length. The plane P_{t} orthogonal to δ_{0} at t has $s \equiv t$ and is parametrized by polar coordinates via the (r, θ) coordinates. Finally the parametrization of \mathbf{H}^{3} is chosen so that the (r, θ) parameters are preserved under pure translation along δ_{0}. Call $0 \in \delta_{0}$, the point with s-parameter equal to 0 . Assume that $W_{0}=\{(r, \theta, s) \mid r \leq c\}$. Let $\alpha, \beta:[0, \infty] \rightarrow[0,1]$ be smooth maps such that $\alpha|[0, c]=1, \alpha|[2 c, \infty]=0$, $\beta \mid[0,2 c]=0$, and $\beta \mid[3 c, \infty]=1$.

For $a \neq 0$, define $T_{a}: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ by $T_{a} \mid S_{\infty}^{2}=\mathrm{id}, T_{a}(r, \theta, s)=(r, \theta+\alpha(r) 2 \pi s / a, s)$. Define $R: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ by $R \mid S_{\infty}^{2}=\mathrm{id}$, and $R(r, \theta, s)=(r, \theta+\beta(r) 2 \pi, s)$.

Define a twist to be a map conjugate to T_{a}, and a roll a map conjugate to R. In particular a twist or roll about say W_{j}, should be viewed as being supported very close to W_{j}. See Figure 2.1. Figure 2.2 suggests the twist-image of a standardly embedded disc in $\mathbf{B}^{3}-\stackrel{\circ}{W}_{0}$.

Lemma 2.7. a) If $h: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ is such that $h \mid W_{0} \cup S_{\infty}^{2}=\mathrm{id}$, then $h \simeq R^{n}$ rel $W_{0} \cup S_{\infty}^{2}$ for a unique integer n.
b) If $W^{\prime}=\left\{W_{1}, \ldots, W_{r}\right\}$ is a finite subset of W, and $h: \mathbf{B}^{3} \rightarrow \mathbf{B}^{3}$ a map such that $h \mid S_{\infty}^{2} \cup W^{\prime}=\mathrm{id}$, then h is homotopic rel $S_{\infty}^{2} \cup W^{\prime}$ to a composit of rollings about elements of W^{\prime}.
c) If $h:\left(\mathbf{B}^{3}, W_{0}\right) \rightarrow\left(\mathbf{B}^{3}, W_{0}\right)$ is a homeomorphism, then $h \circ R^{n} \simeq R^{n} \circ h$ rel $W_{0} \cup S_{\infty}^{2}$.
d) If h is a hyperbolic isometry fixing W_{0} with real length $a \neq 0$, then $T_{a}^{-n} \circ$ $h^{-1} \circ T_{a}^{n} \circ h \simeq R^{-n} r e l W_{0} \cup S_{\infty}^{2}$.

Proof. a) The value of n is determined by the class $h(\{(r, 0,0) \mid r \in \mathbf{R}\}) \in$ $\pi_{1}\left(\mathbf{B}^{3}, W_{0} \cup S_{\infty}^{2}\right)$. For the correct n, the straight line homotopy of $\tilde{R}^{-n} \circ \tilde{h}$ to

Figure 2.2. σ bounds an embedded disc in $\mathbf{B}^{3}-\stackrel{\circ}{W}$
id in the appropriately parametrized universal cover of $\mathbf{B}^{3}-\stackrel{\circ}{W}_{0}$ projects to a homotopy of $R^{-n} \circ h$ to id.
b) Let $\left\{A_{k}\right\}$ be a set of annuli properly embedded in $\mathbf{B}^{3}-\stackrel{\circ}{W}^{\prime}$ which cut off the ends of $\left\{W_{i}\right\}$. There are two A_{k} 's for each W_{i}. If \mathbf{B}^{3} is the unit ball in \mathbf{R}^{3}, and e is an end of W_{i}, then the A_{k} associated to e is the intersection of a very small Euclidean sphere centered at e, with $\mathbf{B}^{3}-\stackrel{\circ}{W}_{i}$. After a preliminary homotopy we can assume that h fixes each A_{k} setwise. After precomposing h by rollings the resulting function also called h can be homotoped to fix the A_{k} 's pointwise. Each A_{k} together with a meridian disc of W^{\prime} cuts off a halfball B_{i} containing no other A_{j} 's. Homotop $h \mid B_{i}$ to id rel $\partial B_{i} \cup W_{i}$. As in the first paragrpah, this homotopy can be expressed as the projection of a straight line homotopy assoicated to a lift of h to an appropriately parametrized covering of $\stackrel{\circ}{B}-W_{i}$. The manifold $H=\mathbf{B}^{3}-\left(\bigcup_{i} \stackrel{\circ}{B}_{i} \cup \stackrel{\circ}{W}^{\prime}\right)$ is a handlebody, for a finite set of hyperbolic geodesics in \mathbf{B}^{3} are unlinked. Since $h|\partial H=\mathrm{id}, h| H$ is isotopic to id rel ∂H, e.g. by [W].
c) The action of $R^{n} \circ h \circ R^{-n} \circ h^{-1}$ on $\pi_{1}\left(\mathbf{B}^{3}, W_{0} \cup S_{\infty}^{2}\right)$ is trivial.
d)

$$
\begin{aligned}
T_{a}^{-n} \circ h^{-1} \circ T_{a}^{n} \circ h(r, 0,0) & =T_{a}^{-n} \circ h^{-1} \circ T_{a}^{n}(r, b, a) \\
& =T_{a}^{-n} \circ h^{-1}(r, b+n \alpha(r) 2 \pi a / a, a) \\
& =T_{a}^{-n}(r, n \alpha(r) 2 \pi, 0)=(r, n \alpha(r) 2 \pi, 0) .
\end{aligned}
$$

Similarly $T_{a}^{-n} \circ h^{-1} \circ T_{a}^{n} \circ h \mid W_{0}=$ id. Now apply a).
Proposition 2.8. If $f:\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}, W\right) \rightarrow\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}, W\right)$ is a map such that $f \mid S_{\infty}^{2} \cup W=\mathrm{id}$, and for each $i, f:\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}_{i}, W_{i}\right) \rightarrow\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}_{i}, W_{i}\right)$ is homotopic to id rel $W_{i} \cup S_{\infty}^{2}$, then f is homotopic to id rel $W \cup S_{\infty}^{2}$.

Proof. If W^{\prime} is a finite subset of components of W, then $f:\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}^{\prime}, W^{\prime}\right) \rightarrow$ $\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}^{\prime}, W^{\prime}\right)$ is homctopic to id rel W^{\prime}, for by Lemma 2.7 b) f is homotopic
to a composite of n_{i}-rolls supported near components W_{i} of W^{\prime}. By hypothesis each $n_{i}=0$.

Next we show that if α is a properly embedded closed interval in $\mathbf{H}^{3}-\stackrel{\circ}{W}$, then $f \mid \alpha \simeq$ id in $\mathbf{B}^{3}-\stackrel{\circ}{W}$, rel $W \cup S_{\infty}^{2}$. Let $B \subset \mathbf{H}^{3}$ be a round ball centered at 0, transverse to Δ containing α and $f(\alpha)$. Let W^{\prime} be the components of W whose cores hit B. By viewing W as a thin hyperbolic neighborhood of Δ, we can assume that W^{\prime} is exactly the set of components of W which hit B, and W^{\prime} is transverse to B with each component hitting ∂B ir meridional 2-discs. Now $\left(\mathbf{H}^{3}-\stackrel{\circ}{B},\left(\mathbf{H}^{3}-\stackrel{\circ}{B}\right) \cap W^{\prime}\right)$ is homeomorphic to $\left(S^{2} \times[0,1), J\right)$, where J is a neighborhood of vertical arcs in $S^{2} \times[0,1)$, and under this identification $S^{2} \times 0=\partial B$. By the first paragraph $f \mid \alpha \simeq$ id $\mid \alpha$ in $\mathbf{B}^{3}-\stackrel{\circ}{W^{\prime}}$ rel $\partial \alpha$. By composing this homotopy with the retraction of \mathbf{H}^{3} onto B, which retracts each $[0,1)$ fibre to 0 , we see that $f|\alpha \simeq \mathrm{id}| \alpha$ rel $\partial \alpha$ in $\mathbf{B}^{3}-\stackrel{\circ}{W}$.

Now consider any handle decomposition of $\mathbf{H}^{3}-\stackrel{\circ}{W}$ by handles of bounded hyperbolic diameter. The previous paragraph really showed that if h is any 1 handle, then $f \mid h$ is homotopic to id rel ∂h (i.e. the attaching region to W) via a homotopy supported in $B \cap \mathbf{H}^{3}-\stackrel{\circ}{W}$, where B is any closed smooth convex region of \mathbf{H}^{3} containing both h and $f(h)$. Thus f can be homotoped to f_{1}, where $f_{1} \mid(W \cup 1$-handles $)=$ id via a homotopy restricting the trace of each 1-handle h to a neighborhood of the convex hull of $h \cup f(h)$. In a similar way homotope f_{1} to id on the 2 - and 3 -handles.

Remark. In what follows we will be only using the homotopy described in the first two paragraphs of the proof of Proposition 2.8.

Lemma 2.9. k can be chosen so that for every $\gamma_{i} \in \Gamma$ and every $g \in G$,

$$
\begin{equation*}
k \circ g \simeq \phi(g) \circ k \operatorname{rel} V_{i} \cup S_{\infty}^{2} . \tag{*}
\end{equation*}
$$

Proof. Let $g_{0} \in G$ be a generator of $\operatorname{Stab}\left(\gamma_{0}\right)$. Suppose that $\operatorname{Re}\left(\operatorname{length}\left(\gamma_{0}\right)\right)=a$. We first show how to adjust k so that $(*)$ holds for $g=g_{0}$ and $V_{i}=V_{0}$. We let g^{\prime} denote $\phi(g)$. By Lemma $2.7 g_{0} \simeq g_{0}^{\prime} \circ R^{n}$. Replace k (which is id, by Remark 2.5) by T_{a}^{n} near V_{0} and conjugates of T_{a}^{n} near each V_{i} (so that Lemma 2.4 still holds). With respect to this new $k, k^{-1} \circ g^{\prime-1} \circ k \circ g \simeq T_{a}^{-n} \circ g_{0}^{\prime-1} \circ T_{a}^{n} \circ g_{0} \simeq$ $T_{a}^{-n} \circ g_{0}^{\prime-1} \circ T_{a}^{n} \circ g_{0}^{\prime} \circ R^{n} \simeq R^{-n} \circ R^{n}=$ id. All homotopies taken rel $V_{0} \cup S_{\infty}^{2}$.

We show that $(*)$ holds for $g \in \operatorname{Stab}\left(\gamma_{i}\right)$ and V_{i}. If $g\left(\gamma_{i}\right)=\gamma_{i}$, then $g=g_{i}^{-1} \circ g_{0}^{n} \circ g_{i}$ for some g_{i} taking γ_{i} to γ_{0}. For some $m, k \simeq g_{i}^{\prime-1} \circ k \circ g_{i} \circ R^{m}$ rel $V_{i} \cup S_{\infty}^{2}$, where R^{m} is an m-roll about V_{i}. Therefore $g^{\prime} \circ k \simeq g^{\prime} \circ g_{i}^{\prime-1} \circ k \circ g_{i} \circ R^{m}=g_{i}^{\prime-1} \circ g_{0}^{\prime \prime} \circ k \circ g_{i} \circ R^{m} \simeq$ $g_{i}^{\prime-1} \circ k \circ g_{0}^{n} \circ g_{i} \circ R^{m}=g_{i}^{\prime-1} \circ k \circ g_{i} \circ g \circ R^{m} \simeq k \circ R^{-m} \circ g \circ R^{m} \simeq k \circ g$ rel $V_{i} \cup S_{\infty}^{2}$.

For each i, pick $g_{i} \in G$ such that $g_{i}\left(\gamma_{i}\right)=\gamma_{0}$. Let n_{i} be such that $g_{i}^{\prime-1} \circ k \circ g_{i} \simeq$ $R^{n_{i}} \circ k$ rel $V_{i} \cup S_{\infty}^{2}$. Again $R^{n_{i}}$ denotes an n_{i}-roll about V_{i}. The value n_{i} is a function of i rather than g_{i}, for if $g\left(\gamma_{i}\right)=\gamma_{0}$, then $g=g_{0}^{n} \circ g_{i}$ and $g^{\prime-1} \circ k \circ g=$ $g_{i}^{\prime-1} \circ g_{0}^{\prime-n} \circ k \circ g_{0}^{n} \circ g_{i} \simeq g_{i}^{\prime-1} \circ k \circ g_{i} \simeq R^{n_{i}} \circ k$. For each i, replace k near V_{i} by $R^{n_{i}} \circ k$. By Lemma 2.7 c), this change does not effect the validity of (*) for g, V_{i} where $g \in^{\prime} \operatorname{Stab}\left(V_{i}\right)$. However, (*) now holds for g, V_{i} where $g\left(V_{i}\right)=V_{0}$ or $g\left(V_{0}\right)=V_{i}$. This in turn implies that (*) holds in general.

Lemma 2.10. Let $r_{g}=\phi(g) \circ k \circ g^{-1} \circ k^{-1}\left(\right.$ resp. $\left.l_{g}=g \circ k^{-1} \circ \phi\left(g^{-1}\right) \circ k\right)$. If α is a properly embedded closed interval in $\mathbf{H}^{3}-\stackrel{\circ}{W}\left(\right.$ resp. $\left.\mathbf{H}^{3}-\stackrel{\circ}{V}\right)$, then $r_{g} \mid \alpha \simeq \mathrm{id}$ in $\mathbf{H}^{3}-\stackrel{\circ}{W}$, rel ∂W (resp. $l_{g} \mid \alpha \simeq$ id in $\mathbf{H}^{3}-\stackrel{\circ}{V}$, rel $\left.\partial V\right)$.

Proof of Lemma 2.10. By Lemma 2.7 b), for each i, r_{g} is homotopic rel $W_{i} \cup S_{\infty}^{2}$ to an n_{i}-roll supported near W_{i}. By Lemma $2.9 n_{i}=0$. Now apply Proposition 2.8. The argument for l_{g} is similar.

Proof of Proposition 2.1. We construct maps $f:(M, M-\stackrel{\circ}{N}(\gamma), N(\gamma)) \rightarrow$ $(N, N-\stackrel{\circ}{N}(\delta), N(\delta)), g:(N, N-\stackrel{\circ}{N}(\delta), N(\delta)) \rightarrow(M, M-\stackrel{\circ}{N}(\gamma), N(\gamma))$ such that $g \circ f \mid M^{1}=$ id. Here M has a handlebody structure with a unique 0 -handle and M^{1} is the union of the 0 - and 1-handles. Also $N(\gamma) \subset M$ is the union of the 0 -handle and a single 1 -handle. It will then follow that degree- $f=1, f \mid N(\gamma)$ is a homeomorphism onto $N(\delta)$ and $(g \circ f)_{\#}: \pi_{1}(M-\stackrel{\circ}{N}(\gamma)) \rightarrow \pi_{1}(M-\stackrel{\circ}{N}(\gamma))=$ id and hence $f: M-\stackrel{\circ}{N}(\gamma) \rightarrow N-\stackrel{\circ}{N}(\delta)$ is π_{1}-injective and restricts to a homeomorphism on $\partial N(\gamma)$. Waldhausen [W] implies that $f \mid M-\stackrel{\circ}{N}(\gamma)$ is homotopic to a homeomorphism rel boundary and hence f is homotopic to a homeomorphism.

The map k induces a homeomorphism $f: N(\gamma) \rightarrow N(\delta)$. We extend this map to M as follows. By restricting the size of V, we can assume that $k \circ g \mid N(V)=$ $\phi(g) \circ k \mid N(V)$, where $N(V)$ is an \mathbf{H}^{3} regular neighborhood of V. Give M a handlebody decomposition with a unique 0 -handle A and 1-handles $\left\{B_{0}, \ldots, B_{r}\right\}$ such that $A \cup B_{0}=N(\gamma)$. If $i>0$, let \tilde{B}_{i} be a lift of B_{i} to \mathbf{H}^{3} and define $f \mid B_{i}=q \circ k \circ p_{i}$, where $p_{i}=p^{-1}$ with the range restricted to \tilde{B}_{i}. By perturbing the handle structure slightly we can assume that $f \mid M^{1}$ is an embedding. Let C_{j} be a 2-handle, \tilde{C}_{j} any lift to \mathbf{H}^{3}. Define $f_{j}=q \circ k \circ p_{j}$, where $p_{j}: C_{j} \rightarrow \tilde{C}_{j}$ is given by p^{-1}. Let $c_{j}=C_{j} \cap M^{1}$. This annulus is a union of solid squares which alternately lie in 0 and 1-handles. By Lemma 2.4 if s is a square of c_{j} lying in A or B_{0}, then $f_{j}|s=f| s$, however that conclusion may be false for squares in $B_{i}, i>0$. See Figure 2.3. To define the desired extension of f to C_{j}, i.e. so that $f\left(C_{j}\right) \subset N-\stackrel{\circ}{N}(\delta)$, it suffices to show that for each square $s, f\left|s \simeq f_{j}\right| s$ rel $s \cap A$ via a homotopy in $\mathbf{H}^{3}-\stackrel{\circ}{W} . s=\alpha \times I$ where α is an embedded path in B_{i} with endpoints in A. α has two lifts, α_{i} determined by \tilde{B}_{i} and α_{j} determined by \tilde{C}_{j}. For some $g \in G, \alpha_{j}=g\left(\alpha_{i}\right)$. By Lemma 2.10 it follows that when restricted to α, $f_{j}=q \circ k \circ p_{j} \simeq q \circ r(g) \circ k \circ p_{j}=q \circ \phi(g) \circ k \circ g^{-1} \circ k^{-1} \circ k \circ p_{j}=q \circ \phi(g) \circ k \circ p_{i}=$ $q \circ k \circ p_{i}=f_{i}$ rel $\partial \alpha$.

The map f extends across the 3 -handle of M since $\pi_{2}(N-\stackrel{\circ}{N}(\delta))=1$. Construct a handle decomposition of N with a single 0 -handle E and 1-handles $\left\{F_{0}, \ldots, F_{s}\right\}$ such that $E=f(A)$ and for $i \leq r, F_{i}=f\left(B_{i}\right)$. Construct $g:(N, N-\stackrel{\circ}{N}(\delta), N(\delta)) \rightarrow$ $(M, M-\stackrel{\circ}{N}(\gamma), N(\gamma))$ in a manner similar to the construction of f, taking care to use the lifts $k\left(\tilde{B}_{i}\right)$ for $F_{i}, i \leq r$. By construction $g \circ f \mid M^{1}=\mathrm{id}$.

The methods of this section lead to an elementary proof of the following Proposition 2.11, an unpublished circa 1981 theorem of Siebenmann [BS] communicated to the author by Francis Bonahon. Siebenmann's proof employed Thurston's geometrization theorem, [Th], Mostow's rigidity theorem [Mo], Waldhausen's isotopy

Figure 2.3
theorem [W] and the following theorem of Neumann [Ne]: id is the only periodic homeomorphism of \mathbf{B}^{3} which fixes S^{2} pointwise. Here is the idea. $N-\delta$ has a hyperbolic structure [Th], hence $f \mid N-\delta$ is homotopic [Mo], hence isotopic [W] to an isometry, which is necessarily periodic. A lift \tilde{f} extends to a periodic map of B^{3} pointwise fixing S_{∞}^{2}, so $f=\mathrm{id}$ by [Ne].
Proposition 2.11. If $f: N \rightarrow N$ is a homeomorphism homotopic to id and $f \mid \delta=\mathrm{id}$, where N is a closed hyperbolic 3-manifold and δ is a simple closed geodesic in N, then f is isotopic to id.

Proof. After a preliminary isotopy we can assume that f is smooth by [Mu], [Ki]. We will show that either N is Haken or f is isotopic to a map g such that $g \mid N(\delta)=$ id and $g \mid N-\stackrel{\circ}{N}(\delta)$ is homotopic to id rel $\partial N(\delta)$. In either case f is isotopic to id by [W].

We can assume that either N is Haken or $f \mid N(\delta)=\mathrm{id}$. In fact, a standard argument shows that $f \mid N(\delta)$ is :sotopic to Dehn twists about the meridian of $N(\delta)$. For homological reasons there exists an essential simple closed curve $\alpha \subset \partial N(\delta)$, unique up to isotopy, such that some power is homologically trivial in $N-\stackrel{\circ}{N}(\delta)$. Therefore, $f \mid N(\delta)$ has nontrivial Dehn twisting only if α is a meridian, which implies that $H_{2}(N) \neq 0$, which implies that N is Haken.

Let $W=\bigcup W_{i}=q^{-1}(N(\delta))$. Since f fixes $N(\delta)$ pointwise and f is homotopic to id, there exists a lift \tilde{f} such that $\tilde{f} \mid W=$ id. By applying Lemma 2.7 a) and isotoping f to achieve a rolling of $N(\delta)$, we can assume that for each i, \tilde{f} : $\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}_{i}, W_{i}\right) \rightarrow\left(\mathbf{B}^{3}, \mathbf{B}^{3}-\stackrel{\circ}{W}_{i}, W_{i}\right)$ is homotopic to id rel $W_{i} \cup S_{\infty}^{2}$. Construct a relative handle decomposition of $N-\stackrel{\circ}{N}(\delta)$. Let h be a 1-handle and \tilde{h} a lift to \mathbf{H}^{3}. By Proposition $2.8 \tilde{f} \mid \tilde{h}$ is homotopic to id rel $\tilde{h} \cap W$, via a homotopy which does not cross W. Project this homotopy into N to obtain a homotopy of $f \mid h$ to id $\mid h$ which does not cross $N(\delta)$. Construct a similar homotopy on each 1-handle. The vanishing of π_{2}, π_{3} on $N-\stackrel{\circ}{N}(\delta)$ allows us to extend the homotopy over the 2and 3-handles. Therefore $f \mid N-\stackrel{\circ}{N}(\delta) \simeq$ id rel $\partial N(\delta)$. By [W] f is isotopic to id rel $N(\delta)$.

3. Minimal surface lemmas

The main results of this section, Propositions 3.9 and 3.10, assert that given a Riemannian metric r on \mathbf{H}^{3} arising from the closed hyperbolic 3-manifold X and a simple closed curve λ in S_{∞}^{2}, there exists a lamination σ by r-least area planes in \mathbf{H}^{3} which spans λ. A sequence of such laminations, with underlying metrics $s_{t} \rightarrow s$, converges to a spanning lamination by s-least area planes.

In the setting r is the hyperbolic metric, Anderson [A] showed " λ bounds a least area properly embedded plane". Our σ will be the limit of a sequence of compact r-least area discs in \mathbf{H}^{3} whose boundaries approach λ. Unlike [A] the restriction of our sequence to a fixed compact region of \mathbf{H}^{3} may not have uniformly bounded area. As a consequence the leaves of our laminations may not be properly embedded. See Conjecture 3.12.

All the background needed to read this section is contained in pp. 89-99 of Joel Hass' and Peter Scott's sharp and to the point paper [HS]. Our arguments rely on the foundational results of [Mor], [MSY] and [S].

Definition 3.1. Let $\rho, p, q, M, X, \mathbf{B}^{3}, S_{\infty}^{2}$, etc. be as in Notation 1.2. If $E \subset \mathbf{B}^{3}$, then $C(E)$ denotes its hyperbolic convex hull. We abuse notation by letting a Riemannian metric on M or X also denote the induced metric on X or \mathbf{H}^{3}. An immersed disc with boundary γ is a least area disc if it is least area among all immersed discs with boundary γ. An injectively immersed plane is a least area plane if each compact subdisc is a least area disc.

A codimension- k lamination σ in the n-manifold Y is a codimension- k foliated closed subset of Y, i.e. Y is covered by charts of the form $\mathbf{R}^{n-k} \times \mathbf{R}^{k}$ and $\sigma \mid$ $\mathbf{R}^{n-k} \times \mathbf{R}^{k}$ is the product lamination on $\mathbf{R}^{n-k} \times C$, where C a closed subset of \mathbf{R}^{k}. Here and later we abuse notation by letting σ also denote the underlying space of its lamination, i.e. the points of Y which lie in leaves of σ. Laminations in this paper will be codimension- 1 in manifolds of dimension 2 or 3 .

A complementary region J is a component of $Y-\sigma$. Given a Riemannian metric on Y, J has an induced path metric, the distance between two points being the infimum of lengths of paths in J connecting them. A closed complementary region is the metric completion of a complementary region with the induced path metric. As a manifold with boundary, a closed complementary region is independent of metric.

Definition 3.2. The sequence $\left\{S_{i}\right\}$ of embedded surfaces or laminations in a Riemannian manifold Y converges to the lamination σ if
ia) $\sigma=\left\{x=\operatorname{Lim}_{i \rightarrow \infty} x_{i} \mid x_{i} \in S_{i}\right.$ and $\left\{x_{i}\right\}$ a convergent sequence in $\left.Y\right\}$;
ib) $\sigma=\left\{x=\operatorname{Lim}_{n_{i} \rightarrow \infty} x_{n_{i}} \mid\left\{n_{i}\right\}\right.$ an increasing sequence in $\mathbb{N}, x_{n_{i}} \in S_{n_{i}}$ and $\left\{x_{n_{i}}\right\}$ a convergent sequence in $\left.Y\right\} \stackrel{\text { def }}{=} \operatorname{Lim}\left\{S_{i}\right\}$.
ii) Given $x,\left\{x_{i}\right\}$ as above, there exist embeddings $f_{i}: D^{2} \rightarrow L_{x_{i}}$ which converge in the C^{∞}-topology to a smooth embedding $f: D^{2} \rightarrow L_{x}$, where $x_{i} \in f_{i}\left(\stackrel{\circ}{D}^{2}\right), L_{x_{i}}$ is the leaf of S_{i} through x_{i}, and L_{x} is the leaf of σ through x, and $x \in f\left(\stackrel{\circ}{D}^{2}\right)$.

The following result is more or less well known to experts.
Lemma 3.3 (convergence of least area discs). i) Let r be a Riemanninan metric on \mathbf{H}^{3} which is the lift of a metric on a closed hyperbolic manifold X. If $\left\{S_{i}\right\}$ is a sequence of embedded least area discs in \mathbf{H}^{3} with the r-metric, where $\partial S_{i} \rightarrow \infty$, then after passing to a subsequence $\left\{S_{i}\right\}$ converges to a (possibly empty) lamination by r-least area planes.
ii) Let r_{t} be a [0,1]-parameter family of Riemannian metrics on \mathbf{H}^{3} obtained by lifting a $[0,1]$-parameter family on a closed hyperbolic manifold X. If S_{i} is a sequence of embedded least area discs in \mathbf{H}^{3} with the $r_{t_{i}}$-metric, where $\partial S_{i} \rightarrow \infty$ and $\operatorname{Lim} t_{i}=t$, then after passing to a subsequence $\left\{S_{i}\right\}$ converges to a (possibly empty) lamination by r_{t}-least area planes.

Proof. We first give the proof of i).
Step 1. After passing to a subseqence $\operatorname{Lim}\left\{S_{i}\right\}=\left\{x=\operatorname{Lim}_{i \rightarrow \infty} x_{i} \mid x_{i} \in S_{i}\right.$ and $\left\{x_{i}\right\}$ a convergent sequence in $\left.\mathbf{H}^{3}\right\}=Z$, a closed subset of \mathbf{H}^{3}.

Proof of Step 1. For each j subdivide \mathbf{H}^{3} into a finite number of closed regions, such that the $j+1$ 'st subdivision subdivides the j 'th one and such that for each closed ball B in \mathbf{H}^{3}, the mesh of these subdivisions restricted to B converges to 0 . Choose a subsequence of $\left\{S_{i}\right\}$ so that if $i \geq j$ and S_{i} hits a region of the j 'th subdivision, then so does S_{k}, if $k>i$.

Step 2. Let $\left\{z_{j}\right\}$ be a countable dense subset of Z. There exists $\epsilon>0$ such that after passing to a subsequence of $\left\{S_{j}\right\}$ the following holds. For each i there exists a sequence of embedded discs $D_{i_{j}} \subset S_{j}$ which converges to a smoothly embedded least area disc D_{i} such that $z_{i} \in D_{i}$ and $\partial D_{i} \cap B_{r}\left(\epsilon, z_{i}\right)=\emptyset$.
Proof of Step 2. The compactness of X and Theorem 3 of [S] imply that there exist $n, \epsilon>0$ such that if $x \in \mathbf{H}^{3}$ and if S is an embedded r-least area compact disc such that $\partial S \cap B_{r}(n \epsilon, x)=\emptyset$, then after deleting isolated points $S \cap B_{r}(2 \epsilon, x)$ is a union of properly embedded discs of bounded second fundamental form. (Informally, Schoen's local theorem asserts that a least area surface restricted to a sufficiently small ball B does not bend very much provided that the boundary is sufficiently far from B. The bound on bending depends only on the local curvature tensor. Since
the r-metric on \mathbf{H}^{3} is induced from a closed manifold, we can make the above global statement.) By reducing the size of ϵ, if necessary, we can assume that all closed balls of r-radius $\alpha, \alpha<n \epsilon$, are B^{3} 's with strictly convex boundary. Fix i. For j sufficiently large let $D_{i_{j}}$ be a component of $S_{j} \cap B_{r}\left(2 \epsilon, z_{i}\right)$ such that $d\left(z_{i}, D_{i_{j}}\right) \rightarrow 0$. Since the $D_{i_{j}}$'s are r-least area, they have area bounded above by Sup $1 / 2\{$ Area $\left.\partial B_{r}(2 \epsilon, x) \mid x \in \mathbf{H}^{3}\right\}$. By Lemma $3.3[\mathrm{HS}]$ after passing to a subsequence and restricting to $B_{r}\left(\epsilon, z_{i}\right)$ the $D_{i_{j}}$'s converge (in the sense of Definition 3.2) to the desired D_{i}. Since this is true for each i, the usual diagonal subsequence argument completes the proof of Step 2.

Step 3. There exists a lamination σ with underlying space Z, such that each D_{i} is contained in a leaf. Furthermore $\left\{S_{i}\right\}$ converges to σ.

Proof of Step 3. By Step 1, i) of Definition 3.2 holds. By Step 2, for each $i, D_{i} \subset Z$. If $x \in \stackrel{\circ}{D}_{i} \cap \stackrel{\circ}{D}_{j}$, then D_{i} and D_{j} coincide in a neighborhood of x. Otherwise being minimal surfaces, D_{i} and D_{j} would cross transversely at some point close to x (e.g. Lemma $3.6[\mathrm{HS}]$), which would imply that S_{k} was not embedded for k sufficiently large. If $z \in Z$, then the argument of Step 2 shows that there exists a convergent sequence $\left\{D_{z_{i}}\right\} \rightarrow D_{z}$, where $D_{z_{i}}$ is a subdisc of some $D_{j}, z \in D_{z}$ and $\partial D_{z} \cap B_{r}(\epsilon, z)=\emptyset$. Again since the D_{i} 's pairwise either locally coincide or are disjoint, D_{z} is uniquely determined in an ϵ-neigborhood of z. Thus $Z=\bigcup_{z \in Z} D_{z}$. Using the D_{z} 's to define a topology on Z, it follows that connected components are leaves of a lamination σ with underlying space Z. The uniquenss of D_{z} in $B_{r}(\epsilon, z)$ implies that near z leaves of σ are graphs of functions over D_{z} and that $\left\{S_{i}\right\}$ converges to σ.

Since $\left\{S_{i}\right\}$ converges to σ, we obtain
Step 4. If $g: D \rightarrow L$ is an immersion of a disc into a leaf L of σ, then for all i sufficiently large there exists an immersion $g_{i}: D \rightarrow S_{i}$ such that $g_{i} \rightarrow g$ in the C^{∞} topology.

Step 5. Each leaf L of σ is a least area plane.
Proof of Step 5. Let τ be an essential simple closed curve in L and $A \subset L$ a thin (e.g. $<.5 \epsilon$) regular neighborhood of τ. Let $B \subset \mathbf{H}^{3}$ be a 3-ball transverse to $\bigcup S_{i}$ such that $A \subset \stackrel{\circ}{B}$. Let $g: D \rightarrow L$ be an isometric immersion of a disc such that $g(D)=A$ and $\operatorname{Area}(D)>\operatorname{Area}(\partial B)$. (Think of D as being a long thin rectangle.) By Step 4, for i sufficiently large, g is closely approximated by an isometric immersion of a 2-disc, i.e. $g_{i}: D_{i} \rightarrow S_{i}$ and $\operatorname{Area}\left(D_{i}\right)>\operatorname{Area}(\partial B)$. For i sufficiently large $g_{i}\left(D_{i}\right)$ is an annulus which closely approximates A. Otherwise $g_{i}\left(D_{i}\right)$ is an embedded disc which spirals around and closely approximates A. This contradicts the fact that if B is a ball and $\partial S_{i} \cap B=\emptyset$, then $\operatorname{Area}_{r}(P) \leq 1 / 2 \operatorname{Area}_{r}(\partial B)$, where P is a component of $S_{i} \cap B$. Thus for each sufficiently large i, there exists an embedded simple closed curve $\tau_{i} \subset S_{i}$ such that $\left\{\tau_{i}\right\}$ converges to τ. Each τ_{i} bounds a disc $E_{i} \subset S_{i}$ of uniformly bounded area. The sequence of discs $\left\{E_{i}\right\}$ converges to a disc in L bounded by τ via arguments similar to those of the proof of Step 3. Thus L is simply connected. L is not a sphere else for i sufficiently large each S_{i} would be a sphere. Since each embedded subdisc of L is the limit of least area discs by Step 4, each embedded subdisc of L is least area and hence L is a least area plane.

Proof of $i i$). The proof of ii) follows exactly as the proof of i). Perhaps only Step 2 requires some clarification. Again by $[\mathrm{S}]$, there exists an $\epsilon>0$ independent of x, such that if j is sufficiently large (so that t_{j} is very close to t and $\partial S_{j} \cap B_{r_{t}}(n \epsilon, x)=\emptyset$), then each component of $S_{j} \cap B_{r_{t}}(2 \epsilon, x)$ is a properly embedded disc of uniformly bounded second fundamental form. Similarly given $\delta>0$, then for j sufficiently large $\operatorname{Area}_{r_{t_{j}}}\left(D_{i_{j}}\right)$ is bounded above by $1 / 2 \operatorname{Area}_{r_{t}}\left(\partial\left(B_{r_{t}}\left(2 \epsilon, z_{i}\right)\right)\right)+\delta$ and hence the $D_{i_{j}}$'s can be parametrized to have uniformly bounded energy with respect to the r_{t}-metric. These are the facts needed to invoke the proof of Lemma 3.3 [HS].

Remark. The lemma could have been stated in more generality by allowing each S_{i} to be a finite union of pairwise disjoint least area discs such that $\partial S_{i} \rightarrow \infty$.
Definition 3.4. A lamination σ which is a limit as in Lemma 3.3 of a sequence of embedded least area discs $\left\{S_{j}\right\}$ (or more generally a lamination by finite unions of pairwise disjoint least area discs) such that $\partial S_{i} \rightarrow \infty$ will be called a D^{2}-limit lamination. The D^{2}-limit lamination σ spans the simple closed curve $\tau \subset S_{\infty}^{2}$, if there exists $e>0$ such that $\sigma \subset N_{\rho}(e, C(\tau))$ and the components of $S_{\infty}^{2}-\tau$ lie in different components of $\mathbf{B}^{3}-\sigma$. Recall that ρ denotes the hyperbolic metric.

The following standard result records all the other elementary least area surface facts needed in this section. Most of these observations were made either implicitly or explicitly in the proof of Lemma 3.3. For convenience we record several D^{2}-limit laminations facts too.

Lemma 3.5. Let X be a closed hyperbolic 3 -manifold. Let $r_{t}, t \in[0,1]$ be a family of metrics on \mathbf{H}^{3} induced from a 1-parameter family of Riemannian metrics on X.
i) For each $t \in[0,1]$, the r_{t}-area differs infinitesimally from the ρ-area by bounded factors $1 / c_{2}, c_{2}$, where $c_{2} \geq 1$ and c_{2} is independent of t.
ii) There exist constants c_{0}, c_{1} such that if P is a least area disc or plane in \mathbf{H}^{3} with the r_{t}-metric, $y \in P$ and $B=B_{\rho}\left(c_{0}, y\right) \subset \mathbf{H}^{3}$ is such that $B \cap \partial P=\emptyset$, then $\operatorname{Area}_{\rho}(P \cap B)>c_{1}$.
iii) If P is an r_{t}-least area disc, $y \in P$ and $d_{\rho}(y, \partial P)>3 c_{0}$, then $d_{\rho}(y, \partial P)<$ $3 c_{0} \operatorname{Area}_{\rho}(P) / c_{1}$.
iv) If σ is a D^{2}-limit lamination, then σ has no holonomy.
v) Let W be a smooth compact codimension-0 submanifold of \mathbf{H}^{3} transverse to the D^{2}-limit lamination σ. Then $\sigma \mid W$ is a finite union of product laminations. I.e. there exist finitely many pairwise disjoint submanifolds W_{i} of W of the form $F_{i} \times I$, where F_{i} is a compact surface, $\left(F_{i} \times I\right) \cap \partial W=\left(\partial F_{i}\right) \times I$ and $\sigma \mid F_{i} \times I$ is the product lamination $F_{i} \times C_{i}$, where $C_{i} \subset \stackrel{\circ}{I}$ is compact.

In particular the leaves of $\sigma \mid W$ have uniformly bounded area and the leaves of $\sigma \mid \partial W$ are simple closed curves of uniformly bounded length.
vi) Each leaf \tilde{L} of a D^{2}-limit lamination σ has an exhaustion by compact discs P_{i}, such that $\partial P_{i} \rightarrow \infty$. Furthermore if $\sigma=\operatorname{Lim}\left\{S_{j}\right\}$, then for each i, there exist least area discs $\left\{E_{i_{j}}\right\}$ converging to P_{i}, such that $E_{i_{j}} \subset S_{j}$.
vii) If, for $i=1,2, L_{i}$ is a leaf of the D^{2}-limit lamination σ_{i}, then no component of $L_{1} \cap L_{2}$ contains a simple closed curve.
viii) If, for $i=1,2, \sigma_{i}$ is a D^{2}-limit lamination spanning $\lambda_{i} \subset S_{\infty}^{2}$ and $\sigma_{1} \cap \sigma_{2} \neq$ \emptyset, then $\lambda_{1} \cap \lambda_{2} \neq \emptyset$.
ix) If σ is a codimension-1 lamination in the 3-manifold Y, then there exists a possibly empty, nowhere dense sublamination κ such that each closed complementary region of σ is a closed complementary region of κ.
x) If κ is a nowhere dense lamination in the 3-manifold Y and W is a compact codimension-0 submanifold of Y, then W can be isotoped slightly to be transverse to κ.

Proof. i) The metrics on \mathbf{H}^{3} arise from a [0, 1]-family of metrics on a closed manifold.
ii) follows from i) and the monotonicity formula (e.g. Lemma 2.3 [HS]).
iii) Apply ii).
iv) Since each leaf is simply connected, this follows from the Reeb stability theorem applied to laminations. E.g. see [GO].
v) We first show that each leaf of $\sigma \mid W$ is compact. Let B be a ball such that $W \subset \stackrel{\circ}{B}$ and B is transverse to σ except possibly at finitely many points. At these points the tangencies should be Morse like. If a leaf P of $\sigma \mid B$ was noncompact, then P would pass through a lamination chart in B infinitely often and so P would have infinite area. By Step 4 of the proof of Lemma 3.3, compact regions of P are closely approximated by compact regions of S_{j} for j sufficiently large. This contradicts the fact that the r_{t}-area of components of $S_{j} \cap \stackrel{\circ}{B}$ is bounded above by c_{2} Area $_{\rho}(\partial B)$. Since each leaf of $\sigma \mid W$ is contained in a leaf of $\sigma \mid B$, the leaves of $\sigma \mid W$ are compact and of uniformly bounded area.

By the Reeb stability theorem and iv) each leaf F of $\sigma \mid W$ has a neighborhood $W_{i} \subset W$ such that $\sigma \mid W_{i}$ is a product lamination. Conclusion v) now follows from the compactness of $\sigma \mid W$. The condition $C_{i} \subset \stackrel{\circ}{I}$ follows if one uses maximal product laminations. In reality, by ix)-x), our laminations will never be locally dense, so the condition $C_{i} \subset \stackrel{\circ}{I}$ is essentially automatic.
vi) Fix $x \in \tilde{L}$. Using the proof of v) construct $P_{j}, j \in \mathbf{N}$ so that for each $i, P_{i} \subset P_{i+1}$ and $\partial P_{i} \subset \tilde{L} \cap B_{\rho}(i, x)$. The second part follows from Step 4 of the proof of Lemma 3.3.
vii) If such a curve exists, then apply the Meeks-Yau exchange roundoff trick to show that one of L_{1}, L_{2} is not least area.
viii) Proof by contradiction. If $x \in \sigma_{1} \cap \sigma_{2}$, then let B be a ball such that $x \in B$ and $\partial B \cap N_{\rho}\left(e_{1}, C\left(\lambda_{1}\right)\right) \cap N_{\rho}\left(e_{2}, C\left(\lambda_{2}\right)\right)=\emptyset$. The $e_{i}>0$ are chosen to have the property that, for $i=1,2, \sigma_{i} \subset N_{\rho}\left(e_{i}, C\left(\lambda_{i}\right)\right)$. If for $i=1,2$ there exists a leaf L_{i} of $\sigma_{i} \mid B$ such that $x \in L_{i}$, then $L_{1} \cap L_{2}$ contains a circle of intersection, for each L_{i} is compact. (Recall 2.6 [HS].) This contradicts vii).
ix) Take κ to be the closure of all the boundary leaves of σ. This lemma allows us to avoid some technicalities in the very unlikely event that a lamination arising from Propositions 3.9 and 3.10 is somewhere locally dense. I.e. we can treat the lamination more like a properly embedded surface than like a foliation.
$\mathrm{x})$ Use general position.
Definition 3.6. Let α be an unknotted simple closed curve in \mathbf{H}^{3} with the r metric. Change the r-metric of $U=\mathbf{H}^{3}-\stackrel{\circ}{N}(\alpha)$ by one which coincides with r away from a very small neighborhood of ∂U and which gives U a strictly convex boundary. It follows by [MSY] that an essential simple closed curve on $\partial N(\alpha)$, also called α, bounds a properly embedded disc $D \subset U$, least area among all immersed discs $E \subset U$ with $\partial E \subset \partial U$ and ∂E essential in ∂U. Call a disc that arises from this construction a relatively least area disc in \mathbf{H}^{3}.

Lemma 3.7. Let r_{t} be a $[0,1]$-parameter family of Riemannian metrics on \mathbf{H}^{3} obtained by lifting a $[0,1]$-parameter family on a closed hyperbolic manifold X. There exists $e>0$ such that if S is a relatively least area disc in \mathbf{H}^{3} with the r_{i}-metric, then $S \subset N_{\rho}(e, C(\partial S))$.

The proof we give is a technically simpler version of the following more concisely stated outline. Either Lemma 3.7 holds or by applying Lemma 3.3 to a sequence of discs we obtain an embedded least area plane lying in a horoball based at a point in S_{∞}^{2}. Such a plane can be chosen to be disjoint from all its translates under G. The projection to X is a leaf of an essential lamination κ by least area planes. By Imanishi (see [G2]) only the 3-torus has an essential lamination by planes.

Proof of Lemma 3.7. Step 1. There exists an r-least area plane \tilde{L} which is a leaf of a D^{2}-limit lamination and which lies in a horoball of \mathbf{H}^{3}.

Proof of Step 1. Suppose that for each i, there exists a relatively r_{i}-least area disc D_{i}^{\prime} such that $D_{i}^{\prime} \not \subset N_{\rho}\left(i, C\left(\partial D_{i}^{\prime}\right)\right)$. Let $z_{i} \in D_{i}^{\prime}$ be a point farthest from $C\left(\partial D_{i}^{\prime}\right)$. A covering transformation of $q: \mathbf{H}^{3} \rightarrow X$ is an isometry in both the r_{i} and hyperbolic metrics. Therefore by replacing each D_{i}^{\prime} by a covering translate and passing to a subsequence, we can assume that the z_{i} converge to a fixed $z \in \mathbf{H}^{3}$. After reparametrizing \mathbf{H}^{3} and using the unit disc model, we can assume that $z=0$. By passing to another subsequence we can assume that $\operatorname{Lim}\left\{C\left(\partial\left(D_{i}^{\prime}\right)\right)\right\}=w \subset S_{\infty}^{2}$. Conclude that $\operatorname{Lim}\left\{D_{i}^{\prime}\right\} \subset H$, the horoball which contains both 0 and w. [Note that if $y \in \mathbf{H}^{3}-H$ and $t \in \mathbf{H}^{3} \subset \mathbf{B}^{3}$ is sufficiently Euclidian close to w, then $d_{\rho}(0, t)<d_{\rho}(y, t)$.]

Cut down the size of the D_{i}^{\prime} and pass to a subsequence to obtain a new sequence as above, called $\left\{D_{i}\right\}$, such that for each i, D_{i} is an r_{i}-least area disc (i.e. rather than just relatively least area). To prove this use the following observations. For $N \in \mathbf{N}$ let $B(N)$ denote $B_{\rho}(N, 0)$ perturbed slightly to be transverse to $\bigcup D_{i}^{\prime}$. If τ is a component of $D_{i}^{\prime} \cap \partial B(N)$ and i is sufficiently large, then the subdisc E of D_{i}^{\prime} bounded by τ is an r_{i}-least area disc. Otherwise, since Area $_{r_{i}}(E)<$ $1 / 2$ Area $_{r_{i}}(\partial B(N)$), any least area disc F with $\partial F=\partial E$ (which exists by [Mor] (see [HS])) must be somewhat close to 0 by Lemma 3.5 iii) and hence be disjoint from ∂D_{i}^{\prime} for i sufficiently large. Since D_{i}^{\prime} is relatively least area, F and E have the same r_{i}-area and hence E is r_{i}-least area. Finally observe that

$$
\operatorname{Lim} d_{\rho}(0, C(\partial B(N) \cap H)) \rightarrow \infty
$$

Apply Lemma 3.3 ii) to pass to a subsequence of the D_{i} and obtain the D^{2}-limit lamination σ, each of whose leaves is an r-least area plane. Let \tilde{L} be the leaf which contains 0 . By Lemma 3.5 vi) \tilde{L} is a union of embedded nested least area discs whose boundaries go to infinity. Replace the old sequence of discs by this sequence, also denoted $\left\{D_{i}\right\}$.

Step 2. Let G_{X} denote the group of covering translations of \mathbf{H}^{3} associated to X. There exists an r-least area plane \tilde{Q} such that for each $g \in G_{X}$, either $g(\tilde{Q})=\tilde{Q}$ or $g(\tilde{Q}) \cap \tilde{Q}=\emptyset$. Furthermore either $g(\tilde{Q}) \cap \tilde{L}=\emptyset$ or $g(\tilde{Q})=\tilde{L}$.

Proof of Step 2. If w is not the fixed point of any element of G_{X}, then \tilde{L} is the desired \tilde{Q}, otherwise there exists $g \in G_{X}$ such that $g \neq$ id and $g(\tilde{L}) \cap \tilde{L} \notin\{\emptyset, \tilde{L}\}$. Since $g(w) \neq w$, there exists some i such that $g\left(D_{i}\right) \cap D_{i} \neq \emptyset$ but $g\left(\partial D_{i}\right) \cap\left(\partial D_{i}\right)=\emptyset$. This leads to a contradiction by the exchange roundoff trick.

The other possibility is that w is the fixed point of some primitive element f of G_{X}. We find Q as follows. Let A_{f} denote the hyperbolic axis of f. There does not exist $N>0$ such that $\tilde{L} \subset N_{\rho}\left(N, A_{f}\right)$. Otherwise, for any $t \in A_{f}$, each component of $H_{t} \cap \tilde{L}$ would have area bounded by c_{2}. (area of the hyperbolic disc of radius N). Here H_{t} is the \mathbf{B}^{3} halfspace disjoint from w and bounded by the hyperbolic plane orthogonal to A_{f} at t. This contradicts Lemma 3.5 iii), for t close to w.

Let $\left\{y_{i}\right\}$ be a sequence of points in \tilde{L} such that $d\left(y_{i}, A_{f}\right)>i$. Let $g_{i} \in G_{X}$ be such that $g_{i}\left(y_{i}\right)=v_{i}$ lies in a fixed X-fundamental domain V in \mathbf{H}^{3}. By passing to a subsequence we can assume that $v_{i} \rightarrow v \in \mathbf{H}^{3}$ and $g_{i}(w) \rightarrow w^{\prime}$. By passing to another subsequence we can assume that $i \neq j$ implies that $w_{i} \stackrel{\text { def }}{=} g_{i}(w) \neq$ $g_{j}(w) \stackrel{\text { def }}{=} w_{j}$. Suppose on the contrary that for all $i, j, g_{i}(w)=g_{j}(w)$. Then $g_{i}(w)=g_{j}(w) \Longrightarrow g_{j}^{-1} \circ g_{i}(w)=w \Longrightarrow g_{j}^{-1} \circ g_{i}=f^{n_{i}} \Longrightarrow g_{i}=g_{j} \circ f^{n_{i}}$. Now $g_{i}\left(y_{i}\right) \subset V \Longrightarrow y_{i} \in g_{i}^{-1}(V)=f^{-n_{i}} \circ g_{j}^{-1}(V) \Longrightarrow d\left(y_{i}, A_{f}\right) \leq \max \left\{d\left(g_{j}^{-1}(z), A_{f}\right) \mid\right.$ $z \in V\}$. The finiteness of the latter contradicts the choice of y_{i}, for i large.

Let \tilde{Q} be a least area plane passing through v, obtained by applying Lemma 3.3 to the sequence $g_{i}(\tilde{L})=\tilde{L}_{i}$, or more precisely to $\left\{g_{i}\left(D_{n_{i}}\right)\right\}$, where $\left\{n_{i}\right\}$ is a sufficiently fast growing sequence. There exists no $h \in G_{X}$ such that $h(\tilde{Q}) \cap \tilde{Q} \notin\{\emptyset, \tilde{Q}\}$; else for sufficiently large $i, j, h\left(\tilde{L}_{j}\right) \cap \tilde{L}_{i} \neq \emptyset$. Therefore there exists i, j such that $h\left(\tilde{L}_{j}\right) \cap \tilde{L}_{i} \neq \emptyset$ and $w_{i} \neq h\left(w_{j}\right)$. This implies that $g_{i}^{-1} \circ h \circ g_{j}(\tilde{L}) \cap \tilde{L} \neq \emptyset$ and $g_{i}^{-1} \circ h \circ g_{j}(w) \neq w$, which is a contradiction. A similar argument shows that $h(\tilde{L}) \cap \tilde{Q} \in\{\emptyset, \tilde{Q}\}$

Step 3. There exists an r-least area properly embedded plane \tilde{P} contained in a horoball in \mathbf{H}^{3} such that for each $g \in G_{X}, g(\tilde{P})=\tilde{P}$ or $g(\tilde{P}) \cap \tilde{P}=\emptyset$. If $\pi: \mathbf{H}^{3} \rightarrow X$ is the covering projection, then $\pi(\tilde{P})$ projects to a leaf P of an essential lamination κ in X. Finally the leaves of κ lift to r-least area planes in \mathbf{H}^{3} and each leaf of κ is dense in κ.

Proof of Step 3. Let λ be the lamination in X obtained by taking the closure of the injectively immersed surface Q which is the projection of \tilde{Q}. We show that λ is essential by showing that each leaf is incompressible and end incompressible [GO]. Each leaf Q_{α} of λ lifts to a surface \tilde{Q}_{α} in \mathbf{H}^{3} which is a limit of translates of subdiscs of \tilde{Q}, hence \tilde{Q}_{α} is a leaf of a D^{2}-limit lamination and hence is a least area plane, so Q_{α} is incompressible. An end compression of Q_{α} would imply the existence of a monogon in \mathbf{H}^{3} connecting two very close together subdiscs of \tilde{Q} of very much larger area, contradicting the fact that \tilde{Q}_{α} is least area as in Figure 4 of [HS].

Let κ be a nontrivial sublamination of λ such that each leaf of κ is dense in κ.
The lift $\tilde{\kappa}$ of κ to \mathbf{H}^{3} is a sublamination of the lamination which is the closure of all the G_{X}-translates of \tilde{Q}. Since \tilde{L} is either disjoint from $\tilde{\kappa}$ or a leaf of $\tilde{\kappa}$, it follows that $L=\pi(\tilde{L})$ is either a leaf of κ or disjoint from κ. By construction $\kappa \subset \bar{L}$ since \tilde{Q} is in the closure of $G_{X}(\tilde{L})$.

If \tilde{L} is a leaf of $\tilde{\kappa}$, then Step 3 holds with $\tilde{P}=\tilde{L}$. In that case since \tilde{L} is the lift of a leaf of an essential lamination, it follows by [GO] that \tilde{L} is properly embedded in \mathbf{H}^{3}.

Next consider the case that $L \subset J$ is a closed complementary region of κ. The proof of Step 3 follows from the following

Claim. $J=\stackrel{\circ}{D}{ }^{2} \times I$ and L is homotopic to $\stackrel{\circ}{D} \times 1 / 2$ via a homotopy in J in which points of L are moved by homotopy tracks of uniformly bounded length.

Proof of the Claim. As in [GO] J is of the form $A \cup Z$, where each component of A is an I-bundle over a noncompact surface, Z is a connected compact 3 -manifold and $A \cap Z$ is a union of annuli. Since X is of finite volume, by taking Z to be sufficiently big (by reducing the size of A) we can assume that the I-fibres are very short ρ-geodesic arcs nearly orthogonal to ∂J. Recall that by $[\mathrm{S}] \tilde{L}$ and hence L have bounded second fundamental form. This implies that if the I-fibres are sufficiently short, then they must be transverse to L. Thus we can assume that L is transverse to the I-fibres of A.

Assume $A \neq \emptyset$. If E is a vertical annulus in A, i.e. a union of I-fibres, then either E spans a $D^{2} \times I \subset J$ or $E \cap L=\emptyset$. Otherwise E lifts to an $I \times \mathbf{R}$ whose core α is properly homotopic (by the previous paragraph) to a curve lying in \tilde{L}, contradicting Step 1 , for α has distinct endpoints in S_{∞}^{2}. Since $\kappa \subset \bar{L}$, it follows that some component A_{1} of A and hence each component of $A_{1} \cap Z$ nontrivially intersect L and hence $A_{1}=A$ and J is obtained by attaching 2-handles to A along $A \cap Z$. Since each vertical annulus in A bounds a $D^{2} \times I$, it follows that $J=\stackrel{\circ}{D}^{2} \times I$. Since J is simply connected, it lifts to \mathbf{H}^{3} and hence L is embedded in J since \tilde{L} is embedded in \mathbf{H}^{3}. Therefore if $E \subset A$ is a vertical annulus, then $E \cap L$ is a union of embedded circles. Each such circle bounds a disc in L which is isotopic rel boundary to a horizontal disc in the associated $D^{2} \times I$. If P is a component of ∂J, then vertical projection of $L \cap A$ to $P \cap A$ extends to an immersion of L to P. P being simply connected implies that this is in fact a diffeomorphism. Again as in [GO] each lift of P is properly embedded.

If $A=\emptyset$, derive a contradiction as follows. In this case κ is a closed π_{1}-injective surface S_{0}. Consider an incompressible surface S_{1} in X split open along S_{0} which nontrivially intersects S_{0} and consider $L \cap S_{1}$ to argue that the limit set of \tilde{L} consists of more than a point.

Since each leaf of κ is dense in κ the above argument shows that κ has no closed leaves.

Step 4. Proof of Lemma 3.7.

Proof of Step 4. Note that \tilde{P} could have been chosen so that $w \in S_{\infty}^{2}$ is the basepoint of the horoball containing \tilde{P}. If B is the region in \mathbf{B}^{3} bounded by \tilde{P} such that $B \cap S_{\infty}^{2}=w$, then $G_{B}=\left\{g \in G_{X} \mid g(\stackrel{\circ}{B}) \cap \stackrel{\circ}{B} \neq \emptyset\right\}$ is a subgroup of the stabilizer G_{w} of w. Since G_{w} is generated by f, G_{B} is generated by f^{n} for some $n \in \mathbf{Z}$. First suppose that $G_{B} \neq$ id. We can assume that $f^{n}(B-w) \subset \stackrel{\circ}{B}$. Since \tilde{P} is proper, each $z \in \tilde{P}$ has a neighborhood $W \subset \mathbf{H}^{3}$ such that $W \cap\left(f^{n}(\tilde{P}) \cup f^{-n}(\tilde{P})\right)=\emptyset$ and hence $\left\{g \in G_{X} \mid g(\tilde{P}) \cap W \neq \emptyset\right\}=$ id. This implies that P is isolated, contradicting the fact that each leaf of κ is dense and κ has no closed leaves. Finally consider the case $G_{B}=$ id. In this case $\stackrel{\circ}{B} \cap \tilde{\kappa}=\emptyset$, otherwise P is dense in κ implies that some covering translate of \tilde{P} lies in $\stackrel{\circ}{B}$. Let I be an I-fibre of A and let \tilde{I} be the lift which intersects \tilde{P}. Since P is nonisolated, $\tilde{I} \subset B$, with one endpoint $i \in \stackrel{\circ}{B}$. We obtain the contradiction $\tilde{\kappa} \cap \stackrel{\circ}{B} \neq \emptyset$.

Lemma 3.8 (Convex hull facts). Let τ be a smooth simple closed curve in S_{∞}^{2} and $k>0$. Then
i) $N_{\rho}(k, C(\tau))$ is a convex, smooth, properly embedded $\stackrel{\circ}{D}^{2} \times I$.
ii) The product structure can be chosen so that for every $\epsilon>0,\left\{x \in D^{2} \mid\right.$ length $\left._{\rho}(x \times I)>2 k+\epsilon\right\}$ is bounded.
iii) If $\tau_{\epsilon} \subset \mathbf{B}^{3}$ is a Euclidean ϵ-neighborhood of τ, then $N_{\rho}(k, C(\tau))=$ $\bigcap_{\epsilon>0} N_{\rho}\left(k, C\left(\tau_{\epsilon}\right)\right)$.

Proof. A proof of smoothness of $\partial N(k, C(\tau))$ due to Bowditch can be found in [EM, p. 119]. The remainder is an elementary exercise in hyperbolic geometry. Use the fact that if $x \in C(\tau) \cap \mathbf{H}^{3}$ and x is Euclidean very close to τ, then in the visual sphere of x, τ approximates a great circle.

Proposition 3.9 (Least area spanning laminations exist). Let τ be a smooth simple closed curve in S_{∞}^{2} and r a Riemannian metric on \mathbf{H}^{3} induced from a metric on a closed hyperbolic 3-manifold. Then there exists a D^{2}-limit lamination $\sigma \subset \mathbf{H}^{3}$ by r-least area planes spanning τ. Furthermore there exists e>0, which depends only on r (and hence independent of τ), such that if σ is any spanning lamination by r-least area planes, then $\sigma \subset N_{\rho}(e, C(\tau))$.

Proof. Let $e>0$ be as in Lemma 3.7. Let ω be a properly embedded path in \mathbf{B}^{3} connecting points in distinct components of $S_{\infty}^{2}-\tau$.

Step 1. There exists a sequence of relatively least area discs $\left\{E_{i}\right\}$ such that for each $i, E_{i} \subset N_{\rho}(2 e, C(\tau)), \partial E_{i} \rightarrow \infty$, and $\left|\left\langle E_{i}, \omega\right\rangle\right| \neq 0$. Here \langle,$\rangle denotes oriented$ intersection number.

Proof of Step 1. By Lemma $3.8 N_{\rho}(e, C(\tau))$ has an exhaustion by regions $R_{0} \subset$ $R_{1} \subset \cdots$, where $R_{i}=D^{2} \times I$ and $\delta R_{i}=\left(\partial D^{2}\right) \times I$. Here δR_{i} denotes the relative boundary of R_{i}. Choose R_{0} such that $\omega \cap N_{\rho}(e, C(\tau)) \subset R_{0}$. The disc E_{i} is obtained by applying the procedure of Definition 3.6 to an essential circle in δR_{i}. By Lemma $3.7 E_{i} \subset N_{\rho}(2 e, C(\tau))$.

Step 2. There exists a sequence $\left\{D_{i}\right\}$ of least area discs such that for each $i, D_{i} \subset$ $N_{\rho}(2 e, C(\tau)), \partial D_{i} \rightarrow \infty$, and $\left|\left\langle D_{i}, \omega\right\rangle\right| \neq 0$.

Proof of Step 2. Apply a procedure, similar to the one of the second paragraph of the proof of Lemma 3.7, to obtain the sequence $\left\{D_{i}\right\}$ from the sequence $\left\{E_{i}\right\}$.

Step 3. After passing to a subsequence, $\left\{D_{i}\right\}$ converges to a lamination σ by r-least area planes which spans τ.

Proof of Step 3. Let σ be a D^{2}-limit lamination obtained by applying Lemma 3.3 to $\left\{D_{i}\right\}$. We need to show that each component of $S_{\infty}^{2}-\tau$ lies in a different complementary region of σ, the other conditions being self evident. If $\omega_{1} \subset \mathbf{B}^{3}-\sigma$ is a properly embedded path connecting these two components, then since $\omega_{1} \cap$ $N_{\rho}(2 e, C(\tau))$ is compact and disjoint from σ, it follows that for i sufficiently large $D_{i} \cap \omega_{1}=\emptyset$. This contradicts the fact that for i sufficiently large, $\left|\left\langle\omega, D_{i}\right\rangle\right|=$ $\left|\left\langle\omega_{1}, D_{i}\right\rangle\right|$.

Step 4. If σ spans τ, then $\sigma \subset N_{\rho}(e, C(\tau))$.

Proof of Step 4. If L is a leaf of σ, then by Lemma 3.5 vi) L has an exhaustion by compact discs P_{i} such that $\partial P_{i} \rightarrow \infty$. Hence for each $\epsilon>0$, there exists N_{ϵ} such that if $i>N_{\epsilon}$, then $\partial P_{i} \subset N_{E}(\epsilon, \tau) \subset \mathbf{B}^{3}$, where E denotes Euclidean metric. Therefore by Lemmas 3.7 and 3.8 iv $), L \subset N_{\rho}(e, C(\tau))$.

Proposition 3.10 (Convergence of spanning laminations). Let $r_{t}, t \in[0,1]$ be a smooth family of Riemannian metrics on \mathbf{H}^{3} induced from Riemannian metrics on a closed hyperbolic 3-manifold and let $\left\{t_{i}\right\}$ be a sequence in $[0,1]$ such that $\operatorname{Lim} t_{i}=t$. Let $r_{i}\left(\right.$ resp. r) denote the $r_{t_{i}}\left(\right.$ resp. $\left.r_{t}\right)$ metric. Let τ be a smooth simple closed curve in S_{∞}^{2}. If $\left\{\sigma_{i}\right\}$ is a sequence of D^{2}-limit laminations by r_{i}-least area planes spanning τ, then after passing to a subsequence $\left\{\sigma_{i}\right\}$ converges to a D^{2}-limit lamination σ by r-least area planes which spans τ.

Proof. Let $e>0$ be as in Lemma 3.7 for the metrics $r_{s}, s \in[0,1]$. The proof of Lemma 3.3 works equally well for sequences of D^{2}-limit laminations as it does for sequences of least area discs. In fact suppose that for each i, D_{i} is chosen to be a finite union of discs embedded in leaves of σ_{i} which are 2^{-i} dense in $\sigma \cap B_{\rho}(i, 0)$ (i.e. $\sigma_{i} \cap B_{\rho}(i, 0) \subset N_{\rho}\left(2^{-i}, D_{i} \cap B_{\rho}(i, 0)\right)$) and $\partial D_{i} \rightarrow \infty$. Then the subsequence $\left\{D_{i_{\alpha}}\right\}$ of $\left\{D_{i}\right\}$ converges to the lamination σ if and only if the subsequence $\left\{\sigma_{i_{\alpha}}\right\}$ of $\left\{\sigma_{i}\right\}$ converges to the lamination σ.

Now suppose that $\left\{\sigma_{i}\right\}$ converges to the D^{2}-limit lamination σ. Again, we need to show that each component of $S_{\infty}^{2}-\tau$ lies in a different complementary region of σ, the other conditions being self evident. Let R_{i} be as in the proof of Step 1 of Proposition 3.9. After a small perturbation assume further that R_{i} is transverse to $\bigcup \sigma_{i}$. Since σ_{i} separates the components of $S_{\infty}^{2}-\tau$, some leaf ζ_{i} of $\sigma_{i} \mid \delta R_{i}$ is essential in δR_{i}. ζ_{i} bounds a disc $F_{i} \subset \sigma_{i}$. Thus $\left|\left\langle F_{i}, \omega\right\rangle\right|=1$. As in the proof of the previous lemma, a subsequence of $\left\{F_{i}\right\}$ limits on a lamination σ^{\prime} which separates the components of $S_{\infty}^{2}-\tau$. Since σ^{\prime} is a sublamination of σ, σ separates the components of $S_{\infty}^{2}-\tau$.

Corollary 3.11. A limit of D^{2}-limit laminations is a D^{2}-limit lamination.
Conjecture 3.12. Let r be a Riemannian metric on \mathbf{H}^{3} induced from a Riemannian metric on a closed hyperbolic 3-manifold. If λ is a smooth simple closed curve in S_{∞}^{2}, then λ spans a properly embedded r-least area plane in \mathbf{H}^{3}.

Remarks 3.13. i) Freedman and $\mathrm{He}[\mathrm{FH}]$ have constructed an example of a non-properly-embedded plane which is least area with respect to the hyperbolic metric on \mathbf{H}^{3}.
ii) A result similar to Proposition 3.9 can be found in [L2]. The lamination that arises there is properly embedded but not necessarily by planes. On the other hand, it is a theorem about all dimensions and codimensions and requires only that the Riemannian metric induce a topological metric Lipshitz equivalent to the hyperbolic metric. I suspect that under this weaker hypothesis on the Riemannian metric, the planes that span $\lambda \subset S_{\infty}^{2}$ need not be properly embedded. One can deduce an independent proof of Lemma 3.7 from the proof of Theorem 2 of [L1].

Remark 3.14. In a natural way the results of this section generalize to 3-manifolds with negatively curved fundamental group.

4. Constructing the tubes

Lemma 4.1. Let μ be a Riemannian metric on \mathbf{H}^{3} induced from a closed hyperbolic 3-manifold. Let $\left\{\sigma_{i}\right\}$ be a locally finite set of D^{2}-limit laminations of \mathbf{H}^{3} by μ-least area planes. If J is a component of $\mathbf{H}^{3}-\bigcup \sigma_{i}$, then
i) $\pi_{1}(J)=1$.
ii) If J^{*} is the metric completion of J with the induced path metric, then J^{*} is a manifold with boundary.
iii) The natural map $\Pi: J^{*} \rightarrow \mathbf{H}^{3}$ is an injective immersion.

Proof of i). Let τ be a closed curve in J and $f: D^{2} \rightarrow \mathbf{H}^{3}$ be transverse to each σ_{i} such that $f \mid \partial D^{2}=\tau$. Then $f\left(D^{2}\right) \cap \sigma_{i}=\emptyset$ for all but finitely many i, say $i=1, \ldots, n$. Assume that f is chosen to minimize $n_{\text {. If }} n_{c}=0$, then τ is homotopically trivial in J. If $n>0$ we obtain a contradiction as follows. By Lemma 3.5σ has no holonomy, so $f^{-1}\left(\sigma_{n}\right)$ is a lamination by circles so there is a finite number of outermost circles $\tau_{1}, \ldots, \tau_{m}$ of $f^{-1}\left(\sigma_{n}\right)$ bounding discs in D whose union contains $f^{-1}\left(\sigma_{n}\right)$. Each τ_{r} maps to an immersed curve α_{r} in a leaf L_{i} of $\sigma_{n} . L_{i}$ is a least area plane and α_{r} is disjoint from σ_{k} for $k>n$ imply that α_{r} is homotopically trivial in L_{i} via a homotopy disjoint from $\sigma_{k}, k>n$. In fact, the outermost component of $\partial N\left(\alpha_{r}\right) \subset L_{i}$ bounds an embedded disc E whose boundary is disjoint from $\sigma_{k}, k>n$, hence E is disjoint from $\sigma_{k}, k>n$. Being outermost, $f\left(\tau_{r}\right)$ lies on the boundary of a closed complementary region of σ_{n}. By replacing the image of the subdisc of D bounded by each τ_{s} with a disc close to but disjoint from σ_{n}, we obtain a new immersed disc spanning τ intersecting at most $\sigma_{i}, 1 \leq i \leq n-1$.

Proof of $i i$). By Lemma 3.5 ix) we can assume that each σ_{i} is nowhere dense. Given $x \in \bigcup \sigma_{i}$, there exists a short geodesic arc α passing through x and transverse to $\bigcup \sigma_{i}$ with $\partial \alpha \cap\left(\bigcup \sigma_{i}\right)=\emptyset$. Let $\hat{\sigma}_{i}$ denote $\sigma_{i} \mid D^{2} \times I$, the $D^{2} \times I$ being a regular neighborhood of α where $0 \times 1 / 2=x$. If the D^{2} factor is sufficiently small, then each leaf of any $\hat{\sigma}_{i}$ is the graph of a function $g: D^{2} \rightarrow I$ and $\hat{\sigma}_{i}$ is a product lamination. Also the projection of the intersection of any two leaves $L_{i} \subset \hat{\sigma}_{i}, L_{j} \subset \hat{\sigma}_{j}$ into the D^{2} factor is either empty or a smooth properly embedded arc or n properly embedded arcs which intersect at a single point in $\stackrel{\circ}{D}^{2}$, the arcs having distinct slopes at the common point. The latter occurs if L_{i} and L_{j} are tangent and uses the normal form theorem for tangencies between least area surfaces, e.g. Lemma 2.6 [HS]. By local finiteness and reindexing we assume that $D^{2} \times I$ intersects only $\sigma_{i}, 1 \leq i \leq q$.

Let K be a component of $D^{2} \times I-\bigcup \sigma_{i}$. To prove ii) it suffices to show that $\Pi \mid K^{*}$ is injective and $\Pi\left(K^{*}\right)$ is a manifold with boundary. For each $i \leq q$ there exist leaves A_{i}, B_{i} of $\hat{\sigma}_{i}$ such that K lies in the complementary region of $\hat{\sigma}_{i}$ defined by points lying above A_{i} and below B_{i}, though possibly one of $A_{i}, B_{i}=\emptyset$. The region above the leaves A_{1}, \ldots, A_{q} (resp. below B_{1}, \ldots, B_{q}) is the region above (resp. below) the graph of a function $A: D^{2} \rightarrow I$ (resp. $B: D^{2} \rightarrow I$). So A (resp. B) is the maximum (resp. minimum) of a finite set of smooth functions. Therefore each component K of $D^{2} \times I-\bigcup \sigma_{i}$ either lies between the graph of two functions defined over an open subset U of D^{2}, or lies either above or below the graph of a function on D^{2}. The proof of ii) in the latter case is clear. To show that $\Pi \mid K^{*}$ is injective and $\Pi\left(K^{*}\right)$ is a manifold with boundary it suffices to show that \bar{U} is a manifold with boundary. The projection $c_{i j}$ of $A_{i} \cap B_{j}$ into $\stackrel{\circ}{D}^{2}$ has a natural
normal orientation, i.e. the normal points into the side where the region below B_{j} and above A_{i} is nontrivial. \bar{U} is the closure of a connected region defined by the $c_{i j}$, with all normals pointing in. Since $L_{i} \cap L_{j}$ contains no embedded circles, the region U is a disc. It is routine to check that \bar{U} is topologically a closed disc.

Proof of iii). Proving that Π is an injective immersion reduces to showing that if the discs U_{1} and U_{2} in $\stackrel{\circ}{D}$ are defined by the same leaves B_{1}, \ldots, B_{q} and A_{1}, \ldots, A_{q}, and $\bar{U}_{1} \cap \bar{U}_{2} \neq \emptyset$, then the regions K_{1} and K_{2} associated to them lie in distinct path components of $\mathbf{H}^{3}-\bigcup \sigma_{i}$. If not, then one could pass to a minimal example of the saddle or spike type which are described and dispatched in the following paragraphs.

Saddle example. $\bigcup \sigma_{i}=\sigma_{1} \cup \sigma_{2}$ and $\bar{U}_{1} \cap \bar{U}_{2}$ correspond to a saddle tangency between leaves $A_{1} \subset \sigma_{1}$ and $B_{2} \subset \sigma_{2}$, where $B_{1}=A_{2}=\emptyset$. See Figure 4.3(b). A down isotopy of σ_{1} near the saddle creates a non-simply-connected component of $\mathbf{H}^{3}-\sigma_{1}^{\prime} \cup \sigma_{2}$, where σ_{1}^{\prime} denotes the isotoped σ_{1}. The intersection of a leaf A of σ_{1}^{\prime} and a leaf B of σ_{2} must contain a simple closed curve; else one could argue as in the proof of \mathbf{i}) to conclude that each component of $\mathbf{H}^{3}-\left(\sigma_{1}^{\prime} \cup \sigma_{2}\right)$ was simply connected. Since σ_{1} (resp. σ_{2}) is isolated above (resp. below) A_{1} (resp. B_{2}), the only possibility is that A is the isotoped A_{1} and $B=B_{2}$. This implies that $A_{1} \cap B_{2}$ contains a simple closed curve, again contradicting Lemma 3.5 vii).

Spike example. Here $\bigcup \sigma_{i}=\sigma_{1} \cup \sigma_{2} \cup \sigma_{3} ; A_{1}, B_{2}, B_{3} \neq \emptyset$ and the lines $A_{1} \cap B_{2}, A_{1} \cap$ B_{3} intersect tangentially at a single point $x \in \bar{U}_{1} \cap \bar{U}_{2}$. See Figure 4.1. A small down isotopy of σ_{1} creates a non-simply-connected component of $\mathbf{H}^{3}-\sigma_{1}^{\prime} \cup \sigma_{2} \cup \sigma_{3}$ where σ_{1}^{\prime} denotes the isotoped σ_{1}. On the other hand, since σ_{1} is transverse to $\sigma_{2} \cup \sigma_{3}$ near $x, \sigma_{1}^{\prime} \cap \sigma_{j}$ contains a simple closed curve if and only if $\sigma_{1} \cap \sigma_{j}$ contains a simple closed curve, for $j=\{2,3\}$. Thus one obtains a contradiction as in the saddle example.

Remark 4.2. The following observations follow from the proof of Lemma 4.1.
i) If K_{1} and K_{2} are distinct connected complementary regions of $D^{2} \times I-\bigcup \sigma_{i}$ which limit on x, then one of the following three situations occur, up to reversing the parametrization on I.
a) There exists j such that K_{1} and K_{2} lie in distinct complementary regions of $\sigma_{j} \mid D^{2} \times I$. In this case $\sigma_{j} \mid D^{2} \times I$ has an isolated leaf separating K_{1} and K_{2}. Therefore K_{1}, K_{2} lie in distinct complementary regions of $\mathbf{H}^{3}-\sigma_{j}$.
b) There exist j, k, leaves $A_{j} \subset \sigma_{j}\left|D^{2} \times I, B_{k} \subset \sigma_{k}\right| D^{2} \times I$, such that A_{j} and B_{k} have a saddle tangency at x, K_{1}, K_{2} lie above A_{j} and below B_{k}, and K_{1}, K_{2} lie in distinct components of $D^{2} \times I-\left(\sigma_{j} \cup \sigma_{k}\right)$.
c) There exist j, k, l leaves $A_{j} \subset \sigma_{j}\left|D^{2} \times I, B_{k} \subset \sigma_{k}\right| D^{2} \times I, B_{l} \subset \sigma_{l} \mid D^{2} \times I$ such that K_{1}, K_{2} lie above A_{j} and below B_{k}, B_{l}. Finally K_{1}, K_{2} lie in different components of $\mathbf{H}^{3}-\sigma_{j} \cup \sigma_{k} \cup \sigma_{l}$.
ii) If J_{1}, \ldots, J_{n} are finitely many components of $\mathbf{H}^{3}-\left(\sigma_{j} \cup \sigma_{k} \cup \sigma_{l}\right)$ such that for each $r \neq s$ each point of $\Pi\left(J_{r}^{*}\right) \cap \Pi\left(J_{s}^{*}\right)$ occurs at a saddle or spike as in i), then $\bigcup \Pi\left(J_{i}^{*}\right)$ is simply connected. Otherwise one obtains a contradiction as in the proof of Lemma 4.1.

A spike

Figure 4.1

Lemma 4.3. Let $x, y \in S_{\infty}^{2}, r$ a Riemannian metric on \mathbf{H}^{3} induced from the closed 3 -manifold M or X, and $\lambda_{1}, \ldots, \lambda_{m}$ smooth simple closed curves in $S_{\infty}^{2}-\{x, y\}$ such that no λ_{i} separates x from y. For each i, let σ_{i} be a lamination by r-least area planes which spans λ_{i} and let H_{i} be the complementary region of $\mathbf{B}^{3}-\sigma_{i}$ which contains x, y. Then either
i) x, y lie in the same component H of $\bigcap_{i=1}^{m} H_{i}$, or
ii) there exist $\lambda_{i}, \lambda_{j}, \lambda_{k}$ such that $\lambda_{i} \cup \lambda_{j} \cup \lambda_{k}$ separate x from y in S_{∞}^{2}.

Proof. If $m \leq 3$ and ii) does not hold, then x, y lie in the same component of $S_{\infty}^{2}-\bigcup \lambda_{i}$, so i) holds. Assuming inductively that the lemma is true for $n<m$, we will establish it for cardinality m. Therefore either ii) holds or

$$
\begin{equation*}
\text { for every } j \leq m, x \text { and } y \text { lie in the same component of } \bigcap_{i \neq j} H_{i} . \tag{*}
\end{equation*}
$$

We show that if (*) holds, then either i) holds or for each $j, k, \lambda_{j} \cap \lambda_{k} \neq \emptyset$. Let $\tau_{j} \subset \bigcap_{i \neq j} H_{i}$ (resp. $\tau_{k} \subset \bigcap_{i \neq k} H_{i}$) be a path from x to y transverse to σ_{j} (resp. $\left.\sigma_{k}\right)$. By Lemma 4.1 i), there exists $h: I \times I \rightarrow \bigcap_{i \notin\{j, k\}} H_{i}$, a homotopy from τ_{j} to τ_{k}, which is transverse to both σ_{j} and σ_{k}. Either $\sigma_{k} \cap \sigma_{j} \neq \emptyset$ and hence $\tau_{k} \cap \tau_{j} \neq \emptyset$ by Lemma 3.5 viii) or $h^{-1}\left(\sigma_{k} \cup \sigma_{j}\right)$ is a lamination by circles and arcs. Each arc has both endpoints on one of $I \times 0$ or $I \times 1$. Thus $\tau_{k} \cap \tau_{j}=\emptyset$ implies that there exists an embedded path from $0 \times I$ to $1 \times I$ disjoint from $h^{-1}\left(\sigma_{j} \cup \sigma_{k}\right)$ and hence conclusion i) holds.

Either i) holds or there exists a minimal $s>0$ and a reordering of the λ_{i} so that $\lambda_{1} \cup \cdots \cup \lambda_{s}$ separate x from y in S_{∞}^{2}. Minimality implies that some component τ of $\lambda_{s}-\left(\lambda_{1} \cup \cdots \cup \lambda_{s-1}\right)$ has the property that $\tau \cup \lambda_{1} \cup \cdots \cup \lambda_{s-1}$ separate x, y and there exists a path $\alpha \subset S_{\infty}^{2}$ from x to y such that α intersects $\tau \cup \lambda_{1} \cup \cdots \cup \lambda_{s-1}$ transversely exactly once in $\stackrel{\circ}{\tau}$. The closure of τ has endpoints on λ_{i} and λ_{j}, where $i, j \leq s-1$. Since $\lambda_{i} \cap \lambda_{j} \neq \emptyset$, there exists a simple closed curve $\beta \subset \lambda_{i} \cup \lambda_{j} \cup \tau$ such that $\tau \subset \beta$. Therefore $\lambda_{i} \cup \lambda_{j} \cup \lambda_{s}$ separate x from y.

Definition 4.4. If $Y=D^{2} \times S^{1}$ or $\stackrel{\circ}{D}^{2} \times S^{1}$, then a core of Y is a curve of the form $z \times S^{1}$, where $z \in \stackrel{\circ}{D}^{2}$.

Lemma 4.5. i) Cores of solid tori are unique up to isotopy.
ii) If $h: Y_{2} \rightarrow Y_{1}$ is a covering map between solid tori, then c is a core of Y_{1} if and only if $h^{-1}(c)$ is a core of Y_{2}.
iii) If Y_{1} and Y_{2} are $\stackrel{\circ}{D}^{2} \times S^{1}$'s, such that $c_{1} \subset Y_{2} \subset Y_{1}$, where c_{1} is a core of Y_{1}, then c_{1} is a core of Y_{2}.
iv) Let $\left\{D_{i}\right\}$ be a locally finite collection of pairwise disjoint properly embedded planes in $Y_{2}=\stackrel{\circ}{D}^{2} \times S^{1}$. If Y_{1} is a $\stackrel{\circ}{D}^{2} \times S^{1}$ component of $Y_{2}-\bigcup D_{i}$, then any core of Y_{1} is a core of Y_{2}.
v) Let Y_{2}, Y_{3} be $D^{2} \times S^{1}$'s embedded in the 3-manifold Y and let c_{1} be a core of Y_{3}. If $c_{1} \subset \stackrel{\circ}{Y}_{2}$ and there exists an embedded 2-disc $E \subset \partial Y_{3}$ such that $Y_{2} \cap \partial Y_{3} \subset E$, then c_{1} is a core of Y_{2}.

Proof. We first establish versions of i)-iii) in the case of closed solid tori.
ic) Here is a hint to this well known result. Let c_{1} and c_{2} be cores of Y, the c_{2} being an S^{1} fibre of $Y=D^{2} \times S^{1}$. First isotope c_{1} to be transverse to this D^{2}-fibration. Then isotope c_{1} to c_{2}. The first isotopy follows from the existence of an embedded annulus connecting c to a simple closed curve d in $\partial D^{2} \times S^{1}$ and the isotopy classification of simple closed curves on the torus.
iic) The product structure of Y_{1} lifts to a product structure on Y_{2}, so a core of Y_{1} lifts to a core of Y_{2}. Conversely suppose that $h^{-1}(c)=d$ is a core of Y_{2}. Let R be a connected embedded orientable surface of maximal Euler characteristic with two boundary components, one boundary component c and one boundary component on ∂Y_{1}. The curve c is necessarily a generator of $\pi_{1}\left(Y_{1}\right)$ so R exists for homological reasons. The surface R lifts up to \tilde{R} in Y_{2}. Each primitive element of $H_{2}\left(Y_{2}-\stackrel{\circ}{N}(d), \partial Y_{2} \cup \partial N(d)\right)$ and in particular [$\left.\tilde{R}\right]$ is represented by an annulus. By [G1, Corollary 6.13] $\operatorname{deg}(h) \chi(R)=\chi(\tilde{R})=0$, therefore R is an annulus and c is a core of Y_{1}.
iiic) Here we are assuming that Y_{1}, Y_{2} are $D^{2} \times S^{1}$,s and $c_{1} \subset \stackrel{\circ}{Y}_{2} \subset Y_{2} \subset Y_{1}$ and c_{1} is a core of $Y_{1} . \partial Y_{2}$ is incompressible in $N\left(Y_{1}\right)-\stackrel{\circ}{N}(c)=T^{2} \times I$, so by [W], ∂Y_{2} is isotopic in $N\left(Y_{1}\right)-\stackrel{\circ}{N}(c)$ to $T^{2} \times 1 / 2$. Therefore Y_{2} has a product structure which restricts to a product structure on $N(c)$.

We now prove i)-iv) for open solid tori.
iii) For $i=1,2$, let c_{i} be a core of Y_{i}. Let $N_{2} \subset Y_{2}$ be a large regular neighborhood of c_{2} such that $c_{1} \subset N_{2}$. Let $N_{1} \subset Y_{1}$ be a large regular neigborhood of c_{1} such that $N_{2} \subset N_{1}$. Then iiic) applied to the inclusions $c_{1} \subset N_{2} \subset N_{1}$ yields that c_{1} is a core of N_{2}. By ic) c_{1} is isotopic to c_{2} and hence c_{1} is a core of Y_{2}.
i) Apply iii).
ii) Suppose $c \subset Y_{1}$ lifts to a core $d \subset Y_{2}$ and let N_{1} be a regular neighborhood of a core of Y_{1} such that $d \subset \operatorname{int}\left(\tilde{N}_{1}\right)$ where \tilde{N}_{1} is the lift of N_{1} to Y_{2}. By iii) d is a core of \tilde{N}_{1} and so c is a core of N_{1} and hence Y_{1} by iic).
iv) Let N_{2} be a large standardly embedded $D^{2} \times S^{1} \subset Y_{2}$ such that $c_{1} \subset N_{2}$ and N_{2} is transverse to $\bigcup D_{j}$. Since c_{1} is homotopically nontrivial in Y_{2}, any disc component of $D_{j} \cap N_{2}$ must separate off a ball in N_{2} disjoint from c_{1}. On the other hand, a subdisc D of D_{j} with $\partial D \subset N_{2}, \stackrel{\circ}{D} \cap N_{2}=\emptyset$ together with a subdisc of ∂N_{2} bounds a ball in $Y_{2}-\stackrel{\circ}{N}_{2}$. Therefore the usual innermost disc (in D_{j}) and an isotopy argument allows us to assume, after isotopy of N_{2}, that $c_{1} \subset N_{2} \subset Y_{1}$. Now apply iii).
v) By doing a finite sequence of compressions and 2-handle attachments to Y_{2} in a small neighborhood of E, we obtain a new manifold W such that $c_{1} \subset W \subset Y_{3}$. Topologically W must be a $D^{2} \times S^{1}$, possibly with some balls removed, otherwise one obtains a π_{1} contradiction. The contradiction depends on whether $\left|\pi_{1}(W)\right|<\infty$ or $W=S^{2} \times S^{1}-3$-balls. Therefore every compression or 2-handle attachment was trivial. Since c_{1} is a core of W if and only if c_{1} is a core of Y_{2}, v) follows from iii).

If $\delta \subset \mathbf{H}^{3}$ is a geodesic, then $S_{\infty}^{2}-\partial \delta$ is naturally parametrized by $S^{1} \times \mathbf{R}$, where each $x \times \mathbf{R}$ lies in the ideal boundary of a hyperbolic half-plane bounded by δ, and the \mathbf{R} parameter is given by the hyperbolic nearest point projection of $\mathbf{B}^{3}-\partial \delta$ to δ.

Definition 4.6. If $R \subset S_{\infty}^{2}-\partial \delta$, then define δ-visual angle $(R)=\inf \left\{\theta_{2}-\theta_{1} \bmod \right.$ $\left.2 \pi \mid R \subset\left[\theta_{1}, \theta_{2}\right] \times \mathbf{R}\right\} \in[0,2 \pi]$. The possible choice of 0 or 2π is made in the obvious manner.

Lemma 4.7. If $P \subset \mathbf{H}^{3}$ is a hyperbolic plane with ideal boundary λ and $P \cap \delta=\emptyset$, then δ-visual angle $(\lambda)=2 \sin ^{-1}(1 / \cosh (d))$, where d is the hyperbolic distance between δ and P.

Proof. Let τ be the orthogonal geodesic segment between δ and $P, x=\delta \cap \tau$ and $y=P \cap \tau$. Let Q be the hyperbolic plane orthogonal to δ containing τ and $\sigma=Q \cap P$. The \mathbf{H}^{2} visual angle of σ viewed from $x \in Q$ is equal to the δ-visual angle of λ. Now apply the formula (e.g. [F], p. 92) $\sin (\alpha) \cosh (d)=1$ associated to the right angle triangle $x y z$, where z is an endpoint of $\sigma, d=d_{\rho}(x, y)$ and α is the angle $z x y$.

Corollary 4.8. If $P \subset \mathbf{H}^{3}$ is a geodesic plane with ideal boundary λ and $d_{\rho}(\delta, P)=$ $(\log (3)) / 2=.549306 \cdots$, then δ-visual angle $(\lambda)=2 \pi / 3$.

Mark Culler told me that $.549306 \cdots=(\log (3)) / 2$.
Proofs of Theorems 0.9 and 0.10. By hypothesis there exists a $\left(\pi_{1}(N),\left\{\partial \delta_{j}\right\}\right)$ noncoalescable insulator family $\left\{\lambda_{j k}^{\prime}\right\}$, where δ is a closed geodesic in N and $\left\{\delta_{j}\right\}=$ $q^{-1}(\delta)$. To prove Theorem 0.9 it suffices by Proposition 2.1 to find a simple closed curve γ in M, such that the \mathbf{B}^{3}-link $p^{-1}(\gamma)=\Gamma$ is isotopic rel S_{∞}^{2} to the \mathbf{B}^{3}-link $q^{-1}(\delta)=\Delta$. In the context of Theorem $0.10 M=N$ and f is a homeomorphism homotopic to id. To prove Theorem 0.10 it suffices by Proposition 2.11 to show that $f^{-1}(\delta)$ is isotopic to δ.

Our terminology will follow that of Notation 1.2. In particular G denotes the action of $\pi_{1}(N), \pi_{1}(M)$ on S_{∞}^{2} as well as the action of $\pi_{1}(M)$ on \mathbf{B}^{3}.

Step 1. We can assume that, with only finitely many G-orbits of exceptions, each $\lambda_{i j}^{\prime}$ is the ideal boundary of the midplane (see Example 0.3) $D_{i j}$ between δ_{i} and δ_{j}. If $E_{i j}$ denotes the component of $S_{\infty}^{2}-\lambda_{i j}^{\prime}$ which does not contain $\partial \delta_{i}$, then $S_{\infty}^{2}-\partial \delta_{i}=\bigcup_{j} E_{i j}$.
Proof of Step 1. By convexity and local finiteness there exists $\beta<\pi$ such that for each j, δ_{i}-visual angle $\left(\lambda_{i j}^{\prime}\right)<\beta$. Let $\alpha=\min \{2 \pi-2 \beta, 2 \pi / 3\}$ and let $d=$ $\cosh ^{-1}(1 / \sin (\alpha / 2))$. Define a new $\left(\pi_{1}(N),\left\{\partial \delta_{j}\right\}\right)$ insulator family by the rule

$$
\lambda_{i j}= \begin{cases}\lambda_{i j}^{\prime}, & d_{\rho}\left(\delta_{i}, \delta_{j}\right) \leq d \\ \partial D_{i j}, & \text { otherwise }\end{cases}
$$

Using Lemma 4.7 and the choice of d it follows that this family satisfies the no-trilinking condition of Definition 0.3 hence is noncoalescable. The first part of Step 1 is established by replacing $\left\{\lambda_{i j}^{\prime}\right\}$ by $\left\{\lambda_{i j}\right\}$.

Let $x \in S_{\infty}^{2}-\partial \delta_{i}$. Let τ be a geodesic from x to δ_{i}, which is orthogonal to δ_{i}. An extended hyperbolic plane $P \subset \mathbf{B}^{3}$ disjoint from $\delta_{i} \cup x$ separates δ_{i} from x if and only if $P \cap \tau \neq \emptyset$. If $C=2\left(\operatorname{diam}_{\rho}(X)\right)$, then there exists a δ_{j} such that $d_{\rho}\left(\delta_{j}, \tau\right)<C$, but $d_{\rho}\left(\delta_{j}, \delta_{i}\right)>\max (10 C, d)$. The midplane $D_{i j}$ between δ_{j} and δ_{i} crosses τ and hence $\partial D_{i j}$ separates x from $\partial \delta_{i}$. By definition $\partial D_{i j}=\lambda_{i j}$.

From now on i will denote a fixed integer and $g \in G$ will denote a fixed generator of $\operatorname{Stab}\left(\partial \delta_{i}\right)=\langle g\rangle$. By the equivariance and local finiteness properties of insulator families, there exists an integer $n>0$ such that $g^{n} \in \pi_{1}(X)$ and for all j and all $r \neq 0, g^{r n}\left(\lambda_{i j}\right) \cap \lambda_{i j}=\emptyset$. By Step 1 , the compactness of $\left(S_{\infty}^{2}-\partial \delta_{i}\right) /\left\langle g^{n}\right\rangle$ and the G-equivariance of insulator families, there exists only finitely many outermost $\left\langle g^{n}\right\rangle$-orbits of $\left\{\lambda_{i 1}, \lambda_{i 2}, \ldots\right\}$. $\lambda_{i j}$ is outermost means that there exists no $E_{i k}$ such that $E_{i j} \subset \stackrel{\circ}{E}_{i k}$. From now on n will be the integer determined as above.

Fix a Riemannian metric μ on M and let μ denote the induced metric on \mathbf{H}^{3}. For each j, k, let $\sigma_{j k}$ be a lamination spanning $\lambda_{j k}$ by μ-least area planes. The $\sigma_{j k}$ should be chosen G-equivariantly, i.e. $h\left(\lambda_{j k}\right)=\lambda_{r s}$ implies $h\left(\sigma_{j k}\right)=\sigma_{r s}$ and $\sigma_{k j}=\sigma_{j k}$. Let $H_{j k}$ denote the \mathbf{H}^{3}-complementary region of $\sigma_{j k}$ which contains the ends of δ_{j}. Let $H_{j}=\bigcap_{k} H_{j k}$.

Reorder the δ_{j} 's so that $\left\{\lambda_{i 1}, \ldots, \lambda_{i m}\right\}$ denote representatives of the outermost $\left\langle g^{n}\right\rangle$-orbits of $\lambda_{i j}$'s. By Lemma 3.5 viii) it follows that $H_{i}=\bigcap_{j=1}^{m} \bigcap_{r \in \mathbf{Z}} g^{r n}\left(H_{i j}\right)$. By equivariance, $h \in G, h\left(\delta_{i}\right)=\delta_{j}$ implies that $h\left(H_{i}\right)=H_{j}$.
Step 2. Establish the following properties of the H_{j}.
i) There exists $a>0$ such that $H_{i} \subset N_{\rho}\left(a, \delta_{i}\right)$.
ii) $H_{i} \cap H_{j} \neq \emptyset$ if and only if $\delta_{i}=\delta_{j}$.
iii) If $h \in G$, then $h\left(H_{i}\right) \cap H_{i} \neq \emptyset$ if and only if $h=g^{k}$ for some k.
iv) If J is a component of H_{i}, then for each $x \in \bar{J}$, there exists a standard $D^{2} \times I$ neighborhood of x as in the proof of Lemma 4.1 with the following additional properties. $J \cap D^{2} \times I$ is the region which lies above the leaves A_{1}, \ldots, A_{q} and below the leaves B_{1}, \ldots, B_{q}, notation as in the proof of Lemma 4.1 ii). Both $\bar{J} \cap D^{2} \times I$ and $\bar{J} \cap\left(\partial D^{2}\right) \times I$ are connected. Finally if $C \neq D$ where $C, D \in$ $\left\{A_{1}, \ldots, A_{q}, B_{1}, \ldots, B_{q}\right\}$ then ∂C is transverse to ∂D in $\partial D^{2} \times I$.
v) If J is a component of H_{i} and J^{*} is the metric completion of J with the induced path metric, and $\Pi: J^{*} \rightarrow \mathbf{H}^{3}$ is the natural map, then Π is an embedding (rather than injective immersion) of J^{*} onto $\bar{J} \subset \mathbf{H}^{3}$.
vi) If J is a component of H_{i} and $h \in\langle g\rangle$, then $h(\bar{J}) \cap \bar{J} \in\{\bar{J}, \emptyset\}$.
vii) There exists N_{1} such that every $x \in \mathbf{H}^{3}$ lies in the closure of at most one component of H_{i} having ρ-diameter $\geq N_{1}$. Each bounded component of H_{i} has ρ-diameter $\leq N_{1}$.

Proof of Step 2. i) Consider a fundamental domain F of $\left(\mathbf{B}^{3}-\partial \delta_{i}\right) /\left\langle g^{n}\right\rangle . F \cap S_{\infty}^{2}$ is covered by a finite number of $E_{i j}$, hence a \mathbf{B}^{3}-neighborhood N of $F \cap S_{\infty}^{2}$ is covered by a finite number of $\hat{H}_{i j}$, where $\hat{H}_{i j}$ is the component of $\mathbf{B}^{3}-N_{\rho}\left(e, C\left(\lambda_{i j}\right)\right)$ which does not contain $\partial \delta_{i}$. By Proposition $3.9 \hat{H}_{i j} \cap \sigma_{i j}=\emptyset$, so $\hat{H}_{i j} \cap H_{i}=\emptyset$. Choose a to be sufficiently large so that $F-N \subset N_{\rho}\left(a, \delta_{i}\right)$. Using the equivariance of insulator families and the fact that g^{n} is an isometry in both the ρ and μ metrics, i) follows.
ii) If $i \neq j$, then $\lambda_{i j}$ separates $\partial \delta_{i}$ from $\partial \delta_{j}$. By definition of spanning lamination, the complementary regions of $\sigma_{i j}$ which contain $\partial \delta_{i}$ and $\partial \delta_{j}$ are distinct and hence $H_{i} \cap H_{j} \subset H_{i j} \cap H_{j i}=\emptyset$.
iii) The $\sigma_{i j}$ were chosen to be G-equivariant, hence $h\left(\partial \delta_{i}\right)=\partial \delta_{j}$ implies that $h\left(H_{i}\right)=H_{j}$. Conversely if $h \notin\langle g\rangle$, then $h\left(\partial \delta_{i}\right) \neq \partial \delta_{i}$, so by ii) $h\left(H_{i}\right) \cap H_{i}=\emptyset$.
iv) By Lemma 3.5 ix) we can assume that each $\sigma_{i j}$ is nowhere dense. Let $x \in \mathbf{H}^{3}$. Here we are identifying, via Lemma 4.1, J^{*} with the region $\Pi\left(J^{*}\right) \subset \mathbf{H}^{3}$. Let $x \in \sigma_{i j} \cap \partial J^{*}$. Let $B \subset \mathbf{H}^{3}$ be a large ball such that $x \in B, B$ is transverse to $\bigcup_{j} \sigma_{i j}$, and $N_{\rho}\left(a, \delta_{i}\right) \cap \partial B \cap N_{\rho}\left(e, C\left(\lambda_{i j}\right)\right)=\emptyset$. Let L be the leaf of $\sigma_{i j} \mid B$ which contains x. By Lemma 3.5 v) L is compact and has a neighborhood of the form $L \times I$ such that $\sigma_{i j} \mid L \times I=L \times C$, with the product lamination, where C is compact. (It is this technical point which allows us to treat $\sigma_{i j}$ as though it is a proper plane.) Thus if $y, z \subset H_{i} \cap L \times I$ and y, z lie in distinct complementary regions of $\sigma_{i j} \mid L \times I$, then y and z lie in distinct components of H_{i} for $(\partial L) \times I \cap H_{i}=\emptyset$. Therefore any sufficiently small $D^{2} \times I$ neighborhood of x satisfies the second sentence of iv).

By making the $D^{2} \times I$ sufficiently small, both $\bar{J} \cap D^{2} \times I$ and $\bar{J} \cap \partial D^{2} \times I$ are connected. See Remark 4.2. By making ∂D^{2} transverse to the various $C \cap D$ arcs of intersection as well as choosing ∂D^{2} to avoid the finitely many tangencies among the leaves $\left\{A_{1}, \ldots, A_{q}, B_{1}, \ldots, B_{q}\right\}, \partial D^{2} \times I$ has the desired transversality property.
v) This follows by iv) and Lemma 4.1.
vi) Let $D^{2} \times I$ be a small neighborhood of $x \in h(\bar{J}) \cap \bar{J}$ as in iv), i.e. such that each of $h(\bar{J}), \bar{J}$ intersects $D^{2} \times I$ in a single component. By the proof of iv) $h(J) \cap D^{2} \times I$ is not separated from $J \cap D^{2} \times I$ by a leaf of some $\sigma_{i j} \mid D^{2} \times I$.

Therefore, by Remark 4.2 i), if $x \in h(\bar{J}) \cap \bar{J} \neq \bar{J}$, then $\bar{J}, h(\bar{J})$ meet at a spike or saddle point created by the laminations $\sigma_{i j_{s}}, 1 \leq s \leq k \in\{2,3\}$. If J_{r} is the component of $\mathbf{H}^{3}-\left(\bigcup_{s=1}^{k} \sigma_{i j_{s}}\right)$ containing $h^{r}(J)$, then for some finite $t, \bigcup_{r=-t}^{t} \Pi\left(J_{r}^{*}\right)$ is connected but not simply connected. A nontrivial cycle passing through x is obtained as follows. First chain together a path, through x and all the $\Pi\left(J_{r}^{*}\right)$, from $\Pi\left(J_{-t}^{*}\right)$ to $\Pi\left(J_{t}^{*}\right)$. This path (which has endpoints near $\partial \delta_{i}$) together with a path "near" S_{∞}^{2} and disjoint from $\bigcup_{s=1}^{k} \lambda_{i j_{s}}$ yields the desired cycle, contradicting Remark 4.2 ii). This uses the fact that $\bigcup_{s=1}^{k} \lambda_{i j_{s}}$ does not separate $\partial \delta_{i}$ in S_{∞}^{2}.
vii) By equivariance, local finiteness and the last conclusion of Proposition 3.9, there exists an $N_{0}>0$ such that the image under orthogonal projection of any $\sigma_{i j}$ into δ_{i} has ρ-diameter bounded above by N_{0}. As in vi), if there exist two components J_{1}, J_{2} of H_{i} which limit on the same point x and are sufficiently large, e.g. ρ-diameter $>2\left(a+N_{0}\right)=N_{4}$, one can find a cycle contradicting Remark 4.2 ii). In fact say J_{1}, J_{2} are locally separated near x by $\bigcup_{s=1}^{k} \sigma_{i j_{s}}$ where $k \leq 3$. If x projects to $y \in \delta_{i}$, via orthogonal projection, then $\bigcup_{s=1}^{k} \sigma_{i j_{s}}$ projects into $B_{\rho}\left(N_{0}, y\right) \cap \delta_{i}$, for each of these k laminations have the point x in common. If for $r=1,2, \operatorname{diam}\left(J_{r}\right)>N_{4}$, then since $J_{r} \subset N_{\rho}\left(a, \delta_{i}\right)$ the orthogonal projection of J_{r} is not contained in $B_{\rho}\left(N_{0}, y\right) \cap \delta_{i}$. Therefore J_{1}, J_{2} lie in the same component of $\mathbf{H}^{3}-\bigcup_{s=1}^{k} \sigma_{i j_{s}}$ and one constructs the desired cycle.

By iv), any $x \in \mathbf{H}^{3}$ has a standard $D^{2} \times I$ neighborhood whose boundary intersects at most finitely many components of H_{i}. This together with Step 2 i) implies that given $\epsilon>0$, then modulo the action of $\left\langle g^{n}\right\rangle$ which acts isometrically in both the μ and ρ metrics, there are only finitely many components of H_{i} with ρ-diameter $>\epsilon$. Therefore there exists an N_{2} such that the ρ-diameters of bounded H_{i} components are uniformly bounded by N_{2}. Finally take $N_{1}=\max \left(N_{2}, N_{4}\right)$.

Step 3. Let $P^{\prime}: \mathbf{B}^{3}-\partial \delta_{i} \rightarrow D^{2} \times S^{1}$ be the quotient map under the action of $\langle g\rangle$. Then $P^{\prime}\left(H_{i}\right)$ is the union of open balls and exactly one open solid torus, whose closures are respectively closed balls and one solid torus T. Therefore $H_{i} \subset \mathbf{H}^{3}$ is a union of uniformly bounded open balls and exactly one component \tilde{V}_{i} whose \mathbf{H}^{3}-closure is a $D^{2} \times \mathbf{R}$ whose ends limit on $\partial \delta_{i}$. Finally $p\left(\tilde{V}_{i}\right)=V$ is a $\stackrel{\circ}{D^{2}} \times S^{1}$, where $p: \mathbf{H}^{3} \rightarrow M$ is the universal covering map.

Proof of Step 3. Each component Z of $P^{\prime}\left(H_{i}\right)$ has $\pi_{1}(Z) \in\{1, \mathbf{Z}\}$ since it is covered by a simply connected component of H_{i}, by Lemma 4.1, with covering translations contained in $\langle g\rangle . \bar{Z}$ is a compact manifold with boundary by Lemma 4.1 and v)vii) of Step 2. Z is irreducible since it is covered by an irreducible manifold [MSY]. Therefore \bar{Z} is a closed ball or solid torus.

We show that there exists some $\stackrel{\circ}{D^{2}} \times S^{1}$ component of $P^{\prime}\left(H_{i}\right)$. Parametrize $\mathbf{B}^{3}-\partial \delta_{i}$ by $D^{2} \times \mathbf{R}$ so that g acts by $(x, t) \rightarrow(x, t+1)$. If $P^{\prime}\left(H_{i}\right)$ contains no $\stackrel{\circ}{D}^{2} \times S^{1}$ component, then by Step 2 vii) the components of H_{i} have uniformly bounded ρ diameter. Hence there exists an integer $N_{3}>0$ such that if \tilde{Z} is a component of H_{i} and $\tilde{Z} \cap D^{2} \times 0 \neq \emptyset$, then $\tilde{Z} \subset D^{2} \times\left(-N_{3}, N_{3}\right)$. By Step 1 and Lemma 3.5 viii), $H_{i} \cap\left(D^{2} \times\left[-N_{3}, N_{3}\right]\right)=Z_{\alpha} \cap\left(D^{2} \times\left[-N_{3}, N_{3}\right]\right)$ where $Z_{\alpha}=\bigcap_{j_{k} \in \alpha} H_{i j_{k}}$ for some finite set $\alpha=\left\{j_{1}, \ldots, j_{r}\right\}$. By Lemma 4.3 some component Z_{β} of Z_{α} contains an embedded path τ connecting the points of $\partial \delta_{i}$. This implies that some component of H_{i} nontrivially intersects $D^{2} \times\left(-N_{3}\right)$ and $D^{2} \times N_{3}$ and hence $D^{2} \times 0$, which is a contradiction.

Suppose that $P^{\prime}\left(H_{i}\right)$ had two solid tori T_{1} and T_{2}. Their cores c_{1}, c_{2} would lift to paths $\tilde{c}_{1}, \tilde{c}_{2}$ between the elements of $\partial \delta_{i}$ such that for some component S of $Z_{\alpha} \cap D^{2} \times 0,\left\langle S, \tilde{c}_{1}\right\rangle=1$ and $S \cap \tilde{c}_{2}=\emptyset$. Again \langle,$\rangle denotes the algebraic$ intersection number. Since the ends of \tilde{c}_{1} and \tilde{c}_{2} lie in a neighborhood of $\partial \delta_{i}$ contained in Z_{α}, the ends can be truncated and fused to create a closed curve τ in Z_{α} such that $\langle\tau, S\rangle=1$, contradicting the simple connectivity of Z_{α} established in Lemma 4.1.

Definition. The solid torus V constructed above is said to arise from the insulator construction.

Let $P: \mathbf{B}^{3}-\partial \delta_{i} \rightarrow Y=D^{2} \times S^{1}$ be the quotient map given by the action of $\left\langle g^{n}\right\rangle$. Let γ be a core of $V=p\left(\tilde{V}_{i}\right)$. (Recall Notation 1.2.) For each j let γ_{j} denote the lift of γ to \tilde{V}_{j} extended to be a properly embedded arc in \mathbf{B}^{3}.
Step 4. The isotopy class of γ and hence the \mathbf{B}^{3}-link $\left\{\gamma_{j}\right\}=\Gamma$ is independent of the choice of $\left\{\sigma_{i j}\right\}$.
Proof of Step 4. Let $\left\{\sigma_{i j}^{\prime}\right\}$ be another collection of laminations spanning $\left\{\lambda_{i j}\right\}$, with associated regions $\left\{H_{i j}^{\prime}\right\},\left\{H_{i}^{\prime}\right\}$. Let $H_{i j}^{\prime \prime}=H_{i j} \cap H_{i j}^{\prime}$ and $H_{i}^{\prime \prime}=\bigcap_{j} H_{i j}^{\prime \prime}$. The arguments of Steps 1-3 show that $H_{i}, H_{i}^{\prime}, H_{i}^{\prime \prime}$ each contain a unique unbounded $\stackrel{\circ}{D^{2}} \times \mathbf{R}$ respectively called $\tilde{V}_{i}, \tilde{V}_{i}^{\prime}, \tilde{V}_{i}^{\prime \prime}$, which project respectively to open solid tori $V, V^{\prime}, V^{\prime \prime}$ in M such that $V^{\prime \prime} \subset V$ and $V^{\prime \prime} \subset V^{\prime}$.

To prove Step 4 we will pass to the n-fold cyclic covering space $Y_{0} \subset Y$ of V and there find $Y_{m} \subset Y_{m-1} \subset \cdots \subset Y_{0}$ which are respectively open solid tori with a common core. Y_{m} will be the n-fold cyclic covering space of $V^{\prime \prime}$. Since a core c of $V^{\prime \prime}$ lifts to a core of Y_{m}, which is a core of Y_{0}, this curve c when viewed in V is therefore a core by Lemma 4.5 ii). A similar argument shows that any core of $V^{\prime \prime}$ is a core of V^{\prime}. Therefore V and V^{\prime} have common cores. Since cores are unique up to isotopy (Lemma 4.5 i)), Step 4 is established.

Recall that $\lambda_{i 1}, \ldots, \lambda_{i m}$ are representatives of the distinct outermost $\left\langle g^{n}\right\rangle$-orbits of $\left\{\lambda_{i j}\right\}$ and that n was chosen so that $r \neq 0$ implies that for all $k, g^{r n}\left(\lambda_{i k}\right) \cap \lambda_{i k}=\emptyset$. For $1 \leq j \leq m$ let $\kappa_{j}=\bigcup_{r=-\infty}^{\infty} g^{r n}\left(\sigma_{i j}^{\prime}\right)$ and $H_{i}^{\kappa_{j}}=\bigcap_{r=-\infty}^{\infty} g^{r n}\left(H_{i j}^{\prime}\right)$. Again by Lemma 3.5 viii) $H_{i}^{\prime}=\bigcap_{j=1}^{m} H_{i}^{\kappa_{j}}$. For $1 \leq t \leq m$, let $W_{t}=\bigcap_{j=1}^{t} H_{i}^{\kappa_{j}} \cap H_{i}$, so $W_{m}=H_{i}^{\prime \prime}$. Define $W_{0}=H_{i}$. As in the proof of Steps 1-3, each W_{j} contains a unique $\stackrel{\circ}{D}{ }^{2} \times \mathbf{R}$ component \tilde{V}_{i}^{j} which projects via P to a $\stackrel{\circ}{D}^{2} \times S^{1}$ called Y_{j}. Step 4 will follow from the following claim, for when combined with Lemma 4.5 iii) it asserts that for all j, any core of Y_{j+1} is a core of Y_{j}, and hence any core of Y_{m} is a core of Y_{0}.

Claim. Each leaf L_{α} of $P\left(\kappa_{j+1}\right) \mid Y_{j}$ is a properly embedded separating disc, exactly one complementary component being a $\stackrel{\circ}{B}^{3}$. The collection $\left\{L_{\beta}\right\}$ of outermost such discs is locally finite in Y_{j}. (Outermost means, maximal in the partial order defined by inclusion of complementary $\stackrel{\circ}{B}^{3}$'s.) Finally $Y_{j+1}=\bigcap C_{\beta}$, where C_{β} is the non-simply-connected component of $Y_{j}-D_{\beta}$ and D_{β} is an outermost disc.

Proof of the Claim. By Lemma 3.5 vi) and Step 2 i) each leaf L of $\hat{\kappa}_{j+1}=\kappa_{j+1} \mid \tilde{V}_{i}^{j}$ is a properly embedded planar surface. By Lemma 3.5 vii) L must be a disc. It follows from the choice of n that for each $j, P \mid \lambda_{i j} \rightarrow P\left(\lambda_{i j}\right)$ and hence $P \mid \sigma_{i j} \rightarrow$ $P\left(\sigma_{i j}\right)$ were embeddings. Arguing as in the proofs of Steps 1)-3), it follows that the \mathbf{H}^{3}-closures of the components of $\tilde{V}_{i}^{j}-L$ consist of a B^{3} called B_{L} and a properly embedded $D^{2} \times R$. Finally by the choice of n, the complementary regions of $P(L) \subset Y_{j}$ consist of an $\stackrel{\circ}{D}^{2} \times S^{1}$ and a $\stackrel{\circ}{B}^{3}=P\left(\stackrel{\circ}{B}_{L}\right)=P\left(\bigcup_{r=-\infty}^{\infty}\left(g^{r n}\left(\stackrel{\circ}{B}_{L}\right)\right)\right)$.

By Lemma 3.5 v) \tilde{V}_{i}^{j} is covered by a locally finite $\left\langle g^{n}\right\rangle$-equivariant collection of lamination charts $\left\{U_{\alpha}\right\}$ such that each leaf L of $\hat{\kappa}_{j+1}$ passes through U_{α} at most once. To see this, apply Lemma 3.5 v) where W is a large ball transverse to κ_{j+1} such that $\partial W \cap \kappa_{j+1} \cap \tilde{V}_{i}^{j}=\emptyset$ and argue as in the proof of Step 2 iv). Since at
most 2 outermost leaves can pass through a given U_{α}, local finiteness of outermost leaves is established.

Again by the choice of n, if L and \hat{L} are distinct leaves of $\hat{\kappa}_{j+1}$, then they bound balls $B_{\hat{L}}, B_{L} \subset \tilde{V}_{i}^{j}$ which are either disjoint or nested. Thus $\tilde{V}_{i}^{j+1}=\bigcap\left(\tilde{V}_{i}^{j}-B_{L}\right)$, the intersection taken with respect to outermost leaves of $\hat{\kappa}_{j+1}$. By projecting into $P\left(\mathbf{B}^{3}-\partial \delta_{i}\right)$ the last assertion follows.

Remark. An isotopy of γ to a core γ^{\prime} of V^{\prime} can be expressed as the composition of two isotopies, the first (resp. second) of which is supported in V (resp. V^{\prime}).

Step 5. The isotopy classes of $\gamma \subset M$ and the \mathbf{B}^{3}-link Γ are independent of the choice of metric on M.

Proof. Since the space of Riemannian metrics is path connected, it suffices to show that if μ_{s} is a $[0,1]$-family of smooth metrics and γ_{s} is a core curve arising from the insulator construction with respect to μ_{s}, then the isotopy class of $\gamma_{s} \subset M$ is locally constant as a function of s. (For fixed s the isotopy class of γ_{s} is well defined by Step 4.) Suppose that there exists a sequence $t_{k} \rightarrow t$ such that for each $k, \gamma_{t_{k}}$ is not isotopic to γ_{t}. Let $\sigma_{i j}^{k}$ be a lamination spanning $\lambda_{i j}$ by $\mu_{t_{k}}$-least area planes. By Proposition 3.10 after passing to a subsequence we can assume that for $j=1, \ldots, m, \sigma_{i j}^{k} \rightarrow \sigma_{i j}$, where $\sigma_{i j}^{k}$ (resp. $\sigma_{i j}$) is a lamination spanning $\lambda_{i j}$ by $\mu_{t_{k}}$-least area (resp. μ_{t}-least area) planes. Using $\left\{\sigma_{i j}^{k}\right\}$ (resp. $\left\{\sigma_{i j}\right\}$) the insulator construction associates to each t_{k} (resp. t) a $\tilde{V}_{i}^{k}=\stackrel{\circ}{D^{2}} \times \mathbf{R}$ (resp. \tilde{V}_{i}) which covers $V^{k} \subset M$ (resp. V), where V^{k}, V are $\stackrel{\circ}{D}^{2} \times S^{1}$ s. Let T^{k} (resp. T) denote the $D^{2} \times S^{1}$ whose interior is $P\left(\tilde{V}_{i}^{k}\right)$ (resp. $P\left(\tilde{V}_{i}\right)$).

Let $\hat{\gamma}$ be the lift of γ_{t} to Y. To complete the proof of Step 5 it suffices to show that for k sufficiently large, $\hat{\gamma}$ is a core of T^{k}. For by Lemma 4.5 ii) for k sufficiently large γ_{t} would be a core of V^{k}. By Lemma 4.5 i) cores are unique up to isotopy, so we conclude that $\gamma_{t_{k}}$ is isotopic to γ_{t}, a contradiction.

By Lemma 4.5 v) it suffices to find a regular neighborhood $N(T)$ of T, and a disc $E \subset \partial N(T)$ such that for k sufficiently large $\hat{\gamma} \subset T^{k}$ and $\partial N(T) \cap T^{k} \subset E$. Reconcile our notation here with that of Lemma 4.5 by letting $c_{1}=\hat{\gamma}, Y_{2}=T^{k}, Y_{3}=$ $N(T), Y=Y$ and $E=E$.

Let γ_{i} be the lift of $\hat{\gamma}$ to \tilde{V}_{i}. For fixed j and for k sufficiently large $\gamma_{i} \cap \sigma_{i j}^{k}=\emptyset$; else by Definition $3.2 \gamma_{i} \cap \sigma_{i j} \neq \emptyset$, a contradiction. The finiteness of m (recall Step 2) and the $\left\langle g^{n}\right\rangle$-invariance of γ_{i} imply that for k sufficiently large $\gamma_{i} \subset \tilde{V}_{i}^{k}$ and hence $\hat{\gamma} \subset \stackrel{\circ}{T}^{k}$.

We now find the desired $N(T)$ and E. Let $N_{1}(T) \subset Y$ be a regular neighborhood of T transverse to $P\left(\bigcup_{j} \sigma_{i j}\right)$.
Claim 1. i) There exist properly embedded compact separating surfaces S_{1}, \ldots, S_{m} $\subset N_{1}(T)$ such that for $p \leq m$ there exists a closed complementary region $J_{p} \subset$ $N_{1}(T)$ of S_{p} such that $T \subset \bigcap_{p=1}^{m} J_{p}=J$. Each S_{p} is a (possibly disconnected) surface lying in leaves of $P\left(\sigma_{i p}\right)$ and $\stackrel{\circ}{T} \cap P\left(\sigma_{i p}\right)=\emptyset$.
ii) Fix $\epsilon>0$. For k sufficiently large, there exist properly embedded compact separating surfaces $S_{1}^{k}, \ldots, S_{m}^{k} \subset N_{1}(T)$ such that for $p \leq m$ there exists a closed complementary region $J_{p}^{k} \subset N_{1}(T)$ of S_{p}^{k} such that $T^{k} \subset \bigcap_{p=1}^{m} J_{p}^{k}=J^{k}$. Each S_{p}^{k} is a (possibly disconnected) surface lying in leaves of $P\left(\sigma_{i p}^{k}\right)$. Finally for every j, S_{j}^{k}
is ϵ-close to S_{j} in the C^{2} topology and J^{k} is ϵ-close to J with respect to Hausdorff distance.

Proof of $\operatorname{Claim} 1$. i) Fix $j \in\{1, \ldots, m\}$. Let $\tilde{N}_{1}(T)$ be the lift of $N_{1}(T)$ to \mathbf{H}^{3} which contains \tilde{V}_{i}. Using Lemma 3.5 v), the closure of the component of $H_{i j} \cap \tilde{N}_{1}(T)$ which contains \tilde{V}_{i} intersects $\sigma_{i j} \cap \tilde{N}_{1}(T)$ in a compact surface L_{j} lying in leaves of $\sigma_{i j}$. Part i) follows by taking $S_{j}=P\left(L_{j}\right)$ and J_{j} the closed complementary region containing $\hat{\gamma}$.
ii) Since $\sigma_{i j}^{k} \rightarrow \sigma_{i j}$ and $\tilde{N}_{1}(T) \cap \sigma_{i j}$ is compact, it follows that for k sufficiently large $\sigma_{i j}^{k} \mid \tilde{N}_{1}(T)$ very closely approximates $\sigma_{i j} \mid \tilde{N}_{1}(T)$. In particular $\sigma_{i j} \mid \tilde{N}_{1}(T)$ consists of finitely many families of parallel compact surfaces, so $\sigma_{i j}^{k} \mid \tilde{N}_{1}(T)$ consists of parallel families which approximate in a bijective fashion the $\sigma_{i j}$ families. In fact by Definition 2.2 for k sufficiently large, each $x \in \sigma_{i j}^{k} \cap \tilde{N}_{1}(T)$ must lie very close to a $\sigma_{i j}$ family. Conversely a $\sigma_{i j}$ family is a product lamination of the form $F \times C \subset F \times \stackrel{\circ}{I}, C$ compact, and the proof of Lemma 3.3 shows that for k sufficiently large $\sigma_{i j}^{k} \cap F \times I \subset F \times \stackrel{\circ}{I}$ and each connected leaf is a compact surface transverse to the I-fibres. Therefore $\sigma_{i j}^{k} \mid F \times I$ is isotopic to a product lamination of the form $F \times C^{\prime}, C^{\prime} \neq \emptyset$. Hence for k sufficiently large, the component of $H_{i j}^{k} \cap \tilde{N}_{1}(T)$ which contains \tilde{V}_{i}^{k}, intersects $\sigma_{i j}^{k} \cap \tilde{N}_{1}(T)$ in a compact surface L_{j}^{k} which is ϵ-close to L_{j}. Part ii) follows by taking $S_{j}^{k}=P\left(L_{j}^{k}\right)$ and J_{j}^{k} the closed complementary region containing T^{k}. By construction for k sufficiently large, then for every j, J_{j}^{k} is ϵ-close to J_{j} and J^{k} is ϵ-close to J.

Claim 2. There exist an $\epsilon>0$, a neighborhood $N(T)$ of T and an embedded disc $E \subset \partial N(T)$ such that if $x \in \partial N(T)-E$, then there exists j such that $d_{\rho}\left(x, J_{j}\right)>\epsilon$.
Proof of Claim 2. Let $S=\bigcup_{j=1}^{m} S_{j}$. Each $x \in \partial T$ has a $D^{2} \times I \subset N_{1}(T)$ neighborhood satisfying the conclusion of Step 2 iv). In our context $S_{j} \cap D^{2} \times I=A_{j} \cup B_{j}$, where at most one of A_{j}, B_{j} is nonempty. The last conclusion of Step 2 iv) implies that associated to $D^{2} \times I \cap \partial T$ is a small annulus $F_{x} \subset\left(\partial D^{2}\right) \times I$ such that if $F_{x}=S^{1} \times I$, then $F_{x} \cap \partial T=S^{1} \times 0$, and if $y \in S^{1} \times t, t>0$, then there exists j such that $d_{\rho}\left(y, J_{j}\right)>0$. See Figure 4.2. From a finite collection of curves of the form $\left(\left(\partial D^{2}\right) \times I\right) \cap \partial T$, we obtain a 1 -complex $C \subset \partial T$ whose complement is a union of ${ }_{D}{ }^{2}$,s. By the usual transversality arguments there exists a regular neighborhood $N(T) \subset N_{1}(T)$, a regular neighborhood $N(C) \subset \partial T$ and an $\epsilon>0$ such that if $y \in N(C)$, then there exists j such that $d_{\rho}\left(y \times 1, J_{j}\right)>\epsilon$. Here $N(T)-\stackrel{\circ}{T}$ (resp. ∂T) is identified with $\partial T \times I$ (resp. $\partial T \times 0$). Finally let $E \subset \partial N(T)$ be a 2-disc such that $\partial N(T)-(N(\stackrel{\circ}{C}) \times 1) \subset E$.

To complete the proof of Step 5, let $N(T)$ and E be as in Claim 2. By Claim 1 , if k sufficiently large, then for each $y \in \partial N(T)-\stackrel{\circ}{E}$ there exists j such that $d_{\rho}\left(y, J_{j}^{k}\right)>\epsilon / 2$. Therefore $(\partial N(T)-\stackrel{\circ}{E}) \cap T^{k} \subset(\partial N(T)-\stackrel{\circ}{E}) \cap J^{k}=\emptyset$.

Remark. i) Near saddle tangencies T^{k} may spill way out of T. In Figure $4.3 \tilde{V}_{i}^{k}$ (resp. \tilde{V}_{i}) is locally defined by two leaves, whose \tilde{V}_{i}^{k} (resp \tilde{V}_{i}) sides are indicated by arrows. T^{k} may also spill out near spikes of T. Compare Figure 4.1.
ii) The isotopy from γ_{t} to $\gamma_{t_{k}}$ was supported in V^{k}.

Figure 4.2

Figure 4.3
iii) One could alternatively show that $\hat{\gamma}$ is a core of T^{k} by first showing that $\hat{\gamma}$ is a core of Y and then invoking Lemma 4.5 iii) with respect to the inclusion $\hat{\gamma} \subset T^{k} \subset Y$.

Step 6. Steps 1-5 applied to the $\left(\pi_{1}(X),\left\{\partial \delta_{i}\right\}\right)$ insulator family $\left\{\lambda_{i j}\right\}$ yields the isotopy class of the link $\Gamma_{1}=p_{1}^{-1}(\gamma) \subset X$ and the isotopy class of the \mathbf{B}^{3}-link
Γ. These classes are independent of the metric on X and the choice of spanning laminations.

Remark. We leave it to the reader to check that the analogues of Steps $1-5$ work in the context of the ($\left.\pi_{1}(X),\left\{\partial \delta_{i}\right\}\right)$ insulator family $\left\{\lambda_{i j}\right\}$. In particular Steps $1-3$ show that a metric μ on X and a collection $\left\{\sigma_{i j}^{\mu_{\alpha}}\right\}$ of μ-least area laminations spanning $\left\{\lambda_{i j}\right\}$ give rise to a finite set $\mathcal{V}_{\mu_{\alpha}}$ of pairwise disjoint $\stackrel{\circ}{D}^{2} \times S^{1}$,s in X. Each isotopy required in the proofs of Steps $4-5$ can be expressed as the composition of isotopies each of which is supported in some $\mathcal{V}_{\mu_{\alpha}}$. Each component of $\mathcal{V}_{\mu_{\alpha}}$ supports the isotopy restricted to exactly one component of the link. See the remarks following Steps 4-5.

Step 7. (Proof of Theorem 0.9.) Using the hyperbolic metric on \mathbf{H}^{3}, the ($\left.\pi_{1}(X),\left\{\partial \delta_{i}\right\}\right)$ insulator family $\left\{\lambda_{i j}\right\}$ yields the \mathbf{B}^{3}-link Δ. The \mathbf{B}^{3}-link Γ is isotopic to the $\mathbf{B}^{3}-\operatorname{link} \Delta$.

Proof of Step 7. By the convexity property of Definition 0.4 there exists, for each j, a hyperbolic half-plane $P_{i j}$ separating $\partial \delta_{i}$ from $\lambda_{i j}$. Thus $P_{i j}$ separates δ_{i} from any ρ-least area lamination $\sigma_{i j}$ which spans $\lambda_{i j}$. Applying the insulator construction to the ($\left.\pi_{1}(X),\left\{\partial \delta_{i}\right\}\right)$ insulator family $\left\{\lambda_{i j}\right\}$ using the hyperbolic metric on \mathbf{H}^{3}, we get for each $j: \delta_{j} \subset \tilde{V}_{j}$ and $\Delta_{1}=\pi(\Delta)=q_{1}^{-1}(\delta)$ are cores of the tori $\pi\left(\left\{\tilde{V}_{i}\right\}\right)$. To see that $\pi\left(\delta_{j}\right)$ is a core of $\pi\left(\tilde{V}_{j}\right)$, consider $P^{j}:\left(\mathbf{H}^{3}-\partial \delta_{j}\right) \rightarrow\left(\mathbf{H}^{3}-\partial \delta_{j}\right) /\left\langle g_{j}\right\rangle$ $=Y^{j}=\stackrel{\circ}{D}^{2} \times S^{1}$, where g_{j} generates $\operatorname{Stab}_{\pi_{1}(X)}\left(\delta_{j}\right)$: Apply Lemma 4.5 iii) to $P\left(\delta_{j}\right) \subset P^{j}\left(\tilde{V}_{j}\right) \subset Y^{j}$. By Step 6, Δ_{1} is isotopic to $\Gamma_{1}=p_{1}^{-1}(\gamma)$. Lift this isotopy to \mathbf{H}^{3} to complete the proof of Theorem 0.9.

Step 8. (Proof of Theorem 0.10.) The curve $f^{-1}(\delta)$ is isotopic to δ.
Proof of Step 8. In the context of Theorem $0.10 M=N$ and f is a diffeomorphism (after a preliminary isotopy) homotopic to id. M has two Riemannian metrics, the given hyperbolic metric ρ and the pullback metric $f^{*}(\rho)$. The construction of

With the hyperbolic metric

Steps 1-5 using the metric ρ yields the geodesic δ and using the metric $f^{*}(\rho)$ yields the curve $f^{-1}(\delta)$. Since the isotopy class is independent of metric, it follows that $f^{-1}(\delta)$ is isotopic to δ.

Remark 4.9. (Why a coalescable insulator is bad.) It is possible that the H_{i} resulting from the construction applied to a coalescable insulator family would contain no unbounded $\stackrel{\circ}{D}^{2} \times \mathbf{R}$ component, i.e. Step 3 fails. Perhaps even $H_{i}=\emptyset$. It is conceivable that, as in [GS], using the wrong metric some ρ-totally geodesic plane P transverse to δ_{i} may be disjoint from H_{i}. See Figure 4.4.

5. Applications and concluding remarks

Mostow's Rigidity Theorem [Mo]. If $f: M \rightarrow N$ is a homotopy equivalence between closed hyperbolic manifolds of dimension >2, then f is homotopic to an isometry.
Remark 5.1. (What Mostow does not say.) If ρ_{0} is a hyperbolic metric on N, then associated to a nontrivial element α of $\pi_{1}(N)$, there exists a unique geodesic $\delta \subset N$ which is freely homotopic to α. Mostow does not rule out the possibility that with respect to a different hyperbolic metric ρ_{1}, the geodesic δ^{\prime} associated to α would lie in a different isotopy class than δ. What Mostow does assert is that there exists a diffeomorphism $f: N \rightarrow N$, homotopic to id, such that $f(\delta)=\delta^{\prime}$.

If N satisfies the insulator condition, then this diffeomorphism is isotopic to id, by Theorem 0.10 , so we obtain

Theorem 5.2. Let N be a closed hyperbolic 3-manifold satisfying the insulator condition. If ρ_{0} and ρ_{1} are hyperbolic metrics on N, then there exists a diffeomorphism $f: N \rightarrow N$ isotopic to id such that $f^{*}\left(\rho_{1}\right)=\rho_{0}$. In particular the space of hyperbolic metrics on N is path connected.
Remark. So for manifolds satisfying the insulator condition, hyperbolic structures are unique up to isotopy.
Corollary 5.3. Let N be a closed orientable 3-manifold satisfying the insulator condition. Then $\operatorname{Homeo}(N) / \operatorname{Homeo}_{0}(N)=\operatorname{Out}\left(\pi_{1}(N)\right)=\operatorname{Isom}(N) .\left(\operatorname{Homeo}_{0}(N)\right.$ is the group of homeomorphisms isotopic to id.)

Proof. The second equality folows from Mostow. Let $\mathcal{H}: \operatorname{Homeo}(M) / \operatorname{Homeo}_{0}(N)$ \rightarrow Out $\pi_{1}(N)$ be the map induced by the action of $\pi_{1}(N)$. Since N is a $k(\pi, 1)$, it follows that $\mathcal{H}([h])=\mathcal{H}([g])$ if and only if h is homotopic to g. By Mostow \mathcal{H} is surjective and by Theorem $0.10 \mathcal{H}$ is injective. $\mathrm{Homeo}(N) / \mathrm{Homeo}_{0}(N)$ is often called the mapping class group of N.

Definition 5.4. i) Call a finite set of pairwise disjoint simple closed curves in N a homotopy essential link if each component is homotopically nontrivial in N and no two components lie in the same \mathbf{Z} subgroup of $\pi_{1}(N)$.
ii) If $q: \mathbf{H}^{3} \rightarrow N$ is the universal covering projection of a hyperbolic 3-manifold N, then q^{-1} induces the map $Q:\{$ isotopy classes of homotopy essential links in $N\}$ $\rightarrow\left\{\right.$ isotopy classes of \mathbf{B}^{3}-links $\}$. If $q_{X}: X \rightarrow N$ is a finite covering map, then q_{X}^{-1} induces the map $Q_{X}:\{$ isotopy classes of homotopy essential links in $N\}$ $\rightarrow\{$ isotopy classes of homotopy essential links in $X\}$.

Recall that isotopies of \mathbf{B}^{3}-links are required to fix S_{∞}^{2} pointwise.
Conjecture 5.5A. Q is injective.

Conjecture 5.5B. Q_{X} is injective.
Corollary 5.6. Let δ be a simple closed geodesic and δ^{\prime} a simple closed curve in N such that $Q(\delta)=Q\left(\delta^{\prime}\right)$. Then δ is isotopic to δ^{\prime} if N satisfies the insulator condition.

Proof. Apply Proposition 2.1 to find a homeomorphism $f: N \rightarrow N$ such that $f(\delta)=\delta^{\prime}$. By construction \tilde{f} fixes S_{∞}^{2} pointwise, so f is homotopic to id. Now apply Theorem 0.10 .

Remark 5.7. By Corollary 5.6 if N satisfies the insulator condition, then Conjecture 5.5 A is true for geodesics. Also if X satisfies the insulator condition, then Conjecture 5.5B implies Conjecture 5.5A for geodesics.

Definition 5.8. If δ is a closed geodesic in the hyperbolic 3-manifold N, then the tube radius of $\delta=$ Sup \{radii of embedded hyperbolic tubes about $\delta\}=$ $1 / 2 \min \left\{d\left(\delta_{i}, \delta_{j}\right) \mid \delta_{i}, \delta_{j}\right.$ are distinct preimages of δ in $\left.\mathbf{H}^{3}\right\}$.

Lemma 5.9. If the hyperbolic manifold N has a geodesic δ with tube radius $>(\log 3) / 2$, then the Dirichlet insulator family associated to δ is noncoalescable. In particular N satisfies the insulator condition.

Proof. By Corollary 4.8, if tube radius $(\delta)>(\log 3) / 2$ and δ_{i} is a lift of δ, then $\delta_{i^{-}}$ visual angle $\left(\lambda_{i j}\right)<2 \pi / 3$ where $\lambda_{i j}$ is the ideal boundary of the Dirichlet midplane between δ_{i} and δ_{j}. Therefore for no j, k, l does $\lambda_{i j} \cup \lambda_{i k} \cup \lambda_{i l}$ separate $\partial \delta_{i}$.

Corollary 5.10. Each hyperbolic 3-manifold N is covered by a hyperbolic 3-manifold X satisfying the insulator condition.

Proof. By [G3] for every $\epsilon>0$, there exists a finite regular cover X of N such that tube radius $(\delta)>\epsilon$, where δ is a shortest geodesic in X.

Proof of Theorem 0.1. Combine Theorems 0.9, 0.10, and 5.2 with Lemma 5.9.
Remark 5.11. i) Via a technique called fudging, the inequality given in Lemma 5.9 can be improved at least to an equality. The idea is that a small perturbation of a just barely coalescable Dirichlet insulator would create a noncoalescable insulator family.
ii) An application of the hyperbolic law of cosines shows that if the shortest geodesic δ in N has length $L \geq 1.353$, then tube radius $(\delta)>(\log 3) / 2$. One finds a right triangle as in Figure 5.1.
iii) Applying the Meyerhoff tube radius formula, i.e. Corollary of [Me, §3] with $n \leq 8$, we conclude that if N has a geodesic δ of length $\leq .0978$, then tube $\operatorname{radius}(\delta)>(\log 3) / 2$. Combined with the work of Jorgenson [Gr], this shows that for $n>0$ there are at most finitely many hyperbolic 3 -manifolds of volume $<n$ which can fail to satisfy the insulator condition.

Corollary 5.12. For any $n>0$, all but at most finitely many closed hyperbolic 3 -manifolds of volume $<n$ are both geometrically and topologically rigid.

Remark 5.13. A 3-manifold N is topologically rigid means that any homotopy equivalence between N and an irreducible 3-manifold is homotopic to a homeomorphism. The hyperbolic 3 -manifold N is geometrically rigid means that its hyperbolic metric is unique up to isotopy.

Figure 5.1

Acknowledgements

It is a pleasure to thank Peter Scott, Charlie Frohman and Joel Hass for their technical help in $\S 3$ and Robert Meyerhoff for many clarifying conversations. Also to Feng Luo, Tahl Wolack and the referee for their critical comments and Donna Gabai for her TeXtual help. Much of this work was developed at the Mathematics Institute of the University of Warwick in the course of three visits during their 1992-1993 hyperbolic geometry program. Special thanks to Evelyn Strauss.

References

[A] M. Anderson, Complete Minimal Varieties in Hyperbolic Space, Invent. Math. 69 (1982), 477-494. MR 84c:53005
[BS] F. Bonahon and L. Siebenmann, to appear.
[EM] D. B. A. Epstein and A. Marden, Convex Hulls in Hyperbolic Space, a Theorem of Sullivan and Measured Pleated Surfaces, LMS Lect. Notes 111 (1984), 113-255. MR 89c:52014
[F] W. Fenchel, Elementary Geometry in Hyperbolic Space, de Gruyter Stud. in Math. 11 (1989). MR 91a:51009
[FH] M. H. Freedman and He, personal communication.
[FJ] F. T. Farrell and L. Jones, A Topological analogue of Mostow's Rigidity Theorem, J. Amer. Math. Soc. 2 (1989), 257-370. MR 90h:57023a
[G1] D. Gabai, Foliations and the Topology of 3-manifolds, J. Diff. Geom. 18 (1983), 445-503. MR 86a:57009
[G2] , Foliations and 3-manifolds, Proc. ICM Kyoto-1990 1 (1991), 609-619. MR 93d:57013
[G3] , Homotopy Hyperbolic 3-manifolds are Virtually Hyperbolic, JAMS 7 (1994), 193198. MR 94b:57016
[GO] D. Gabai and U. Oertel, Essential Laminations in 3-manifolds, Ann. of Math. (2) $\mathbf{1 3 0}$ (1989), 41-73. MR 90h:57012
[Gr] M. Gromov, Hyperbolic Manifolds According to Thurston and Jorgensen, Sem. Bourbaki 32 (1979), 40-52. MR 84b:53046
[GS] R. Gulliver and P. Scott, Least Area Surfaces Can Have Excess Triple Points, Topology 26 (1987), 345-359. MR 88k:57018
[HS] J. Hass and P. Scott, The Existence of Least Area Surfaces in 3-manifolds, Trans. AMS 310 (1988), 87-114. MR 90c:53022
[Ki] J. M. Kister, Isotopies in 3-manifolds, Trans. AMS 97 (1960), 213-224. MR 22:11378
[L1] U. Lang, Quasi-minimizing Surfaces in Hyperbolic Space, Math. Zeit. 210 (1992), 581-592. MR 93e:53008
[L2] , The Existence of Complete Minimizing Hypersurfaces in Hyperbolic Manifolds, Int. J. Math. 6 (1995), 45-58. MR 95i:58053
[MSY] W. H. Meeks III, L. Simon, S. T. Yau, Embedded Minimal Surfaces, Exotic Spheres, and Manifolds with Positive Ricci Curvature, Ann. of Math (2) 91 (1982), 621-659. MR 84f:53053
[Me] R. Meyerhoff, A Lower Bound for the Volume of Hyperbolic 3-manifolds, Can. J. Math. 39 (1987), 1038-1056. MR 88k:57049
[Mo] G. D. Mostow, Quasiconformal Mappings in n-Space and the Rigidity of Hyperbolic Space Forms, Pub. IHES 34 (1968), 53-104. MR 38:4679
[Mor] C. B. Morrey, The Problem of Plateau in a Riemannian Manifold, Ann. Math (2) 49 (1948), 807-851. MR 10:259f
[Mu] J. R. Munkres, Obstructions to Smoothing Piecewise Differentiable Homeomorphisms, Ann. Math (2) 72 (1960), 521-554. MR 22:12534
[Ne] M. H. A. Neumann, Quart. J. Math. 2 (1931), 1-8.
[S] R. Schoen, Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds, Ann. of Math. Stud. 103 (1983), 111-126. MR 86j:53094
[Th] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381. MR 83h:57019
[W] F. Waldhausen, On Irreducible 3-manifolds which are Sufficiently Large, Annals of Math. 87 (1968), 56-88. MR 36:7146
[We] J. Weeks, SnapPea, undistributed version.
Department of Mathematics, California Institute of Technology, Pasadena, CaliFORNIA 91125

E-mail address: Gabai@cco.caltech.edu

[^0]: Received by the editors October 1, 1993 and, in revised form, September 1, 1995.
 1991 Mathematics Subject Classification. Primary 57M50.
 Partially supported by NSF Grants DMS-8902343, DMS-9200584, DMS-9505253 and SERC grant GR/H60851.

