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Homotopy hyperbolic 3-manifolds
are hyperbolic

By David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston

0. Introduction

This paper introduces a rigorous computer-assisted procedure for analyz-
ing hyperbolic 3-manifolds. This procedure is used to complete the proof of
several long-standing rigidity conjectures in 3-manifold theory as well as to
provide a new lower bound for the volume of a closed orientable hyperbolic
3-manifold.

Theorem 0.1. Let N be a closed hyperbolic 3-manifold. Then

i) If f :M → N is a homotopy equivalence, where M is a closed irreducible
3-manifold, then f is homotopic to a homeomorphism.

ii) If f, g:M → N are homotopic homeomorphisms, then f is isotopic to g.

iii) The space of hyperbolic metrics on N is path connected.

Remarks. Under the additional hypothesis that M is hyperbolic, conclu-
sion i) follows from Mostow’s rigidity theorem [Mo]. Under the hypothesis
that N is Haken (and not necessarily hyperbolic), conclusions i), ii) follow
from Waldhausen [Wa]. Under the hypothesis that N is both Haken and hy-
perbolic, conclusion iii) follows by combination of [Mo] and [Wa]. Because
non-Haken manifolds are necessarily orientable we will from now on assume
that all manifolds under discussion are orientable.

Theorem 0.1 with the added hypothesis that some closed geodesic δ ⊂ N

has a noncoalescable insulator family was proven by Gabai (see [G]). Thus
Theorem 0.1 follows from [G] and the main technical result of this paper which
is:

Theorem 0.2. If δ is a shortest geodesic in a closed orientable hyperbolic
3-manifold, then δ has a non-coalescable insulator family.

Remarks. If δ is the core of an embedded hyperbolic tube of radius
ln(3)/2 = 0.549306 . . . then δ has a noncoalescable insulator family by Lemma
5.9 of [G]. (See the Appendix to this paper for a review of insulator theory.)
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In this paper we establish a second condition, sufficient to guarantee the exis-
tence of a noncoalescable insulator family for δ : That maxcorona(δ) < 2π/3.
(maxcorona(δ) < 2π/3 if tuberadius(δ) > ln(3)/2.) We use the expression
“N satisfies the insulator condition” when there is a geodesic δ which has a
noncoalescable insulator family.

We prove Theorem 0.2 by first showing that all closed hyperbolic 3-
manifolds, with seven families of exceptional cases, have embedded hyperbolic
tubes of radius ln(3)/2 about their shortest geodesics. (Conjecturally, up to
isometry, there are exactly six exceptional manifolds associated to these seven
families; see Conjecture 1.31 and Remarks 1.32.) Second, we show that any
shortest geodesic δ in six of the seven families has maxcorona(δ) < 2π/3.
Finally, we show that the seventh family corresponds to Vol3, the closed hy-
perbolic 3-manifold with (conjecturally) the third smallest volume, and that
the insulator condition holds for Vol3. Each of the three parts of the proof is
carried out with the assistance of a rigorous computer program.

Here is a brief description of why Theorem 0.2 might be amenable to
computer-assisted proof. If a shortest geodesic δ in a hyperbolic 3-manifold N

does not have a ln(3)/2 tube then there is a 2-generator subgroup G of π1(N)
= Γ which also does not have that property. Specifically, take G generated
by f and w, with f ∈ Γ a primitive hyperbolic isometry whose fixed axis
δ0 ⊂ H3 projects to δ, and with w ∈ Γ a hyperbolic isometry which takes δ0 to
a nearest translate. Then, after identifying N = H3/Γ and letting Z = H3/G,
we see that the shortest geodesic in Z (which corresponds to δ) does not have
a ln(3)/2 tube. Thus, to understand solid tubes around shortest geodesics in
hyperbolic 3-manifolds, we need to understand appropriate 2-generator groups,
and this can be done by a parameter space analysis as follows. (Parameter
space analyses are naturally amenable to computer proofs.)

The space of relevant (see Definition 1.12) 2-generator groups in
Isom+(H3) is naturally parametrized by a subset P of C3. Each parameter
corresponds to a 2-generator group G with specified generators f and w, and
we call such a group a marked group. The marked groups of particular interest
are those in which G is discrete, torsion-free, parabolic-free, f corresponds to a
shortest geodesic δ, and w corresponds to a covering translation of a particular
lift of δ to a nearest translate. We denote this set of particularly interesting
marked groups by T . We show that if tuberadius(δ) ≤ ln(3)/2 in a hyperbolic
3-manifold N, then G must correspond to a parameter lying in one of seven
small regions Rn, n = 0, . . . , 6 in P. With respect to this notation, we have:

Proposition 1.28. T ∩ (P − ∪n=0,...,6Rn) = ∅.

The full statement of Proposition 1.28 explicitly describes the seven small
regions of the parameter space as well as some associated data.
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Here is the idea of the proof. Roughly speaking, we subdivide P into a
billion small regions and show that all but the seven exceptional regions cannot
contain a parameter corresponding to a “shortest/nearest” marked group. For
example we would know that a region R contained no such group if we knew
that for each point ρ ∈ R, Relength(fρ) > Relength(wρ). (Here Relength(fρ)
(resp. Relength(wρ)) denotes the real translation length of the isometry of H3

corresponding to the element f (resp. w) in the marked group with parame-
ter ρ.) This inequality would contradict the fact that f corresponds to δ which
is a shortest geodesic. Similarly, there are nearest contradictions.

Having eliminated the entire relevant parameter space with the exception
of seven small regions, we next “perturb” the computer analysis to eliminate
six of the seven regions, that is, all but the region R0. We do this by proving:

Proposition 2.8. If δ is a shortest geodesic in closed hyperbolic 3-manifold
N, and maxcorona(δ) ≥ 2π/3, then π1(N) has a marked subgroup whose asso-
ciated parameter lies in R0.

The proof involves a second computer analysis similar to the first. Here we
are interested in discrete, torsion-free, parabolic-free, marked groups {G, f, w}
where f corresponds to an oriented shortest geodesic δ, and w corresponds to
an isometry which maximizes the function C(d(δ0, h(δ0))) where h ∈
G−{fk}, and finally C(d(δ0, w(δ0))) ≥ 2π/3. Here δ0 is a lift of δ, d(δ0, h(δ0))
is the complex distance between the two oriented geodesics δ0, h(δ0), and C is
a function called the corona function. If {G, f, w} is as above (but need not
satisfy the condition C(d(δ0, w(δ0))) ≥ 2π/3), then we define maxcorona(δ) =
C(d(δ0, w(δ0))). Thanks to the first computer analysis, we need only analyze a
vastly smaller parameter space than P.

Finally, a detailed analysis of the region R0 enables us to prove:

Proposition 3.1. T ∩R0 contains a unique parameter and the quotient
of H3 by the group associated to this parameter is Vol3. Further if N is a closed
hyperbolic 3-manifold with shortest geodesic δ and maxcorona(δ) ≥ 2π/3, then
N = Vol3.

Then, through a direct analysis of the geometry of Vol3 we prove:

Proposition 3.2. Vol3 satisfies the insulator condition.

This completes the proof of Theorem 0.2.
This paper is organized as follows. In Sections 1,2,3 we prove Proposi-

tions 1.28, 2.8, 3.1/3.2, respectively. In addition, in Section 1 we describe the
space P ′ ⊂ C3 which naturally parametrizes all relevant marked groups. We
explain how a theorem of Meyerhoff as well as elementary hyperbolic geometry
considerations imply that we need only consider a compact portion P of C3.
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We will actually be working in the parameter space W ⊃ exp(P). The tech-
nical reasons for working in W rather than in P are described near the end of
Section 1. In Section 2 we describe and prove the necessary results about the
corona function C. In Section 4, we prove some applications, one of which is
discussed briefly below.

In Sections 5 through 8 we address the computer-related aspects of the
proof. In Section 5, the method for describing the decomposition of the param-
eter space W into sub-regions is given, and the conditions used to eliminate
all but seven of the sub-regions are discussed. Near the end of this chapter,
the first part of a detailed example is given. Eliminating a sub-region requires
that a certain function is shown to be bounded appropriately over the entire
sub-region. This is carried out by using a first-order Taylor approximation of
the function together with a remainder bound. Our computer version of such
a Taylor approximation with remainder bound is called an AffApprox and in
Section 6, the relevant theory is developed. At this point, the detailed example
of Section 5 can be completed.

As an aside, we note that at the time of this research we believed (based
largely on discussions with experts in the field) that there were no available ap-
propriate Taylor approximation packages. Since carrying out our research, we
have discovered that L. Figueiredo and J. Stolfi have independently developed
an Affine Arithmetic package which is different in spirit and in the specifics
of the implementation from ours, but covers similar ground. One can consult
[FS] for an alternate approach to ours.

Finally, in Sections 7 and 8, round-off error analysis appropriate to our
set-up is introduced. Specifically, in Section 8, round-off error is incorporated
into the AffApprox formulas introduced in Section 6. The proofs here require
an analysis of round-off error for complex numbers, which is carried out in
Section 7.

We used two rigorous computer programs in our proofs—verify and corona.
These programs are provided at the Annals web site. It should be noted that
corona is a small variation of verify and as such only a small number of sections
differ from those of verify. The proofs of Propositions 1.28, 2.8, and 3.2 amount
to having verify and corona analyze several computer files. These computer
files are also available at the Annals web site. Details about how to get them
and the programs can be found there.

One consequence of our work is:

Theorem 4.1. If δ is a shortest geodesic in the closed orientable hyper-
bolic 3-manifold N, then either

i) tuberadius(δ) > ln(3)/2, or
ii) 1.0953/2 > tuberadius(δ) > 1.0591/2 and Relength(δ) > 1.059, or
iii) tuberadius(δ) = 0.8314 . . . /2 and N = Vol3.
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Combining Theorem 4.1 with a result of F. Gehring and G. Martin (see
[GM2]), which implies that if the closed orientable hyperbolic 3-manifold N has
a geodesic with a ln(3)/2 tube then the volume of N is greater than 0.16668 . . . ,

we obtain:

Corollary 4.3. If N is a closed orientable hyperbolic 3-manifold, then
the volume of N is greater than 0.16668 . . . .

Remarks. i) The previous best lower bound for volume was 0.001 by
[GM1], which improved the lower bound 0.0008 of [M2].

ii) Using Theorem 4.1 and expanding on work of Gehring and Martin, A.
Przeworski has recently extended the lower bound to 0.276796 (see [P]).1

Given the fundamental use of computers in our proof, we need to discuss
issues related to their use. For an introduction to this topic we suggest [La],
especially the concluding remarks.

We pose the simple question: why should one have confidence in our
proof?

First, the non-computer part of the proof has been analyzed in the tradi-
tional way by the authors, referees, individuals, and in seminars.

Second, the computer programs we have written can be checked just as
mathematical proofs can be checked, and have been so checked. However, one
must be prepared for subtleties that the computational approach introduces.
For example, if we wish to have the computer show that the result x of a
calculation is less than 2, it is not equivalent to show that x is not greater
than or equal to 2. That is because the output of the computation may be
“NaN” (not a number) and said output is not “greater than or equal to 2”.
This may arise, for example, if at some point of the (theoretical) computation
one takes the quotient of two numbers, both of which are extremely small. The
computer will view both the numerator and the denominator as 0 and hence
produce the NaN output. See Sections 5, 6, and 7 of [IEEE] for more details.

We note that our programs are not complicated. In fact, the main part of
both programs is extremely simple conceptually. The bulk of the programming
is taken up with constructing first-order Taylor approximations with round-off
error built in. This is interesting, but not deep. Although the proofs can get
complicated, an undergraduate could easily check this material.

Third, we asked the computers to do simple things. We were able to orga-
nize our proof so that the only mathematical operations used are +,−,×, /,

√
and these operations are governed by the IEEE-754 standards (see [IEEE]).
Thus, if the computer verifying our proof adheres to the IEEE-754 standards

1Note added in proof (January 2003): Przeworski (see [P2]) has improved the volume lower

bound to 0.3315 by combining his tube packing results with Theorem 4.1 and work of I. Agol (see

[A]).
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for these operations then we have a valid proof. (Here, “adhering to the IEEE-
754 standards” requires that the computer run properly, that the version of
C++ used adheres to the ANSI-C standards, and so on.) We note that, ac-
cording to the IEEE-754 standards, one typically has to tell the computer to
check for occurrences of underflow and overflow.

Fourth, we successfully ran our verification programs on several machines
with different compilers and different architectures. Of course, despite the
manufacturers’s claims of IEEE-754 compliance, bugs can exist. However, we
did run our verifications on machines believed to be reliable. Further, having
run the verifications on quite different machines, we have a significant increase
in confidence (see [K2] for an entertaining example).

Because of the size of our data set (between one-half and one gigabyte in
compressed form), the verification program takes quite a few CPU hours to run
and we ran it first (successfully) in about 60 CPU days. Here, the term “CPU
day” refers to 24 hours of running an SGI Indigo 2 workstation with the R4400
chip, and the estimate of 60 days refers to 20 to 30 computers running 80 to 90
percent of the time over the course of 3 or 4 days. We also had access to the
suite of eight SUN computers in the Physics Department at Boston College
and successfully ran the verification program on the data set.

We note that one can gain further confidence by testing the machines/
compilers using available “vetting” programs. Such programs are not infal-
lible, but they do test in obvious trouble spots. One active area of research
in computer science involves effective checking of machines/compilers. How-
ever, we note that this is a developing field, and at this point not an entirely
satisfying tool. The vetting program ucbtest was successfully run on the SGI’s.

Fifth, we employed various common-sense checks on our work. For exam-
ple, a program employing a completely different, very geometric, approach to
the theory was used on a rich set of data points and gave results consistent
with our rigorous program. Further, difficult cases were checked by another
program differing from the rigorous program (although employing the same
Taylor approximation method) and run on a completely different platform
(Macintosh).

We also note that one set of referees did extensive robustness checks on
the data. In the numerous regions they analyzed, they found that verify could
be run successfully despite significant reduction in precision (reducing, for in-
stance, from 52 bits to 30 bits of precision) without having to change the depth
of subdivision. This robustness is not surprising to us: we did a heuristic anal-
ysis of operations performed which indicated that round-off error would not
affect computations significantly until about 26 subdivisions in each of six di-
mensions were performed (the box W was recursively subdivided in half by
hyperplanes). We note that in general, nowhere near this number of subdivi-
sions was needed, and in fact, it turned out to be the maximum number of
subdivisions ever used.
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Sixth, there was a significant amount of internal consistency in our work.
For example, we found by our computer analysis that a certain hyperbolic
3-manifold has a particularly small maximal tube around its shortest geodesic.
This turned out to be the well-known hyperbolic 3-manifold Vol3. Further, our
computer analysis discovered six (more) exceptional regions in the parameter
space W which led us to (probable) hyperbolic 3-manifolds with interesting
properties. J. Weeks’s program SnapPea (see [W1]) later provided confirming
evidence for much of this.

These are some of our reasons for having confidence in our proof. Now we
move on to the issue of archiving of research.

Our proof utilizes between one-half and one gigabyte (compressed) of data.
The Annals has set up a secure system to store the data and make it available
for future researchers. The verification computer programs also reside in the
Annals web site, if only for easy retrieval. We note that copies of the programs
are not in the paper proper.

Certain details of the proof are tedious, probably of limited use, and would
be better off archived than put in the paper proper. Specifically, proofs of the
propositions in Sections 7 and 8 are important but tedious in their similarity.
We provide representative examples in the paper, but relegate the full collection
to the archive. Further, we found that skipping steps in the proofs of these
propositions was a sure avenue to disaster. As such, we proved each proposition
in stupefying detail. In the paper, this detail is sometimes pruned, but the full
versions exist in the archive.

One could also ask what would happen if the large data set used to prove
the theorem was lost. If one had access to the roughly 13000 member “condi-
tionlist” then it would be relatively easy to reconstruct the data set (that is,
the decomposition of the parameter space into sub-boxes together with killer-
words/conditions), because the hardest part of constructing the data set was
the search for killerwords. Presumably, this search could also be done fairly
quickly by breaking the parameter space up into small pieces and farming
these pieces out to various computers. Also, the locations in the parameter
space that caused the most trouble are explicitly described in Proposition 1.28.
Knowing these trouble spots and how to deal with them ahead of time, would
be a time-saver.

In the unlikely event that “conditionlist” was not available, the task of
reconstructing the data set would be considerably harder. Although, the facts
that it has been done, that faster and faster computers will be plentifully
available, and that Proposition 1.28 saves some work, indicate that the recon-
struction process would not be too horrendous. Further, it is also possible that
improved proof techniques to the main theorem of this paper will be developed.
In fact, Section 2 describes a process, corona, that has the potential to handle
easily the worst of the trouble spots in the parameter space.
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1. Killerwords and the parameter space

Notation and conventions 1.1. A hyperbolic 3-manifold is a Riemannian
3-manifold of constant sectional curvature −1. All hyperbolic 3-manifolds
under consideration will be closed and orientable. We will work in the upper-
half-space model for hyperbolic 3-space: H3 = {(x, y, z) : z > 0} with metric
dsH = dsE/z. The distance between two points w and v in H3 will be denoted
ρ(w, v).
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It is well known that Isom+(H3) = PSL(2,C), where an element of
PSL(2,C) acts as a Möbius transformation on the bounding (extended) com-
plex plane and the extension to upper-half-space is the natural extension (see
[Bea]). If M is a hyperbolic 3-manifold, then M = H3/Γ where Γ is a discrete,
torsion-free subgroup of PSL(2,C).

For computational convenience, we will often normalize so that the (posi-
tive) z-axis is the axis of an isometry. As such, we set up some special notation.
Let B(0;∞) denote the oriented geodesic {(0, 0, z) : 0 < z < ∞}, with negative
endpoint (0, 0, 0). (An endpoint of an axis refers to a limit point of the axis on
S2
∞.) Let B(−1;1) denote the oriented geodesic with negative endpoint (−1, 0, 0)

and positive endpoint (1, 0, 0).
When working in a group G generated by f and w and looking at words

in f, w, f−1, w−1 we will often let F and W denote f−1 and w−1, respectively.

Definition 1.2. If f is an isometry, then we define

Relength(f) = inf{ρ(w, f(w)) | w ∈ H3}.

Thus Relength(f) = 0 if and only if f is either a parabolic or elliptic isometry.
If Relength(f) > 0, then f is hyperbolic and maps a unique geodesic σ in H3

to itself. In that case σ is oriented (the negative end being the repelling fixed
point on S2

∞) and the isometry f is the composition of a rotation of t (mod 2π)
radians along σ (the sign of the angle of rotation is determined by the right-
hand rule) followed by a pure translation of H3 along σ of l = Relength(f).
We define length(f) = l + it, and call Af = σ the axis of f. Now, Af is an
oriented interval with endpoints in S2

∞, the orientation being induced from σ.

If the geodesic σ is given a fixed orientation, we define an l+ it translation
f along σ to be a distance l translation in the positive direction, followed by a
rotation of σ by t radians. Of course if l < 0, then each point of σ gets moved
−l in the negative direction. Also, via the right-hand rule, the orientation
determines what is meant by a t-radian rotation. Thus if l > 0, the orientation
induced on σ by f (as in the previous paragraph) equals the given orientation.
If l < 0, then the induced orientation is opposite to the given orientation and
f is a −(l + it) translation of −σ in the sense of the previous paragraph.

If f is elliptic, then f is a rotation of t radians where 0 ≤ t ≤ π about
some oriented geodesic, and we define length(f) = ti. If f is parabolic or the
identity, we define length(f) = 0 + i0. So, for all isometries we have that
Relength = Re(length).

Definition 1.3. If G is a subgroup of Isom+(H3), then we say that f

is a shortest element in G if f �= id and Relength(f) ≤ Relength(g) for all
g ∈ G, g �= id.



344 DAVID GABAI, G. ROBERT MEYERHOFF, AND NATHANIEL THURSTON

Definition 1.4. If σ, τ are disjoint oriented geodesics in H3 which do not
meet at infinity, then define distance(σ, τ) = length(w) where w ∈ Isom+(H3)
is the hyperbolic element which translates H3 along the unique common per-
pendicular between σ and τ and which takes the oriented geodesic σ to the
oriented geodesic τ . The oriented common perpendicular from σ to τ is called
the orthocurve between σ and τ . The ortholine between σ and τ is the complete
oriented geodesic in H3 which contains the orthocurve between σ and τ .

If σ and τ intersect at one point in H3 then there is an elliptic isometry
w taking σ to τ fixing σ ∩ τ. Again, define distance(σ, τ) = length(w). In this
case, the orthocurve is the point σ ∩ τ, and the ortholine O from σ to τ is
oriented so that σ, τ, O form a right-handed frame.

If σ and τ intersect at infinity, then there is no unique common perpen-
dicular, hence no ortholine, and we define distance(σ, τ) = 0 + i0, or 0 + iπ

depending on whether or not σ and τ point in the same direction at their
intersection point(s) at infinity.

Define Redistance = Re(distance).
As defined, Redistance is nonnegative. In Definition 1.8 and in Sections 2

and 3, it will be useful to have a broader definition. Given an oriented geodesic
α in H3 orthogonal to oriented geodesics β and γ, define dα(β, γ) ∈ C where
a dα(β, γ) translation of H3 along α takes β to γ.

Lemma 1.5. i) distance(σ, τ) = distance(τ, σ)

ii) dα(−β, γ) = dα(β,−γ) = dα(β, γ) + πi

iii) dα(β, γ) = d−α(γ, β) = −dα(γ, β).

Definition 1.6. A tube of radius r about a geodesic δ0 in H3 is {w ∈
H3 | ρ(w, v) ≤ r for some v ∈ δ0}. If δ is a simple closed geodesic in the
hyperbolic 3-manifold N and if {δi} is the set of pre-images of δ in H3, then
define tuberadius(δ) = 1

2 min{Redistance(δi, δj) | i �= j}. If r = tuberadius(δ),
then define a maximal tube about δ to be the image of a tube of radius r

about δ0. Note that tuberadius(δ) = sup{r | there exists an embedded tubular
neighborhood of radius r about δ}.

Lemma 1.7. Let δ be a closed geodesic in the hyperbolic 3-manifold
N and {δi}i≥0 be the set of its distinct lifts to H3, then tuberadius(δ) =
(1
2)min{Redistance(δ0, δi) | i �= 0}.

Definition 1.8. Our desire to understand tuberadii about closed geodesics,
and especially about a simple closed geodesic δ, leads us to investigate certain
2-generator subgroups G = 〈f, w〉 of Isom+(H3) with the generator f corre-
sponding to a primitive isometry fixing δ0 and the generator w corresponding
to an element taking δ0 to its nearest covering translate. We investigate these
2-generator groups by using certain subsets of C3 as parameter spaces.
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A marked (2-generator) group is a triple {G, f, w} consisting of a
2-generator subgroup G of Isom+(H3) and an ordered pair of isometries f, w

of H3 which generate G such that Relength(f) > 0 and if Af is the axis of f,

then w(Af ) ∩ Af = ∅ (here, intersection is taken in H3 ∪ S2
∞). Two marked

groups {G1, f1, w1} and {G2, f2, w2} are conjugate if G1 and G2 are conju-
gate via an element of Isom+(H3) and this conjugating element takes f1 to
f2 and w1 to w2. Within any conjugacy class of marked groups is a unique
normalized element {G, f, w} where f is a positive translation along the (ori-
ented) geodesic B(0;∞), and the orthocurve from w−1(B(0;∞)) to B(0;∞) lies on
B(−1;1) on the negative side of B(−1;1) ∩B(0;∞). To minimize notation, we will
frequently equate a conjugacy class with its normal representative.

Given (L, D, R) = (l + it, d + ib, r + ia) ∈ C3 with l > 0, d > 0, one can
associate a group G generated by elements f and w as follows. Define f to be
an l+ it translation along B(0;∞) and w to be a d+ ib translation along B(−1;1)

followed by an r+ia translation along B(0;∞) (here, r can be negative, in which
case this is equivalent to a −r − ia translation along −B(0;∞)). Conversely if
{G, f, w} is a normalized marked group then f is an L translation of B(0;∞)

and w is a D translation of B(−1;1) followed by an R translation of B(0;∞).

Thus P ′ = {(l + it, d + ib, r + ia) ∈ C3| l > 0, d > 0} parametrizes the set
of conjugacy classes of marked groups. In particular, the parametrization is
surjective and locally one-to-one.

We are primarily interested in the set T ′ ⊂ P ′ which parametrizes all
conjugacy classes of marked groups {G, f, w} for which f is a shortest ele-
ment of G which (positively) translates B(0;∞) and w ∈ G takes B(0;∞) to
a nearest translate w(B(0;∞)) such that −Relength(f)/2 < Re(dB(0;∞)

) (or-
tholine from w−1(B(0;∞)) to B(0;∞)), (ortholine from B(0;∞) to w(B(0;∞))))) ≤
Relength(f)/2. See Figure 1.1. Note that because f is shortest and Relength(f)
> 0, it follows that G must be discrete, torsion-free, and parabolic-free.

Remark 1.9. T ′ consists of those parameters corresponding to marked
groups {G, f, w} such that l is the real length of a shortest element of G, d is
the real distance between B(0;∞) and a nearest translate, and −l/2 < r ≤ l/2.

In what follows, it is essential to remember that an element α of P ′ corresponds
not only to a group G, but to a marked group. To further establish the point,
we note that, for elements of T ′, the parameter l is an invariant of G alone
(that is, l is the shortest real length of an element of G), while the parameter
d is determined by G and f (that is, the notion of “nearest” used to define w

in the definition of T ′ requires a choice of f).
As mentioned in the introduction to this paper, we are only interested in

the subset of T ′ corresponding to parameters α with d ≤ ln(3). The following
two propositions imply this subset of T ′ lives in a compact subset of P ′.
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C

fw -1 (B(0; ∞) )

B(0; ∞)

D=d+ib
L=1+it

R=r+ia

 w -1 (B(0; ∞) )  w (B(0; ∞) )

Figure 1.1

Proposition 1.10. All closed geodesics of length less than 0.0979 in all
hyperbolic 3-manifolds have (embedded) tubes of radius ln(3)/2.

Proof. In [M1] it is proved that a closed geodesic of length x + iy has a
tube (embedded) of radius r(x + iy) satisfying

sinh2(r(x + iy)) = max
n∈Z+

1
2

(√
1 − 2k(x, y, n)
k(x, y, n)

− 1

)

where

k(x, y, n) = cosh(nx) − cos(ny),

where we restrict to x + iy values which produce positive radii r(x + iy) by
means of this formula. It is easy to compute that for a given x + iy we need
to have n for which 0 < k(x, y, n) <

√
2 − 1 to produce a positive radius tube

by this method.
The function 1

2(
√

1−2k
k − 1) is decreasing on the interval (0,−1+

√
2). It is

easy to solve for the k value that produces radius r = ln(3)/2 and it is just over
0.3397. Thus, by restricting to k values in the interval (0, 0.3397) we guarantee
radii r greater than ln(3)/2.

Thus, to complete the proof of this proposition, we need to show that
when a closed geodesic has real length x less than 0.0979, there exists a positive
integer n for which k(x, y, n) is less than 0.3397 for all angles y. Because cosh
is an increasing function, we can restrict our analysis to x = 0.0979. Thus,
we need only show that given any angle y, we can find a positive integer n
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such that cosh(n0.0979)−cos(ny) < 0.3397. When n > 8 we can compute that
cosh(n0.0979)−cos(ny) > 0.3397, and we therefore restrict to positive integers
n ≤ 8.

We now consider angles y. Because cos is an even function, we need only
consider y ∈ [0, π]. Finally, we complete the proof by covering [0, π] by 11
overlapping closed sub-intervals σi each of which has an associated positive
integer ni for which cosh(ni0.0979) − cos(niy) < 0.3397 is true for all y ∈ σi:

σ0 = [0.000, 0.843] n0 = 1 σ5 = [1.733, 1.858] n5 = 7
σ1 = [0.835, 0.960] n1 = 7 σ6 = [1.832, 2.357] n6 = 3
σ2 = [0.951, 1.143] n2 = 6 σ7 = [2.334, 2.3792] n7 = 8
σ3 = [1.123, 1.391] n3 = 5 σ8 = [2.3789, 2.647] n8 = 5
σ4 = [1.386, 1.755] n4 = 4 σ9 = [2.630, 2.755] n9 = 7

σ10 = [2.730, π] n10 = 2

Proposition 1.11. A shortest geodesic δ in a closed hyperbolic 3-manifold
has

i) tuberadius(δ) ≥ l/4 where l = Relength(δ), and

ii) tuberadius(δ) > ln(3)/2 if Relength(δ) ≥ 1.289785.

Proof. Part i) is a consequence of the following well-known argument: Uni-
formly expand a tube around a shortest geodesic in the hyperbolic 3-manifold.
If the expanding tube hits itself before a radius of l/4 then we will construct
a loop of length less than l, which produces a contradiction to being shortest.
Drop the two obvious perpendiculars from the hitting point down to the core
geodesic. Consider the following loop—down one perpendicular, follow the
shorter direction on the core geodesic, up the other perpendicular. Because a
lift of this loop to H3 is not closed, this loop is homotopically nontrivial. By
construction it has length less than l/4 + l/2 + l/4 = l.

To prove part ii), we improve on this loop. Replace the first half of the
journey by the hypotenuse of the right triangle formed by the first perpen-
dicular and the first half of the shorter arc along the core geodesic. Replace
the second half of the journey by the hypotenuse of the right triangle formed
by the second perpendicular and the second half of the shorter arc along the
core geodesic. Now, to analyze the specific case of tuberadius ln(3)/2, we use
the hyperbolic Pythagorean theorem (see [F]) cosh c = (cosh a)(cosh b) with
a = ln(3)/2 and b = l/4. We get that the length of the constructed loop is
2Arccosh(cosh(ln(3)/2) cosh(l/4)) and this is less than l when l > 1.289784 . . .,
by a calculation (which follows) and the fact that

2Arccosh(cosh(ln(3)/2)(cosh(l/4)) − l

is a decreasing function of l.
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We solve explicitly for the value of l at which

2Arccosh(cosh(ln(3)/2)(cosh(l/4)) − l = 0.

Noting that cosh(ln(3)/2) = 2√
3

we get 2√
3
(cosh(l/4)) = cosh(l/2). Using a

half-angle formula for cosh(l/2) we get 2√
3
(cosh(l/4)) = 2 cosh2(l/4)−1. Setting

x = cosh(l/4) we get the quadratic 2√
3
x = 2x2 − 1. Solving and substituting,

we get l = 1.289784 . . .

Definition 1.12. Let P ⊂ P ′ be the set of those parameters α = (l + it,
d + ib, r + ia) such that

a) 0.0978 ≤ l ≤ 1.289785,
b) l/2 ≤ d ≤ ln(3),
c) 0 ≤ r ≤ l/2,
d) −π ≤ t ≤ 0,
e) −π ≤ b ≤ π,
f) −π ≤ a ≤ π.

Define T = T ′ ∩ P.

The point of the definition of P and T is as follows. We want to analyze
by computer the relationship between lengths of shortest geodesics and their
tuberadii in hyperbolic 3-manifolds. We were naturally led to the parameter
space P ′ and its subset T ′. But P ′ is problematic from the computational view-
point because it is noncompact. We wish to replace P ′ by P which is compact,
and T ′ by T in our computer analysis. This is carried out in Lemma 1.13.
Note that we worked to make P as small as reasonable to save computation
time; for example, the t and r restrictions above cut down the parameter space
by a factor of 4 over the obvious t and r restrictions.

Lemma 1.13. If α = (l + it, d + ib, r + ia) ∈ T ′ has d ≤ ln(3) and
corresponds to a 2-generator group {Gα, fα, wα}, then there exists a parameter
β = (l′ + it′, d′ + ib′, r′ + ia′) ∈ T with associated group {Gβ, fβ, wβ} such that
Gβ is conjugate (in Isom(H3)) to Gα.

Proof. We note that d < l/2 is eliminated from consideration by Proposi-
tion 1.11 i), and the definition of T ′. If d ≤ ln(3), then 0.0978 ≤ l ≤ 1.289785
by Propositions 1.10 and 1.11 ii). If for the marked group {G, f, w} we have
−l/2 < r < 0, then the marked group {G, f, w−1} is conjugate to an element
of T whose new r-parameter is −r. Thus we can assume that conditions a, b, c
from Definition 1.12 hold for the relevant {G, f, w}. Further, conditions e and
f hold.
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This leaves condition 1.12d. Conjugating G by a reflection in the geodesic
plane spanned by B(0;∞) and B(−1;1) changes the t-parameter to −t (mod 2π)
but leaves the r and d parameters unchanged. The effect on b and a is irrele-
vant.

By [G; Lemma 5.9] (or see Example A.3 in the appendix) a closed ori-
entable hyperbolic 3-manifold N satisfies the insulator condition provided that
tuberadius(δ) > ln(3)/2 for some closed geodesic δ ⊂ N. Thus we are led to
consider:

Problem 1.14. List all closed orientable hyperbolic 3-manifolds N pos-
sessing a shortest geodesic δ such that tuberadius(δ) ≤ ln(3)/2.

Remarks 1.15. i) By a J. Weeks-modified version of SnapPea [W1] it was
known experimentally that any shortest geodesic in Vol3 has a 0.415 . . . tube
(see [G]). Conjecturally, up to isometry, there are a total of six manifolds in
the list answering Problem 1.14 (see Conjecture 1.31 and Remarks 1.32ii and
1.32iv).

ii) If a shortest geodesic δ in N satisfies tuberadius(δ) ≤ ln(3)/2, then
N gives rise to an element α ∈ T . (In fact N may give rise to finitely many
different elements of T .) Thus we need to investigate:

Problem 1.16. Find all parameters α = (l + it, d + ib, r + ia) ∈ T .

Remark 1.17. In the next paragraphs, we will describe our method of
(partially) answering Problem 1.16. But before starting this description, we
mention a technical point: starting with Definition 1.22, we will realize ma-
jor advantages by working in the space W ⊃ exp(P), and our results will
ultimately be described in terms of W. But for now, for simplicity, we will
describe the results in terms of the unexponentiated space P.

We will partition P into about one billion regions {Pi} and show that T
is disjoint from all but seven small such regions. Suppose that Pi is a region of
this partition and α ∈ Pi. Let h be a word in the letters f, w and their inverses.
Associated to the parameter α = (lα + itα, dα + ibα, rα + iaα) there are the
group elements fα, wα and hence hα. If hα is not the identity then we ask

a) Is Relength(hα) < Relength(fα) = lα?

b) Is Redistance(hα(B(0;∞)), B(0;∞)) < Redistance(wα(B(0;∞)), B(0;∞))
= dα?

If either a) or b) is true, then α /∈ T .

Now let β ∈ Pi, with fβ, wβ, and hβ the associated hyperbolic isometries.
If say a) is true for α then so is the statement Relength(hβ) < Relength(fβ)
= lβ for β sufficiently close to α. Thus we can show that T ∩ Pi = ∅ if we can
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find an α for which, say, statement a) is true, and then use first-order Taylor
approximation (with error/remainder term) to show that the corresponding
statement holds for all β ∈ Pi while continuing to avoid the prohibition that
hβ not be the identity.

Definition 1.18. A word h in w, f, w−1, f−1 for which statement a) (resp.
b)) in Remark 1.17 holds for each β ∈ Pi and for which hβ is not a power of
fβ for each β ∈ Pi is called a killerword for Pi with respect to contradiction a)
(resp. b)).

Summary 1.19. With seven exceptions, to each of the approximately one
billion regions partitioning P, we will associate a killerword and a contradic-
tion.

Remark 1.20. Computers are well suited for partitioning a set such as
P into many regions {Pi}, and finding a killerword hi which eliminates all
αi ∈ Pi due to contradiction Ci. Depending on the contradiction, we find
computable expressions for approximations of the values of Relength(hβ) or
Redistance(hβ(B(0;∞)), B(0;∞)) and thus use the computer to eliminate all
of Pi.

There are a number of difficulties in executing this procedure. First, a
uniform mesh of the partition would yield far too many regions to be handled
by computer. In fact with six real parameters, refining a given mesh by a
factor of 10 would change the partition size by a factor of 106. Our method
for refining the parameter space and the way the computer keeps track of
the refinements are discussed briefly in Remark 1.26ii) and in more detail in
Chapter 5.

A second difficulty is finding the killerwords. In practice, most of the
parameter space is eliminated by killerwords of length less than 7, but a number
of spots use killerwords of length 10 and a few regions use killerwords of length
44. A brute force enumeration and testing of the various words would take
far too long. Note that there are 78,732 words of length 10 and 4×329 words
of length 30. An outline of the method we used for finding the partition of P
and the associated killerwords is given in Remark 1.34. However, the proofs
in this paper do not require the method for finding the partition of P and
the associated killerwords; they merely require having the partition and the
associated killerwords.

Finally, there is the issue of rigor. The main difficulty in making the plan
work rigorously is that, in computer calculations, we need to account for the
difference between the result of an operation and its approximate computed
value. The accumulated errors can become significant when performing many
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operations, such as when using a 43-letter word. A substantial portion of this
paper is devoted to addressing the issue of rigor. See also Preview 1.35.

Remark 1.21. To analyze Relength and Redistance as in Remark 1.17, we
would be led to work with the Arccosh function, because,

length(f) = 2Arccosh(trace(A)/2)

where A ∈ SL(2,C) represents the isometry f. (As we do not need this formula
for length(f) we will neither prove the formula, nor explain technical details
about it.) This would be problematic from the view-point of error analysis—we
do not want to deal with transcendental functions such as Arccosh.

This problem can be avoided slickly by exponentiating the preliminary
parameter space P to get the parameter space W (the definition of W is given
in Definition 1.22). Lemmas 1.24 and 1.25 then demonstrate that while working
in W one need only understand the basic arithmetic operations +,−,×, /,

√.
The machine implementation of these basic operations is governed by the IEEE
standard IEEE-754 (see [IEEE]).

To expand a bit on the problematic nature of transcendental functions,
we note that our computer version of Taylor approximations (see Preview 1.35
and Chapters 6 and 8) is designed to work for functions built up out of the
basic arithmetic operations. It would be a nightmare to include functions such
as the Arccosh.

Definition 1.22. Let

W = {(x0, x1, x2, x3, x4, x5) : |xi| ≤ 4 × 2(5−i)/6 for i = 0, 1, 2, 3, 4, 5}

⊃ exp(P) = {(x0, x1, x2, x3, x4, x5) | x0 + ix3 = exp(e), x1 + ix4 = exp(f),

x2 + ix5 = exp(g) where(e, f, g) ∈ P}
and let

S = exp(T ).

As we are taking exp of the various complex co-ordinates, it is notationally
convenient to replace our complex parameters L = l+it, D = d+ib, R = r+ia

by exponentiated versions. That is, let

L′ = exp(L) = exp(l + it), D′ = exp(D) = exp(d + ib),

R′ = exp(R) = exp(r + ia).

Remarks 1.23. i) We work with W instead of exp(P) because we want
our initial parameter space to be a (6-dimensional) box that is easily subdi-
vided. This has the side effect that certain regions (sub-boxes) Wi of W will
be eliminated because they are outside of exp(P) not because of the analogues
of conditions a) and b) in Remark 1.17. The entire collection of conditions is
given in Chapter 5.
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ii) The presence of the factor 2(5−i)/6 in the definition of W is explained
in Construction 5.3. Briefly, the main reason for including it is to make the
shape of regions stay as uniform and “round” as possible under subdivision.
This makes the Taylor approximations efficient, hence fast.

iii) We chose the co-ordinates of W so that L′ = x0 + ix3, D′ =
x1 + ix4, R′ = x2 + ix5 to gain a mild computer advantage.

Lemma 1.24. If (L′, D′, R′) ∈ W and {G, f, w} is the associated normal-
ized marked group, then f and w have matrix representatives

a) f =
(√

L′ 0
0 1/

√
L′

)
,

b) w =
(√

R′ ∗ ch
√

R′ ∗ sh

sh/
√

R′ ch/
√

R′

)

where ch = (
√

D′ + 1/
√

D′)/2 and sh = (
√

D′ − 1/
√

D′)/2.

Proof. a) In our set-up the (oriented) axis of f is B(0;∞). As such, f

corresponds to a diagonal matrix, with diagonal entries p and p−1, with |p| > 1.

The action of f on the bounding complex plane is simply multiplication by p2.

Extending this action to upper-half-space in the natural way rotates the z-axis
by angle arg(p2) and sends (0, 0, 1) to (0, 0, |p|2). Thus,

Im(length(f)) = arg(p2) = Im(ln(p2))

and, using the hyperbolic metric,

Re(length(f)) = ln(|p|2) = Re(ln(p2)).

That is, length(f) = ln(p2) and

p = ± exp(length(f)/2) = ±
√

exp(length(f)) = ±
√

exp(L) = ±
√

L′.

Now, we take the positive square root (taking the negative square root produces
the other lift from PSL(2,C) to SL(2,C)).

b) w = β ◦ α where β is translation of distance R along B(0;∞) and α is
translation of distance D along B(−1;1). Thus, a matrix representative of β is(√

R′ 0
0 1/

√
R′

)

and a matrix representative of α can be computed to be(
cosh(D/2) sinh(D/2)
sinh(D/2) cosh(D/2)

)
.

But cosh(D/2) = (exp(D/2) + exp(−D/2))/2 = (
√

D′ + 1/
√

D′)/2 = ch and
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similarly for sh. Thus,

α =
(

ch sh

sh ch

)

and b) follows by matrix multiplication.

Lemma 1.25. If h ∈ Isom+(H3) is represented by the matrix

A =
(

a b

c d

)
∈ SL(2,C),

then

a) exp(Relength(h)) = |trace(A)/2 ±
√

(trace(A)/2)2 − 1|2,

b) exp(Redistance(h(B(0;∞)), B(0;∞))) = |orthotrace(A)±√
(orthotrace(A))2 − 1| where orthotrace(A) = ad + bc.

In both cases, the +,− produce reciprocal values for the right-hand side, and
we take the one producing the larger value, unless the value is 1, in which case
there is no need to choose.

Proof. a) If A is elliptic or parabolic, the proof is straightforward (the
trace of a parabolic is ±2 while the trace of an elliptic is a real number between
2 and -2).

We assume A is hyperbolic. Because trace is a conjugacy invariant, we
can assume the oriented axis of A is B(0;∞). Thus A is a diagonal matrix with
p and p−1 along the diagonal with |p| > 1, and, as in the proof of Lemma 1.24,
we see that exp(length(h)) = p2. Of course, trace(A) = p + p−1, and it is easy
enough to solve for p. Specifically, p = trace(A)/2±

√
(trace(A)/2)2 − 1. Thus,

exp(Relength(h)) = | exp(length(h))| = |p|2

= |(trace(A)/2) ±
√

(trace(A)/2)2 − 1|2.

b) If B(0;∞) and h(B(0;∞)) intersect at infinity, then the proof is straightfor-
ward. For example, if h fixes the point (0, 0, 0) at infinity, then c = 0, ad = 1
and the formula holds. Similarly for the other cases in which B(0;∞) and
h(B(0;∞)) intersect at infinity.

We assume B(0;∞) and h(B(0;∞)) do not intersect at infinity. We will
compute the length of k, the square of the transformation taking B(0;∞) to
h(B(0;∞)) along their ortholine. Let τ be 180-degree rotation about B(0;∞),

then (h ◦ τ ◦ h−1) is 180-degree rotation about h(B(0;∞)), and we have that
k = (h ◦ τ ◦ h−1) ◦ τ. Now, τ and h are represented by the matrices(

i 0
0 −i

)
and

(
a b

c d

)
∈ SL(2,C).
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Hence, k = (h ◦ τ ◦ h−1) ◦ τ can be computed to have matrix representation

(
ad + bc 2ab

2cd ad + bc

)
.

Thus,

exp(Redistance(h(B(0;∞)), B(0;∞)))

= exp(Relength(k)/2) =
√
| exp(length(k)|

= |(trace(k)/2) ±
√

(trace(k)/2)2 − 1|

= |(ad + bc) ±
√

(ad + bc)2 − 1|.

Remarks 1.26. i) It follows from Lemma 1.25 that if h is a word in
f, w, f−1, w−1, then for any parameter value α ∈ W,

exp(Relength(hα)), and exp(Redistance(hα(B(0;∞)), B(0;∞)))

can be computed using only the operations +,−,×, /,
√

.

ii) During the course of the computer work needed to prove the main
theorems, the parameter space W was decomposed into sub-boxes by computer
via a recursive subdivision process: Given a sub-box being analyzed, either
it can be killed directly (that is, eliminated by a killerword and associated
condition as described in Remark 1.17, or for the trivial reason described in
Remark 1.23i), or it cannot. If it cannot be killed directly, it is subdivided in
half by a hyperplane {xi = c} (where i runs through the various co-ordinate
dimensions cyclically) and the two pieces are analyzed separately, and so on.

As such, a sub-box of W can be described by a sequence of 0’s and 1’s
where 0 means “take the lesser xi values” and 1 means “take the greater xi

values.” For the decomposition of W into sub-boxes, all the sub-box descrip-
tions could be neatly encoded into one tree (although in practice we found it
preferable to use several trees to describe the entire decomposition. See §5).

iii) In the following proposition, seven exceptional boxes are described as
sequences of 0’s and 1’s. Four of the exceptional boxes—X0, X4, X5, X6—are
each the union of two abutting sub-boxes, X0 = X0a ∪ X0b and so on. It is a
pleasant exercise to work through the fact that they abut. It should be noted
that had the set-up for W been different, more sub-boxes (or perhaps fewer)
might have been needed to construct the seven exceptional regions.

It is also a pleasant exercise to calculate by hand the co-ordinate ranges
of the various sub-boxes. For example, the range of the last co-ordinate (i.e.,
x5) of the sub-box
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X6a = 111000000001000111 111111110101001111 011111010111111111

110001001011000111 0

is found by taking the 6th entry, the 12th entry, the 18th entry, and so on.
These entries are 011111111111. The first entry (0) means take the lesser x5

values, and produces the interval [−4, 0]. The second entry (1) means take
the greater x5 values, and produces the interval [−2, 0]. The third entry (1)
produces [−1, 0]. Continuing, we see that X6a has −2−9 ≤ x5 = Im(R′) ≤ 0.

The other co-ordinates can be computed in the same fashion, although they
must at the end be multiplied by the factor 2(5−i)/6 (see the definition of
the initial box W). The range of co-ordinate values for each exceptional box
X0, X1, . . . , X6 is given in Table 1.1 (a limited number of significant digits is
given), and then a range of co-ordinates for exceptional regions (in P) Ri ⊃
exp−1(Xi) is given (see Remarks 1.30i) and 1.30ii)) in Table 1.2. (Note that
this use of the symbol Ri differs slightly from the use in §0.) Finally, two quasi-
relators are given in Proposition 1.28 for each exceptional box X0, X1, . . . , X6

(see the next definition).

Definition 1.27. A quasi-relator in a sub-box X of W is a word in
f, w, F = f−1, W = w−1 that is close to the identity throughout X and ex-
perimentally appears to be converging to the identity at some point in X. In
particular, a quasi-relator rigorously has Relength less than that of f at all
points in X.

Proposition 1.28. Within the parameter space W but outside the seven
exceptional boxes there are no parameter points corresponding to marked groups
{G, f, w} where G is discrete, torsion-free and parabolic-free; f corresponds
to a shortest geodesic δ of tuberadius ≤ ln(3)/2; and w takes a particular lift
of δ to a nearest translate. Specifically, S ∩ (W − ⋃

n=0,...,6 Xn) = ∅ where the
Xn are the exceptional boxes

X0 = X0a ∪ X0b,

X0a = 001000110111110001 101001010101011001 011011010111101101
100001101101000111 010001110101100101 1101110111110100,

X0b = 001001110110110000 101000010100011000 011010010110101100
100000101100000110 010000110100100100 1101100111100100,

X0 quasi -relators:
r1 = fwFwwFwfww,

r2 = FwfwfWfwfw,

X1 = 001000110001110110 011101000110111110 100010110000100011
101101001101001000 110101011000000100 000.
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X1 quasi -relators:
r1 = FFwFWFWfWFWFwFFww,

r2 = FFwwFwfwfWfwfwFww,

X2 = 001000110101010010 101010110001100101 110111100001101010
111100100000010001 111100,

X2 quasi -relators:
r1 = FwfwfWffWfwfwFww,

r2 = FFwFFwwFwfwfwFww,

X3 = 111000000001000110 011011101101011000 111101011110001100
111111100110110000 0000100010100010,

X3 quasi -relators:
r1 = FFwfwFFwwFWFwFWfWFWffWFWfWFwFWFww,

r2 = FFwfwFwfWfwfWWfwfWfwFwfwFFwwFWFww,

X4 = X4a ∪ X4b,

X4a = 111000000001000110 011001001111101010 011110110110111101
100011111110110110 10000111101,

X4b = 111000000001000110 011001001111101010 111110010110011101
000011011110010110 00000101101,

X4 quasi -relators:
r1 = FFwfwFwfWfwfWfwFwfwFFwwFWFwFWFww,

r2 = FFwfwFwfwFFwwFWFwFWfWFWfWFwFWFww,

X5 = X5a ∪ X5b,

X5a = 001000110001110111 001111000101111111 101111100111001111
000001111011110111 1,

X5b = 001001110000110110 001110000100111110 101110100110001110
000000111010110110 1,

X5 quasi -relators:
r1 = FwFWFwFwfwfWfwfw,

r2 = FwfwfWfWFWfWfwfw,

X6 = X6a ∪ X6b,

X6a = 111000000001000111 111111110101001111 011111010111111111
110001001011000111 0,

X6b = 111001000000000110 111110110100001110 011110010110111110
110000001010000110 0,

X6 quasi -relators:
r1 = FWFwFWfWFwFWFwfw,

r2 = FWFwfwFwfWfwFwfw.
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Proof. The proof follows along the lines presented in Remark 1.17. Two
computer files contain the data needed for the proof. The first computer file
describes the partition of W into sub-boxes and attaches an integer to each
such sub-box, and the second file, called “conditionlist” is an ordered list of
conditions and killerwords. The integer associated to a sub-box in the first
file describes the numbered condition/killerword from conditionlist that will
eliminate the sub-box in question (other than those corresponding to the Xi).
A computer program named verify shows that the conditions and killerwords
in question actually do kill off their associated sub-boxes (see Section 5 for
more details). This computer program addresses the issues of Remark 1.20.
The code for verify is available at the Annals web site.

In addition, a mild modification of verify showed that the listed words
were quasi-relators for the given sub-boxes.

Corollary 1.29. If δ is a shortest geodesic in N, a closed orientable
hyperbolic 3-manifold, then

i) either tuberadius(δ) > ln(3)/2 or exp(length(δ)) ∈ L(Xk) for some
k ∈ 0, . . . , 6 where L(Xk) denotes the range of L′ values in the excep-
tional box Xk.

ii) Either tuberadius(δ) > ln(3)/2 or tuberadius(δ) = Re(D)/2 where
exp(D) ∈ D(Xk) for some k ∈ 0, . . . , 6 and D(Xk) denotes the range
of D′ values in the exceptional box Xk.

Table 1.1: Exceptional boxes in (L′, D′, R′) co-ordinates in W; truncated
values:

X0

l′min = −0.84065 l′max = −0.84060 t′min = −2.13726 t′max = −2.13722
d′min = −0.84064 d′max = −0.84059 b′min = −2.13729 b′max = −2.13722
r′min = 0.999979 r′max = 1.000022 a′

min = −0.00006103 a′
max = 0.00006103

X1

l′min = −1.34852 l′max = −1.34831 t′min = −2.66102 t′max = −2.66072
d′min = −0.54334 d′max = −0.54315 b′min = −2.85877 b′max = −2.85849
r′min = 0.90390 r′max = 0.90408 a′

min = −1.47167 a′
max = −1.47143

X2

l′min = −1.78701 l′max = −1.78527 t′min = −2.27253 t′max = −2.27130
d′min = −1.07428 d′max = −1.07273 b′min = −2.71846 b′max = −2.71736
r′min = 0.74163 r′max = 0.74301 a′

min = −1.52929 a′
max = −1.52832

X3

l′min = 0.58117 l′max = 0.58160 t′min = −3.31221 t′max = −3.31190
d′min = 1.15644 d′max = 1.15683 b′min = −2.75628 b′max = −2.75573
r′min = 1.40420 r′max = 1.40454 a′

min = −1.17968 a′
max = −1.17919
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X4

l′min = 0.33321 l′max = 0.33495 t′min = −3.31959 t′max = −3.31898
d′min = 0.97739 d′max = 0.97817 b′min = −2.82533 b′max = −2.82478
r′min = 1.35413 r′max = 1.35482 a′

min = −1.22558 a′
max = −1.22460

X5

l′min = −1.37984 l′max = −1.37810 t′min = −2.53706 t′max = −2.53460
d′min = −1.37967 d′max = −1.37657 b′min = −2.53650 b′max = −2.53430
r′min = 0.99989 r′max = 1.00265 a′

min = −0.001953 a′
max = 0.001953

X6

l′min = 1.37810 l′max = 1.37984 t′min = −2.53706 t′max = −2.53460
d′min = 1.37657 d′max = 1.37967 b′min = −2.53650 b′max = −2.53430
r′min = 0.99989 r′max = 1.00265 a′

min = −0.001953 a′
max = 0.001953

Table 1.2: Exceptional regions (boxes) in (L, D, R) co-ordinates in P

R0

lmin = 0.8314 lmax = 0.8315
tmin = −1.9456 tmax = −1.9455
dmin = 0.8314 dmax = 0.8315
bmin = −1.9456 bmax = −1.9455
rmin = −0.00002051 rmax = 0.00002267
amin = −0.00006105 amax = 0.00006105

R1

lmin = 1.0928 lmax = 1.0931 tmin = −2.0399 tmax = −2.0397
dmin = 1.0680 dmax = 1.0682 bmin = −1.7587 bmax = −1.7585
rmin = 0.5463 rmax = 0.5465 amin = −1.0201 amax = −1.0198

R2

lmin = 1.0608 lmax = 1.0617 tmin = −2.2375 tmax = −2.2366
dmin = 1.0720 dmax = 1.0727 bmin = −1.9473 bmax = −1.9466
rmin = 0.5298 rmax = 0.5308 amin = −1.1193 amax = −1.1182

R3

lmin = 1.2126 lmax = 1.2129 tmin = −1.3972 tmax = −1.3969
dmin = 1.0947 dmax = 1.0951 bmin = −1.1736 bmax = −1.1733
rmin = 0.6063 rmax = 0.6067 amin = −0.6988 amax = −0.6984

R4

lmin = 1.2046 lmax = 1.2050 tmin = −1.4708 tmax = −1.4702
dmin = 1.0949 dmax = 1.0953 bmin = −1.2378 bmax = −1.2374
rmin = 0.6019 rmax = 0.6027 amin = −0.7357 amax = −0.7349
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R5

lmin = 1.0595 lmax = 1.0606 tmin = −2.0694 tmax = −2.0683
dmin = 1.0591 dmax = 1.0604 bmin = −2.0694 bmax = −2.0680
rmin = −0.0001069 rmax = 0.002654 amin = −0.001954 amax = 0.001954

R6

lmin = 1.0595 lmax = 1.0606 tmin = −1.0733 tmax = −1.0722
dmin = 1.0591 dmax = 1.0604 bmin = −1.0736 bmax = −1.0722
rmin = −0.0001069 rmax = 0.002654 amin = −0.001954 amax = 0.001954

Remarks 1.30. i) The values in Table 1.1 are only approximations of actual
values which can be computed as in Remark 1.26iii.

ii) The values in Table 1.2 correspond to boxes in P which contain the
natural log of the (exceptional) boxes in Table 1.1 (here we use the true co-
ordinates of the boxes, not just the approximation-by-truncation co-ordinates).
For example, the rectangle in C determined by lmin, lmax, tmin, tmax for R0

contains the natural log of the rectangle in C determined by l′min, l
′
max, t

′
min, t

′
max

for X0.

iii) In Chapter 3 we show that X0∩T is a single parameter. This parameter
has L = D = 0.8314429 . . . − (1.9455307 . . .)i and R = 0.

iv) Recall that ln(3) = 1.0986 . . . . Thus we see that all boxes but R0 lie
close to the boundary of the parameter space P. Boxes R3,R4 are particularly
close to the edge.

Conjecture 1.31. Each exceptional box Xi, 0 ≤ i ≤ 6, contains a
unique element si of S. Further, if {Gi, fi, wi} is the marked group associated
to si then Ni = H3/Gi is a closed hyperbolic 3-manifold with the following
properties:

i) Ni has fundamental group 〈f, w; r1(Xi), r2(Xi)〉, where r1(Xi), r2(Xi)
are the quasi -relators associated to the box Xi.

ii) Ni has a Heegaard genus 2 splitting realizing the above group presentation.

iii) Ni nontrivially covers no manifold.

iv) N6 is isometric to N5.

v) If (Li, Di, Ri) is the parameter in T corresponding to si, then Li, Di, Ri

are related as follows.

For X0, X5, X6 : L = D, R = 0.

For X1, X2, X3, X4 : R = L/2.
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Remarks 1.32. i) Experimentally, at some point in the exceptional box Xi

under consideration the quasi-relators are actually relators.

ii) In Chapter 3, we prove Conjecture 1.31 for X0. Recently, K. Jones
and A. Reid have made further progress on Conjecture 1.31 (see [JR]). Among
other things, they construct arithmetic hyperbolic 3-manifolds associated to
each exceptional box but X3 and prove that the manifolds so constructed for
X5 and X6 are isometric. They are able to prove uniqueness in the case of X0

and the techniques they use generalize to the other arithmetic hyperbolic 3-
manifolds, but the analysis is more complicated and the question of uniqueness
remains open in these cases.

iii) According to Heegaard [Ber], for each i, there exists a closed 3-manifold
Bi of Heegaard genus 2 such that π1(Bi) = 〈f, w; r1(Xi), r2(Xi)〉 and this group
presentation arises naturally from the Heegaard splitting.

iv) Experimental evidence suggests that the manifolds associated to X5

and X6 are both isometric to the Weeks census manifold s479(−3, 1). Also ex-
perimentally, the manifold associated with X2 is s778(−3, 1) and the manifold
associated with X1 is v2678(2, 1).

v) Except for Vol3, R. Riley’s program Poincaré (see [R]) was the first to
show (experimentally) that there is a closed orientable (hyperbolic) 3-manifold
associated to each box. It provided group presentations, which presumably
could be shown to be those of the above.

vi) Table 1.2, Conjecture 1.31, and Remark 1.32v) indicate that there
is a closed hyperbolic 3-manifold with shortest geodesic δ having 1.2126 <

Relength(δ) < 1.2129 and tuberadius(δ) < ln(3)/2. This indicates that the
Proposition 1.11ii) result tuberadius(δ) > ln(3)/2 if Relength(δ) > 1.289785 is
somewhat close to being sharp.

The following conjecture is a succinct, though slightly weaker form of
Conjecture 1.31.

Conjecture 1.33. If δ is a shortest geodesic in a closed orientable
hyperbolic 3-manifold N, then either tuberadius(δ) > ln(3)/2 or N is one of six
exceptional manifolds.

Remark 1.34. Here we outline our method for finding a decomposition
of the initial box W into sub-boxes (other than those making up the seven
exceptional boxes) each with a condition/killerword that kills off the entire
associated sub-box. For convenience, we will generally refer to a “sub-box”
simply as a “box.”

A simple algorithm for finding a killerword for a region is as follows. Work
with a set of words to consider, initialized to the null word. At each step,
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remove the oldest word from the set, and test to see if that word is a killerword.
If it is not, put the word back into the set, concatenated with each of the
generators and their inverses. Eventually, this algorithm will enumerate all
words, and so, if there is a killerword, the algorithm will eventually find it. In
practice, there are two problems with this approach: there is no provision for
the possibility that no killerword exists for the region under consideration, and
the time to find a word of length n grows exponentially.

When we also take into account the possibility of subdividing the box,
getting an answer in finite time will be possible; but the search is in practice
very expensive. The most obvious way of speeding it up is to avoid the search
entirely when feasible: a killerword works on a neighborhood of a region, and
by testing killerwords found for nearby boxes, most of the time the search is
not necessary.

Still, there are words of length as long as 44 that were considered, and
testing all of the roughly 344 combinations would be prohibitive on today’s
computers. In practice (due to a bug), the search algorithm used for most of
the parameter space was no better than the brute-force method just described,
but to find killerwords for the remaining regions, an improvement was needed.
Rather than blindly selecting words in first-in-first-out order, the algorithm
can rank the words under consideration based on a heuristic estimate of the
likelihood of their being useful (a word is useful if it is a prefix of a killerword).
We note first that short words tend to be better than long words, as they have
fewer steps and less error. Second, we note that words with a large translation
distance are given a bad ranking, for two reasons: they will need more gener-
ators appended before they get back to the small translation distance which
is needed for a contradiction, and computations with those words introduce
more error per step than computations with closer words.

This approach was an improvement, but was not finding enough killer-
words in the regions around X3 and X4. Further investigation showed that
the algorithm was getting stuck on an identity: once it found an identity, it
would consider only words which started with that identity, and ignored all of
the other words. To fix this problem, a “diversity” heuristic was introduced,
to give special consideration to unlikely but unusual words.

To prevent the search from running forever, it is temporarily abandoned
after some number of steps, and re-done with twice as many steps every time
the number of descendant boxes doubles. This way, the search could run
forever, but only if the subdivision process runs forever. This merged process
of alternately searching and subdividing we call the decomposition algorithm.

The decomposition algorithm went through several revisions; at each stage
of the revision process, the algorithm effectively increased the extent to which
killerwords found for one region were used to kill other regions. The first
attempt—used to determine the feasibility of the whole effort— iterated over
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regions in depth-first order, performing the search as described above. At that
stage, it became evident that the search process, as opposed to the subdivi-
sion process, was consuming nearly all of the computation time, and so the
second version iterated over regions in breadth-first order, and, once it found
a killerword, tried to use that word on all adjacent regions.

The breadth-first version was used to analyze the entire parameter space,
although it skipped some parts due to various bugs; the search heuristic was
replaced once, and there was considerable human input to tell the search about
particularly difficult killerwords, or to tweak its search parameters (length, and
weightings in the heuristic).

The third stage of the revision process reduced the number of boxes by
attempting all found killerwords in a large region (about a thousand boxes) on
all boxes in the region. It did not do any searching, since it was provided with
a list of killerwords known to work.

The final version was created when the bugs in evaluation were brought to
light, and the existing killerword tree was found to be insufficient. It used the
list of killerwords used for the entire tree, and some statistics about the number
of subdivisions required in order for a given word to kill a particular box, and
evaluated each word on each box. Whenever a word was evaluated, a kind of
triage was used to determine whether that word was likely to kill the box in
question, likely to kill any of its nth generation descendants, or unlikely to kill
any descendants of the box; the answer to that heuristic either allowed more
detailed evaluation (with the error term included), deferred further evaluation
until the box had been subdivided n more times, or excluded that word from
further consideration on any descendant of the box. With these heuristics, this
program wound up evaluating on average about 10 of the roughly 13200 words
per box, and was able to construct the tree consisting of the decomposition
into sub-boxes with associated conditions/killerwords.

We mention that the bugs, complexity, and frequent changes in the search
programs are irrelevant to the accuracy of the verification. In fact, we shielded
the verification programs from internal issues related to the searching pro-
grams. Given a putative decomposition of the parameter space into sub-
boxes with associated conditions/killerwords the program verify simply checks
whether this decomposition with conditions/ killerwords works.

Preview 1.35. In Remark 1.17, we mentioned that we use first-order Tay-
lor approximations, with remainder term, to show that a killerword which
eliminates a point x ∈ Wi eliminates all of Wi. The computational object we
constructed to carry out these Taylor approximations is called an AffApprox.
In the parameter space W, all functions analyzed via Taylor approximations in
this way are built up from the operations +, −, ×, /,

√
. We prove combina-
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tion formulas for these operations, which show how the Taylor approximations
(including the remainder term) change when one of these operations is applied
to two AffApproxes. This is carried out in Chapter 6.

To ensure that all of our computer calculations are rigorous, we use a
round-off error analysis. Typically, this is done by using interval arithmetic
on floating-point numbers. Instead, we introduce round-off error at the level
of AffApproxes and incorporate the round-off error into the remainder term.
The main reason for this additional complexity is to get more accuracy in
our calculation of AffApproxes, which allows us to analyze substantially fewer
boxes. Further, the individual computations are faster. This is all carried out
in Sections 7 and 8.

2. The corona insulator family

The upshot of Proposition 1.28 is that if a closed orientable hyperbolic
3-manifold has a shortest geodesic which does not have an embedded ln(3)/2
tube then the parameters for its associated marked group(s) (G, f, w) must
be in one of the exceptional boxes X0, X1, . . . , X6 listed in that proposition.
Nonetheless—as we shall see in this section and the next—such manifolds have
noncoalescable insulator families about their shortest geodesics, although they
might not be Dirichlet insulator families. A review of the theory of insulators
in hyperbolic 3-manifolds is provided in the appendix.

In this section, we describe a new insulator family {κij} called the corona
insulator, and we describe a condition sufficient for this family to be non-
coalescable—a condition which is weaker than the tuberadius(δ) > ln(3)/2
sufficient condition for the Dirichlet insulator family.

The reason Dirichlet insulator families for geodesics with solid tubes of
radius greater than ln(3)/2 are noncoalescable is that the amount of visual
angle taken up by the various insulators is less than 120 degrees, and thus
there is no chance for tri-linking to occur. The visual angle (measured at one
axis) for a member of the Dirichlet insulator family associated to two axes
depends only on the real distance between the two axes.

In contrast, the visual angle for a member of the corona insulator family
associated to two axes depends on the complex distance between the two axes.
We now define this function C of complex distance, and name it the corona
function. After that we give a precise definition of the visual angle function,
and prove that the corona function is the proper visual angle function for the
corona insulator family.

Definition 2.1. Let C : (0,∞) × [−π, π] → (0, π) be defined by

C(u, v) = Abs
(

Im
(

Arccosh
(

1 − 4
1 ± cosh(u + iv)

)))
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where ± is positive for −π/2 ≤ v ≤ π/2 and negative otherwise. The branch
of Arccosh is chosen so that the values of the corona function lie between 0
and π.

3

2.5

2.0

1.5

1.0

0

0.5

0.8 0.85 0.9 0.95 1.00 1.05 1.10

120 degree contour

Figure 2.1. The 102 to 120 degree contours for the corona function
C(u, v) (for example, the 120 degree contour corresponds to where
the corona function takes on value 2π/3).

In the following definition, it is helpful to imagine the geodesic σ as being
the z-axis in the upper-half-space model of H3.

Definition 2.2. If σ ⊂ H3 is a geodesic, then S2
∞−∂σ can be parametrized

by S1 × R, where R represents the set of real numbers. Each x × R lies in
the ideal boundary of a hyperbolic half-plane bounded by σ. Two such lines
x × R, y × R are at distance θ in the S1 factor if they meet at ∂σ at angle
θ. Consider a region R in S2

∞ − ∂σ, and define visualangleσ(R) = θ ∈ [0, 2π]
as follows. Let θ be the infimum of lengths of closed subintervals J of S1 such
that R ⊂ J × R, if there is such a subinterval, and let θ = 2π if there is no
such subinterval.

Proposition 2.3. Let δi, δj be disjoint oriented geodesics in H3. Then
there exists a smooth simple closed curve κij in S2

∞ separating ∂δi from ∂δj

such that for k ∈ {i, j}, visualangleδk
(κij) = C(distance(δi, δj)).
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Proof. Let P be the orthocurve from δi to δj . Consider the half-plane with
boundary δi containing P, and the half-plane with boundary δj containing P.

Allow these half-planes to expand into wedges at the same rate. (A wedge is
a closed set in B3 = H3 ∪ S2

∞ bounded by two hyperbolic half-planes which
meet along a common geodesic.) At first, the four half-planes that bound these
wedges intersect in H3, but at some angle θ these half-planes intersect only
at infinity (that is, in S2

∞). By reasons of symmetry they intersect in two or
four points (four points of intersection occur when Im(distance(δi, δj)) is π/2
or −π/2).

Let Ai, Aj be the wedges which exist at angle θ. Let Tk = Ak ∩ S2
∞ for

k ∈ {i, j}. Let κij be a simple closed curve in Ti ∩ Tj which separates ∂δi from
∂δj . By construction, for k ∈ {i, j}, visualangleδk

(κij) = θ, and θ is in [0, π].
See Figure 2.2 (and compare with Figure 2.3).

S - T

j

j
2Ti Ti

θ

θ

θθ

∂δ

∂δ

j∂δ

ii ∂δ

κ

ij

ij

κ

Figure 2.2. Here dist(δi, δj) is approximately .9 + (2π/5)i and
C(dist(δi, δj)) is approximately 2π/3. Note that the lightly shaded
region is Ti ∩ Tj while the darkly shaded region is S2

∞ − Tj .
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Figure 2.3. Two versions of the degenerate right-angled hexagon.

To complete the proof of the proposition, we now show that θ =
C(distance(δi, δj)). To do this, we use hyperbolic trigonometry on a degen-
erate right-angled hexagon in H3. By [F], a degenerate right-angled hexagon
is a 5-tuple of oriented geodesics S1, · · · , S5 in H3 such that Si is orthogonal
to Si+1 and S1 and S5 limit at a common point S0 at infinity. These oriented
geodesics give rise to complex numbers σ0, σ2, σ3, σ4 representing signed edge
lengths. For k ∈ {2, 3, 4}, σk = dSk

(Sk−1, Sk+1) where a dSk
(Sk−1, Sk+1) trans-

lation of H3 along the oriented geodesic Sk takes the oriented geodesic Sk−1

to the oriented geodesic Sk+1 (see Definition 1.4). The remaining (degenerate)
edge length is given by σ0 = 0 if the axes S1 and S5 either both point into
S0 or both point out of S0; otherwise σ0 = πi. By [F; pg. 83] we have the
following hyperbolic law of cosines.
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cosh(σ0) = cosh(σ2) cosh(σ4) + sinh(σ2) sinh(σ4) cosh(σ3).

We work in the upper-half-space model of hyperbolic 3-space, and nor-
malize so that the ortholine from δj to δi is B(0;∞) (thus δi intersects B(0;∞)

above δj), while the oriented axis δi is B(−1;1). Now, B(0;∞) will be S3 while
the oriented geodesics δi and δj will be S2 and S4, respectively.

Let, u+ iv = distance(δi, δj). If −π/2 < v < 0 then the intersection points
at infinity occur in the second quadrant and the fourth quadrant. See Figure
2.3a. For convenience, we work with the point in the second quadrant and send
(unique) perpendiculars from it to the geodesics δi and δj . The perpendicular
to δi will be oriented towards δi and then denoted S1, while the perpendicular
to δj will be oriented away from δj and then denoted S5. The intersection point
at infinity (in the second quadrant) is S0.

This is the proper set-up for applying the (degenerate) hyperbolic law
of cosines (see Figure 2.3b). Note that σ3 = −(u + iv), and σ0 = iπ. By
symmetry σ2 = σ4 = (α+ iβ)/2 where (α+ iβ)/2 is distance(S1, S3). Plugging
into the law of cosines, using a half-angle formula (cosh(2z) = 2 cosh2(z)−1 =
2 sinh2(z) + 1), solving for cosh(α + iβ), and taking the Arccosh, we get the
desired result. Note that the visual angle in this set-up is −β, thus necessitating
taking the absolute value.

When 0 < v < π/2 our two intersection points occur in the first and third
quadrants, and we carry out the same procedure. This time S2 and S4 are
traversed in the direction opposite to their orientations (the attendant changes
in sign drop out though). In this case, the visual angle is β.

The special cases v = −π/2, 0, π/2 follow similarly.
The cases −π ≤ v ≤ −π/2 and π/2 ≤ v ≤ π reduce to the previous cases

after adding or subtracting π. The formula in Definition 2.1 is then obtained
after we note that cosh(z ± iπ) = − cosh(z).

Definition 2.4. Let δ be a simple closed geodesic in the closed orientable
hyperbolic 3-manifold N. Let {δi}i≥0 be the lifts of δ to H3. For each π1(N)-
orbit of unordered pairs (δi, δj) choose a representative where i = 0. If
Redistance(δ0, δi) ≤ ln(3), then let κ0j be a smooth simple closed curve in
S2 separating ∂δ0 from ∂δj such that for k ∈ {0, j}, visualangleδk

(κ0j) =
C(distance(δ0, δj)). If Redistance(δ0, δi) > ln(3), then let κ0j be the Dirichlet
insulator, i.e. the boundary of the geodesic plane orthogonally bisecting the
orthocurve between δ0, δj .

In either case, extend the collection π1(N)-equivariantly to a family {κij}
defined for all i, j. This is the corona family for δ.

Lemma 2.5. The corona family {κij} is
i) an insulator family for δ

ii) noncoalescable if max{C(distance(δ0, δj)) | j > 0} < 2π/3.
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Proof. We check that {κij} satisfies the various conditions of Definitions
A.1 and A.2 in the appendix.

i) By construction, κij separates ∂δi from ∂δj and {κij} is π1(N)-equivariant.
For k ∈ {i, j}, δk-visualangle(κij) < π, and so {κij} satisfies the convexity
condition.

Modulo the natural action of π1(N) on κij , there are only finitely many
insulators κij which are not Dirichlet insulators. Therefore, for fixed i, there
exist only finitely many κij such that diam(κij) > ε. This establishes local
finiteness.

ii) No tri-linking follows immediately from the “less than 2π/3” condi-
tion.

Definition 2.6. If δ is a simple closed geodesic in the hyperbolic 3-manifold
N, define maxcorona(δ) = max{C(distance(δ0, δj)) | j > 0}.

Remarks 2.7. i) It seems possible that the Dirichlet insulator family as-
sociated to a geodesic δ ∈ N may be noncoalescable, while a corona insula-
tor family is coalescable and conversely (corona family noncoalescable while
Dirichlet family coalescable).

ii) If tuberadius(δ) > ln(3)/2, then the Dirichlet insulator and corona in-
sulator families coincide, and they are noncoalescable because tuberadius(δ) >

ln(3)/2 implies the relevant visual angles are less than 120 degrees, hence tri-
linking cannot occur (see Example A.3, or Lemma 5.9 of [G]). Note that these
facts together with Proposition 2.3 imply that C(u, v) < 2π/3 if u > ln(3).

iii) The corona family is not uniquely defined for there is some choice in
constructing the κ0j ’s.

Proposition 2.8. Let δ be a shortest geodesic in the closed orientable
hyperbolic 3-manifold N. Then either a corona insulator family is noncoa-
lescable or there exists a marked group {G, f, w} where G is a subgroup of
π1(N) and the parameter associated to {G, f, w} lies in the exceptional box
X0 = X0a ∪ X0b ⊂ W.

Proof. We will show that if {G′, f, w′} is any marked group in π1(N)
with f minimizing length, w′ maximizing C(distance(h(Af ), Af )) where
h ∈ G − {fk}, and with C(distance(w′(Af ), Af )) ≥ 2π/3, then there is a
marked group {G, f, w} (where G is a subgroup of G′ and w takes Af to a
nearest translate) with associated parameter β = (L′

β, D′
β, R′

β) ∈ X0. Here, as
in Definition 1.2, Af denotes the axis of f .

We note that the parameter associated to a length-minimizing, corona-
maximizing marked group as in the previous paragraph might, a priori, lie
outside the exceptional boxes Xk for k ∈ {0, 1, . . . , 6} described in Proposition
1.28. So, the computer proof that we describe below starts afresh with the
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same initial box W as in Definition 1.22. The fundamental conditions used to
eliminate parameter points will be a “shortest” condition and a “maxcorona”
condition. Although we cannot use Proposition 1.28 to directly limit the sub-
boxes under consideration, we can carefully exploit aspects of Proposition 1.28
to develop other useful conditions for eliminating sub-boxes, as follows.

Recall that L(Xk) denotes the range of L′ = exp(L) values in the box Xk.

If δ is a shortest geodesic with exp(length(δ)) not in L(Xk) for any k ∈
{0, 1, . . . , 6} then Corollary 1.29 implies that tuberadius(δ) > ln(3)/2. As in
Remark 2.7ii), it follows that such parameter values can be eliminated.

So, we restrict to parameter values β with L′
β ∈ L(Xk) for some k ∈

{0, 1, 2, 3, 4, 5, 6}. Now, if k = 0 — that is, if β is a parameter value with
L′

β ∈ L(X0) then we can find an affiliated parameter β1 that lies in X0 by
the following argument. If β corresponds to the marked group {G′, f, w′}
as in the first paragraph, then there exists a marked 2-generator subgroup
{G, f, w} of G′ with parameter β1 = (L′, D′, R′) such that L′ = L′

β and such
that d = Re(D) is minimal (recall that exp(D) = D′), that is, d is twice
the tuberadius of the geodesic corresponding to f . The proof of Proposition
1.28 now implies that (L′, D′, R′) ∈ X0. So, in our computer analysis of the
parameter space W we can ignore parameters β with L′

β ∈ L(X0).
Now, we consider β with L′

β ∈ L(Xj) for some j ∈ {1, 2, 3, 4, 5, 6}. Then,
it turns out that Dβ is subject to useful constraint. Specifically, given such a
j, we see that such parameter values β with associated value of d below the
minimum d value for the box Xj (for example, roughly 1.059 for X5; see Table
1.2) are eliminated by the following argument.

Assume lβ = Re(Lβ) is a minimum (otherwise we would have a “shortest”
contradiction). Next observe that dβ cannot be minimal: otherwise we obtain
a contradiction to Proposition 1.28 using the fact that we are outside all of
the Xk. Because dβ is not a minimum, there is another parameter point β′

with L′
β′ = L′

β, dβ′ < dβ, and dβ′ a minimum. Again by construction, β′ is
outside the Xk, which contradicts Proposition 1.28, and eliminates β. Hence,
in summary, Dβ values are constrained as follows: first, the associated d value
must be above the minimum d bound for that j and second, the visual angle
from the corona function must be greater than or equal to 2π/3. These two
constraints in the X5 case are shown graphically in Figure 2.4: Dβ must lie in
the decorated region.

Note that we have implicitly used the fact the L(Xk)’s are disjoint.
Our proof is now similar to the proof of Proposition 1.28. We partition

the initial box W into sub-boxes Wi and eliminate Wi if either Wi lies outside
exp(P) (see Remark 1.23i), Definition 1.12, and Remark 2.7ii)), or if any of
the following conditions hold:

a) There exists no β ∈ Wi such that exp(length(fβ)) ∈ L(Xj) for j ∈
{1, 2, 3, 4, 5, 6}.
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b) Wi has some L′ values in (exactly one) L(Xj) but there exists no β ∈ Wi

such that distance(wβ(Af ), Af ) ∈ decorated region for that j. Again
j ∈ {1, 2, 3, 4, 5, 6}.

c) There exists a killerword h in f, w, f−1, w−1 such that Relength(hβ) <

Relength(fβ) and hβ �= id for all β ∈ Wi.

d) There exists a killerword h in f, w, f−1, w−1 such that

C(distance(hβ(Af ), Af )) > C(distance(wβ(Af ), Af ))

and hβ(Af ) �= Af for all β ∈ Wi.

3

2.5

2.0

1.5

1.0

0

0.5

0.8 0.85 0.9 0.95 1.00 1.05 1.10

120 degree contour

Figure 2.4. The 120-degree contour for the corona function C(u, v),
and a decorated region which corresponds to corona greater than
or equal to 120 degrees and u value greater than or equal to 1.059.

We have two files that contain the decomposition of W into sub-boxes and
associated conditions/killerwords. The program corona checks that these files
do indeed eliminate all of W − X0.

Remarks 2.9. i) The proof of Proposition 2.8 shows that the portion
of the parameter space W which is not immediately eliminated (by either the
outside-of-exp(P) condition, or by conditions a) and b)) is considerably smaller
than that of Proposition 1.28. Condition a) implies that the parameter space
is “(2 + ε)-complex dimensional” and condition b) implies that one of the
parameters is greatly constrained. This suggests why it took so much longer
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to come up with the partition and the associated killerwords for Proposition
1.28. In fact, it took roughly 1500 CPU days to find the partition and the
associated killerwords for Proposition 1.28, versus roughly two CPU days for
Proposition 2.8. Here, the term “CPU day” refers to 24 hours of running an
SGI Indigo 2 workstation with an R4400 chip, and the estimate of 1500 CPU
days refers to 15 to 20 such machines running 80 to 90 percent of the time for
three to four months.

ii) We took pains to make corona as similar to verify as we could, thereby
lessening the amount of analysis needed to show the veracity of corona.

iii) When working with exponentiated co-ordinates (that is, in W rather
than P) the corona function changes as follows. Let X = exp(α + iβ) and
U = exp(u+ iv), then the corona function, when −π/2 ≤ v ≤ π/2 (so that the
positive choice in ± is made),

cosh(α + iβ) = 1 − 4
1 + cosh(u + iv)

becomes
X + X−1

2
= 1 − 4

1 + (U + U−1)/2
.

It is a pleasant exercise to solve this, and we find that

X =
(U2 − 6U + 1) ± 4(U − 1)

√
−U

(U + 1)2
.

The two answers are reciprocals, which implies their associated arguments are
opposites. We choose + or − so that the argument is positive.

For −π ≤ v ≤ −π/2 and π/2 ≤ v ≤ π (so that the negative choice of ± is
made) we find (replace U by −U in the above formula) that

X =
(U2 + 6U + 1) ± 4(U + 1)

√
U

(U − 1)2
.

In corona, the exponentiated version of the corona function is the function
horizon(ortho), which takes in U = ortho and computes the associated X value.
The argument of X, β, is implicitly obtained in the function larger -angle.

iv) It is possible that by working purely in the context of the corona
function, rather than first working with Redistance and attempting to prove
Proposition 1.28, the computer proof can be simplified. After some initial
investigations using a special version of SnapPea created for us by J. Weeks,
we proceeded on this project with the naive idea that perhaps Vol3 was the only
manifold whose shortest geodesic did not have a ln(3)/2 tube. The remarkable
fact that this naive idea is almost correct accounts for the fact that a proof of
Theorem 0.2 can be obtained with only the mild extra effort detailed in this
section and the next.
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3. Vol3

In Section 1, we showed how a certain 3-complex-dimensional parameter
space can be used to attack the question of whether all closed, oriented hyper-
bolic 3-manifolds have a tube of radius ln(3)/2 around a shortest geodesic and
hence have noncoalescable insulator families. In particular, Proposition 1.28
showed that a hyperbolic 3-manifold has such a tube unless its fundamental
group contains a marked group associated to a point in the seven exceptional
boxes X0, . . . , X6.

In Section 2, we showed that any shortest geodesic in a closed oriented
hyperbolic 3-manifold has a noncoalescable insulator family unless its funda-
mental group contains a marked group associated to a point in the exceptional
box X0. In this chapter, we show that the box X0 ⊂ W, or equivalently, the
region R = exp−1(X0) ⊂ P, is associated to a unique closed manifold and that
manifold has a noncoalescable insulator family.

Proposition 3.1. The point (ω, ω, 0) is the unique point in T ∩R; here

ω = ln((−1 − i
√

3)/2 − (−6 + 2i
√

3)(1/2)/2) ≈ 0.83144 − 1.94553i.

This point corresponds to Vol3, the closed hyperbolic 3-manifold of conjec-
turally third smallest volume. Further, if N is a closed orientable hyperbolic
3-manifold, either N = Vol3 or maxcorona(δ) < 2π/3 for δ a shortest geodesic
in N.

Proposition 3.2. Any shortest geodesic in Vol3 satisfies the insulator
condition.

Remark 3.3. Topologically, Vol3 is (3,1) surgery on manifold m007 in
the census of cusped hyperbolic 3-manifolds (see [CHW]). It is also (−3, 2)
(−6, 1) surgery on the left-handed Whitehead link, link 52

2 in the standard
knot tables. The program SnapPea (see [W]) gives an experimental proof that
Vol3 is hyperbolic and that its volume is that of the regular ideal 3-simplex.
A rigorous proof can be found in [JR] or [CGHN]. Previously, Hodgson and
Weeks (unpublished) had found an exact Dirichlet domain for Vol3; that is, the
face pairings were expressible as explicit matrices with coefficients in a finite
extension F of Q and they obtained equations in F for the various faces. See
Remark 3.14.

Remark 3.4. Outline of Proof of Proposition 3.1: By the proof of Propo-
sition 2.8, if N has maxcorona(δ) ≥ 2π/3, then it must have an (L, D, R)
parameter in R. Using Proposition 1.28, we can further assert that this pa-
rameter is in T ∩R. A geometric argument (Lemma 3.7) which utilizes Lemmas
3.5 and 3.6 shows that R = 0, and an algebraic argument (Lemmas 3.8, 3.9,
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3.11, 3.13) shows that L = D = ω, where exp(ω) is a root of the polyno-
mial z4 + 2z3 + 6z2 + 2z + 1. This implies ([JR]) that Vol3 = H3/G where
G is the subgroup of π1(N) generated by f, w associated to the parameter
(L, D, R) = (ω, ω, 0). Therefore, N is covered by Vol3. Because Vol3 covers no
3-manifolds nontrivially ([JR]), it follows that N = Vol3.

Lemma 3.5. Let R = exp−1(X0). If α = (L, D, R) = (l+it, d+ib, r+ia) ∈
R ∩ T , then fα and wα satisfy the relations

i) wFwfwfWfwf,

ii) wFwfwwfwFw.

Here W denotes w−1, and F denotes f−1.

Proof. In i), ii) above and what follows below we suppress the subscripts α.

Because i), ii) are cyclic permutations of the quasi-relators r2, r1 corresponding
to the X0 box of Proposition 1.28, it follows that if h = wFwfwfWfwf or
h = wFwfwwfwFw, then Relength(h) < Relength(f) throughout R. Since
α ∈ T , f is a shortest element and so h = id.

Lemma 3.6. The following substitutions in Lemma 3.5 give rise to three
sets of new relators.

a) In i), ii) exchange f and w (hence, exchange F and W ).

b) In i), ii) exchange f and F .

c) In i), ii) exchange w and W .

Proof. a) First, a cyclic permutation of relator i) gives relator i) with f

replaced by w and w replaced by f . Second, one readily obtains the relator
fWfwffwfWf from i), ii), because fWfwf = (wFwfw)−1 = wfwFw =
(fwfWf)−1 where the first and third equalities follow from i) and the second
from ii).

b) Again it is routine to obtain b) from i), ii).

c) Conclusion c) follows from a) and b).

Lemma 3.7. If (L, D, R) ∈ R ∩ T , then R = 0.

Proof. Let {G, f, w} be the marked group corresponding to the parameter
(L, D, R). Figure 3.1 shows a schematic picture of geodesics B(0;∞), W (B(0;∞)),
w(B(0;∞)), f(w(B(0;∞))), f(W (B(0;∞))), where, in the figure we have, for con-
venience, abbreviated B(0;∞) to B. Also, it shows the images of the orthocurve
O from W (B(0;∞)) to B(0;∞) after translation by w, f, and fw. Finally, it shows
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the orthocurves O1 from fW (B(0;∞)) to W (B(0;∞)) and O2 from w(B(0;∞)) to
fw(B(0;∞)). Note that Figure 3.1 displays the situation where Re(R) > 0. It
is also a priori possible that O2 might intersect w(B(0;∞)) on the other side of
w(O). There are other similar possible inaccuracies.

Note that σ1 = fwffw ∈ G sends geodesic W (B(0;∞)) to fw(B(0;∞))
and σ2 = wFFwF ∈ G sends the geodesic fW (B(0;∞)) to w(B(0;∞)). Now
σ−1

2 σ1 = fWffWfwffw is a relator of G, since it is a cyclic permutation of
relator ii) with f replaced by w and w replaced by f. Thus σ1 = σ2 and hence
σ1(O1) = O2.

Figure 3.1 gives rise to some right-angled hexagons which we will study.
For a careful development of the theory of right-angled hexagons, see [F]; we
give an abbreviated treatment here. A right-angled hexagon consists of a
cyclically ordered 6-tuple of oriented geodesics λ1, · · · , λ6 in H3 such that λi

intersects λi+1 (mod 6) orthogonally. Each “edge” of the hexagon is labeled
by the complex number ei = dλi

(λi−1, λi+1); see Definition 1.4 and Lemma 1.5
for the definition of dα(β, γ) and some of its properties. The following is true:

(3.1) The effect of reversing the orientation of λi is to change ei to −ei, ei+1

to ei+1 + πi, and ei−1 to ei−1 + πi.

Figure 3.1 gives rise to the two right-angled hexagons drawn in Figure 3.2.
(Figure 3.2a may be inaccurate for the following reason. It is not clear whether
the head of O1 should be placed in front of the tail of O or behind the tail of O.

A similar statement holds for the tail of O1 and for Figure 3.2b.) Assume that
in Figure 3.2a, λ1 corresponds to B(0;∞) and the edges are cyclically ordered
counterclockwise. Then e6 = D, e1 = L, e2 = −D. We now show that if e5

has value c, then e3 has value c + πi. Observe that there is an order-2 rotation
τ of H3 about an axis orthogonal to B(0;∞) which reverses the orientation on
B(0;∞) and takes the oriented orthocurve O to the oriented orthocurve f(O).
Since distance(W (B(0;∞)), B(0;∞)) = distance(fW (B(0;∞)), B(0;∞)) it follows
that τ(fW (B(0;∞))) = −W (B(0;∞)) and τ(W (B(0;∞))) = −fW (B(0;∞)) where
the minus sign indicates that the orientation has been reversed. This in turn
implies that τ(O1) = −O1 and therefore by (3.1) that e3 = e5 + πi.

Let φ be the isometry of H3 which is an r + i(π +a) translation of B(0;∞).

Thus φ commutes with f, and φ(B(0;∞)) = B(0;∞), φ(O) = −w(O), φ(f(O)) =
−fw(O), φ(W (B(0;∞))) = w(B(0;∞)) and φ(fW (B(0;∞))) = fw(B(0;∞)) which
in turn implies that φ(O1) = −O2. If the hexagon of Figure 3.2b with edges
λ′

1, . . . , λ
′
6 is counterclockwise cyclically oriented so that λ′

1 denotes the oriented
geodesic B(0;∞), then again by (3.1), e′5 = c and e′3 = c + πi.

Via elements of G, we translate each of W (B(0;∞)), fW (B(0;∞)), w(B(0;∞)),
fw(B(0;∞)) to B(0;∞), and after translation we obtain from Figure 3.2 the
various distance relations {e1, e3, e5, e

′
1, e

′
3, e

′
5} schematically indicated on Fig-

ure 3.3. Each O∗
i is a g ∈ G translation of Oi such that O∗

i has an endpoint
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on B(0;∞). There are two classes of such translates, one where O∗
i points into

B(0;∞) and one where O∗
i points out. Call the former (resp. latter) a pointing

in (resp. out) O∗
i . Actually Figure 3.3 includes three more relations. Because

the oriented O1 is a G-translate of the oriented O2 and f is a primitive element
of G which fixes B(0;∞), it follows that

distance((pointing in O∗
1), (pointing in O∗

2)) = 0 (mod L)

and

distance((pointing out O∗
1), (pointing out O∗

2)) = 0 (mod L).

Finally distance(w(O), O) = R.

B

w

W (B)

w (B)f

W (B)f

(B)

O2

O1

O

f(O)

w(O)

fw(O)

Figure 3.1. Various geodesics around B = B(0;∞) in H3.
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fW( B)
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f(O)
O1
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-D
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B w(B)

fw(B)

w(O)

fw(O)

O2

l+it

-D

D

c

c+  i

a) b)

π π

Figure 3.2. Two right-angled hexagons arising from Figure 3.1.
Here B denotes the axis B(0,∞).

O*1

O*2

O*2

O*1

O*

O*

O*
c+  i

c

L

c+  i

r+ia

c

0 mod L

0 mod L
π

π

B(0;∞�)

Figure 3.3. The values shown are the distances along B(0;∞), be-
tween the indicated oriented ortholines and O∗

i denotes a g ∈ G

translate of the orthocurve Oi.

We therefore obtain the following two equations

(3.2) c−R+L+c+πi = 0 (mod L) and c−L+R+c+πi = 0 (mod L)

hence

(3.3) 2R = 0 (mod L) and 4c = 0 (mod L).

By the L′ and R′ ranges for X0 provided in Proposition 1.28, it is easy to
compute that for each element of R = exp−1(X0), |Re(R)| < |Re(L)/2|, and
that in fact R = exp−1(R′) is close to 0 (thereby eliminating the possible
solution R = πi). It then follows that R = 0 for (L, D, R) ∈ R ∩ T .

Lemma 3.8. If (L, D, R) ∈ R ∩ T , then L = D.
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Proof. We will now use the exponential coordinates l = exp(L) = L′, d =
exp(D) = D′. These l, d should not be confused with the l + it, d + ib used
above. In the following calculations Mathematica [Math] was used to perform
matrix multiplication of 2 × 2 matrices with coefficients rational functions in
the variables

√
l,

√
d. Plugging in R = 0 in Lemma 1.24 we get the following

SL(2,C) representatives of f, F, w, W (here {G, f, w} is the marked group cor-
responding to (L, D, R)). Because the R term drops out, we can express the
matrices of w and W as functions of d alone.

f(l) =
(√

l 0
0

√
l

)

F (l) =
(

1/
√

l 0
0 1/

√
l

)

w(d) =
(

(
√

d + 1/
√

d)/2 (
√

d − 1/
√

d)/2
(
√

d − 1/
√

d)/2 (
√

d + 1/
√

d)/2

)

W (d) =
(

(
√

d + 1/
√

d)/2 (−
√

d + 1/
√

d)/2
(−

√
d + 1/

√
d)/2 (

√
d + 1/

√
d)/2

)

Let Y be the relator FwfwfWfwfw, which is a cyclic permutation of
relator i) of Lemma 3.5. Multiplying this product of 10 matrices we obtain
the following matrix entries for Y (l, d) = Y which we know is the identity in
PSL(2,C) and hence Y = ±I. (At the end of the proof of Lemma 3.9, we shall
see that Y = I.)

Y11 = ((1 + d)(1 − 2d2 + d4 + 8dl − 16d2l

+ 8d3l − 2l2 + 4dl2 − 4d2l2 + 4d3l2

− 2d4l2 + l4 + 4dl4 + 6d2l4 + 4d3l4

+ d4l4))/(32d(5/2)l(5/2));

Y12 = ((−1 + d)(1 + 4d + 6d2 + 4d3 + d4 + 4dl

+ 8d2l + 4d3l − 2l2 − 12d2l2 − 2d4l2

+ 4dl3 + 8d2l3 + 4d3l3 + l4 + 4dl4

+ 6d2l4 + 4d3l4 + d4l4))/(32d(5/2)l(5/2));

Y21 = ((−1 + d)(1 + 4d + 6d2 + 4d3 + d4 + 4dl

+ 8d2l + 4d3l − 2l2 − 12d2l2 − 2d4l2

+ 4dl3 + 8d2l3 + 4d3l3 + l4 + 4dl4

+ 6d2l4 + 4d3l4 + d4l4))/(32d(5/2)l(3/2));

Y22 = ((1 + d)(1 + 4d + 6d2 + 4d3 + d4 − 2l2 + 4dl2

− 4d2l2 + 4d3l2 − 2d4l2 + 8dl3

− 16d2l3 + 8d3l3 + l4 − 2d2l4 + d4l4))/(32d(5/2)l(3/2)).
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Since G is generated by f, an L translation along B(0;∞), and by w, a D

translation along B(−1;1), it follows from Lemma 3.6 that the relation Y = I

holds with l and d switched. Thus 0 = Y12, and 0 = Y12 (with l, d switched)
which implies that

0 = (1 + 4d + 6d2 + 4d3 + d4 + 4dl + 8d2l

+ 4d3l − 2l2 − 12d2l2 − 2d4l2

+ 4dl3 + 8d2l3 + 4d3l3 + l4 + 4dl4

+ 6d2l4 + 4d3l4 + d4l4)

− (1 + 4l + 6l2 + 4l3 + l4 + 4ld + 8l2d

+ 4l3d − 2d2 − 12l2d2 − 2l4d2

+ 4ld3 + 8l2d3 + 4l3d3 + d4 + 4ld4

+ 6l2d4 + 4l3d4 + l4d4)

= 4(1 + d)2(1 + l)2(−d + l)(−1 + dl).

This implies that d = l and hence D = L, or we obtain one of the following
solutions which contradicts the conditions Re(L) > 0, Re(D) > 0. The solution
d = −1 implies D = ln(d) = ln(−1) = πi. The solution l = −1 implies L = πi.

The solution dl = 1 implies that D = −L.

Lemma 3.9. If (L, D, R) ∈ R ∩ T , then d = exp(D) is a root of the
polynomial

1 + 2d + 6d2 + 2d3 + d4.

Proof. The equation Y12 = 0 yields

0 = 1 + 4d + 6d2 + 4d3 + d4 + 4dl + 8d2l + 4d3l − 2l2

− 12d2l2 − 2d4l2 + 4dl3 + 8d2l3 + 4d3l3 + l4 + 4dl4

+ 6d2l4 + 4d3l4 + d4l4.

Setting l = d we obtain

0 = 1 + 4d + 8d2 + 12d3 − 2d4 + 12d5 + 8d6 + 4d7 + d8

= (1 + 2d − 2d2 + 2d3 + d4)(1 + 2d + 6d2 + 2d3 + d4).

On the other hand, setting l = d in the equation Y11 = 1 we obtain

32d5 = (1 + d)(1 + 4d2 − 12d3 + 6d4 + 8d5 + 4d6 + 4d7 + d8)

which can be rewritten as

0 = (−1 + d)(1 + 2d + 6d2 + 2d3 + d4)(−1 + 4d3 + d4).

The only solutions to these equations with (ln(d), ln(d), 0) ∈ R ∩ T are
the roots of the equation

(3.4) 0 = (1 + 2d + 6d2 + 2d3 + d4).
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The equation resulting from Y11 = −1 would be

−32d5 = (1 + d)(1 + 4d2 − 12d3 + 6d4 + 8d5 + 4d6 + 4d7 + d8).

But it is easy enough to check that there are no solutions d with (ln(d), ln(d), 0) ∈
R ∩ T .

Remarks 3.10. i) From relator i) of Lemma 3.5 and from R = 0 we deduced
that Y = I and that l and d can be switched in Y. Relator ii) was used in the
proof that R = 0.

ii) Our matrix representatives given in the proof of Lemma 3.8 define a
lift to SL(2,C) of our representation of π1(Vol3) into PSL(2,C). Indeed we
showed above that the relator i) corresponds to the identity in SL(2,C) and
having solved d = l = ω and R = 0, a direct calculation shows that relator ii)
also corresponds to the identity in SL(2,C).

Lemma 3.11. The roots of 1 + 2d + 6d2 + 2d3 + d4 are(
−1 − i

√
3
)

/2 −
(
−6 + 2i

√
3
)(1/2)

/2,(
−1 − i

√
3
)

/2 +
(
−6 + 2i

√
3
)(1/2)

/2,(
−1 + i

√
3
)

/2 −
(
−6 − 2i

√
3
)(1/2)

/2,(
−1 + i

√
3
)

/2 +
(
−6 − 2i

√
3
)(1/2)

/2.

Remarks 3.12. i) If x is a root of 1 + 2d + 6d2 + 2d3 + d4, then so are
x̄, 1/x and 1/x̄.

ii) −6 + 2i
√

3 = 4
√

3 exp(5πi/6) and hence

±
√
−6 + 2i

√
3 = ±2 4

√
3 exp(5πi/12)

= ±
(
2 4
√

3
) (√

2/4
) ((√

3 − 1
)

+ i
(√

3 + 1
))

.

Lemma 3.13. If (L, D, R) ∈ R ∩ T , then

D = L = ln
((

−1 − i
√

3
)

/2 −
(
−6 + 2i

√
3
)(1/2)

/2
)

= ω ≈ 0.83144294552931 − 1.945530759503636i.

Proof. The other three solutions to equation (3.4), −ω, ω̄, and − ω̄, all
lie outside of R. The solution ω lies in R.

Remark 3.14. In our language, Hodgson and Weeks (see Remark 3.3) knew
that π1(Vol3) was generated by f, w with D = L = ω and R = 0.
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Proof of Proposition 3.1. The previous lemmas established the first sen-
tence of Proposition 3.1. This, together with Remark 3.4, establishes the sec-
ond sentence of Proposition 3.1. The third sentence of Proposition 3.1 is estab-
lished by the following argument. By Proposition 2.8, if maxcorona(δ) ≥ 2π/3,
then the parameter for a 2-generator subgroup G of π1(N) lies in X0, and, us-
ing Proposition 1.28, we can further assert that this parameter lies in S ∩X0.

Because G = π1(Vol3), N is covered by Vol3. By Jones-Reid (see [JR]) Vol3
only covers Vol3 (compare with Remark 3.20). Therefore N = Vol3.

Corollary 3.15. Vol3 is the unique hyperbolic 3-manifold with associ-
ated parameter values in S ∩ X0.

Definition 3.16. Let δ be a geodesic in the hyperbolic 3-manifold N and
{δi}i≥0 be the preimages of δ in H3. Define an equivalence relation on {δi}i≥1

by saying that δi and δj are equivalent if there exists a g ∈ π1(N) taking
{δ0, δi} to {δ0, δj} (not necessarily preserving order).

Call an equivalence class an orthoclass. Counting with multiplicity, con-
sider the collection O of complex numbers {distance(δ0, δi) | i > 0 and
only one δi is represented in each equivalence class }. Now order O to ob-
tain the ortholength spectrum of δ, {O(1), O(2), · · ·} where i ≤ j implies
Re(O(i)) ≤ Re(O(j)). Let O(i) denote the equivalence class corresponding to
O(i).

The based ortholength spectrum of δ consists of all distinct pairs of complex
numbers of the form {(distance(B(−1;1), ortholine from B(0;∞) to g(B(0;∞))),
distance(B(0;∞), g(B(0;∞)))) | g ∈ π1(N), g �= fn}. Up to isometry of H3,

the based ortholength spectrum gives the complete description of how {δi} is
embedded in H3.

Proof of Proposition 3.2. Let δ be a shortest geodesic in Vol3. Let {δi}
denote the preimages of δ in H3 with δ0 identified with B(0;∞) and δ1, a nearest
translate, identified with w(δ0). By the proofs of Lemma 1.13 and Proposition
3.1 we can assume that the associated parameters satisfy L = D = ω and
R = 0. Define a (π1(Vol3), ∂δi) insulator family {λij} which is a hybrid of
Dirichlet and corona insulators as follows. If δi ∈ O(1), then let λ0i be the
Dirichlet insulator between δ0 and δi (see Definition 2.4). Also let λ0i be the
Dirichlet insulator between δ0 and δi if δi ∈ O(k) and the visual angle at δ0

subtended by this Dirichlet insulator is less than 113.16 degrees. (By [G], it is
less than 113.16 when Re(O(k)) > 2Arccosh(1/ sin(113.16/2)).) Otherwise let
λ0i be the corona insulator κ0i, as constructed in Proposition 2.3; in Lemma
3.17 we will show that also in this case visualangleδ0(λ0i) < 113.16. Now,
extend equivariantly to obtain the family {λij} which by construction satisfies
conditions A.1 of the appendix. To complete the proof of Proposition 3.2 we
now show that the insulator family {λij} is noncoalescable.
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We begin by analyzing O(1) insulators. The geodesic plane E∗ midway be-
tween B(0;∞) and w−1(B(0;∞)) intersects the B(0;∞)-B(−1;1) plane in a geodesic
E at distance Re(ω)/2 = Relength(f)/2 from B(0;∞). Conjugate π1(N) via a
rotation and homothety fixing B(0;∞) so that one endpoint of E is at (1,0) and
the other endpoint is at (x, 0), where x > 1. Because Redistance(E, B(0;∞)) =
Re(ω)/2, formula (7.23.1) of [Bea] implies x < 23.815. Thus the Dirichlet in-
sulator λ = ∂Ē∗ (resp. w(λ)) between B(0;∞), w−1(B(0;∞)) (resp. B(0;∞),
w(B(0;∞))) is symmetric about the x-axis and lies within the circle passing
through (1,0), (23.815,0) (resp. (-1,0), (-23.815, 0)). By Lemma 4.7 of [G] this
circle takes up a visual angle of less than 133.68 degrees. Now f is the com-
position of an exp(Re(ω)) homothety centered about the origin and an Im(ω)
radian ≈ −111.4707 degree rotation. Because exp(4Re(ω)) > 27.82 > 23.815
it follows that the plane E∗ is taken “beyond” E∗ by w4. Thus, λ ∩ (fn(λ) ∪
fnw(λ)) = ∅ if |n| ≥ 4. Therefore if there was a tri-linking among three insula-
tors associated to O(1), the orthoclass of w(B(0;∞)), there would be a tri-linking
involving three circles from the collection {fnw(λ), fn(λ) | −3 ≤ n ≤ 0}, one
of which is λ.

Because the absolute value of the rotational effect of f±1 is |Im(ω)| radians,
which is less than 111.48 degrees, and because λ takes up less than 133.68
degrees B(0;∞)-visual angle, it follows that f−1(λ)∪λ takes up less than 133.68+
111.48 = 245.06 degrees B(0;∞)-visual angle. Similar arguments show that if λ

and one of fn(λ) or fmw(λ) nontrivially intersect, then the union cannot take
up more B(0;∞)-visual angle, in fact except for f±(λ), it takes up less. See
Figure 3.4 which shows the union of {fnw(λ), fn(λ) | −3 ≤ n ≤ 0}. Therefore,
if the union of three such circles was connected, they would take up at most
133.68 + 2(111.48) = 356.64 degrees of B(0;∞)-visual angle and hence would
not create a tri-linking. Thus, O(1) cannot by itself create a tri-linking.

w λ( ) λ

w λ( )f -1

λ( )f -1

w λ( )f -2

λ�( )f -2 λ( )f -3

λw ( )f -3

Figure 3.4. There is no tri-linking from O(1).
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Now assume Lemma 3.17. There remain three cases to consider: tri-
linking involving no O(1) insulators; tri-linking involving exactly one O(1)
insulator; tri-linking involving exactly two O(1) insulators. The case of no
O(1) insulators cannot occur because 3(113.16) < 360. The case of exactly
one O(1) insulator cannot occur because the union of three such insulators
will take up less than 133.68+2(113.16) = 360 degrees of visual angle. Finally,
the case of exactly two O(1) insulators cannot occur, because the two O(1)
insulators would take up at most 245.06 degrees of visual angle; so all three
insulators would take up at most 245.06 + 113.16 degrees of visual angle.

Lemma 3.17. If δi ∈ O(k), k > 1, then visualangleδ0(λ0i) < 113.16.

Proof. One might be tempted to use a version of SnapPea to prove this
lemma by enumerating possibilities, and in fact we describe this approach later
in this section. However, to provide the necessary rigor, we found it convenient
to use instead a modified version of the parameter space argument we have
used twice before. The proof is in two steps. The first step is to show that
Re(O(2)) > Re(O(1)), and the second step is the parameter space argument.

Step 1. Re(O(2)) > Re(O(1)).

Proof of Step 1. If Re(O(2)) = Re(O(1)), then T contains a parameter
with L = ω and D = O(2). By Proposition 1.28 this can only happen if the
parameter lies in X0 and by Proposition 3.1 this can only happen if O(2) =
ω = O(1).

If v ∈ π1(Vol3) is an element with distance(v(B(0;∞)), B(0;∞)) = O(2) = ω

as above, then the group generated by v, f is conjugate (by an orientation-
preserving isometry taking B(0;∞) to itself) to the group generated by w, f. This
implies that the π1(Vol3) translates of B(0;∞) are symmetrically placed about
B(0;∞). We now restrict our focus to δi /∈ O(1) with distance(δi, B(0;∞)) = ω,

and define K to be the unoriented orthocurve between v(B(0;∞)) and B(0;∞).

There are two cases to consider.
The first case is that K hits B(0;∞) at (0, 0, 1). Now (after possibly re-

choosing δi, and using the fact that R = 0) we can assume that the angle
between K and K ′ is π/m, where K ′ is the orthocurve between B(0;∞) and
w(B(0;∞)) and m > 1 is a maximal integer. Using the hyperbolic law of cosines
([F, p. 83]), it follows that if m = 2, then there exists an ω̄ ortholength. As in
the first paragraph of this proof, we obtain a contradiction. See Figure 3.5. If
m > 2, then the cosine law shows that there exists a real ortholength less than
Re(ω).

The second case is that Redistance(K, K ′) = x > 0 where x is minimal
among all possible choices. Then by symmetry we can assume that there is an
m with mx = Re(ω) = Re(L). Indeed δi can be chosen so that if δi is obtained
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from w(B(0;∞)) by an x + iy translation τ along B(0;∞), then m(x + iy) = ω.

(This uses the fact that the R associated to any orthoclass O(i) with O(i) = ω

is equal to 0.) Therefore an x + iy translation τ along B(0;∞) descends to a
free Z/mZ action φ on Vol3. This is free, because any lift of φn is a conjugate
(by an orientation-preserving isometry) of τn which is fixed-point free or the
identity. This contradicts the fact that Vol3 only covers Vol3.

ω�
ω�

P

Figure 3.5. cosh(P ) = cosh2(ω) + sinh2(ω) cosh(i(π/2 + π)) has
solution P = ω̄.

Step 2. The parameter space argument.

Proof of Step 2. Our parameter space W is the usual initial box. As
before, a parameter gives rise to a marked group {G, f, v}. (Here, f is the
standard generator of π1(Vol3) fixing B(0;∞).) We consider the set U of pa-
rameters such that f, v generate a torsion-free, parabolic-free group G where
f is of minimal length, Re(D) > Re(ω), and corona(D) ≥ 113.16. (It is easily
checked that U ⊂ W, and it is interesting to note that U contains parameters
with Re(D) almost 1.24.) We will partition the initial box W into sub-boxes
Wi such that each Wi can be eliminated for one of the following reasons.

y) Wi is outside of U .

z) Wi = X0.

a) There exists no β ∈ Wi such that exp(length(fβ)) ∈ L(X0). Hence,
length(fβ) �= ω throughout Wi.

b) Wi has some L′ = exp(L) values in L(X0) but there exists no β ∈ Wi such
that the real part of distance(vβ(B(0;∞)), B(0;∞)) is greater than the min-
imum d value for X0. In particular, Re(distance(vβ(B(0;∞)), B(0;∞))) ≤
Re(ω) throughout Wi.
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c) There exists a killerword h in f, v, f−1, v−1, such that hβ �= id and
Relength(hβ) < Relength(fβ) for all β ∈ Wi.

There are files containing the partition of W and the associated condi-
tions/killerwords, and the program corona verifies that they indeed work. As
noted earlier, corona works with the exponentiated versions of the above condi-
tions. The computer methods (involving the corona function) needed to com-
plete the proofs in Sections 2 and 3 are sufficiently similar that it was natural
to incorporate both proofs into one partitioning of W, one list of associated
conditions/killerwords, and one computer program (corona).

Lemma 3.17 follows from the fact that each sub-box can be eliminated.
Indeed if δi ∈ O(k), k > 1, then Step 1 implies that Re(O(k)) > Re(O(1)) =
Re(ω). If λ0i is a Dirichlet insulator, then by construction either δi ∈ O(1) or
visualangleδ0(λ0i) < 113.16. If λ0i is a corona insulator and visualangleδ0(λ0i) ≥
113.16, then the group generated by f and v gives rise to a parameter in U

where v ∈ π1(Vol3) is an element taking δ0 to δi. The above program rules out
this possibility.

Here is an experimental “proof” of Lemma 3.17. In [HW] an algorithm
is given to compute, with multiplicities, the length spectrum of a hyperbolic
3-manifold M, given a Dirichlet domain for M. Weeks has observed that a
very similar argument gives an algorithm to compute the based ortholength
spectrum. In fact an analogue to Proposition 1.6.2 in [HW] (with an analogous
proof) is the following.

Lemma 3.18 (Weeks). Let M be a closed orientable 3-manifold having
a Dirichlet domain D with basepoint x and with spine radius r. Let δ be a
geodesic of length l + it. To compute all the based ortholengths of real length
less than or equal to λ with basing less than or equal to l/2 from some point on
δ0 (a preimage of δ) it suffices to find all translates gD satisfying ρ(x, gx) ≤
2r + 2Arccosh(cosh(l/2) cosh(λ/2)).

Proof. As in [HW] we can assume that ρ(δ0, x) ≤ r. The 0-basing on δ0

will be given by the oriented perpendicular P from δ0 to x. Figure 3.6 shows
that if there is a translate δi = g(δ0) based at distance ≤ l/2, at real distance
≤ λ from δ0, then ρ(g(x), x) ≤ λ + l + 2r. As in [HW] an application of the
hyperbolic cosine law yields the better estimate of Lemma 3.18.

Provided one is given a Dirichlet domain, [HW] gives an efficient algorithm
to find these g’s. Finally to each such g one computes the basing and distance
from g(δ0) to δ0.

The collection of ortholengths with basings ≤ l/2 contains at least two
representatives for each ortholength class; thus the Weeks algorithm can be
used to give lower bounds on the various O(i)’s. SnapPea (see [W]) computes a
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Dirichlet domain for Vol3 with spine radius ≤ 0.68. Because l < 0.83145, taking
λ = 1.24 we obtain 2r + 2Arccosh(cosh(l/2) cosh(λ/2)) < 2.89. This algorithm
was implemented on an undistributed version of SnapPea, and provided the
following estimates. Note that Re(O(2)) ≥ 1.24 is sufficient to guarantee that
C(O(2)) < 113.16 degrees.

O(1) ≈ .83144 − 1.94553i,

O(2) ≈ 1.3170 − πi,

O(3) = O(4) ≈ 1.4197 + 1.0963i,

O(5) ≈ 1.9769 − 1.2995i.

These estimates were found using a “tiling” of radius 3.00 > 2.89, which is
sufficient for “proving” that for Vol3, Re(O(2)) > 1.24.

δ�

δ�

0�

ix
g(x)

≤λ�
≤�r

≤�l/2

≤�l/2

≤�r

Figure 3.6. Controlling the based ortholength spectrum.

Remark 3.19. This experimental proof should be easy to make rigorous by
implementing Weeks’s algorithm using exact arithmetic, say via the program
Snap (see [CGHN]).

Remark 3.20. Similar technology can probably be used to show that Vol3
only covers Vol3. Because Vol3 is non-Haken, and nonorientable 3-manifolds
are Haken, Vol3 can only cover an orientable 3-manifold. By Proposition
1.28 and the first sentence of Proposition 3.1, it follows that either a short-
est geodesic δ in M has tuberadius(δ) = Re(ω)/2 and length(δ) = ω, or δ

has a ln(3)/2 tube. The latter implies that some geodesic β in Vol3 has a
ln(3)/2 tube. Elementary volume considerations together with length spec-
trum data provided by SnapPea imply that length(β) < 1 and hence is one of
eight geodesics. Tuberadius data provided by an unreleased version of Snap-
Pea assert that such geodesics have tuberadius smaller than 0.43. Thus, the
length of δ is ω and so volume(M) > π sinh(Re(ω)/2))2Re(ω) > 0.476 >

volume(Vol3)/3. This implies that there exists a free, orientation-preserving
involution τ of Vol3 such that τ(δ) �= δ. By length spectrum data from Snap-
Pea, there are only two distinct geodesics with the same length as δ. The above
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analysis shows that these correspond to B(0;∞) and B(−1;1), which nontrivially
intersect. Thus, no such involution exists. Using the exact arithmetic of Snap
(see [CGHN]), one should be able to make rigorous these SnapPea calculations.

4. Applications

We provide some applications. First, we give a partial answer to Prob-
lem 1.16. Second a lower bound for the volume of hyperbolic 3-manifolds is
produced. Finally, we give a relationship between isotopic closed curves in a
hyperbolic 3-manifold and essential links in B3.

Theorem 4.1. If δ is a shortest geodesic in the closed orientable hyper-
bolic 3-manifold N, then either

i) tuberadius(δ) > ln(3)/2, or

ii) 1.0953/2 > tuberadius(δ) > 1.0591/2 and Relength(δ) > 1.0595, or

iii) tuberadius(δ) = 0.8314 . . . /2 and N = Vol3.

Proof. If 0.5 < tuberadius(δ) = d/2 ≤ ln(3)/2, then by Corollary 1.29 and
Table 1.2 we see that 1.0953/2 > tuberadius(δ) > 1.0591/2 and Relength(δ) >

1.0595. If tuberadius(δ) = d/2 ≤ 0.5 then the parameter (L, D, R) ∈ P asso-
ciated to N must be in R ∩ T = exp−1(X0 ∩ S). It then follows by Corollary
3.15 that N = Vol3.

Remark 4.2. The previous best lower bound for the volume of hyperbolic
3-manifolds was on the order of 0.001 (see [GM1]). Using the results of the
present paper and the method of [M1] it is easy to improve this to 0.1. However,
Gehring and Martin provide an improved tube-volume formula in [GM2] and
we use their formula to get a lower bound of 0.16668 . . . . The Gehring-Martin
tube-volume formula for manifolds (as opposed to orbifolds) is

V(t) =
√

3 tanh(t) cosh(2t)Arcsinh2(sinh(t)/ cosh(2t))

where t is the radius of the embedded solid tube. Note that the length of the
core geodesic is irrelevant.

Corollary 4.3. 5
2
√

3
Arcsinh2

(√
3

5

)
= 0.16668 . . . is a lower bound for

the volume of closed hyperbolic 3-manifolds.

Proof. Corollary 1.7 of [GM2] applies the tube-volume formula V(t) to
tubes of radius at least ln(3)/2 and produces

Vol(N) ≥ V(ln(3)/2) =
5

2
√

3
Arcsinh2

(√
3

5

)
= 0.16668 . . . .
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So, if a hyperbolic 3-manifold N has a shortest geodesic with tuberadius
greater than or equal to ln(3)/2 then we are done. If tuberadius is less than
ln(3)/2 then Theorem 4.1 implies that either N is Vol3, or l and d are bounded
as follows: l ≥ 1.0595 and d ≥ 1.0591. In the first case, Vol(N) = Vol(Vol3) =
1.01 . . . , while in the second case, plugging the l and d bounds into the tube-
volume formula πl sinh2(d/2) we get Vol(N) > 1.02.

Remark 4.4. Recently, A. Przeworski has proved a lower bound for volume
of 0.276796 (see [P]). His method is to develop an improved version of Gehring
and Martin’s tube-volume formula and then to apply it to our tuberadius
results.2

Theorem 4.5. Let k1, k2 be simple closed curves in N such that k1 is
a geodesic. Then k1 is isotopic to k2 if and only if as B3-links q−1(k1) is
equivalent to q−1(k2) where q : H3 → N is the universal covering projection.

Proof. Apply Corollary 5.6 of [G]. Recall that Γ and ∆ are equivalent
B3-links if there is a homeomorphism of B3 which takes Γ to ∆ and fixes S2

pointwise.

Remark 4.6. A similar argument extends Theorem 4.5 to homotopy es-
sential links which lift to trivial B3-links. The general case of Conjecture 5.5A
of [G] is still open.

5. Conditions and sub-boxes

In this section we expand on some topics mentioned briefly in Section 1.
As such, it would be useful to look again at Definitions 1.8, 1.12, and 1.22, and
Remark 1.9, where P, T and their partners (under exponentiation) W, S are
introduced, and at Definition 1.18 where the notion of a killerword is introduced
(the definition is phrased in terms of P, but the definition also makes sense for
W). Note that working with the region P is intuitively appealing, but working
with the box W is vastly superior computationally (see Remark 1.21).

Theorem 0.2, hence Theorem 0.1, follows from Propositions 1.28, 2.8, 3.1,
and 3.2. The computational aspects of the proofs of each of these propositions
are similar. We will focus on Proposition 1.28 here. Its proof amounts to
decomposing W into a collection of sub-boxes of two types:

1) The 11 sub-boxes which comprise the exceptional boxes X0, X1, . . . , X6.

2Note added in proof (January 2003): Przeworski (see [P2]) has improved the volume lower

bound to 0.3315 by combining his tube packing results with Theorem 4.1 and work of I. Agol (see

[A]).
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2) Sub-boxes each of which has an associated condition that will describe
how to kill that entire sub-box, perhaps with the help of a killerword. To
kill a sub-box means to show that S − ⋃

n=0,...,6 Xn has no point in the
sub-box.

The set-up for efficiently describing these sub-boxes will be given in Construc-
tion 5.3.

We now list the conditions used to kill the nonexceptional sub-boxes.
There are two types of conditions: the trivial and the interesting. The trivial
conditions kill sub-boxes in W since the sub-boxes in question miss exp(P).
The interesting conditions are where the real work is done, and they require a
killerword in f, w, f−1, w−1 to work their magic (see Remark 1.17).

To be consistent with the computer program verify we use the following
notation: L′ = z0 + iz3, D′ = z1 + iz4, and R′ = z2 + iz5. Here (L′, D′, R′) ∈ W
and L′ = exp(L) = exp(l + it), D′ = exp(D) = exp(d + ib), R′ = exp(R) =
exp(r + ia).

The trivial conditions 5.1.

Condition ‘s’ (short): Tests that all points in the sub-box have |z0 + iz3| <

1.10274. This ensures that

exp(l) = | exp(L)| = |L′| = |z0 + iz3| < 1.10274 < exp(0.0978),

and Definition 1.12 tells us that we are outside of exp(P).

Condition ‘l’ (long): Tests that all points in the sub-box have |z0 + iz3| >

3.63201. This ensures that

exp(l) = | exp(L)| = |L′| = |z0 + iz3| > 3.63201 > exp(1.289785)

and we are outside of exp(P).

Condition ‘n’ (near): Tests that all points in the sub-box have |z1 + iz4|
< 1. This ensures that

exp(d) = | exp(D)| = |D′| = |z1 + iz4| < 1 = exp(0)

and we are outside of exp(P).

Condition ‘f’ (far): Tests that all points in the sub-box have |z1+iz4| > 3.

This ensures that

exp(d) = | exp(D)| = |D′| = |z1 + iz4| > 3 = exp(ln 3)

and we are outside of exp(P).
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Condition ‘w’ (whirle big): Tests that all points in the sub-box have |z2 +
iz5|2 > |z0 + iz3| This ensures that

exp(r) = | exp(R)| = |R′| = |z2 + iz5| >
√
|z0 + iz3| =

√
exp(l) = exp(l/2)

and we are outside of exp(P).

Condition ‘W’ (whirle small): Tests that all points in the sub-box have
|z2 + iz5| < 1. This ensures that

exp(r) = | exp(R)| = |R′| = |z2 + iz5| < 1 = exp(0)

and we are outside of exp(P).

The interesting conditions 5.2.

Condition ‘L’: This condition comes equipped with a killerword k in
f, w, f−1, w−1, and tests that all points in the sub-box have | exp(length(k))| <

|L′| = | exp(L)|, where length(k) means the length of the isometry determined
by k. This, of course, contradicts the fact that L is the length of the shortest
geodesic.

It is easy to carry out the test | exp(length(k))| < |L′| because Lemma
1.25a) can be used. Note that in verify the function which computes exp(length)
is called length.

Of course, Condition ‘L’ also checks that the isometry corresponding to
the word k is not the identity.

Condition ‘O’: This condition comes equipped with a killerword k in
f, w, f−1, w−1, and tests that all points in the sub-box have

| exp(distance(k(B(0,∞)), B(0,∞)))| < |D′| = | exp(D)|.

(Recall that B(0;∞) denotes the oriented geodesic {(0, 0, z) : 0 < z < ∞},
with negative endpoint (0, 0, 0).) This, of course, contradicts the “nearest”
condition.

It is easy to carry out the test | exp(distance(k(B(0,∞)), B(0,∞)))| < |D′|
because Lemma 1.25b) can be used. Note that in verify the function which
computes the quantity exp(distance(k(B(0,∞)), B(0,∞))) is called orthodist.

Also, Condition ‘O’ checks that the isometry corresponding to the word k

does not take the axis of f to itself.

Condition ‘2’: This is just the ‘L’ condition without the “not-the-identity”
check, but with the additional proviso that the killerword k is of the form fpwq.

This ensures that k is not the identity, because for k to be the identity f and
w would have to have the same axis, which contradicts the fact that d can be
taken to be greater than or equal to l/4.
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Condition ‘conjugate’: There is one other condition that is used to elim-
inate points in W. Following Definition 1.12 (and Lemma 1.13) we eliminate
all boxes with 0 < t ≤ π. Of course, after exponentiating L = l + it, this
corresponds to eliminating all boxes with z3 > 0. Specifically, we toss all sub-
boxes of W whose fourth entry is a 1. This condition does not appear in verify
and corona because it is applied “outside” of these programs, as described in
Construction 5.3.

Construction 5.3: We now give the method for describing the roughly 930
million sub-boxes that the initial box W is subdivided into.

All sub-boxes are obtained by subdivision of a previous sub-box along
a real hyper-plane midway between parallel faces of the sub-box before sub-
division. Of course, these midway planes are of the form xi = a constant.
We use 0’s and 1’s to describe which half of a subdivided sub-box to take
(0 corresponds to lesser xi values). For example, 0 describes the sub-box

W ∩ {(x0, x1, x2, x3, x4, x5) : x0 ≤ 0},
010 describes the sub-box

W ∩ {(x0, x1, x2, x3, x4, x5) : x0 ≤ 0, x1 ≥ 0, x2 ≤ 0},
and so on.

In this way, we get a one-to-one correspondence between strings and sub-
boxes. If s is a string of 0’s and 1’s, then let Z(s) denote the sub-box corre-
sponding to s. The range of values for the ith coordinate in the sub-box Z(s)
is related to the binary fraction 0.sisi+6 . . . si+6k. The two sub-boxes gotten
from subdividing Z(s) are Z(s0) and Z(s1).

The directions of subdivision cycle among the various coordinate axes:
the nth subdivision is across the (n mod 6)th axis. The dimensions of the
top-level box W were chosen so that subdivision is always done across the
longest dimension of the box, and so that all of the sub-boxes are similar. The
dimensions of W have the beneficial effect of making the sub-boxes as “round”
as possible, hence making the Taylor approximation calculations efficient and
fast. This explains the factor of 2(5−i)/6 in Definition 1.22.

To kill a sub-box Z(s), the checker program has two (recursive) options:
use a condition and, if necessary, an associated killerword to kill Z(s) directly,
or first kill Z(s0) and then kill Z(s1). At this point, it may seem as if the sec-
ond option is not necessary, because surely a condition which kills two halves
also kills the whole. The answer to this has been hinted at in Remarks 1.17 and
1.35 where it is noted that our evaluation of a function arising from a killer-
word is via first-order Taylor approximation, complete with remainder/error
term. (Note that the remainder/error term incorporates bounds on both the
theoretical error arising from using a first-order Taylor approximation to ap-
proximate a function, and the accumulated round-off error; see Sections 6, 7,
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and 8.) Even if a killerword could theoretically kill off a sub-box, it is quite
possible that our first-order Taylor approximation approach would not be able
to prove this because its remainder/error term is too large. However, if we
subdivide the sub-box, then the first-order Taylor approximations on the two
halves should be more accurate. Thus, we want to have the recursive subdi-
vision option at our disposal. Note that because the checker program does in
fact do such recursive subdivisions, the actual number of sub-boxes in the ul-
timate subdivision is larger (perhaps substantially larger) than the 930 million
sub-boxes of the initial data tree.

It is also possible that the checker program will employ neither of the two
options described in the previous paragraph, and will instead employ a third
option: do not kill Z(s), and instead mark s as omitted. Any omitted sub-boxes
are checked with another instance of the checker program, unless the sub-box
is one of the 11 exceptional sub-boxes (which produce the seven exceptional
boxes after joining abutters). Note that according to the definition of “kill”
given at the beginning of this section, the exceptional boxes are automatically
killed.

Thus, a typical output from verify would be

verified000000111101111111

−{0000001111011111110 000000111101111111110}.

which means that the sub-box Z(000000111101111111) was killed except for
its sub-boxes Z(0000001111011111110) and Z(000000111101111111110). The
output

verified0000001111011111110 − { }.
and

verified000000111101111111110 − { }.

shows that these sub-boxes were subsequently killed as well, and thus the entire
sub-box Z(000000111101111111) has been killed.

Instead of immediately working on killing the top-level box, we subdivide
in the six co-ordinate directions to get the 64 sub-boxes

Z(000000), Z(000001), Z(000010), Z(000011), . . . , Z(111111).

We then throw out the ones with fourth co-ordinate equal to 1 (see condition
‘conjugate’), leaving the 32 sub-boxes

Z(000000), Z(000001), Z(000010), Z(000011), . . . , Z(111011).

We then use verify to kill these.
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The choices in verify are made for it by a sequence of integers given as
input. The sequence of integers containing the directions for killing Z(000000)
is contained in the file data/000000 (actually, data/000000.d). In such a se-
quence, 0 tells verify to subdivide the present box (by xi = c), to position
itself on the “left-hand” box (xi ≤ c) created by that subdivision, and to read
in the next integer in the sequence. A positive integer n tells verify to kill
directly the sub-box it is positioned at, using the condition (and killerword, if
necessary) on line n in the “conditionlist” file, and then to position itself at the
“next” natural sub-box. Now, −1 tells verify to omit the sub-box, and mark
it as skipped (the sequence of integers used in killing the skipped box Z(s) is
contained in a file data/s).

The checker program verify, its inputs, and the list of conditions are avail-
able from the Annals of Mathematics web site; similarly for the program corona
which is used on the seven exceptional boxes.

Example 5.4. To illustrate the checking process in action, this is a (non-
representative) example, which shows how the sub-box Z(s) (minus a hole) is
killed, where

s = 0010001100011101110011110001011111111011111

00111001111000001111011110111.

The input associated with this sub-box is

(0, 0, 0, 1929, 12304, 0, 0, 7, 0, 1965, 0, 1929, 1929, 1996,−1),

which causes the program to kill Z(s) in the following fashion:
kill Z(s):
kill Z(s0):
kill Z(s00):
kill Z(s000) with condition 1929 = “L(FwFWFWfWFWFwFwfww)”
kill Z(s001) with condition 12304 = “L(FwfWFFWFwFwfwfWfwfw)”
kill Z(s01):
kill Z(s010):
kill Z(s0100) with condition 7 = “L(w)”
kill Z(s0101):
kill Z(s01010) with condition 1965 = “L(fwFwFWFFWFwFwfwww)”
kill Z(s01011):
kill Z(s010110) with condition 1929
kill Z(s010111) with condition 1929

kill Z(s011) with condition 1996 = “L(FwFwFWFWfWFWFwFwfww)”
omit Z(s1)

as shown in Figure 5.1.
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Figure 5.1. Six levels of subdivision, in two projections, with all
the trimmings.

Z(s1) is ignored, so the checker would indicate this omission in its report.
In fact, Z(s1) is one of the 11 exceptional sub-boxes (seven boxes after joining
abutters), specifically X5a, hence killed automatically.

The use of condition “L(w)” so deep in the tree is unusual. In this case, it is
because the manifold in the exceptional sub-box has length(f) = length(w), so
that the program will frequently come to places where it can bound length(f) >

length(w) nearby.
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The sequence 0, 1929, 1929 in the input for Z(s) tells the checker to
subdivide Z(s01011), and then use the condition 1929 on both halves to kill
them separately, thereby killing Z(s01011). As mentioned above, the reason
for carrying out this subdivision is that the remainder/error bound in the
calculation for Z(s01011) using condition 1929 was not good enough to prove
that the sub-box is killed directly.

In the input for Z(s) we could have replaced 0, 1929, 1929 with 1929
alone and then the checker program itself would be smart enough to carry out
the subdivision after 1929 failed to kill the sub-box Z(s01011). This recursive
subdivision tool is quite useful when dealing with the remainder/error term—if
a killerword barely misses killing off a sub-box, then recursively subdivide the
sub-box and use the same killerword on the pieces until it succeeds. We note
that the theoretical error arising from using a first-order Taylor approximation
is likely to be significantly improved by subdivision, whereas the round-off
error is relatively unaffected because the killerword used is unchanged (hence
the number of mathematical operations performed is unchanged).

The binary numbers used by the computer require too much space to
print. In the example calculation which follows, we instead use decimal rep-
resentations (although we print fewer digits than could be gotten from the 53
binary digits used for the actual calculations).

The sub-box Z(s01011) is the region where


−1.381589027741 . . . ≤ Re(L′) ≤ −1.379848991182 . . .

−1.378124546093 . . . ≤ Re(D′) ≤ −1.376574349753 . . .

0.999893182771 . . . ≤ Re(R′) ≤ 1.001274250703 . . .

−2.535837191243 . . . ≤ Im(L′) ≤ −2.534606799593 . . .

2.535404997792 . . . ≤ Im(D′) ≤ −2.534308843448 . . .

−0.001953125000 . . . ≤ Im(R′) ≤ 0.000000000000 . . .




At this point, we would like to compute

f, w, g = f−1wf−1w−1f−1w−1fw−1f−1w−1f−1wf−1wfww, length(g),

and so on. However, these items take on values over an entire sub-box and
thus are computed via AffApproxes (first-order Taylor approximations with
remainder/error bounds), which are not formally defined until the next section.
We complete Example 5.4 at the end of Section 6.

Remark 5.5. For those planning on looking at the program verify we now
tie in the above description of its workings to a portion of the actual code in the
program. We note that the CWeb version of verify is extensively documented,
and is organized so that the most important details are presented first.

If the executable version of verify is called verify and we are in the correct
place with respect to the location of the data, then a typical UNIX command
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line would be

zcat data/000000.gz | verify 000000 > output000000

This would run verify at the node 000000, and, when needed, would pipe in
the unzipped data from data/000000.gz. This unzipped data contains the
tree decomposition of the parameter space at the sub-box 000000. The output
from verify would be redirected to the file output000000.

In verify, main would check for syntax errors in the command line, and if
there were no such errors, would read the location 000000 into the character
array where and compute that the depth of where was 6, which means that
000000 contains six subdivisions. It would then immediately print

verified 000000 - {

into the file output000000, and then call the function verify, as follows:

verify(where, depth, 0);

The function verify(where, depth, autocode) is now invoked; this time
with autocode equal to 0. Verify would first check that depth was not too
deep. Next, verify checks if autocode is equal to 0, which it is, so it reads in the
next (in this case, the first) integer from the unzipped file data/000000.gz,
and sets code equal to this integer. Now, verify recursively calls itself on the
left child (0000000) of the where box and the right child (0000001) of the where
box:

where[depth] = ‘0’;

verify(where, depth + 1, code);

where[depth] = ‘1’;

verify(where, depth + 1, code);

In general, verify(where, depth, autocode) does the following. It checks to
see that depth is not too deep. Then if autocode is equal to 0, it recursively
calls itself on its left and right children. If autocode is not equal to 0, then
code is set equal to autocode, and three possibilities can occur. Either,

1) code is less than zero, in which case we are at a sub-box to be skipped,
and verify prints out its location (where) in output000000 and recursively
moves on to the next node in the tree, or

2) code is greater than zero and it invokes a condition/killerword from
the file conditionlist which kills the entire sub-box where in which case verify
simply recursively moves on to the next node in the tree, or

3) code is greater than zero and it invokes a condition/killerword from
the file conditionlist which does not kill the entire sub-box where, in which
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case verify subdivides the sub-box where and recursively calls itself on the
left child and the right child, using the same code:

where[depth] = ‘0’;

verify(where, depth + 1, code);

where[depth] =‘1’;

verify(where, depth + 1, code);

In this way verify tests the entire starting box, in this case the sub-box 000000,
and if successful at killing it minus the omissions which it prints out, it finishes
main by printing out a right bracket into output000000.

6. Affine approximations

Remark 6.1. To show that a sub-box of the parameter box W is killed
by one of the interesting conditions (plus associated killerword) we need to
show that at each point in the sub-box, the killerword evaluated at that point
satisfies the given condition (see Section 5). That is, we are simply analyzing
a certain function from the sub-box to C.

As described in Remark 6.5, this analysis can be pulled back from the
sub-box in question to the closed polydisc A = {(z0, z1, z2) ∈ C3 : |zk| ≤ 1 for
k ∈ {0, 1, 2}}. Loosely, we will analyze such a function on A by using Taylor
approximations consisting of an affine approximating function together with a
bound on the “error” in the approximation (this could also be described as a
“remainder bound”). This “error” is separate from round-off error, which will
be analyzed in Sections 7 and 8.

Problems 6.2. There are two immediate problems likely to arise from this
Taylor approximation approach. The first problem is the appearance of un-
pleasant functions such as Arccosh. We have already taken care of this problem
by “exponentiating” our preliminary parameter space P. This resulted in all
functions under consideration being built up from the co-ordinate functions
L′, D′, and R′ on W by means of the elementary operations +, −, ×, /,

√
.

Second, for a given “built-up function” the computer needs to be able to
compute the Taylor approximation, and the error term. This will be handled
by developing combination formulas for elementary operations (see the propo-
sitions below). Specifically, given two Taylor approximations with error terms
representing functions g and h and an elementary operation on g and h, we will
show how to get the Taylor approximation with error term for the resultant
function from the two original Taylor approximations.

A similar approach was developed independently by Stolfi and Figuereido
(see [FS]).
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Remark 6.3. We set up the Taylor approximation approach rigorously
as follows in Definition 6.4. The notation will be a bit unusual, but we are
motivated by a desire to stay close to the notation used in the checker computer
programs, verify and corona. However, it should be pointed out that the
formulas in this section will be superseded by the ones in Section 8, which
incorporate a round-off error analysis. It is the Section 8 formulas that are
used in verify and corona.

Definition 6.4. An AffApprox x is a five-tuple (x.f ; x.f0, x.f1, x.f2; x.e),
consisting of four complex numbers x.f, x.f0, x.f1, x.f2 and one real number
x.e, which represents all functions g : A → C such that

|g(z0, z1, z2) − (x.f + x.f0z0 + x.f1z1 + x.f2z2)| ≤ x.e

for all (z0, z1, z2) ∈ A. That is, x represents all functions from A to C that are
x.e-well-approximated by the affine function x.f +x.f0z0 +x.f1z1 +x.f2z2. We
will denote this set of functions associated with x by S(x).

Remark 6.5. As mentioned in Remark 6.1, given a sub-box to analyze,
instead of working with functions defined on the sub-box, we will work with
corresponding functions defined on A. Specifically, rather than build up a func-
tion by elementary operations performed on the co-ordinate functions L′, D′, R′

restricted to the given sub-box, we will perform the elementary operations on
the following functions defined on A,

(p0 + ip3; s0 + is3, 0, 0; 0) (p1 + ip4; 0, s1 + is4, 0; 0) (p2 + ip5; 0, 0, s2 + is5; 0)

where (p0 + ip3, p1 + ip4, p2 + ip5) is the center of the sub-box in question, and
the si describe the six dimensions of the box. In the computer programs, these
three functions are called along, ortho, and whirle, respectively, and pi and si

are denoted pos[i] and size[i], respectively.

After the following remarks, we state and prove the combination formulas.

Remarks 6.6. i) In order to co-ordinate numbering with Section 8, we
will break with the convention used previously in this paper and start the
numbering of the propositions with 6.1. However, we will end this section with
Example 6.7.

ii) The negation of a set of functions is the set consisting of the negatives
of the original functions, and similarly for other operations.

iii) The propositions that follow include in their statements the definitions
of the various operations on AffApproxes. What needs to be proved is that the
S functions behave as expected. For example, we need to show that under the
definition given for addition, the set of functions S(x+y) contains all functions
obtained by adding a function from S(x) to a function from S(y).
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Proposition 6.1 (unary minus). If x is an AffApprox, then S(−x) =
−(S(x)) where

−x ≡ (−x.f ; −x.f0, −x.f1, −x.f2; x.e).

Proof.

|g(z0, z1, z2) − (x.f + x.f0z0 + x.f1z1 + x.f2z2)| ≤ e

if and only if

| − g(z0, z1, z2) − (−x.f − x.f0z0 − x.f1z1 − x.f2z2)| ≤ e.

Proposition 6.2 (addition). If x and y are AffApproxes, then S(x + y)
⊇ S(x) + S(y), where

x + y ≡ (x.f + y.f ;x.f0 + y.f0, x.f1 + y.f1, x.f2 + y.f2;x.e + y.e).

Proof. If g ∈ S(x) and h ∈ S(y) then we must show that g+h ∈ S(x+y).

|(g + h)(z0, z1, z2)

−((x.f + y.f) + (x.f0 + y.f0)z0 + (x.f1 + y.f1)z1 + (x.f2 + y.f2)z2)|
≤ |g(z0, z1, z2) − (x.f + (x.f0)z0 + (x.f1)z1 + (x.f2)z2)|

+|h(z0, z1, z2) − (y.f + (y.f0)z0 + (y.f1)z1 + (y.f2)z2)|
≤ x.e + y.e.

Proposition 6.3 (subtraction). If x and y are AffApproxes, then S(x−y)
⊇ S(x) − S(y), where

x − y ≡ (x.f − y.f ;x.f0 − y.f0, x.f1 − y.f1, x.f2 − y.f2;x.e + y.e).

To co-ordinate numbering with Section 8 (where we incorporate round-off
error into these formulas) we include the following special cases of Propositions
6.2 and 6.3. Similarly for Propositions 6.7, 6.9, and 6.10.

In what follows, “double” refers to a real number, and has an associated
AffApprox, with the last four entries zero. When we do machine arithmetic in
Sections 7 and 8, doubles will be machine numbers.

Proposition 6.4 (addition of an AffApprox and a double). If x is an
AffApprox and y is a double, then S(x + y) ⊇ S(x) + S(y), where

x + y ≡ (x.f + y;x.f0, x.f1, x.f2;x.e).

Proposition 6.5 (subtraction of a double from an AffApprox). If x is
an AffApprox and y is a double, then S(x − y) ⊇ S(x) − S(y), where

x − y ≡ (x.f − y;x.f0, x.f1, x.f2;x.e).



HOMOTOPY HYPERBOLIC 3-MANIFOLDS 399

Proposition 6.6 (multiplication). If x and y are AffApproxes, then
S(x × y) ⊇ S(x) × S(y), where

x × y ≡ (x.f × y.f ;x.f × y.f0 + x.f0 × y.f,

x.f × y.f1 + x.f1 × y.f, x.f × y.f2 + x.f2 × y.f ;

(size(x) + x.e) × (size(y) + y.e) + (|x.f | × y.e + x.e × |y.f |))

with size(x) = |x.f0| + |x.f1| + |x.f2| and size(y) = |y.f0| + |y.f1| + |y.f2|.

Proof. If g ∈ S(x) and h ∈ S(y) then we must show that g×h ∈ S(x×y).
That is, we need to show

|(g × h)(z0, z1, z2) − ((x.f × y.f) + (x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2)|
≤ (size(x) + x.e) × (size(y) + y.e) + (|x.f | × y.e + x.e × |y.f |).

Note that for any point (z0, z1, z2) ∈ A and any functions g ∈ S(x) and h ∈
S(y) we can find complex numbers u, v with |u| ≤ 1 and |v| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.f0z0 + x.f1z1 + x.f2z2) + (x.e)u

and
h(z0, z1, z2) = y.f + (y.f0z0 + y.f1z1 + y.f2z2) + (y.e)v.

Multiplying out, we see that

(g × h)(z0, z1, z2)

= (x.f × y.f) + (x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2

+ (x.f × y.e)v + (x.e × y.f)u + ((x.f0z0 + x.f1z1 + x.f2z2) + (x.e)u)

× ((y.f0z0 + y.f1z1 + y.f2z2) + (y.e)v).

Hence,

|(g × h)(z0, z1, z2) − ((x.f × y.f)

+ ((x.f × y.f0 + x.f0 × y.f)z0

+ (x.f × y.f1 + x.f1 × y.f)z1 + (x.f × y.f2 + x.f2 × y.f)z2))|
≤ (|x.f |y.e + x.e|y.f |) + (size(x) + x.e) × (size(y) + y.e).

Proposition 6.7 (an AffApprox multiplied by a double). If x is an
AffApprox and y is a double, then S(x × y) ⊇ S(x) × S(y), where

x × y ≡ (x.f × y;x.f0 × y, x.f1 × y, x.f2 × y;x.e × |y|).
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Proposition 6.8 (division). If x and y are AffApproxes with |y.f | >

size(y) + y.e, then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (x.f/y.f ; (−x.f × y.f0 + x.f0 × y.f)/((y.f)2),

(−x.f × y.f1 + x.f1 × y.f)/((y.f)2),

(−x.f × y.f2 + x.f2 × y.f)/((y.f)2);

(|x.f | + size(x) + x.e)/(|y.f | − (size(y) + y.e))

− ((|x.f |/|y.f | + size(x)/|y.f |) + |x.f |size(y)/(|y.f ||y.f |))).

Proof. For notational convenience, denote (x.f0z0 + x.f1z1 + x.f2z2) by
x.fkzk and similarly for y.fkzk and so on. As above, note that for any point
(z0, z1, z2) ∈ A and any functions g ∈ S(x) and h ∈ S(y) we can find complex
numbers u, v with |u| ≤ 1 and |v| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.fkzk) + (x.e)u

and
h(z0, z1, z2) = y.f + (y.fkzk) + (y.e)v.

We compare (g/h)(z0, z1, z2) with its putative affine approximation. That
is, we analyze ∣∣∣(x.f + (x.fkzk) + (x.e)u)/(y.f + (y.fkzk) + (y.e)v)

− ((x.f/y.f) +
(x.fk)y.f − x.f(y.fk)

(y.f)2
zk)

∣∣∣.
Putting this over a common denominator of |((y.f)2)(y.f + (y.fkzk) + (y.e)v)|
and cancelling equal terms (in the numerator) we are left with a quotient whose
numerator is

|x.e((y.f)2)u − (x.fk)y.f(y.fk)zk − x.f((y.fk)2)zk

+ (x.f)y.f(y.e)v + x.fk(y.f)y.e(v)zk − x.f(y.fk)y.e(v)zk|.

We must show this (first) quotient is bounded by

(|x.f | + size(x) + x.e)/(|y.f | − (size(y) + y.e))

− ((|x.f |/|y.f | + size(x)/|y.f |) + |x.f |size(y)/(|y.f ||y.f |)).

Putting this over a common denominator of |(y.f)|2(|y.f |− (size(y)+y.e)) and
cancelling equal terms (in the numerator) we are left with a second quotient,
whose numerator is

x.e|y.f |2−(−|x.f ||y.f |y.e−size(x)|y.f |(size(y)+y.e)−|x.f |size(y)(size(y)+y.e))

and we see that all terms in this numerator are positive. Further, the terms in
the numerators of the first and second quotients correspond in a natural way,
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and each term in the numerator of the second quotient is greater than or equal
to the absolute value of its corresponding term in the numerator of the first
quotient.

Finally, because the denominator in the second quotient is less than or
equal to the absolute value of the denominator in the first quotient, we see
that the absolute value of the first quotient is less than or equal to the second
quotient, as desired.

Proposition 6.9 (division of a double by an AffApprox). If x is a double
and y is an AffApprox with |y.f | > size(y) + y.e, then S(x/y) ⊇ S(x)/S(y),
where

x/y ≡ (x/y.f ;−x × y.f0/((y.f)2),−x.f × y.f1/((y.f)2),−x.f × y.f2/((y.f)2);

(|x|/(|y.f | − (size(y) + y.e)) − (|x|/|y.f | + |x|size(y)/(|y.f ||y.f |))).

Proposition 6.10 (division of an AffApprox by a double). If x is an
AffApprox and y is a double with |y| > 0, then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (x.f/y;x.f0/y, x.f1/y, x.f2/y;x.e/|y|).

Finally, we do the square root.

Proposition 6.11 (square root). If x is an AffApprox with |x.f | >

size(x) + x.e, then S(
√

x) ⊇
√

S(x), where

√
x =

(√
x.f ;

x.f0

2
√

x.f
,

x.f1

2
√

x.f
,

x.f2

2
√

x.f
;

√
|x.f | −

(
size(x)
2
√
|x.f |

+
√
|x.f | − (size(x) + x.e)

))
.

If |x.f | ≤ size(x) + x.e then we use the crude estimate(
0; 0, 0, 0;

√
|x.f | + size(x) + x.e

)
.

The branch of the square root of a complex number is determined by the
construction of the square root of a complex in Proposition 7.14. In fact, the
square root is in the first or fourth quadrant.

Proof. As above, note that for any point (z0, z1, z2) ∈ A and any function
g ∈ S(x) we can find a complex number u with |u| ≤ 1, such that

g(z0, z1, z2) = x.f + (x.fkzk) + (x.e)u.

Also, because |x.f | > size(x)+x.e. we see that the argument of x.f +(x.fkzk)+
(x.e)u is within π/2 of the argument of x.f , and therefore, we can require that√

g(z0, z1, z2) have argument within π/4 of the argument of
√

x.f.
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We need to show that∣∣∣∣
√

x.f + x.fkzk + (x.e)u − (
√

x.f +
x.fkzk

2
√

x.f
)
∣∣∣∣

≤
√
|x.f | −

(
size(x)
2
√
|x.f |

+
√
|x.f | − (size(x) + x.e)

)
.

Or, after we multiply both sides by
√
|x.f |,∣∣∣∣

√
x.f(x.f + x.fkzk + (x.e)u) − (x.f + (x.fk)zk/2)

∣∣∣∣
≤ (|x.f | − size(x)/2) −

√
|x.f |(|x.f | − (size(x) + x.e)).

The two sides of the inequality are of the form A−B and C−D, and we “sim-
plify” by multiplying by A+B

A+B and C+D
C+D . We now show that the (absolute value

of the) left-hand numerator is less than or equal to the right-hand numerator.
Later, we will show that the (absolute value of the) left-hand denominator is
larger than or equal to the right-hand denominator. The left-hand numerator
is

|x.f(x.f + x.fkzk + (x.e)u) − (x.f + (x.fk)zk/2)2|

= |(x.f)2 + x.f(x.fk)zk + x.f(x.e)u − (x.f)2

−x.f(x.fk)zk − ((x.fk)2)(zk)2/4|

= |x.f(x.e)u − ((x.fk)2)(zk)2/4|.

The right-hand numerator is

(|x.f | − size(x)/2)2 − |x.f |(|x.f | − (size(x) + x.e))

= |x.f |2 − |x.f |size(x) + size(x)2/4 − |x.f |2 + |x.f |size(x) + |x.f |x.e

= |x.f |x.e + size(x)2/4.

So the left-hand numerator is indeed less than or equal to the right-hand
numerator.

We now compare the denominators, but only after dividing each by
√
|x.f |.

The left-hand denominator is∣∣∣∣
√

x.f + x.fkzk + (x.e)u +
(√

x.f +
x.fkzk

2
√

x.f

)∣∣∣∣
while the right-hand denominator is

√
|x.f | − size(x)

2
√
|x.f |

+
√
|x.f | − (size(x) + x.e).
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The claim that the left-hand denominator is greater than or equal to the right-
hand denominator is a bit complicated. First, compare the

√
x.f term and the√

|x.f | terms. They are the same distance from the origin. Next, note that
as zk and u take on all relevant values, x.f + x.fkzk + (x.e)u describes a disk
centered at x.f with radius less than |

√
x.f |. Hence,

√
x.f + x.fkzk + (x.e)u

describes a convex set containing
√

x.f . This set is symmetric about the line
joining the origin and

√
x.f . Further,

√
x.f +

√
x.f + x.fkzk + (x.e)u describes

a convex set containing 2
√

x.f . This set is also symmetric about the line joining
the origin and

√
x.f . It is easy enough to see that no points on this convex

symmetric set get closer to the origin than
√
|x.f | +

√
|x.f | − (size(x) + x.e).

Finally, because | x.fkzk

2
√

x.f
| ≤ size(x)

2
√

|x.f |
, no points of

√
x.f +

√
x.f + x.fkzk + (x.e)u +

x.fkzk

2
√

x.f

can get closer to the origin than

√
|x.f | +

√
|x.f | − (size(x) + x.e) − size(x)

2
√
|x.f |

.

Example 6.7 (Continuation of Example 5.4). We can now complete the
analysis begun in Example 5.4, because we can describe f and w as 2-by-2
matrices of AffApproxes. We note the minor quibble that the full definition of
AffApprox is given in Section 8, where round-off error is incorporated into the
remainder/error-bound term.

For convenience, we repeat the description of the sub-box under investi-
gation. The sub-box Z(s01011) with

s = 001000110001110111001111000101111111101111100111001111000001111011110111

is the region where




−1.381589027741 . . . ≤ Re(L′) ≤ −1.379848991182 . . .

−1.378124546093 . . . ≤ Re(D′) ≤ −1.376574349753 . . .

0.999893182771 . . . ≤ Re(R′) ≤ 1.001274250703 . . .

−2.535837191243 . . . ≤ Im(L′) ≤ −2.534606799593 . . .

2.535404997792 . . . ≤ Im(D′) ≤ −2.534308843448 . . .

−0.001953125000 . . . ≤ Im(R′) ≤ 0.000000000000 . . .




.
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For this sub-box, we get (printing only 10 decimal places, for visual con-
venience):

f =







−0.8677851121 + i1.4607429651;
0.0000248810 − i0.0003125810,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000289







0.0000000000 + i0.0000000000;

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000000







0.0000000000 + i0.0000000000;

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000000







−0.3006023265 − i0.5060039953;

−0.0000909686 − i0.0000593570,

0.0000000000 + i0.0000000000,

0.0000000000 + i0.0000000000;

0.0000000301







and

w =







−0.5845111829 + i0.4773282853;

0.0000000000 + i0.0000000000,

−0.0000296707 − i0.0001657332,

−0.0004345111 − i0.0001209539;

0.0000002590







−0.2840228472 + i0.9825063583;

0.0000000000 + i0.0000000000,

0.0000516606 − i0.0001128245,

0.0005776611 − i0.0001998632;

0.0000006462







−0.2832291572 + i0.9833572297;

0.0000000000 + i0.0000000000,

0.0000515806 − i0.0001129408,

−0.0005778031 + i0.0002005440;

0.0000002806







−0.5846352333 + i0.4764792236;

0.0000000000 + i0.0000000000,

−0.0000294917 − i0.0001656653,

0.0004341392 + i0.0001213070;

0.0000005286







.

Calculation of g = f−1wf−1w−1f−1w−1fw−1f−1w−1f−1wf−1wfww gives

g =







−0.5764337542 + i0.4752708071;

−0.0031657223 − i0.0001436786,

−0.0017723577 + i0.0000352928,

−0.0011623491 + i0.0017516088;

0.0008229225







−0.2704033973 + i0.9822741250;

−0.0045902952 − i0.0019135041,

−0.0026219461 − i0.0007506230,

−0.0002823450 + i0.0033805602;

0.0008037640







−0.2861207992 + i0.9766064999;

−0.0002777968 + i0.0020330488,

0.0000837571 + i0.0010241875,

0.0028322367 − i0.0005972336;

0.0018172437







−0.5861133046 + i0.4624368851;

−0.0021932627 + i0.0040523411,

−0.0008612361 + i0.0022394639,

0.0061581377 − i0.0005862070;

0.0017738513







.
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We then get

length(g) =




−1.3588762105 − i2.4897230182;

0.0030210500 − i0.0182284729,

0.0007938572 − i0.0096614614,

−0.0122034521 + i0.0074353043;

0.0080071969




and

length(g)
L′ =




0.9825397896 − i0.0008933519;

0.0053701602 + i0.0037789019,

0.0028076072 + i0.0018421952,

−0.0002400615 − i0.0049443045;

0.0027802966




.

This is not quite good enough to kill the sub-box, since |length(g)/L′| can
be as high as 1.0001951323.

When we subdivide Z(s01011), we have to analyze two sub-boxes, Z(s010110)
and Z(s010111). For Z(s010110), the same calculation on the region

−1.381589027741073400 ≤ Re(L′) ≤ −1.379848991182205200

−1.378124546093485700 ≤ Re(D′) ≤ −1.376574349753672900

0.999893182771602220 ≤ Re(R′) ≤ 1.001274250703607400

−2.535837191243490300 ≤ Im(L′) ≤ −2.534606799593201600

−2.535404997792558600 ≤ Im(D′) ≤ −2.534308843448505900

−0.001953125000000000 ≤ Im(R′) ≤ −0.000976562500000000

gives

length(g)
L′ =




0.9814518667 + i0.0008103446;

0.0053616729 + i0.0037834001,

0.0028027236 + i0.0018435245,

−0.0013175066 − i0.0032448794;

0.0019033926




,

and we can then bound
∣∣∣ length(g)

L′

∣∣∣ ≤ 0.9967745579, which kills Z(s010110).
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On Z(s010111), the calculation gives

length(g)
L′ =




0.9836225919 − i0.0025990177;

0.0053786346 + i0.0037743930,

0.0028124892 + i0.0018408583,

−0.0013333182 − i0.0032343347;

0.0019044429




and
∣∣∣ length(g)

L′

∣∣∣ ≤ 0.9989610507, which kills Z(s010111).

7. Complex numbers with round-off error

Remark 7.1. The theoretical method for proving Theorem 0.2 has been
implemented via the computer programs verify and corona, which are avail-
able, together with the relevant data sets, at the Annals web site. To make
this computer-aided proof rigorous, we needed to deal with round-off error in
calculations.

One approach to round-off error would be to use interval arithmetic pack-
ages to carry out all calculations with floating-point machine numbers, or to
generate our own version of these packages. However, it appears that this ap-
proach would be much too slow given the size of our collection of sub-boxes
and conditions/killerwords.

To solve this problem of speed, we implement round-off error at a higher
level of programing. That is, we incorporate round-off error directly into
AffApproxes, which makes our error calculations more accurate, thereby avoid-
ing much subdivision of sub-boxes. This necessitates that we incorporate
round-off error directly into complex numbers as well. In this section we show
how to do standard operations on complex numbers while keeping track of
round-off error. In the next section we work with AffApproxes.

Definition 7.2. There are two types of complex numbers to consider:

1) An XComplex x = (x.re, x.im) corresponds to a complex number that is
represented exactly; it simply consists of a real part and an imaginary
part.

2) An AComplex x = (x.re, x.im; x.e) corresponds to an “interval” that con-
tains the complex number in question. Thus, it consists of an XComplex
and a floating-point number representing the error. In particular, the
AComplex x represents the set S(x) of complex numbers
{w : |w − (x.re + i(x.im))| ≤ x.e}. Note that S(x) is also defined for
an XComplex if we conceptualize an XComplex as an AComplex with
x.e = 0.
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Remark 7.3. In general, our operations act on XComplexes and produce
AComplexes, or they act on AComplexes and produce AComplexes. In one
case, the unary minus, an XComplex goes to an XComplex. In the calculations
that follow the effect on the error is the whole point.

Conventions and standards 7.4. We begin, by writing down our basic
rules, which follow easily from the IEEE-754 standard for machine arithmetic
(see [IEEE]). (Actually, the “hypot” function h(a, b), which computes by elab-
orate chicanery

√
a2 + b2, is not part of the IEEE-754 standard, but satisfies

the appropriate standard according to the documentation provided (see [K1]).)
The operations here are on double-precision floating-point real numbers (“dou-
bles”) and we denote a true operation by the usual symbol and the associated
machine operation by the same symbol in a circle, with two exceptions: a
machine square root

√
a is denoted o

√
a and the machine version of the hypot

function is denoted h◦. Perhaps a third exception is our occasional notation
of true multiplication by the absence of a symbol.

There is a finite set of numbers (sometimes called “machine numbers”)
which are representable on the computer. With technicalities ignored, a nonzero
floating-point number is represented by a fixed number of bits of which the first
determines the sign of the number, the next m represent the exponent, and
the remaining n represent the mantissa of the number. Because our nonzero
numbers start with a 1, that means the n mantissa bits actually represent the
next n binary digits after the 1. That is, the mantissa is actually 1.b1b2b3...bn.

The IEEE-754 standard calls for 64-bit doubles with m = 11 and n = 52. We
define EPS to be 2−n, in which case EPS/2 is 2−(n+1).

The IEEE-754 standard states that the result of an operation is always
the closest representable number to the true solution (as long as we are in the
bounds of representable numbers). For example, for machine numbers a and b,
we have a⊕b = m(a+b) where m is the function which takes the machine value
of its argument (when it lies in the range of representable numbers). Thus,
properties of the type

|(a + b) − (a ⊕ b)| ≤ (EPS/2)|a + b|

follow immediately from the IEEE-754 standard, as long as we do not under-
flow or overflow outside of the range of representable numbers. Specifically,
underflow occurs when the result of an operation is smaller in absolute value
than 2−1022, and overflow occurs when the result of an operation is larger in
absolute value than roughly 21024 (see [IEEE, §7]).

We further note that the formula

|(a + b) − (a ⊕ b)| ≤ (EPS/2)|a ⊕ b|
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follows because the true answer has “exponent” which is less than or equal to
the exponent of the machine answer. We reiterate, that in both cases, a and b

are assumed to be machine numbers.
Of course, a machine operation such as ⊕ must act on doubles, while a

“true” operation such as + can act on reals (which includes doubles). In this
chapter, long strings of inequalities will be used to prove the various proposi-
tions, and care was taken to ensure that machine operations act on machine
numbers. In particular, the various variables appearing in the propositions are
assumed to be doubles. The IEEE-754 standard provides for conversions from
decimal to binary (within the appropriate range, conversion is to the nearest
representable number) and from binary to decimal. However, these are rarely
used in this paper, although a trivial class of exceptions is provided by the
decimal numbers in the conditions of Section 5.

When calculations underflow or overflow outside of the range of repre-
sentable numbers, we require that the computer inform us if either exception
has occurred.

As in Section 6, we now break with the usual numbering convention. Note
that the above comments provide a proof of the following properties.

Basic Properties 7.0 (assuming no underflow and no overflow).

In the formulas that follow, a,b, and A are machine numbers and 1 + k ×
EPS = 1 ⊕ (k ⊗ EPS) when k is an integer which is not huge in absolute
value (that is, smaller than roughly 250). Thus, within the appropriate range,
1 + k × EPS is a machine number. Similarly, 2k × A = 2k ⊗ A when k is an
integer and 2k ⊗ A neither underflows nor overflows.

|(a + b) − (a ⊕ b)| ≤ (EPS/2)|a + b|,
|(a + b) − (a ⊕ b)| ≤ (EPS/2)|a ⊕ b|,
|(a − b) − (a � b)| ≤ (EPS/2)|a − b|,
|(a − b) − (a � b)| ≤ (EPS/2)|a � b|,
|(a × b) − (a ⊗ b)| ≤ (EPS/2)|a × b|,
|(a × b) − (a ⊗ b)| ≤ (EPS/2)|a ⊗ b|,
|(a/b) − (a � b)| ≤ (EPS/2)|a/b|,
|(a/b) − (a � b)| ≤ (EPS/2)|a � b|,

|
√

a − o
√

a| ≤ (EPS/2)|
√

a|,
|
√

a − o
√

a| ≤ (EPS/2)| o
√

a|,
|h(a, b) − h◦(a, b)| ≤ (EPS)|h(a, b)|,
|h(a, b) − h◦(a, b)| ≤ (EPS)|h◦(a, b)|.
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From these formulas, we immediately compute the following.

(1 − EPS/2)|a + b| ≤ |a ⊕ b| ≤ (1 + EPS/2)|a + b|,
(1 − EPS/2)|a ⊕ b| ≤ |a + b| ≤ (1 + EPS/2)|a ⊕ b|,

.

.

.

(1 − EPS/2)|
√

a| ≤ | o
√

a| ≤ (1 + EPS/2)|
√

a|,
(1 − EPS/2)| o

√
a| ≤ |

√
a| ≤ (1 + EPS/2)| o

√
a|,

(1 − EPS)|h(a, b)| ≤ |h◦(a, b)| ≤ (1 + EPS)|h(a, b)|,
(1 − EPS)|h◦(a, b)| ≤ |h(a, b)| ≤ (1 + EPS)|h◦(a, b)|.

Of course, we can also get the following type of formula, which is sometimes
convenient, for example, in the proof of Lemma 7.2:(

1
1 + EPS

2

)
|a ⊕ b| ≤ |a + b| ≤

(
1

1 − EPS
2

)
|a ⊕ b|.

Before stating our propositions, we prove two lemmas.

Lemma 7.0 (assuming no underflow and no overflow). For machine
numbers a and b,

(1 − EPS) ⊗ |a ⊕ b| ≤ |a + b| ≤ (1 + EPS) ⊗ |a ⊕ b|.
Analogous formulas hold for −, ∗, /,

√.

Proof. Assume a+b > 0. If (1+EPS)⊗(a⊕b) < (a+b) then the machine
number (1 + EPS) ⊗ (a ⊕ b) is a better approximation to a + b than a ⊕ b,
because (a ⊕ b) < (1 + EPS) ⊗ (a ⊕ b). This contradicts the IEEE standard.
The case a + b < 0 can be handled similarly, and the case a + b = 0 is trivial,
similarly for the left-hand inequality.

Lemma 7.1.

(1 + EPS/2)aA ≤ (1 + kEPS) ⊗ A

where A is a nonnegative machine number, and a is a (not huge) integer, such
that for a even, k = a

2 + 1 and for a odd, k = a+1
2 + 1.

Proof.

(1 + EPS/2)aA ≤ (1 − EPS/2)(1 + kEPS)A ≤ (1 + kEPS) ⊗ A.

The first inequality holds if a and k are as in the lemma, and the second inequal-
ity is a consequence of one of the formulas preceding Lemma 7.0
(A ≥ 0).
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We now begin our construction of complex arithmetic. We will give proofs
for most of the operations; the others should be straightforward to derive, or
can be found in the Annals web site.

Remarks 7.5. i) We remind the reader that all machine operations are on
machine numbers, and that the various variables appearing in the propositions
are assumed to be doubles.

ii) The propositions that follow include in their statements the definitions
of the various operations (see Remark 6.6iii).

Proposition 7.1 (−X). If x is an XComplex, then

−x ≡ (−x.re,−x.im).

Proposition 7.2 (X +D). If x is an XComplex and d is a double, then
S(x + d) ⊇ S(x) + S(d), where

x + d ≡ (x.re ⊕ d, x.im; (EPS/2) ⊗ |x.re ⊕ d|).

Proof. The error is bounded by

|(x.re + d) − (x.re ⊕ d)| ≤ (EPS/2)|x.re ⊕ d| = (EPS/2) ⊗ |x.re ⊕ d|.

Proposition 7.3 (X−D). If x is an XComplex and d is a double, then
S(x − d) ⊇ S(x) − S(d), where

x − d ≡ (x.re � d, x.im; (EPS/2) ⊗ |x.re � d|).

Proposition 7.4 (X +X). If x and y are XComplexes, then S(x+y) ⊇
S(x) + S(y), where

x + y ≡ (x.re ⊕ y.re, x.im ⊕ y.im; (EPS/2)

⊗ ((1 + EPS) ⊗ (|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|))).

Proof. The error is bounded by

|(x.re + y.re) − (x.re ⊕ y.re)| + |(x.im + y.im) − (x.im ⊕ y.im)|

≤ (EPS/2)(|x.re ⊕ y.re| + |x.im ⊕ y.im|)

≤ (EPS/2)((1 + EPS) ⊗ (|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|))

= (EPS/2) ⊗ ((1 + EPS) ⊗ (|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|)).

To go from line 2 to line 3 we used Lemma 7.0.
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Proposition 7.5 (X−X). If x and y are XComplexes, then S(x−y) ⊇
S(x) − S(y), where

x − y ≡ (x.re � y.re, x.im � y.im;

(EPS/2) ⊗ ((1 + EPS) ⊗ (|x.re � y.re| ⊕ |x.im � y.im|))).

Proposition 7.6 (A+A). If x and y are AComplexes, then S(x+y) ⊇
S(x) + S(y), where

x + y ≡ (re, im; e) with

re = x.re ⊕ y.re

im = x.im ⊕ y.im

e = (1 + 2EPS) ⊗ (((EPS/2) ⊗ (|re| ⊕ |im|)) ⊕ (x.e ⊕ y.e)).

Proof. The error is bounded by the sum of the contributions from the real
part, the imaginary part, and the two individual errors:

|(x.re ⊕ y.re) − (x.re + y.re)| + |(x.im ⊕ y.im) − (x.im + y.im)| + (x.e + y.e).

≤ (EPS/2)|x.re ⊕ y.re| + (EPS/2)|x.im ⊕ y.im| + (1 + EPS/2)(x.e ⊕ y.e)

≤ (1 + EPS/2)(EPS/2)(|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|)

+(1 + EPS/2)(x.e ⊕ y.e)

= (1 + EPS/2)((EPS/2)(|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|) + (x.e ⊕ y.e))

≤ (1 + EPS/2)2(((EPS/2)(|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|)) ⊕ (x.e ⊕ y.e))

≤ (1 + 2EPS) ⊗ (((EPS/2) ⊗ (|x.re ⊕ y.re| ⊕ |x.im ⊕ y.im|)) ⊕ (x.e ⊕ y.e)).

The precedence for machine operations is the same as that for true oper-
ations, so some parentheses are unnecessary and will often be omitted in what
follows.

Proposition 7.7 (A−A). If x and y are AComplexes, then S(x−y) ⊇
S(x) − S(y), where

x − y ≡ (re, im; e) with

re = x.re � y.re

im = x.im � y.im

e = (1 + 2EPS) ⊗ (((EPS/2) ⊗ (|re| ⊕ |im|)) ⊕ (x.e ⊕ y.e)).
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Proposition 7.8 (X×D). If x is an XComplex and d is a double, then
S(x × d) ⊇ S(x) × S(d), where

x × d ≡ (re, im; e) with

re = x.re ⊗ d

im = x.im ⊗ d

e = (EPS/2) ⊗ ((1 + EPS) ⊗ (|re| ⊕ |im|)).

Proposition 7.9 (X/D). If x is an XComplex and d is a double, then
S(x/d) ⊇ S(x)/S(d), where

x/d ≡ (re, im; e) with

re = x.re � d

im = x.im � d

e = (EPS/2) ⊗ ((1 + EPS) ⊗ (|re| ⊕ |im|)).

Proposition 7.10 (X×X). If x and y are XComplexes, then S(x×y) ⊇
S(x) × S(y), where

x × y ≡ (re, im; e) with

re = re1 � re2, with re1 = x.re ⊗ y.re and re2 = x.im ⊗ y.im

im = im1 ⊕ im2, with im1 = x.re ⊗ y.im and im2 = x.im ⊗ y.re

e = EPS ⊗ ((1 + 2EPS) ⊗ ((|re1| ⊕ |re2|) ⊕ (|im1| ⊕ |im2|))).

Proof. The error is bounded by the sum of the contributions from the real
part and the imaginary part:

|(x.re × y.re − x.im × y.im) − ((x.re ⊗ y.re) � (x.im ⊗ y.im))|

+|(x.re × y.im + x.im × y.re) − ((x.re ⊗ y.re) ⊕ (x.im ⊗ y.im))|.

We want to bound this by a machine formula. Let us begin by bounding

|(x.re × y.re − x.im × y.im) − ((x.re ⊗ y.re) � (x.im ⊗ y.im))|

by a machine formula:
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|(x.re × y.re − x.im × y.im) − ((x.re ⊗ y.re) � (x.im ⊗ y.im))|
≤ |((x.re × y.re) − (x.im × y.im)) − ((x.re ⊗ y.re) − (x.im ⊗ y.im))|

+|((x.re ⊗ y.re) − (x.im ⊗ y.im)) − ((x.re ⊗ y.re) � (x.im ⊗ y.im))|
≤ |(x.re × y.re) − (x.re ⊗ y.re)| + |(x.im × y.im) − (x.im ⊗ y.im)|

+(EPS/2)|(x.re ⊗ y.re) − (x.im ⊗ y.im)|
≤ (EPS/2)|(x.re ⊗ y.re)| + (EPS/2)|(x.im ⊗ y.im)|

+(EPS/2)(|x.re ⊗ y.re| + |x.im ⊗ y.im|)
= (EPS/2)(2)(|x.re ⊗ y.re| + |x.im ⊗ y.im|)
≤ EPS(1 + EPS/2)(|x.re ⊗ y.re| ⊕ |(x.im ⊗ y.im|).

Almost the exact same calculation produces the analogous formula for the
imaginary contribution, and we now combine the two to get a bound on the
total error.

≤ EPS(1 + EPS/2)(|x.re ⊗ y.re| ⊕ |x.im ⊗ y.im|)
+EPS(1 + EPS/2)(|x.re ⊗ y.im| ⊕ |x.im ⊗ y.re|)

≤ EPS ⊗ ((1 + 2EPS) ⊗ ((|x.re ⊗ y.re| ⊕ |x.im ⊗ y.im|)
⊕(|x.re ⊗ y.im| ⊕ |x.im ⊗ y.re|))).

Proposition 7.11 (D/X). If x is a double and y is an XComplex, then
S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (re, im; e) with

re = (x ⊗ y.re) � nrm where nrm = y.re ⊗ y.re ⊕ y.im ⊗ y.im

im = −(x ⊗ y.im) � nrm

e = (2EPS) ⊗ ((1 + 2EPS) ⊗ (|re| ⊕ |im|)).

Proof. The true version of x/y is equal to

(x × y.re + i(−x × y.im))/((y.re)2 + (y.im)2)

and we need to compare this with the machine version to find the error. Fur-
ther, this error is less than or equal to the sum of the real error and the imagi-
nary error. Thus, we start with the real calculation (as in the statement of the
proposition, we use nrm to represent the machine version of (y.re)2 +(y.im)2).∣∣∣∣ x × y.re

(y.re)2 + (y.im)2
− ((x ⊗ y.re) � nrm)

∣∣∣∣
≤

∣∣∣∣(x ⊗ y.re) � nrm − x ⊗ y.re
nrm

∣∣∣∣
+

∣∣∣∣x ⊗ y.re
nrm

− x × y.re
nrm

∣∣∣∣ +
∣∣∣∣x × y.re

nrm
− x × y.re

(y.re)2 + (y.im)2

∣∣∣∣ .
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Before continuing, let us compare 1
nrm and 1

(y.re)2+(y.im)2
by developing a

formula for comparing 1
a2+b2

and its associated 1
nrm :

Lemma 7.2.∣∣∣∣ 1
nrm

− 1
a2 + b2

∣∣∣∣ ≤ (EPS + (EPS/2)2)
1

nrm

where nrm = a ⊗ a ⊕ b ⊗ b.

Proof. We compute that
(

1
1 + EPS/2

)2

× nrm ≤ a2 + b2 ≤
(

1
1 − EPS/2

)2

× nrm;

hence
1

nrm
(1 − EPS/2)2 ≤ 1

a2 + b2
≤ 1

nrm
(1 + EPS/2)2.

It then follows that∣∣∣∣ 1
nrm

− 1
a2 + b2

∣∣∣∣ ≤ 1
nrm

(1 + EPS/2)2 − 1
nrm

=
1

nrm
((1 + EPS/2)2 − 1) = (EPS + (EPS/2)2)

1
nrm

.

Getting back to our main calculation (with nrm = y.re⊗y.re⊕y.im⊗y.im),
we have∣∣∣∣(x ⊗ y.re) � nrm − x ⊗ y.re

nrm

∣∣∣∣
+

∣∣∣∣x ⊗ y.re
nrm

− x × y.re
nrm

∣∣∣∣ +
∣∣∣∣x × y.re

nrm
− x × y.re

(y.re)2 + (y.im)2

∣∣∣∣
≤ (EPS/2)

|x ⊗ y.re|
nrm

+ (EPS/2)
|x ⊗ y.re|

nrm
+ (EPS + (EPS/2)2)

|x × y.re|
nrm

= (EPS/2)
(

1
nrm

)
(2|x ⊗ y.re| + (2 + EPS/2) × |x × y.re|)

≤ (EPS/2)
(

1
nrm

)
(2|x ⊗ y.re| + (2 + EPS/2)(1 + EPS/2) × |x ⊗ y.re|)

= (EPS/2)
(

1
nrm

)
(|x ⊗ y.re|)(2 + (2 + EPS/2)(1 + EPS/2))

≤ (EPS/2)(4 + 3EPS/2 + (EPS/2)2)(|x ⊗ y.re|)
(

1
nrm

)
≤ (EPS/2)(4 + 3EPS/2 + (EPS/2)2)(1 + EPS/2)(|x ⊗ y.re| � nrm)

≤ (2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)(|(x ⊗ y.re � nrm)|).
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We also get the analogous formula for the imaginary contribution for the error,
so our total error is bounded by

(2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)((|(x ⊗ y.re) � nrm|)
+(|(x ⊗ y.im) � nrm|))

≤ (2EPS)(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)2

· ((|(x ⊗ y.re) � nrm|) ⊕ (|(x ⊗ y.im) � nrm|))
≤ (2EPS)(1 − EPS/2)(1 + 2EPS)

· ((|(x ⊗ y.re) � nrm|) ⊕ (|(x ⊗ y.im) � nrm|))
≤ (2EPS) ⊗ ((1 + 2EPS) ⊗ ((|(x ⊗ y.re) � nrm|)

⊕(|(x ⊗ y.im) � nrm|))).
Here we used the fact that

(1 + 3EPS/8 + (EPS/4)2)(1 + EPS/2)2 ≤ (1 − EPS/2)(1 + 2EPS).

This should give the flavor of division proofs. As such, we will skip the
proofs of X/X and A/A and simply refer to the Annals web site.

Proposition 7.12 (X/X). If x and y are XComplexes, then S(x/y) ⊇
S(x)/S(y), where

x/y ≡ (re, im; e) with

re = (x.re ⊗ y.re ⊕ x.im ⊗ y.im) � nrm

where nrm = y.re ⊗ y.re ⊕ y.im ⊗ y.im

im = (x.im ⊗ y.re � x.re ⊗ y.im) � nrm

e = (5EPS/2) ⊗ ((1 + 3EPS) ⊗ A) where

A = ((|x.re ⊗ y.re| ⊕ |x.im ⊗ y.im|) ⊕ (|x.im ⊗ y.re| ⊕ |x.re ⊗ y.im|)) � nrm.

Proposition 7.13 (A/A). If x and y are AComplexes with y.e <

100EPS ⊗ |y|, or, more accurately,

(y.e)2 < ((10000EPS) ⊗ EPS) ⊗ nrm

then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (re, im; e) with

re = (x.re ⊗ y.re ⊕ x.im ⊗ y.im) � nrm

where nrm = y.re ⊗ y.re ⊕ y.im ⊗ y.im

im = (x.im ⊗ y.re � x.re ⊗ y.im) � nrm

e = (1 + 4EPS) ⊗ (((5EPS/2) ⊗ A ⊕ (1 + 103EPS) ⊗ B) � nrm) where

A = (|x.re ⊗ y.re| ⊕ |x.im ⊗ y.im|) ⊕ (|x.im ⊗ y.re| ⊕ |x.re ⊗ y.im|)
B = x.e ⊗ (|y.re| ⊕ |y.im|) ⊕ (|x.re| ⊕ |x.im|) ⊗ y.e.
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In our last proposition we will construct the square-root function. As
a warm-up, ignoring round-off error, our construction is as follows. If
x = x.re + ix.im then

√
x = s + id where s =

√
(|x.re| + h(x.re, x.im))/2

and d = x.im/(2s) when x.re > 0.0, and
√

x = d+ is otherwise. Thus, we take
our (no-round-off) square roots to be in the first and fourth quadrants.

Proposition 7.14 (
√

X). If x is an XComplex, then S(
√

x) ⊇
√

S(x)
where we let so = o

√
(|x.re| ⊕ ho(x.re, x.im)) ⊗ 0.5 and do = (x.im � s) ⊗ 0.5,

and define
√

x ≡ (re, im; e) where

re = so if x.re > 0.0 and re = do otherwise,

im = do if x.re > 0.0 and im = so otherwise,

e = EPS ⊗ ((1 + 4EPS) ⊗ (1.25 ⊗ so ⊕ 1.75 ⊗ |do|)).

Proof. This will be a little nasty. Let us begin by analyzing es, which is
the difference between the true calculation of s and the machine calculation
of s, that is es = |s − so|. First, we bound s.

s =
√

(|x.re| + h(x.re, x.im)) ∗ 0.5

≤ (1 + EPS)1/2
√

(|x.re| + ho(x.re, x.im)) ∗ 0.5

≤ (1 + EPS)1/2(1 + EPS/2)1/2
√

(|x.re| ⊕ ho(x.re, x.im)) ∗ 0.5

≤ (1 + EPS)1/2(1 + EPS/2)1/2

· (1 + EPS/2) o

√
(|x.re| ⊕ ho(x.re, x.im)) ∗ 0.5

= (1 + EPS)1/2(1 + EPS/2)3/2so.

By a power series expansion, we see that

(1 + EPS)1/2(1 + EPS/2)3/2 =
(

1 +
1
2
EPS − 1

8
EPS2 + · · ·

)

+
(

1 +
3
2
EPS/2 +

3
8
(EPS/2)2 + · · ·

)

=
(

1 +
5
4
EPS +

11
32

EPS2 + · · ·
)

,

so that,

s ≤
(

1 +
5
4
EPS +

11
32

EPS2 + · · ·
)

so.

Similarly,

s ≥
(

1 − 5
4
EPS

)
so.
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Thus, we can bound the s error,

es = |s − so| ≤
((

1 +
5
4
EPS +

11
32

EPS2 + · · ·
)
− 1

)
so

=
(

5
4
EPS +

11
32

EPS2 + · · ·
)

so.

Next, we analyze ed, which is the absolute value of the difference between
the true calculation of d and the machine calculation of d. That is, ed = |d−do|.

ed = |x.im/(2s) − x.im � (2so)|
≤ |x.im � (2so) − x.im/(2so)| + |x.im/(2so) − x.im/(2s)|

≤ (EPS/2)|x.im/(2so)| +
∣∣∣∣x.im

2
s − so

sso

∣∣∣∣
≤ (EPS/2)|x.im/(2so)| +

∣∣∣∣x.im
2

1
sso

((5/4)EPS + (11/32)EPS2 + · · ·)so

∣∣∣∣
≤ (EPS/2)|x.im/(2so)|

+
∣∣∣∣x.im

2
1

so(1 − (5/4)EPS)
((5/4)EPS + (11/32)EPS2 + · · ·)

∣∣∣∣
= (EPS/2)|x.im/(2so)|

(
1 +

(5/2) + (11/16)EPS + · · ·)
(1 − (5/4)EPS)

)

= (EPS/2)
(7/2) + (−9/16)EPS + · · ·

(1 − (5/4)EPS)
|x.im/(2so)|

≤ (EPS/2)(1 + EPS/2)
7/2

(1 − (5/4)EPS)
|x.im � (2so)|

= (EPS/2)(1 + EPS/2)
7/2

(1 − (5/4)EPS)
|do|.

Finally, we can bound the overall error e = es + ed.

es + ed ≤
(

5
4
EPS +

11
32

EPS2 + · · ·
)

so

+ (EPS/2)(1 + EPS/2)
7/2

(1 − (5/4)EPS)
|do|

≤
(

EPS +
11
40

EPS2 + · · ·
) (

5
4
so

)

+ EPS(1 + EPS/2)
1

(1 − (5/4)EPS)

∣∣∣∣74do

∣∣∣∣
≤ EPS(1 + EPS/2)

1
(1 − (5/4)EPS)

(
5
4
so

)

+ EPS(1 + EPS/2)
1

(1 − (5/4)EPS)

∣∣∣∣74do

∣∣∣∣
≤ EPS(1 + EPS/2)

1
(1 − (5/4)EPS)

(
5
4
so +

∣∣∣∣74do

∣∣∣∣
)
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≤ EPS(1 + EPS/2)3
1

(1 − (5/4)EPS)

(
5
4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣
)

≤ EPS(1 − (EPS/2))(1 + 4EPS)
(

5
4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣
)

≤ EPS ⊗
(

(1 + 4EPS) ⊗
(

5
4
⊗ so ⊕

∣∣∣∣74 ⊗ do

∣∣∣∣
))

.

Now, we develop two formulas for the absolute value of an XComplex.

Formula 7.0 (absUB(X)). If x is an XComplex, then there is an upper
bound on the absolute value of x as follows:

|x| = h(x.re, x.im) ≤ (1 + EPS)h◦(x.re, x.im)

≤ (1 − EPS/2)(1 + 2EPS)h◦(x.re, x.im)

≤ (1 + 2EPS) ⊗ h◦(x.re, x.im).

Thus, we define

absUB(x) = (1 + 2EPS) ⊗ h◦(x.re, x.im).

Formula 7.1 (absLB(X)). If x is an XComplex, then we get a lower bound
on the absolute value of x as follows.

|x| = h(x.re, x.im) ≥ (1 − EPS)h◦(x.re, x.im)

≥ (1 + EPS/2)(1 − 2EPS)h◦(x.re, x.im)

≥ (1 − 2EPS) ⊗ h◦(x.re, x.im).

Thus, we define

absLB(x) = (1 − 2EPS) ⊗ h◦(x.re, x.im).

Finally, in several places in the programs verify and corona we perform a
standard operation on a pair of doubles and must take into account round-off
error. This is easy if we use Lemma 7.0.

For example, in inequalityHolds we want to show that

wh × wh > absUB(along),

where wh = absLB(whirle). By Lemma 7.0, we know that

(1 − EPS) ⊗ (wh ⊗ wh) ≤ wh × wh

and we simply test that

(1 − EPS) ⊗ (wh ⊗ wh) ≥ absUB(along).

Similar situations occur in the functions horizon and larger -angle in corona.
A slightly more complicated version of this occurs in the computer calcu-

lation of pos[i] and size[i], that is, the center and size of a sub-box. Prior to
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multiplication by scale[i] = 2(5−i)/6, the calculations of pos and size are exact.
However, multiplication by scale introduces round-off error. For the center of
the sub-box we will have the computer use pos[i]⊗ scale[i] with the realization
that this is not necessarily pos[i]×scale[i]. Thus, we have to choose appropriate
sizes to ensure that the machine sub-box contains the true sub-box.

Notationally, this is annoying, because we typically use a computer com-
mand like pos[i] = pos[i] ⊗ scale[i], while in an exposition, we need to avoid
that. We will denote the true center of the sub-box by p[i] and the machine
center of the sub-box by p0[i], and the true and machine sizes will be denoted
s[i] and s0[i]. We will let pos[i] and size[i] be the position and size (true and
machine are the same) before multiplication by scale[i].

Let p[i] = pos[i] × scale[i], p0[i] = pos[i] ⊗ scale[i], and s[i] = size[i] ×
scale[i]. We must select s0[i] so that p0[i] + s0[i] ≥ p[i] + s[i]. (Here, taking +
on the left-hand side is correct, because the need for machine calculation there
is incorporated at other points in the programs.) So, we must find s0[i] such
that s0[i] ≥ (p[i] − p0[i]) + s[i].

(p[i] − p0[i]) + s[i]. ≤ (EPS/2)|p0[i]| + size[i] × scale[i]

≤ (EPS/2)|p0[i]| + (1 + EPS/2)(size[i] ⊗ scale[i])

≤ (1 + EPS/2)((EPS/2)|p0[i]| + (size[i] ⊗ scale[i]))

≤ (1 + EPS/2)2((EPS/2)|p0[i]| ⊕ (size[i] ⊗ scale[i]))

≤ (1 + 2EPS) ⊗ ((EPS/2)|p0[i]| ⊕ (size[i] ⊗ scale[i])).

Thus we take

s0[i] = (1 + 2EPS) ⊗ ((EPS/2)|p0[i]| ⊕ (size[i] ⊗ scale[i])).

This also works to give p0[i] − s0[i] ≤ p[i] − s[i].

8. AffApproxes with round-off error

In Section 6, we saw how to do calculations with AffApproxes. Here, we
incorporate round-off error into these calculations.

Conventions 8.1. An AffApprox x is a five-tuple (x.f ;x.f0, x.f1, x.f2;x.err)
consisting of four complex numbers (x.f, x.f0, x.f1, x.f2) and one real number
x.err. In Section 6, the real number was denoted x.e, but it seems preferable to
use x.err here. Recall (Definition 6.4) that an AffApprox x represents the set
S(x) of functions from A = {(z0, z1, z2) ∈ C3 : |zk| ≤ 1 for k ∈ {0, 1, 2}} to C
that are x.err-well-approximated by the affine function x.f +x.f0z0 +x.f1z1 +
x.f2z2.
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Remark 8.2. A review of Definition 7.2 (XComplexes and AComplexes;
loosely, exact and approximate complex numbers) might be helpful at this
time.

One approach to round-off error for AffApproxes would be to replace the
four complex numbers in the definition of AffApprox by four AComplex num-
bers complete with their round-off errors, and similarly for the one real number.
We will not do this because it would necessitate keeping track of five separate
round-off-error terms when we do AffApprox calculations.

Instead, we will replace the four complex numbers by four XComplexes
and push all the round-off error into the .err term. Thus, the definition of
AffApprox remains essentially the same as in Section 6. We note that, in
doing an AffApprox calculation, our subsidiary calculations will generally be
on XComplex numbers and produce an AComplex number whose .e term will
be plucked off and forced into the .err term of the final AffApprox.

Conventions 8.3. i) In what follows, we will use Basic Properties 7.0 and
Lemmas 7.0 and 7.1. Also, the propositions in Section 6 will be utilized; as
such, the numbering of the propositions is the same in Sections 6 and 8 (for
example, Proposition 6.7 corresponds to Proposition 8.7).

ii) Some notational simplifications will be introduced: dist(x) before Propo-
sition 8.6, ax before Propositions 8.8, 8.9, 8.11 (the middle usage of ax differs
slightly from the other two), and ay before Propositions 8.8, 8.9.

iii) We will try to keep our notation fairly consistent with that of the com-
puter programs verify and corona and this will produce some mildly peculiar
notation. In particular, in the operations pertaining to Propositions 8.2 and
beyond, the resultant AffApproxes will be denoted (r f.z; r f1.z, r f2.z, r f3.z;
r error) where the first four terms are XComplexes and the last term is a dou-
ble (technically, r f.z is the XComplex part of the AComplex r f and similarly
for the r fk.z terms). One break with the notation of the programs though is
that AffApproxes are called (in the programs) ACJ’s, which stands for “Ap-
proximate Complex 1-Jets.”

iv) The propositions that follow include in their statements the definitions
of the various operations on AffApproxes (see Remark 6.6iii)).

v) We remind the reader (see Section 7.4) that all machine operations act
on machine numbers, and that the various variables appearing in the proposi-
tions are assumed to be doubles.

−X:

Proposition 8.1. If x is an AffApprox then S(−x) = −(S(x)) where

−x ≡ (−x.f ;−x.f0,−x.f1,−x.f2;x.err).
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X + Y : We analyze the addition of the AffApproxes x = (x.f ;x.f0, x.f1,

x.f2;x.err) and y = (y.f ; y.f0, y.f1, y.f2; y.err). To get the first term in x+y we
add the XComplex numbers x.f and y.f ; which produce the AComplex number
r f = x.f + y.f (see Proposition 7.4), and then we pluck off the XComplex
part, which we denote r f.z. The round-off error part r f.e will be foisted into
the overall error term r error for x + y. Similarly for the next three terms in
x + y.

Abstractly, the overall error term r error comes from adding the round-
off error contributions r f.e, r f0.e, r f1.e, r f2.e and the AffApprox error
contributions x.err, y.err. Of course, we have to produce a machine version.

Proposition 8.2. If x and y are AffApproxes, then S(x+ y) ⊇ S(x)+
S(y), where

x + y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f + y.f,

r fk = x.fk + y.fk,

r error = (1 + 3EPS)

⊗ ((x.err ⊕ y.err) ⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))).

Proof. The error is given by

(x.err + y.err) + ((r f.e + r f0.e) + (r f1.e + r f2.e))

≤ (1 + EPS/2)(x.err ⊕ y.err)

+ (1 + EPS/2)((r f.e ⊕ r f0.e) + (r f1.e ⊕ r f2.e))

≤ (1 + EPS/2)3((x.err ⊕ y.err) ⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e)))

≤ (1 + 3EPS) ⊗ ((x.err ⊕ y.err) ⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))).

To get the last line we used Lemma 7.1.

X − Y :

Proposition 8.3:. If x and y are AffApproxes, then S(x− y) ⊇ S(x)−
S(y), where

x − y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f − y.f,

r fk = x.fk − y.fk,

r error = (1 + 3EPS)

⊗ ((x.err ⊕ y.err) ⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))).
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X + D: Here, we add the AffApprox x = (x.f ;x.f0, x.f1, x.f2;x.err) to
the double y. The only terms that change are the first and the last.

Proposition 8.4. If x is an AffApprox and y is a double, then S(x + y)
⊇ S(x) + S(y), where

x + y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f + y,

r fk = x.fk,

r error = (1 + EPS) ⊗ (x.err ⊕ r f.e).

Proof. The error is given by

x.err + r f.e ≤ (1 + EPS) ⊗ (x.err ⊕ r f.e)

by Lemma 7.0.

X − D:

Proposition 8.5. If x is an AffApprox and y is a double, then S(x − y)
⊇ S(x) − S(y), where

x − y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f − y,

r fk = x.fk,

r error = (1 + EPS) ⊗ (x.err ⊕ r f.e).

X ×Y : We multiply the AffApproxes x and y while pushing all error into
the .err term.

We will use the functions (see Formulas 7.0 and 7.1, at the end of Section 7)
absUB = (1 + 2EPS) ⊗ hypoto(x.re, x.im) and absLB(x) = (1 − 2EPS) ⊗
hypoto(x.re, x.im).

When x is an AffApprox, we define dist(x) to be

(1 + 2EPS) ⊗ (absUB(x.f0) ⊕ (absUB(x.f1) ⊕ absUB(x.f2))).

This is the machine representation of the sum of the absolute values of the
linear terms in the AffApprox x (the proof is straightforward).

Proposition 8.6. If x and y are AffApproxes, then S(x × y) ⊇ S(x) ×
S(y), where

x × y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)
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with

r f = x.f × y.f,

r fk = x.f × y.fk + x.fk × y.f,

r error = (1 + 3EPS) ⊗ (A ⊕ (B ⊕ C)),

and

A = (dist(x) ⊕ x.err) ⊗ (dist(y) ⊕ y.err),

B = absUB(x.f) ⊗ y.err ⊕ absUB(y.f) ⊗ x.err,

C = (r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e).

Proof. We add the non-round-off error term for x×y to the various round-
off error terms that accumulated.

((dist(x) + x.err) × (dist(y) + y.err)) + ((absUB(x.f) × y.err

+ absUB(y.f) × x.err) + (r f.e + r f0.e) + (r f1.e + r f2.e))

≤ (1 + EPS/2)3[(dist(x) ⊕ x.err) ⊗ (dist(y) ⊕ y.err)]

+ (1 + EPS/2)2{(absUB(x.f) ⊗ y.err

⊕ absUB(y.f) ⊗ x.err) + ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))}
≤ (1 + EPS/2)3A + (1 + EPS/2)3(B ⊕ C)

≤ (1 + 3EPS) ⊗ (A ⊕ (B ⊕ C)).

X × D:

Proposition 8.7. If x is an AffApprox and y is a double, then S(x × y)
⊇ S(x) × S(y), where

x × y = (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x.f × y,

r fk = x.fk × y,

r error = (1 + 3EPS)

⊗ ((x.err ⊗ |y|) ⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))).

X/Y : For convenience, let ax = absUB(x.f), ay = absLB(y.f).

Proposition 8.8. If x and y are AffApproxes with D > 0 (see below),
then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)
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with

r f = x.f/y.f,

r fk = (x.fk × y.f − x.f × y.fk)/(y.f × y.f),

r.error = (1 + 3EPS) ⊗ (((1 + 3EPS) ⊗ A � (1 − 3EPS) ⊗ B) ⊕ C),

and

A = (ax ⊕ (dist(x) ⊕ x.err)) � D,

B = (ax � ay ⊕ dist(x) � ay) ⊕ ((dist(y) ⊗ ax) � (ay ⊗ ay)),

C = (r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e),

D = ay � (1 + EPS) ⊗ (dist(y) ⊕ y.err).

Proof. As usual, we add the round-off errors to the old AffApprox error,
taking into account round-off error, working on it bit by bit.

(ax + dist(x) + x.err)/(ay − (dist(y) + y.err))

≤ (1 + EPS/2)2

× (ax ⊕ (dist(x) ⊕ x.err))/(ay − (1 + EPS) ⊗ (dist(y) ⊕ y.err))

≤ (1 + EPS/2)2(ax ⊕ (dist(x) ⊕ x.err))/
( (

1
1 + EPS/2

)

× (ay � (1 + EPS) ⊗ (dist(y) ⊕ y.err))
)

≤ (1 + EPS/2)4(ax ⊕ (dist(x) ⊕ x.err))

�(ay � (1 + EPS) ⊗ (dist(y) ⊕ y.err))

≤ (1 + 3EPS) ⊗ A.

The next term, being subtracted, requires opposite inequalities.

(ax/ay + dist(x)/ay) + dist(y) × ax/(ay × ay)

≥ (1 − EPS/2)(ax � ay + dist(x) � ay)

+(1 − EPS/2)(dist(y) ⊗ ax)/(
1

1 − EPS/2
)(ay ⊗ ay)

≥ ((1 − EPS/2)4((ax � ay ⊕ dist(x) � ay) ⊕ ((dist(y) ⊗ ax) � (ay ⊗ ay)))

≥ (1 + EPS/2)(1 − 3EPS)(B) ≥ (1 − 3EPS) ⊗ B.

Finally, we do the round-off terms

((r f.e + r f0.e) + (r f1.e + r f2.e)) ≤ (1 + EPS/2)2C

and we put these three pieces together:

(ax + dist(x) + x.err)/(ay − (dist(y) + y.err))

−((ax/ay + dist(x)/ay) + dist(y) × ax/(ay × ay))
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+((r f.e + r f0.e) + (r f1.e + r f2.e))

≤ (1 + 3EPS) ⊗ A − (1 − 3EPS) ⊗ B + (1 + EPS/2)2C

≤ (1 + EPS/2)2(((1 + 3EPS) ⊗ A � (1 − 3EPS) ⊗ B) + C)

≤ (1 + 3EPS) ⊗ (((1 + 3EPS) ⊗ A � (1 − 3EPS) ⊗ B) ⊕ C).

D/X: We divide a double x by an AffApprox y. For convenience, let ax =
|x|, ay = absLB(y.f). Having done division out in the previous proposition,
we will skip the proof of Proposition 8.9. See the Annals web site for the proof.

Proposition 8.9. If x is a double and y is an AffApprox with D > 0
(see below), then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f = x/y.f,

r fk = −(x × y.fk)/(y.f × y.f),

r error = (1 + 3EPS) ⊗ (((1 + 2EPS) ⊗ (ax � D) � (1 − 3EPS) ⊗ B) ⊕ C),

B = ax � ay ⊕ (dist(y) ⊗ ax � (ay ⊗ ay)),

C = (r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e),

D = ay � (1 + EPS) ⊗ (dist(y) ⊕ y.err).

X/D: We divide an AffApprox x by a nonzero double y (the computer
will object if y = 0). The proof is easy and so we delete it.

Proposition 8.10. If x is an AffApprox and y is a nonzero double,
then S(x/y) ⊇ S(x)/S(y), where

x/y ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error),

with

r f = x.f/y

r fk = x.fk/y

r error = (1 + 3EPS) ⊗ ((x.err � |y|) ⊕ [(r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e)]).

√
X: Here, x is an AffApprox and we let ax = absUB(x.f). There are

two cases to consider depending on whether or not D = ax � (1 + EPS) ⊗
(dist(x) ⊕ x.err) is or is not greater than zero.

Proposition 8.11a. If x is an AffApprox and D = ax � (1 + EPS) ⊗
(dist(x) ⊕ x.err) is not greater than zero, then S(

√
x) ⊇

√
S(x), where we use

the crude overestimate
√

x ≡
(

0; 0, 0, 0; (1 + 2EPS) ⊗ o

√
(ax ⊕ (xdist ⊕ x.err))

)
.
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Proof.
√

ax + xdist + x.err ≤ (1 + EPS/2)
√

(ax ⊕ (xdist ⊕ x.err))

≤ (1 + 2EPS) ⊗ o

√
(ax ⊕ (xdist ⊕ x.err)).

Proposition 8.11b. If x is an AffApprox and D = ax � (1 + EPS) ⊗
(dist(x) ⊕ x.err) is greater than zero, then S(

√
x) ⊇

√
S(x), where

√
x ≡ (r f.z; r f0.z, r f1.z, r f2.z; r error)

with

r f =
√

x.f,

t = r f + r f,

r fk = AComplex(x.fk.re, x.fk.im; 0)/t.

(Simply put, r fk = x.fk/(2
√

x.f). The reason we have to fuss to define r fk

is because
√

x.f is an AComplex.)

r error = (1 + 3EPS)

⊗
{
(1 + EPS) ⊗ o

√
ax � (1 − 3EPS) ⊗ [dist(x) � (2 × o

√
ax) ⊕ o

√
D]

}
⊕((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e)).

Proof. Let us work on the pieces.
√

ax ≤ (1 + EPS) ⊗ o
√

ax.

Next,

dist(x)/(2
√

ax) +
√

ax − (dist(x) + x.err)

≥ (1 − EPS/2)2dist(x) � (2 o
√

ax)

+(1 − EPS/2)1/2
√

ax � (1 + EPS) ⊗ (dist(x) ⊕ x.err)

≥ (1 − EPS/2)3
[
dist(x) � (2 o

√
ax) ⊕ o

√
D

]
≥ (1 + EPS/2)(1 − 3EPS)

[
dist(x) � (2 o

√
ax) ⊕ o

√
D

]
≥ (1 − 3EPS) ⊗

[
dist(x) � (2 o

√
ax) ⊕ o

√
D

]
.

Adding in the usual term, we get as our error bound
√

ax − (dist(x)/(2
√

ax) +
√

ax − (dist(x) + x.err) )

+ ((r f.e + r f0.e) + (r f1.e + r f2.e))

≤ (1 + EPS) ⊗ o
√

ax − (1 − 3EPS) ⊗ [dist(x) � (2 o
√

ax) ⊕ o
√

D ]

+ (1 + EPS/2)2((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))
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≤ (1 + EPS/2)3
(
{(1 + EPS) ⊗ o

√
ax

� (1 − 3EPS) ⊗ [dist(x) � (2 o
√

ax) ⊕ o
√

D ]}
⊕ ((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))

)
≤ (1 + 3EPS) ⊗ ({(1 + EPS) ⊗ o

√
ax

� (1 − 3EPS) ⊗ [dist(x) � (2 o
√

ax) ⊕ o
√

D ]}
⊕((r f.e ⊕ r f0.e) ⊕ (r f1.e ⊕ r f2.e))).

Appendix
Review of the theory of insulators in hyperbolic 3-manifolds

Given that Theorem 0.2 is the main technical result of this paper, we
herewith present an appendix which briefly recalls from [G] various defini-
tions, examples and properties of insulators in hyperbolic 3-manifolds. Also,
we briefly recall why the existence of a noncoalescable insulator family for a
geodesic δ in a closed orientable hyperbolic 3-manifold N allows us to con-
clude that any irreducible 3-manifold M , homotopy equivalent to N , is indeed
homeomorphic to N .

Definition A.1. Let G be a group of homeomorphisms of S2 and A = {Ai}
a countable set of pairwise disjoint G-equivariant pairs of points of S2, i.e. if
g ∈ G, Ai ∈ A, then g(Ai) ∈ A. Let {λij} be a collection of smooth simple
closed curves in S2. The set {λij} is called a (G,A) insulator family and each
λij is called an insulator if

i) Separation: If i �= j, then λij separates Ai from Aj .

ii) Equivariance: If g ∈ G, then g(λij) is the curve associated to the pair
g(Ai), g(Aj). Also λij = λji.

iii) Convexity: To each λij there exist round circles respectively containing
Ai and Aj and disjoint from λij .

iv) Local Finiteness: For every ε > 0 there exist only finitely many λij such
that i is fixed and diam(λij) > ε.

Definition A.2. A (G,A) insulator family is noncoalescable if it satisfies the
following no tri -linking property. For no i, do there exist λij1 , λij2 , λij3 whose
union separates the points of Ai. A hyperbolic 3-manifold satisfies the insulator
condition if there exist a geodesic δ in N and a (π1(N), {∂δi}) noncoalescable
insulator family. Here {δi} is the set of lifts of δ to H3.
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Example A.3. Let δ be a simple closed geodesic in the hyperbolic
3-manifold N . Let δ lift to a collection ∆ = {δi} of hyperbolic lines in H3.
To each pair δi, δj , there exists the midplane Dij , i.e. the hyperbolic halfplane
orthogonal to and cutting the middle of the orthocurve (i.e. the shortest line
segment) between δi and δj . Each Dij extends to a circle λij on S2

∞, which
separates ∂δi from ∂δj . We call the insulator family {λij} the Dirichlet insu-
lator family. If tuberadius(δ) > log(3)/2, then this family is noncoalescable,
the idea being that from the point of view of δ each λij takes up less than 120
degrees of visual angle; thus there can be no tri-linkings among the λij ’s.

The content of Section 2 is a construction of a new insulator family for
δ called the Corona insulator family. If tuberadius(δ) > log(3)/2, then this
family is just the Dirichlet family. Lemma 2.5 provides a sufficient condition
for the Corona family to be noncoalescable.

Theorem 0.2 is established by showing that the Corona family for δ is
noncoalescable if N �= Vol3 while if N = Vol3, then an insulator which is a
hybrid of the Dirichlet and Corona insulators is noncoalescable.

Noncoalescable insulator families are important because of the following
result.

Theorem A.4 [G]. Let N be a closed orientable hyperbolic 3-manifold
containing a geodesic δ having a noncoalescable insulator family, then:

i) If f : M → N is a homotopy equivalence where M is an irreducible
3-manifold, then f is homotopic to a homeomorphism.

ii) If f, g : N → N are homotopic homeomorphisms, then f is isotopic to g.

iii) The space of hyperbolic metrics on N is path connected.

Idea of the proof of i). The plan is to find a simple closed curve γ in
M and a homotopy of f to g : M → N so that g|N(γ) : N(γ) → N(δ)
is a homeomorphism, g(M − N̊(γ)) = N − N̊(δ) and g|M − N̊(γ) : M −
N̊(γ) → N − N̊(δ) is a homotopy equivalence. Since N − N̊(δ) is Haken
we invoke Waldhausen [Wa] to conclude that g|M − N̊(γ) is homotopic to a
homeomorphism rel boundary and hence f is homotopic to a homeomorphism.

There are many technical difficulties in carrying out the above plan, the
primary one being how to find the curve γ. Here is another view of this
problem. Given a hyperbolic 3-manifold Q, it is well known that any nontrivial
element α of π1(Q) is represented by a unique geodesic η in Q. Suppose that
we are given Q with some random Riemannian metric and we do not know
the hyperbolic metric. Then how are we supposed to find η? In our setting if
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f∗ : π1(M) → π1(N) is the induced map on the fundamental group then our
goal is to find the γ which represents f−1

∗ ([δ]). We outline how to solve this
problem if δ has a noncoalescable insulator family.

Theorem A.5 [G]. If f : M → N is a homotopy equivalence, where M

is an irreducible 3-manifold and N is a closed hyperbolic 3-manifold, then there
exist a closed hyperbolic 3-manifold X and regular covering maps p1 : X → M,

q1 : X → N such that f ◦ p1 is homotopic to q1. A lift f̃ : H3 → H3 extends to
id : S2

∞ → S2
∞. Furthermore the action of π1(M) on H3 extends to a Mobius

action on S2
∞ which is identical to the action of π1(N) on S2

∞.

In other words this theorem says that M̃ and Ñ have common spheres at
infinity. Thus λij is a {π1(M), {∂δi}} noncoalescable insulator family.

Here is how to construct γ. To each smooth simple closed curve λij in
S2
∞, there exists a lamination σij ⊂ H3 by embedded least area planes, with

limit set λij such that σij lies in a uniformly fixed width hyperbolic regular
neighborhood of the hyperbolic convex hull of λij . Here H3 is given the Rie-
mannian metric induced from M , while the fixed width measurement is via the
hyperbolic metric induced from N. Fix i. Let Hij be the H3-complementary
region of σij containing the ends of δi. It turns out that ∩jHij contains a
component Vi = (D̊)2 ×R which projects to an open solid torus in M . Define
γ to be the core of this solid torus and γi the lift which lives in Vi. Up to
isotopy, γ is independent of all choices, in particular the choice of Riemannian
metric on M .

To first approximation think of σij as a properly embedded plane and Vi as
the intersection of topological half spaces in H3. (It is not known if the leaves
of σij must be properly embedded.) Without the no-tri-linking condition this
intersection might be empty. Note that if H3 is given the hyperbolic metric
and λij is the Dirichlet insulator, then each σij is a totally geodesic plane and
the projection of Vi into N is a solid torus regular neighborhood of δ. This
statement is also true if λij is any noncoalescable insulator family; however,
the proof requires the convexity condition. Thus the above construction using
the Riemannian metric induced from M (resp. N) yields the curves {γi} ⊂ H3

(resp. {δi}). These collections {γi} = Γ and {δi} = ∆ are B3-links (i.e. sets
of pairwise disjoint properly embedded arcs in B3 whose restriction to H3 is
locally finite).

We now give a hint as to how to find the desired g : M → N . The
Riemannian metric µ0 on X induced from M and the hyperbolic metric µ1 on
X induced from N lift to π1(X) equivariant metrics µ̃t, t ∈ {0, 1} on H3; so the
above construction applied to the (π1(X), {∂δi}) insulator family {λij} with
respect to the µ̃t metric yields a link τt in X. Since the isotopy class of τt is
independent of t, τ0 = p−1

1 (γ) is isotopic to τ1 = q−1
1 (δ). We conclude that the
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B3-link Γ is equivalent to the B3-link ∆; i.e. there exists a homeomorphism
k : (B3,Γ) → (B3,∆) so that k | S2

∞ = id.
The above mentioned g arises in proving the next result. Here p : H3 →

M , and q : H3 → N are the universal covering maps arising from A.5.

Proposition A.6 [G]. Let f : M → N be a homotopy equivalence be-
tween the closed orientable hyperbolic 3-manifold N and the irreducible mani-
fold M . If there exist a simple closed curve γ ⊂ M , a geodesic δ ⊂ N and a
homeomorphism k : (B3, p−1(γ)) → (B3, q−1(δ)) such that k | ∂B3 = id, then
f is homotopic to a homeomorphism.

Remark A.7. As mentioned above, if ρ0 is a hyperbolic metric on N , then
associated to a nontrivial element α of π1(N), there exists a unique geodesic
δ0 ⊂ N representing α. A second hyperbolic metric ρ1 on N will give rise to the
geodesic δ1. The Mostow rigidity theorem implies that there exists an isometry
of Nρ0 to Nρ1 homotopic to the identity. A consequence of Theorem 0.1 is that
the isometry is isotopic to the identity. Thus Theorem 0.1 is a strengthening
of Mostow rigidity. To appreciate the difference, note that the Mostow rigidity
theorem does not imply that δ0 is isotopic to δ1, while Theorem 0.1 does.
The proof is a consequence of the insulator technology. Here is a hint. The
construction of γ is independent, up to isotopy, of all choices. Thus applying
the insulator construction to N respectively using the metrics ρ0 and ρ1 yields
the curves δ0 and δ1, which are necessarily isotopic.
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