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THE SMALE CONJECTURE FOR HYPERBOLIC
3-MANIFOLDS: ISOM (M3) � Diff (M3)

DAVID GABAI

Abstract
The main result of this paper is, “If M is a closed hyperbolic 3-manifold,
then the inclusion of the isometry group Isom(M) into the diffeomorphism
group Diff(M) is a homotopy equivalence.”

1. Introduction

The main result of this paper is:

Theorem 1.1. If M is a closed hyperbolic 3-manifold, then the
inclusion of the isometry group Isom(M) into the diffeomorphism group
Diff(M) is a homotopy equivalence.

Theorem 1.1 had been proven for Haken manifolds in 1976 by Hatcher
[9] and Ivanov [11, 12]. We showed in [6], [7] that π0(Diff(M)) is canon-
ically bijective with π0(Isom(M)), which is well known to be finite.
Thus, if Diff0(M) denotes the path component of Diff(M) containing
idM , then this result is equivalent to:

Theorem 1.2. If M is a closed hyperbolic 3-manifold, then Diff0(M),
is contractible.

The proof of Theorem 1.1 follows along the same lines as the proof
of Theorem 0.1 ii) [6]. Namely use the contractibility of the space of
Riemannian metrics on M in conjunction with the insulator theory of
[6] to reduce to the Haken case.
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The main technical innovations of this paper are the Canonical Solid
Torus Theorem, Theorem 3.4, together with the Non-Encroachment
Lemma, Lemma 4.3. Roughly speaking the Canonical Solid Torus The-
orem asserts that if δ is a special type of oriented simple closed geodesic
in a closed hyperbolic 3-manifold M , then associated to any Riemannian
metric r on M there exists a canonically immersed solid torus Vr whose

interior
◦
V r is embedded. Furthermore, if γ is a core of

◦
V r, then it is

canonically oriented and with that orientation is isotopic to δ. Finally,
if r is a hyperbolic metric and δr is the oriented geodesic in M freely

homotopic to δ, then δr is a core of
◦
V r and its orientation agrees with

the canonical orientation given to cores of
◦
V r. While these immersed

tori may not vary continuously with r, the Non-Encroachment Lemma
provides sufficient control to approximately pass from one Vr to another
Vr′ , when r′ is close to r. (More or less, the worst that can happen is
that a sequence of solid tori gets a 3-ball pinched off in the limit.)

Remarks 1.3. The canonical solid torus depends on an a priori
chosen non-coalescable insulator family for the geodesic δ.

A discussion of the difference between the insulator construction of
[6] and the full insulator construction developed in this paper is given
in §3.

The Mostow Rigidity theorem [16] together with the results in [7] al-
low us to equate Diff0(M) with Hyp(M), the space of hyperbolic metrics
on M . Thus we obtain:

Theorem 7.3. The space Hyp(M) of hyperbolic metrics on a com-
plete hyperbolic 3-manifold M of finite volume is contractible.

This paper is organized as follows. In §2 we present a detailed out-
line of the proof of Theorem 1.1. In particular we show how Theorem 1.1
is deduced from the Coarse Torus Isotopy Theorem 4.6 and the Local
Contractibility Theorem 6.3. In §3 we give the proof of Theorem 3.4.
In §4 we give the proof of the Coarse Torus Isotopy Theorem. Section 5
gives a new formulation of Hatcher’s theorem (the Smale Conjecture).
The proof of the Local Contractibility Theorem is given in §6 and ap-
plications are presented in §7.

Definition 1.4. Diff(M) will denote the space of diffeomorphisms
of M with the C∞ topology. Diff0(M) will denote the path component
of Diff(M) containing idM , i.e., Diff0(M) is the set of diffeomorphisms
isotopic to idM . If X, Y are smooth manifolds then Emb(X, Y ) is the
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space of smooth embeddings of X into Y . If X is a subspace of Y , then
Emb0(X, Y ) is the subspace consisting of embeddings isotopic to the
standard inclusion.

If E ⊂ Y , then N(k, E) = {y ∈ Y |d(y, E) ≤ k}. Similarly if x ∈
Y , then B(k, x) = {y ∈ Y |d(y, x) ≤ k}. The symbol ρ will always
represent the standard hyperbolic metric on H

3. The particular model
of hyperbolic space will be clear from context. We will assume that
ρ is induced from a metric also called ρ on the closed hyperbolic 3-
manifold M . We will use notations such as Nρ(k, E) or dr(x, y) when
the metric ρ or r is not clear from context. |E| will denote the number

of components of E and
◦
E will denote the interior of E. If X ⊂ Y then

Bd(X) = X −
◦
X. If ∆ is a cellulation, then ∆k denotes its k-skeleton.

Acknowledgements. The author is grateful to Hyam Rubinstein,
Darryl McCullugh, Allen Hatcher, Toby Colding and Valentin Poenaru
for long conversations. Hyam Rubinstein graciously and enthusiasti-
cally suggested that my work on π0(Diff(M)) should generalize to all
the higher homotopy groups and told me about [9], Hatcher’s “multi-
parameter” version of Waldhausen’s theorem. Allen Hatcher replaced
my clumsy proof of Theorem 5.1 by a concise one. He also suggested
Theorem 7.5. Darryl McCullough taught me techniques from high di-
mensional manifold theory. Toby Colding provided minimal surface
advice and Po taught me about the work of Cerf and many others. The
referee provided many expository suggestions as well as Remark 2.1 i).

2. The proof of Theorem 1.1

By [6] and [7] the inclusion Isom(M) → Diff(M) induces a bijection
of Isom(M) with π0(Diff(M)). Therefore to prove Theorem 1.1 it re-
mains to show that Diff0(M) is contractible. By [18] Diff(M) is an ANR
and by [14, p. 35] an ANR has the homotopy type of a CW complex.
Thus by J. H. C. Whitehead’s theorem it suffices to show that all the
homotopy groups of Diff0(M) are trivial.

In this section we explain how Theorem 1.1 follows directly from the
following results which are established in §4 and §7 respectively.

Coarse Torus Isotopy Theorem 4.6. Let M be a closed ori-
entable hyperbolic 3-manifold with geodesic δ satisfying the insulator
condition. If f : Sn → Diff0(M), then there exists a cellulation ∆ of
Bn+1 and a function which associates to each cell σ ∈ ∆ an embedded
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solid torus Vσ such that:

i) If κ is a proper face of σ, then Vκ ⊂
◦
V σ and Vκ is isotopic to the

standard embedding in Vσ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
V σ.

Idea of the proof. Associated to x ∈ Sn, there is the push forward
hyperbolic metric (f(x))∗ρ. This gives rise to a map h : Sn → RM(M)
the space of Riemannian metrics on M . The contractibility of RM(M)
enables us to extend h to Bn+1 → RM(M). By Theorem 3.4 associated
to each x ∈ Bn+1, there is a canonical solid torus Vx immersed in M ,
with embedded interior. Furthermore, the curve δ is isotopic to a core
of Vx. While the various Vx’s do not vary continuously in x, the Non-
Encroachment Lemma 4.3 enables us to maintain sufficient control to
obtain a cellulation ∆∗ and find embedded solid tori by shrinking various
Vx’s which together satisfy the conclusions of Theorem 4.6 except that,

in Conclusion i) the statement Vκ ⊂
◦
V σ is replaced by the condition

Vσ ⊂
◦
V κ. Roughly speaking our desired cellulation ∆ is the cellulation

dual to ∆∗, with Vσ being the solid torus Vσ∗ , where σ∗ is the cell dual
to σ.

Local Contractibility Theorem 6.3. Let δ be an oriented sim-
ple geodesic in the closed hyperbolic 3-manifold M and V a solid torus

embedded in M . If H : Sn → Diff0(M) is such that Ht(δ) ⊂
◦
V for

each t ∈ Sn, then H extends to a map G : Bn+1 → Diff0(M) such that

Gs(δ) ⊂
◦
V for each s ∈ Bn+1.

Idea of the proof. Suppose that that n > 0, V is a closed regular
neighborhood N(δ) of δ and the restriction of Ht to N(δ) is the identity

for all t ∈ Bn+1. In that case M −
◦
N(δ) is Haken, and Theorem 6.3

follows by the Hatcher, Ivanov theorem [9], [11], [12] for Haken mani-
folds. (Actually they proved this in the PL category, but as noted in
[9], the proof can be promoted to Diff using [10].) In general one can
control the maps Ht|N(δ), since Emb0(D2 ×S1, R2 ×S1) � S1 ×S1 (an
equivalent formulation of the Smale conjecture), and thereby reduce to
the previous case.

The proof that Emb0(D2 × S1, R2 × S1) � S1 × S1 is carried out in
§5 and the proof of Theorem 6.3, including the case n = 0, is given in §6.
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Proof of Theorem 1.1. Given f : Sn → Diff(M3) construct a cellu-
lation ∆ of Bn+1 and solid tori Vσ as in Theorem 4.6. That theorem

implies that for each σ ∈ ∆, δ is isotopic to a core of
◦
V σ. Therefore to

each x ∈ ∆0 − Sn there exists an fx ∈ Diff0(M) such that fx(δ) is a
core of Vx. Assume by induction that f has been extended to Sn ∪ ∆i

such that if x ∈ σ a k-cell, 0 ≤ k ≤ i, then fx(δ) is a core of
◦
V σ. By

Theorems 4.6 and 6.3 we can extend f to Sn ∪ ∆i+1 so that if x ∈ σ a

k-cell, 0 ≤ k ≤ i + 1, then fx(δ) is a core of
◦
V σ. The proof is complete

when i = n. �
Remarks 2.1. i) Here is another view of the structure of the

proof of Theorem 1.1 offered by the referee. Consider the fibration
p : Diff0(M) → Emb0(V, M) where V is as above. By Hatcher and
Ivanov [9], [11], [12], each component of Diff(M, V ), the subspace of
Diff(M) which fixes V pointwise, is contractible. Thus, using Lemma 6.1
it suffices to show that the induced map p∗ in the long exact homo-
topy sequence is trivial. Theorem 4.6 can be viewed as an approximate
statement that p∗ is trivial, with Theorem 6.3 providing the necessary
refinement.

ii) The proof of Theorem 6.3 does not rely on the insulator technol-
ogy.

3. The Canonical Solid Torus Theorem

The reader should be familiar with the notions of noncoalescable
insulator family and trilinking (see 0.4-0.5 [6] as well as the minimal
surface theory developed in §3 [6].

In what follows the set {λij} will denote a (π1(M), {∂δi}) non-
coalescable insulator family where δ is a simple closed oriented geodesic
and δ0, δ1, δ2, . . . denote the lifts of δ to H

3. Let g ∈ π1(M) denote the
primitive element which fixes δ0, such that if δ0 is oriented from the
repelling fixed point of ∂δ0 to the attracting one, then δ0 inherits the
orientation induced from δ.

Definition 3.1. By an immersed solid torus V ⊂ M we mean that
V is the image of an immersion f : D2 × S1 → M . By the interior of

V or
◦
V we mean f(

◦
D2 × S1). By ∂V we mean f(∂D2 × S1).

Review of the insulator construction [6] 3.2. Let r be any
Riemannian metric on M and let r also denote the induced metric on
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M̃ = H
3. Let {σij} be a family of π1(M) equivariant r-least area D2-

limit laminations which span the {λij}. To each σ0i let H0i denote the
component of H

3 −σ0i whose closure contains ∂δ0. The set H0 = ∩iH0i

contains a unique component that is invariant by the maximal cyclic

group 〈g〉 which fixes δ0 and projects to an open solid torus
◦
V which is

the interior of an immersed solid torus V . The orientation on δ induces
an orientation on δ0 and hence on ∂δ0 and hence on each core of

◦
V . Any

positively oriented core of
◦
V is isotopic in M to δ.

To first approximation, one should think of σ0i as a properly em-
bedded r-least area plane spanning the smooth circle λ0i and H0i as
the open half space of H

3 − σ0i which contains ∂δ0. Finally H0 is the
intersection of these half spaces and a component projects down to the

open solid torus
◦
V .

Given M, δ and the insulator family {λij}, the construction of V
depends only on the Riemannian metric r and the choice of spanning
laminations. The main result of this chapter eliminates dependence on
the spanning laminations.

Definition 3.3. Let r be the Riemannian metric on H
3 induced

from the Riemannian metric r on M . For each λij , let {σα
ij}α∈J denote

the collection of r-least area D2-limit laminations which span λij . Let
Hα

ij denote the component of H
3 − σα

ij which contains the ends of δi.
Let Hij = ∩αHα

ij , Hi = ∩jHij , Σij = ∪ασα
ij and Σi = ∪jΣij .

We will show that H0 contains a unique
◦

D2 × R component which

projects to the interior
◦
V r of an immersed solid torus Vr in M . This Vr

is said to arise from the full insulator construction. The adjective full
stresses the fact that all possible spanning laminations of each λ0j are
used in the construction. This should be contrasted with the insulator
construction of [6], reviewed above, where a single spanning lamination
is used.

Canonical Solid Torus Theorem 3.4. Let δ be an oriented sim-
ple closed geodesic in the closed orientable hyperbolic 3-manifold M pos-
sessing a non-coalescable insulator family {λij}. Given any Riemannian
metric r on M the full insulator construction gives rise to a canonically
immersed solid torus Vr having the following properties:

i)
◦
V r is embedded.
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ii) If γ is a core of
◦
V r, then it is canonically oriented and with that

orientation is isotopic to δ.

iii) If r is a hyperbolic metric and δr is the oriented geodesic in M

freely homotopic to δ, then δr is a core of
◦
V r. Its orientation

agrees with the canonical orientation given to cores of
◦
V r.

Lemma 3.5. For all i, j ∈ N, Σ0i ∩ Σ0j 
= ∅ implies λ0i ∩ λ0j 
= ∅.
Proof. This follows from Lemma 3.5 viii) [6]. q.e.d.

Lemma 3.6.

i) After reordering the λ0j’s there exists a finite set {λ01, λ02, . . . ,
λ0m} which are representatives of the outermost 〈g〉-orbits of
{λ0j}j∈N. I.e., given any λ0k, either λ0k = gq(λ0i) for some q ∈ Z

and 1 ≤ i ≤ m or there exists an n ∈ Z and j ∈ {1, . . . , m}
such that λ0k ⊂ Y (gn(λ0j)), where Y (gn(λ0j)) is the component
of S2∞ − gn(λ0j) which does not contain ∂δ0.

ii) H0 = ∩m
i=1 ∩n∈Z gn(H0j). In words, to construct H0 we need only

consider the collection of spanning laminations corresponding to
{λ01, λ02, . . . , λ0m} and their 〈g〉-translates.

Proof. This follows as on p. 63 [6]. q.e.d.

Lemma 3.7.

i) If h ∈ 〈g〉, then h(H0) = H0 and h(Σ0) = Σ0.

ii) Hi ∩ Hj 
= ∅ if and only if i = j.

iii) There exists an a > 0 (which depends on r) so the H0 ⊂ Nρ(a, δ0).

Proof. Again these facts follow as in Step 2, p. 63 [6]. q.e.d.

Definition 3.8. If t > 0 let Σt =
◦
N(t, δ0) ∩ Σ0. We say that L is a

leaf of Σ0 (resp. Σt), if L is a leaf of some σα
0j (resp. L is a component

of R ∩
◦
N(t, δ0) ∩ Σ0, where R is a leaf of some σα

0j).

This paper makes extensive use of the notion of convergence of se-
quences of embedded surfaces or laminations in Riemannian 3-manifolds.
The reader is advised to read Definition 3.2 [6] for the definition of the
word converges.
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Correction 3.9. In this paper and [6] all convergence takes place
in the Ck-topology, all k < ∞ rather than the C∞-topology.

Lemma 3.10. Let w ∈ H
3 and L1, L2, . . . a sequence of leaves

of the laminations σ
αj

0ij
such that Lim dρ(Li, w) → 0. After passing

to subsequence, each Lj is a leaf of σ
αj

0i for some fixed i and the Lj’s
converge to an r-least area D2-limit lamination σα∞

0i which contains w.

Lemma 3.10 can be thought of as saying that Σ0i and Σ0 are closed
in the Ck-topology, all k < ∞.

Proof. By the local finiteness of {λ0j}, the last sentence of Proposi-
tion 3.9 [6] and the fact that each Lj meets a fixed neighborhood of w,
we can pass to a subsequence so that each Li is a leaf of a lamination
spanning the same insulator λ0i. By passing to another subsequence,
and invoking Proposition 3.10 [6] we conclude that these leaves converge
to a r-least area D2-limit lamination σα∞

0i . q.e.d.

Corollary 3.11. H0 and each H0i are open sets.

Lemma 3.12.

i) Each leaf L of Σt is properly embedded in
◦
N(t, δ0).

ii) If t > a, L separates
◦
N(t, δ0) and one component of L −

◦
N(t, δ0)

contains both ends of δ0.

iii) The leaves of Σt have uniformly bounded area.

iv) (Leaves of Σt are closed in the Ck-topology, all k < ∞.) If L1, L2,
. . . are leaves of Σt respectively containing points x1, x2, . . . and

Lim xi → x ∈
◦
N(t, δ0), then there exists a leaf Lx of Σt containing

x and a subsequence of {Li} such that the following holds. If K
is any compact subsurface in Lx containing x, then there exist
embeddings fi : K → Li such that fi → idK in the Ck-topology all
k < ∞ and for all i, xi ∈ fi(K).

Proof. i) The last sentence of Proposition 3.9 [6] together with the
fact that L is contained in a leaf of a D2-limit lamination implies that

there exists an embedded disc D ⊂ H
3 such that ∂D ∩

◦
N(t, δ0) = ∅ and

L is a component of D ∩
◦
N(t, δ0).

ii) Apply Lemma 3.7 iii).
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iii) By the local finiteness of λ0i and the last sentence of Proposi-

tion 3.9 [6] only finitely many 〈g〉-orbits of Σ0i can intersect
◦
N(t, δ0).

Applying Proposition 3.9 [6] to these orbits we conclude that there
exists a C > 0 such that if L is a leaf of Σt, then L ⊂ Bρ(C, z)
for some z ∈ δ0. The disc D in the proof of i) can be chosen to
have boundary in ∂Bρ(2C, z) or some 2-sphere which is an arbitrar-
ily close perturbation of it. Thus for some uniform constant C1 > 0,
arear(L) < C1 areaρ(L) ≤ C1 areaρ(D) ≤ C1 areaρ(∂Bρ(2C, z)).

iv) This follows from Lemma 3.10 and Definition 3.2 [6]. q.e.d.

Definition 3.13. A leaf Lx of Σt satisfying the conclusion of
Lemma 3.12 iv) is said to be obtained as a limit of leaves L1, L2, . . . of
Σt.

Lemma 3.14. Let U denote
◦
Bρ(η, x) or

◦
Br(η, x). For every t > 0

there exists ε > 0 so that if η ≤ ε, dρ(x, δ0) ≤ .9t and L leaf of Σt, then
L ∩ U is empty or a properly embedded disc D whose closure in U is a
properly embedded disc transverse to ∂U .

Proof. Since the leaves of Σ0 are stable minimal surfaces with re-
spect to a metric induced from a compact manifold, it follows by Schoen
[19] that the leaves have uniformly bounded normal curvature. There-

fore there exists ε0 > 0 such that if ε1 ≤ ε0 and either U =
◦
Br(ε1, x)

or
◦
Bρ(ε1, x), then each component D of Σ0|U is a properly embedded

disc whose closure in U is a properly embedded disc transverse to ∂U .

Furthermore if U ′ =
◦
Bρ(ε′, x) or

◦
Br(ε′, x) and U ′ ⊂ U , then D ∩ U ′ is

connected or empty.
Suppose that M1, M2, . . . is a sequence of leaves of Σt which hit pro-

gressively smaller ρ-balls about y1, y2, . . . in multiple components, where
Lim yi → x ∈ Nρ(.9t, δ0). Let L1, L2, . . . denote the leaves of Σ2t which
respectively contain the M1, M2, . . . . Let Lx denote a limit of L1, L2, . . .
which contains x. By Lemma 3.12 and the previous paragraph there
exists ε2 < ε1 so that Lx ∩ Bρ(ε2, x) is connected and transverse to
∂Bρ(ε2, x). Let K ⊂ Lx be a compact subsurface containing x, such
that dρ(∂K, δ0) > 1.5t. Let fi(K) ⊂ Li be as in Lemma 3.12 iv). Since
fi(K) → K, it follows that for i sufficiently large, dρ(∂fi(K), δ0) > t and
hence Mi ⊂ fi(K). Therefore by Schoen’s theorem if dρ(yj , x) ≤ ε2 − ε′,

then
◦
Bρ(ε′, yj) ∩ Mi is connected or empty for all i sufficiently large.

q.e.d.
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Notation 3.15. In what follows, J will denote a component of
H0, f = 2a (see Lemma 3.7) and m will be as in Lemma 3.6. Taking
t = a, fix ε to satisfy the conclusion of Lemma 3.14.

Our next goal, carried out in sections 3.16–3.36, is to show that J
is a simply connected manifold with boundary.

Definition 3.16. Given a component J of H0, normally orient

each leaf L of Σf to point into the component of
◦
Nρ(f, δ) − L which

contains J . This orientation is called the J-normal orientation. The +
side of L is the side facing J .

Warning 3.17. J-normal orientations may not in general induce a
consistent transverse orientation on leaves of Σ0.

Lemma 3.18.

i) If KL denotes the component of
◦
N(f, δ0) − L which contains J ,

then J is a component of ∩L leaf of Σf KL. If J ′ is another compo-
nent of ∩L leaf of Σf KL, then J ′ is a component of H0.

ii) (Continuity of J-normal orientation). If the leaf L ∈ Σf is a
limit of leaves L1, L2, . . . of Σf and J ∩ L 
= ∅ then the J-normal
orientation on L induces the J-normal orientation on Li for i
sufficiently large.

Proof. i) The first assertion is immediate. The hypothesis of the
second implies that for each σα

0j , J and J ′ lie in the same component of
◦
N(f, δ0) − σα

0j and hence in the same component of H
3 − σα

0j .

ii) Let U =
◦
Bρ(ε, x) where x ∈ J∩L. If Di = Li∩U , then D1, D2, . . .

is a sequence of discs converging in the Ck-topology, all k < ∞, to D.
For i sufficiently large Di and D nearly coincide, hence if their J-normal
orientations are opposite, then J ∩ U would be confined to the region
“between” Di and D. Thus, if for i sufficiently large all such J-normal
orientations were opposite, then J ∩ U = ∅. q.e.d.

Definition 3.19. If two leaves L1, L2 of Σf are tangent at x with
opposite J-normal orientations then we say that L1, L2 are antitangent
at x and x is an antitangential point. If U is a sufficiently small η-
neighborhood of x, then the components of U∩L1 and U∩L2 containing
x are discs which meet along a saddle or multi-saddle tangency. Call
the closure of a component of U − L1 ∪ L2 lying on the + side of both
L1 and L2 a wedge of L1, L2 at x.
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Two minimal surfaces S and T which are tangent at y either coincide
or meet at y along a multi-saddle. We say that the multi-saddle is of
multiplicity m(y), if locally S ∩ T consists of 2m(y) + 2 arcs which
meet at y. If x is an antitangential point, then define the m(x), the
multiplicity of x, to be the supremum of multiplicity of pairs of leaves
that are antitangent at x.

We say that x ∈ Bd(J) is a spike point if:

i) There exist a triple of leaves A, B, C of Σf having a common
tangent vector at x, and no pair of A, B, C are tangent at x.

ii) There exists no v ∈ Tx(H3) which is transverse to A, B, C and
whose direction agrees with the three J-normal orientations at x.

If x is a spike point and U is a neighborhood of x which intersects
each A, B, C in discs, then a spike region is the closure of a component
of U − A ∪ B ∪ C which lies on the + side of A, B, C and limits on x.

Example 3.20. A spike point and spike region can be found in
Figure 4.1 [6]. Note that if the normal orientation of one of the leaves
was reversed, then these leaves would not define a spike point. To
understand spike regions, consider very small spheres centered at x,
and the possibly empty tiny triangles in these spheres which lie on the
+ sides of the leaves. A spike region is the closure of a continuum of
such triangles which limit on x.

Lemma 3.21.

i) If L1 and L2 are antitangent at x, then J lies in at most one wedge
of L1 and L2 at x.

ii) If leaves A, B, C define a spike point x, then at most one spike
region of A, B, C at x intersects J .

Proof. i) Let σα
0i and σβ

0j be respectively laminations whose leaves

contain L1 and L2. If J ′ is the component of H
3 − σα

0j ∪ σβ
0i which

contains J , then Lemma 4.1 [6] implies that J ′ can contain at most one
wedge of L1 and L2 at x.

ii) Repeat the above argument using the laminations σαa
0a , σαb

0b , σαc
0c

which respectively contain leaves A, B and C. q.e.d.
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Lemma 3.22.

i) There exists an M < ∞ such that every antitangential point of
Bd(J) has multiplicity ≤ M .

ii) If x1, x2, . . . → x is a sequence of antitangential points of Bd(J),
then Lim supi→∞m(xi) < m(x).

iii) The points of Bd(J) which are spike points but not antitangential
points is a discrete set. Any limit point is an antitangential point.

Proof. Suppose that x1, x2, . . . are a sequence of antitangential
points of Bd(J) which limit on x. Suppose that A1, B1; A2, B2; . . . are
leaves of Σf with antitangencies respectively at x1, x2, . . . . By passing
to subsequence, restricting to an η ≤ ε open ball U about x, and letting
Di (resp. Ei) denote Ai ∩ U (resp. Bi), then by Lemmas 3.10 and 3.12
we can assume that these Di’s and Ei’s are discs containing xi which
converge in the Ck-topology, all k < ∞, to antitangent discs D, E at x.
Note that D and E cannot coincide in a neighborhood of x, else they
would coincide in U and therefore J ∩ U = ∅.

If we give U Euclidean coordinates and let Q (resp. Qi) denote the
tangent plane to D (resp. Di) at x (resp. xi), then D and E (resp. Di

and Ei) are the graphs of functions on Q (resp. Qi) and the difference
function w (resp. wi) satisfies the following properties. After changing
coordinates on Q by a linear transformation T , w(z) = p(z)+q(z) where
p is a linear homogenous harmonic polynomial of degree d, 2 ≤ d < ∞
and |q(z)| + |z||∇q(z)| + · · · + |z|d|∇dq(z)| ≤ C|z|d+1. Here z = (z1, z2)
denotes a point in R

2 and |∇nq(z)| denotes the Euclidean norm of the
vector of n2 degree-n partial derivatives evaluated at z. This is the well
known local description of tangent minimal surfaces, which is powered
by the Bers - Vekua theorem on general continuation [1], [20]. A proof of
the above result is given in Colding-Minicozzi II [5] and we acknowledge
here the use of their notation and error term which appears sharper
than that found in the literature.

i) Since Di → D in the Ck-topology, k < ∞, it follows that

Lim supi→∞m(xi) ≤ m(x).

Using the compactness of Bd(J)/〈g〉 we obtain conclusion i).

ii) Now suppose that for all i, m(xi) = m(x) = d − 1. It follows
from [5] that after passing to subsequence, and changing coordinates
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on Qi by a linear transformation Ti, with Ti → T , that wi = pi + qi

where pi is a linear homogenous harmonic polynomial of degree d, pi →
p, and |qi(z)| + |z||∇qi(z)| + · · · + |z|d|∇dqi(z)| ≤ C|z|d+1. Here C
is the same uniform constant and the original coordinates on Q are
related to those of Qi via an orthogonal change of coordinates. In words,
around a uniformly sized neighborhood of x, these (multi)-saddles are
geometrically extremely close.

Since each of Ai and Bi meets U in a single disc it follows that J ∩U
must lie on the + side of each of D, E and each Di and Ei. Therefore
for each i, J ∩ U lies in Wi ∩ U (resp. W ∩ U) where Wi (resp. W ) is a
unique wedge of Di ∪ Ei emanating from xi. This implies that for all i
and j, xi ∈ Wj ∩ U and xj ∈ Wi ∩ U and finally {x1, x2, . . . } ∈ W ∩ U .

Using the above equations it follows that there exists η > 0, N < ∞
so that if U = Bρ(η, x) and i ≥ N , then W (resp. Wi) is contained in
K ∩U (resp. Ki∩U) where K is a cone based at x (resp. xi) of uniform
angle c < π. Thus {x, x1, x2, . . . } ⊂ K ∩i≥N Ki which is evidently
impossible.

iii) If x1, x2, . . . is a sequence of distinct spike points limiting on x,
then after passing to subsequence there exist triples of leaves Ri, Si, Ti

of Σf defining the spikes which converge to a triple R, S, T which have
a common tangent vector at x. If no pair of R, S and T are tangent
at x, then using Schoen’s normal curvature lemma it follows that there

exists η > 0, N < ∞ so that if i ≥ N and U =
◦
Bρ(η, x) then J ∩ U is

contained in K ∩ U (resp. Ki ∩ U) where K is a cone based at x (resp.
xi) of uniform angle c < π. Thus one obtains a contradiction as above.

If say R and S are tangent at x but not antitangent, then T must be
antitangent to both. Otherwise for i sufficiently large the triple Ri, Si, Ti

would not satisfy the normal orientation requirement of Definition 3.19.
q.e.d.

Definition 3.23 (Linear Model near a boundary point x). Suppose
that x ∈ Bd(J). Let T 1

x denote the sphere of unit vectors in T (H3)
through x. To each leaf L of Σf through x, let AL denote the closed
hemisphere in T 1

x bounded by the tangent plane through L and lying
on the positive side of that plane. Let CL = ∂AL.

It follows from Lemma 3.10 that the collection of such CL’s is closed
(in the space of great circles). Thus we obtain:
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Lemma 3.24. Ax
def= ∩AL is either

i) a closed disc,

ii) a closed interval,

iii) one or two points, or

iv) empty.

Lemma 3.25. If Lim xi → x where xi ∈ J and x ∈ Bd(J) and
the xi’s approach x asymptotically along a tangential direction v ∈ T 1

x ,
then v ∈ AL, for all leaves of Σf through x.

Proof. If not let E ⊂ T 1
x −AL be a small round disc such that v ∈

◦
E.

If y is sufficiently close to x and in a small cone based at x defined by
the directions in E, then y lies on the non + side of L. This implies
that y /∈ J . q.e.d.

Definition 3.26. A point x ∈ Bd(J) is of Type I if either there
exists a vector u based at x which is transverse to each leaf of Σf

passing through x or x is a spike point which is not an antitangent
point. Otherwise we say x ∈ Bd(J) is of Type 0. Let O denote the
collection of Type 0 points of Bd(J).

Lemma 3.27. If x is of Type 0, then x is an antitangent point.

Proof. We need to show that if ∪L leaf through xCL = T 1
x , then x is

either a spike point or an antitangential point. Under this hypothesis
Ax is not a disc and by Lemma 3.25, Ax 
= ∅.

If Ax is an interval, then let w ∈
◦
Ax and [−1, 1] ⊂ T 1

x a small geodesic
interval orthogonal to Ax and passing through w at 0. We will show
that x is an antitangential point by showing that there exist leaves R
and S such that Ax ⊂ CR (resp. Ax ⊂ CS) and the + side of R (resp. S)
points towards −1 ∈ [−1, 1] (resp. +1). If not we derive a contradiction
as follows. If t > 0, and Lt is a leaf with t /∈ ALt , then CLt hits [−1, 1] at
some unique point in (0, t) with normal pointing towards 0. Since CLt is

disjoint from
◦
Ax it follows that as t → 0, CLt becomes nearly tangent to

Ax. Using Lemmas 3.12, 3.18, we conclude that a limit corresponds to
a leaf R such that CR contains Ax with normal pointing towards −1. In
a similar manner one constructs a leaf S through x so that CS contains
Ax with normal pointing to +1.
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If w ∈ Ax and Ax is one or two points, then let T ⊂ T 1
x be the

circle of vectors orthogonal to w. Using a limiting argument as above,

for each t ∈ T , there exists a leaf Lt through x such that t /∈
◦
ALt but

w ∈ CLt . Just consider a limit of Lts ’s where ts → w and ts lies on
the geodesic arc from t to w and ts /∈ ALts

. This implies that either

∪t∈T

◦
ALt = S2∞ − {w,−w} or S2∞ − γ where γ lies in a great semi-circle

from w to −w. In the latter case a limiting argument implies that x
is an antitangent point. In the former case a compactness argument

implies that for a finite set {t1, t2, . . . , tn}, ∪n
i=1

◦
ALti

= S2∞ − {w,−w}.
If no pair Ati , Atj are antitangent at x, then a combinatorial argument
implies n = 3 suffices and hence x is a spike point. q.e.d.

Corollary 3.28. Type 0 boundary points of J of multiplicity 1 are
a closed discrete subset of H

3.

Definition 3.29. If X ⊂ Y , then we say that X is 0-LC at x
∈ Bd(X) if for each open set U of Y containing x, there exists an open
set V of Y about x such that if y, z ∈ X ∩ V , then there exists a path
from y to z lying in X ∩ U .

Lemma 3.30. If x ∈ Bd(J) is Type I, then J is a manifold near
x.

Proof. The point of this paragraph and the next is to show that
a Type I spike point can be treated just like any Type I point which
satisfies the first sentence of Definition 3.26. Suppose the leaves A, B,
and C of Σf define a spike at x with S the germ of the spike region
emanating from x and v a unit vector tangent to each of the three leaves.
Let P denote the union of A, B and C together with the collection
of leaves of Σf which pass through x and which are limits of leaves
L1, L2, . . . of Σf such that for all i, there exists xi ∈ Li with xi ∈ J − x
and Lim xi = x. As η → 0, Bρ(η, x) ∩ S is contained in narrower and
narrower hyperbolic cones based at x. Therefore v must be tangent to
every leaf in P. By Lemmas 3.12 iv) and 3.18 ii) it follows that either
x is an antitangential point or there exists a nonzero vector u based at
x and transverse to each leaf in P.

If x is Type I because there exists a vector u transverse to each leaf of
Σf through x, then define Σ to be Σf . Otherwise x is not antitangential

and there exists a u as in the preceding paragraph. Let U =
◦
Nρ(η, x)

and define Σ to be the collection of leaves of Σf which hit J ∩ U − x
together with all limits of such leaves which pass through x. Choose
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η ≤ ε sufficiently small so that if L is a leaf of Σ passing through
x, then L is transverse to the vector u constructed in the previous
paragraph. Such an η exists, else one can find a sequence L1, L2, . . .
of leaves containing x which hit Bd(J) in points closer and closer to x
and have u as a tangent vector. A limit of such leaves lies in P and is
tangent to u, a contradiction.

Since x is of Type I, and leaves have bounded normal curvature,
there exists a closed neighborhood of the form V = D2 × [−1, 1], where
x is identified with the origin, each z× [−1, 1] is transverse to Σ and if L
is a leaf of Σ|V , and L∩J 
= ∅, then L is a closed disc properly embedded
in D2×(−1, 1). Call a leaf L of Σ, + if its normal vector points up and −
otherwise. If no + leaf meets x, then by restricting the size of V we can
assume that the set of + leaves is empty. Similarly for the − leaves. If
there exist + leaves (resp. − leaves) define the function A : D2 → [−1, 1]
(resp. B : D2 → [−1, 1]) by A(z) = max{t| some + leaf hits (z, t)}
(resp. B(z) = min{t| some − leaf hits z × t}). That Σ is closed in the
Ck-topology implies such maxima and minima exist.

Claim 1. A and B are continuous.

Proof. We prove continuity of A. Let y1, y2, . . . → y be a conver-
gent sequence in D2. By Lemma 3.18 ii) and 3.12 iv) it follows that
Lim sup A(yi) ≤ A(y). Since there exists a + leaf L through (y, A(y))
and transverse to y × [−1, 1] it follows that A(y) ≤ Lim inf {A(yi)}.

q.e.d.

If there exists no − leaves, then from the continuity of A one readily
deduces that J is a manifold near x.

From now on we will assume that there exist both + and − leaves.
Applying the standard results for intersections of least area surfaces,
the Meeks-Yau exchange roundoff trick and the fact that J ∩ V 
= ∅ to
our setting we have:

Claim 2. A + leaf and a − leaf cannot coincide. If L1 and L2 are
distinct leaves of Σ, then L1 is transverse to L2 except at finitely many
(multi)-saddle tangencies. L1 ∩L2 contains no embedded simple closed
curve. q.e.d.

Let π : J ∩V → D2 def= D2 × 0 be the projection onto the D2-factor.
Let J1 be a component of V ∩ J and E1

def= π(J1) ⊂ D2.

Claim 3.
◦
E1 = π(J1 ∩

◦
V ) and

◦
E1 is a disc.
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Proof. The failure of the either claim would give rise to plus and
minus leaves L1, L2 of Σ violating Claim 2. q.e.d.

Claim 4.
◦
E1 is 0-LC at every point x of Bd(

◦
E1).

Proof. It follows directly from the next paragraph that given κ > 0

each component of BD2(κ/2, x)∩
◦
E1 is contained in one of finitely many

components of BD2(κ, x)∩
◦
E1. The subsequent paragraph will show that

for some η < κ/2 at most one of the components of BD2(κ, x)∩
◦
E1 can

meet BD2(η, x). These facts imply Claim 4.

We will assume that x ∈
◦

D2 and dD2(x, ∂D2) > κ, for the general
case is similar but notationaly messier. We first show that if ε1 < ε2 ≤ κ,
and A is the annulus spanning the circles S1, S2 of radius ε1, ε2 about

x, then only finitely many distinct components of
◦
E1 ∩ A can hit both

S1 and S2. Otherwise let α1, α2, . . . be properly embedded arcs lying in

distinct components of
◦
E1 ∩ A whose endpoints meet both S1 and S2.

By passing to subsequence, reordering and choosing a correct basepoint
and orientation on S1 we can assume that the αi’s are ordered according
the linear ordering of the points {αi∩S1}. Let S3 be the circle of radius
ε3 about x, where ε1 < ε3 < ε2 and let Ri ⊂ A denote the region
between αi and αi+1. Finally for all i, let si ∈ S3 ∩ Ri be such that
si ∩ π(J) = ∅ and s a limit point of s1, s2, . . . . Let L+

i (resp. L−
i )

denote a + leaf (resp. − leaf) through (si, A(si)) (resp. (si, B(si)). Let
Ai = {z ∈ Ri|L+

i is above L−
i at z}. Since least area surfaces intersect

transversely or in multi-saddles or coincide it follows that Ai 
= ∅. The
Ai’s being disjoint implies that Lim area(Ai) → 0. Let i1 < i2 < . . .
be a sequence such that L+

i1
, L+

i2
, . . . limits to L+, L−

i1
, L−

i2
, . . . limits

to L− and L+, L− respectively pass through (s, A(s)) = (s, B(s)). If
Z = {z ∈ A|L+ is above L− at z} and C1 > 0 is the area of the smallest

(of the finitely many) components of
◦
Z which limit on s, then for i

sufficiently large, area(Ai) > 1
2C1 > 0.

The previous paragraph implies that if η ≤ κ and F is a compo-

nent of B(η, x) ∩
◦
E1 which limits on x, then for y ∈ F there exists an

embedded path from y to x which, except for x, lies in F . If two such
components F1, F2 limit on x, then there exists a simple closed curve α

in E1 which intersects Bd(
◦
E1) only at x. If Dα was the disc bounded by

α, then
◦
Dα ∩Bd(

◦
E1) 
= ∅. Let z ∈

◦
Dα be such that A(z) = B(z). If L1
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and L2 are respectively plus and minus leaves passing through (z, A(z)),
then L1 ∩ L2 gives rise to a contradiction to Claim 2. q.e.d.

Claim 5. For every κ > 0,
◦
E1 is the union of finitely many

connected subsets of of diameter less than κ.

Proof Use Claim 4 and the compactness of Bd(
◦
E) to find an η > 0

so that
◦
ND2(η,Bd(

◦
E)) ∩

◦
E is contained in the union of finitely many

connected subsets of
◦
E of diameter < κ. Any maximal collection

{yi} of points in
◦
E −

◦
ND2(η,Bd(

◦
E)), with the property i 
= j implies

dD2(yi, yj) ≥ η gives rise to a finite set F of open η-discs centered at

the points of F which contain
◦
E −

◦
ND2(η,Bd(

◦
E)). q.e.d.

Claim 6. E1 is a disc.

Proof. Using techniques similar to those of [3, pp. 26–32] and Claim 4
it follows that E is the image of an immersed disc whose interior maps

to
◦
E. Actually it is an embedding otherwise one obtains a contradiction

to Claim 2. What follows is a formal argument.
In the classical language [22] a metric space satisfying the conclusion

of Claim 5 is said to satisfy Property S. By Theorem 4.2 [22], Bd(
◦
E1) is

a locally connected compact continuum such that each point of Bd(
◦
E1)

is accessible from all sides from
◦
E1.

If Bd(
◦
E1) had a cut point y, then being accessible from all sides

implies that there exists a simple closed curve α in E1 which meets

Bd(
◦
E1) only at y and the disc bounded by α contains points of Bd(

◦
E1)

in it’s interior. This leads to a contradiction to Claim 2.
Thus Bd(

◦
E1) is a Peano continuum without cut points, p. 76 [23],

and so by Corollary 3.32a [23] through each point of Bd(
◦
E1) there exists

a simple closed curve lying in Bd(
◦
E1).

Bd(
◦
E1) must be a simple closed curve, else Bd(

◦
E1) contains an

embedded graph θ of Euler characteristic −1. Being connected,
◦
E lies

in only one component of D2 − θ, contradicting the fact that each point

of Bd(
◦
E1) is a limit point of

◦
E1. By the Schoenflies theorem Bd(

◦
E1)

bounds a disc which is evidently E1. q.e.d.

Claim 7. π(x) has a neighborhood that intersects exactly one
component of π(J ∩ V ).



Isom (M3) � Diff (M3) 131

Proof. First suppose that there exist two components F1, F2 of π(J∩
V ) with closures E1, E2 which contain x. By Claim 6 these Ei’s are discs
and the connectivity of J implies that both must intersect ∂D2. Let
y1, y2 ∈ ∂D2 be such that A(yi) = B(yi) and y1, y2 separate F1 ∩ ∂D2

from F2 ∩ ∂D2. Let L+
i , L−

i , i = 1, 2 be leaves of Σ respectively of plus
and minus type which pass through (yi, A(yi)). Finally consider the
(at most 4) laminations σαi

0k which contain these leaves. If J ′ is the
component of H

3 −∪σαi
0k which contains J , then J ′ is either non-simply

connected or J∗ the closure of J ′ with respect to the induced path metric
is not injectively immersed. Either situation contradicts Lemma 4.1 [6].

If every neighborhood of π(x) hits infinitely many components of
π(J ∩V ), then we obtain a contradiction in a manner similar to that of
the second paragraph of the proof of Claim 4. q.e.d.

Claims 6 and 7 imply that after reducing the size of the D2 and
reparametrization π(J ∩ V ) = {(x, y) ∈ D2|y > 0}. Therefore J ∩ V =
{(x, y, t)|y ≥ 0 and A(x, y) ≤ t ≤ B(x, y)} which is a tamely embedded
3-cell, thereby completing the proof. q.e.d.

Lemma 3.31. J is simply connected.

Proof. Let F be the foliation of H
3 by totally geodesic hyperbolic

planes orthogonal to δ0. Let α ⊂ J be a simple closed curve homo-
topically nontrivial in J . Choose α to be transverse to F except at
finitely many points and assume that α has been chosen to minimize
this number. Our α may lie completely in a leaf of F .

Case 1. α bounds an embedded disc D in H
3.

Proof. Let N ⊂ J be a closed tubular neighborhood of α and N1

a smaller tubular neighborhood with N1 ⊂
◦
N . Modify the metric r

to r1 so that r|H3 − N = r1|H3 − N and H
3 −

◦
N1 has strictly convex

boundary with respect to metric r1. Furthermore if E ⊂ H
3 −

◦
N1 is a

disc with ∂E ∩ N = ∅, then arear1(E) ≥ arear(E). By [15] there exists

an essential properly embedded r1-least area disc D ⊂ H
3 −

◦
N1 with

∂D ⊂ ∂N1. Furthermore D is least area among all essential immersed
discs with boundary ∂D on ∂N1. If D ∩ L 
= ∅ where L is a leaf of
some σα

0j , then since L is a leaf of a D2-limit lamination, there exists an
embedded disc F ⊂ L, with ∂F ∩ D = ∅ and F ∩ D 
= ∅. Since F is an
r-least area disc and D is locally r-least area near D∩F , D is transverse
to F except at finitely many tangencies of the standard saddle or multi-
saddle type. A simple closed curve in D ∩ F bounds subdiscs D′ ⊂ D,
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F ′ ⊂ F with ∂D′ = ∂F ′. If arear1D
′ ≥ arear1 F ′, then the Meeks-Yau

exchange roundoff technique gives rise to a disc contradicting the r1-area
minimality of D. If arear1 D′ < arear1 F ′, then the exchange roundoff
technique gives rise to a disc contradicting the r-area minimality of F ,
since by construction arear D′ ≤ arear1 D′.

q.e.d.

Case 2. α is homotopically nontrivial in J .

Proof. We first show that α is homologically trivial in J . Let r
and r1 be Riemannian metrics as in Case 1. By [15] there exists an

oriented genus minimizing, properly embedded surface S ⊂ H
3 −

◦
N1

with connected boundary which is an r1-least area surface among all

immersed surfaces properly homotopic to S rel ∂S in H
3 −

◦
N1. (S

can be thought of as a minimal genus Seifert surface for α.) Again if
S∩σα

0j 
= ∅, there exists a disc F lying in a leaf of σα
0j which nontrivially

intersects S and ∂F ∩ S = ∅. Let F ′ ⊂ F be a disc such that ∂F ′ ⊂ S.
Since S is π1-injective in H

3 −
◦
N1 it follows that ∂F ′ bounds a disc

D′ ⊂ S. We now obtain a contradiction as in Case 1.
Therefore if T is a (connected) leaf of F|J and T is transverse to

α, then |T ∩ α| ≥ 2. If for all leaves T of F|J, |T ∩ α| ≤ 2, then α
is unknotted in H

3. Finally, if |T ∩ α| > 2, and x, y ∈ T ∩ α are such
that the oriented α points “up” at both x and y, then we obtain a
homotopically nontrivial curve in J with fewer points of tangency with
F via the following procedure. Concatenate the appropriate component
of α − {x, y} with an arc in T with endpoints x, y and isotope slightly.

q.e.d.

Definition 3.32. Given x ∈ Bd(J), η < ε and L a leaf of Σf we
say that L is xη − relevant if L ∩ J ∩ Bρ(η, x) 
= ∅.

Lemma 3.33. For each x ∈ Bd(J) there exists εx ≤ ε such that
if η ≤ εx and L is xη-relevant, then L ∩ Bρ(η, x) is a disc transverse
to ∂Bρ(η, x) and each component of ∂Bρ(η, x) − L has area at least
.40 area(∂Bρ(η, x))).

Proof. It follows from Schoen’s bounded normal curvature lemma
[19] that there exists a constant C such that if η is sufficiently small,
β < Cη and L any leaf of Σf |Bρ(η, x) which intersects Bρ(β, x), then L
satisfies the conclusion of the lemma. Since the metric r is induced from
a metric on a closed hyperbolic 3-manifold, C can be chosen independent
of x.
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Suppose that L1, L2, . . . were a sequence of xηi-relevant leaves which
failed the conclusion of the lemma, where ηi → 0. Let yi be the ρ-closest
point of Li to x. By passing to subsequence we can assume that yi

approaches x asymptotically along a ray. Since dρ(Li, x) > Cη it follows
again by Schoen, that for i sufficiently large and j sufficiently larger
Lj ∩Li∩Bρ(ηi, x) = ∅ and Lj ∩Bρ(ηi, x) separates x from Li∩Bρ(ηi, x).
Since x lies on the + side of Lj it follows that J ∩ Li ∩ Bρ(ηi, x) = ∅, a
contradiction. q.e.d.

Lemma 3.34. If x ∈ J is a Type 0 point, then J is a manifold near
x.

Proof. The proof will follow by induction on m(x).

Step 1. m(x) = 1.

Proof of Step 1. By Lemma 3.22 there exists ε1 such that 0 < ε1 < εx

and Bρ(ε1, x) contains a unique Type 0 point. Let Bt denote Bρ(t, x).

Claim 1. If 0 < t ≤ ε1, then there exists t1 > 0 so that for each
component X of Bt ∩ J either x ∈ X or dρ(X, x) > t1.

Proof. If not then Bt ∩ J has infinitely many components which hit
Bt/2. Let y1, y2, . . . a sequence of points lying in distinct components
of Bt ∩ J , with yi ∈ ∂Bt/2. If y is a limit point of {yi}, then y ∈ J and
is of Type I. But this contradicts the fact that J is a manifold near y.

q.e.d.

Claim 2. There exists a unique component Ji of Bε1 ∩ J which
limits on x.

Proof. It follows from Claim 1 (with t = ε1) that at least one com-
ponent limits on x.

Suppose that two components J1 and J2 limit on x. For i = 1, 2

let
◦
Ei be the component of ∂Bε1 ∩ Ji such that there exists a path

σ ⊂ (J −
◦
Bε1) from E1 to E2. Each

◦
Ei is an open disc else:

i) There exists a leaf L tangent to ∂Bη, η ≤ ε1 at a point y ∈ J .
This contradicts Lemma 3.33.

ii) There exist leaves L1 and L2 such that L1∩L2 
= ∅ but L1∩∂Bε1

and L2 ∩ ∂Bε1 lay in disjoint components of ∂Bε1 − Ei. This implies
that L1 ∩ L2 contains a simple closed curve, which is a contradiction.

A proof similar to that of Lemma 3.30 shows that each Ei is a closed
disc.
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To complete the proof it suffices to show that there exists a finite

set of leaves of Σf |Bε1 whose boundaries separate
◦
E1 from

◦
E2. Indeed,

if σα1
0i1

, . . . , σαn
0in

were the laminations containing these leaves and Ĵ the
component of H

3 − ∪n
k=1σ

αk
0ik

which contained J , then Ĵ∗ is either not
simply connected or not injectively immersed in H

3. (Here Ĵ∗ is the
closure of Ĵ with respect the induced path metric.) This violates Lemma
4.1 [6].

Since x is an antitangency point there exists a wedge W containing
Bε2 ∩ J . By reducing the size of ε1, if necessary, we can assume that
areaρ(DW ) < .01 area ∂Bε1 where DW = W ∩ ∂Bε1 . Suppose that W is
defined by the antitangent leaves A, B. We will show that n ≤ 4 where
two of the leaves are A and B. The other one or two leaves will intersect
E1.

Parametrize ∂E1 by [0, 1] mod 1. (From the observer standing on
Bε1 , choose the parametrization to correspond to a clockwise path about
∂E1.) If t ∈ ∂E1, then Lt will denote a leaf of Σf ∩Bε1 through t. Lt is
not in general unique. Since E1 ∪E2 ⊂ DW it follows from the previous
paragraph and Lemma 3.33, that for any t, ∂Lt ∩ ∂DW 
= ∅.

If there exists a leaf L0 such that ∂L0 ∪ ∂DW separates
◦
E1 from

◦
E2

then L0, A, B are our desired leaves. Otherwise fix a L0. Next consider

a Lt. If ∂L0 ∪ ∂Lt ∪ ∂DW separate
◦
E1 from

◦
E2 we are done, otherwise

there exists a path α from
◦
E2 to

◦
E1 missing ∂L0 ∪ ∂Lt ∪ ∂DW . We say

Lt is to the left of 0 if α can be chosen to miss (0, t). Otherwise we say
that Lt is to the right of 0. If there exists leaves L and L′ both of which
pass through t with one to the left of 0 and the other to the right of 0,

then ∂L ∪ ∂L′ ∪ ∂DW separate
◦
E1 and

◦
E2. Again we are done if there

is a Lt to the left (resp. right) and a Lt′ to the right (resp. left) with
0 < t′ ≤ t (resp. 0 < t ≤ t′). If Lt1 , Lt2 , . . . limits to Ls and each Lti is
to the left (resp. right) of 0, then either Ls is to the left (resp. right) of
0 or ∂Ls ∪ ∂L0 ∪ ∂DW separate. If Lt, t 
= 0 is to the left and L′ is a
limit of leaves Lt, t ∈ (0, 1), t → 1, then ∂L0 ∪ ∂DW ∪ ∂L′ separate.

q.e.d.

By Claims 1 and 2 there exists an embedded path α : [0, 1] → H
3

such that α([0, 1)) ⊂ J and α(1) = x. We can assume α is transverse to

∪∞
i=1∂Bsi , where si = ε1/i. Also if

◦
F is a component of ∂Bsi ∩ J , then

|
◦
F ∩ α| ≤ 1. Let

◦
F 1,

◦
F 2, . . . denote the collection of such discs ordered

by how they are hit by α. Let ti ∈ {si} denote that value so that
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Fi ⊂ ∂Bti . If j > i and j, i ∈ N, then let R(i,j) denote the component

of J between
◦
F i and

◦
F j . Let Ri denote R(i,i+1).

The region Ri is simply connected since each of
◦
F i,

◦
F i+1 and J are

simply connected. The continuity of α and Claim 1 imply that for each
t ≤ ε1 there exists Nt > 0 such that R(i,j) ⊂ Bt for j > i ≥ Nt. We
now show that for i > Nε1 , Ri is a 3-ball. First, each point of Bd(Ri)

not on
◦
F i, is a Type I point of Bd(J). Second, by Lemma 3.33 ∂Bti is

transverse to each xti-relevant leaf. Thus the argument of Lemma 3.30
shows that Ri is a manifold near each point of Bd(Fi)∪Bd(Fi+1). Thus
Ri is an irreducible compact simply connected manifold and hence is a
3-ball. A similar argument shows that for j > i, R(i,j) is a 3-ball. By the
second sentence of this paragraph the sequence of balls Rj , limit only
on x. Thus, if X is the component of J−Fi which limits on x, then X is
homeomorphic to ∪j≥iRj ∪ x where the latter space is topologized with
the 1-point compactification with x being the point at infinity. Thus X
is topologically a 3-ball. This completes the proof of Step 1. q.e.d.

Step 2. 1 < m(x) ≤ M .

Proof of Step 2. Assume by induction that the theorem is true
for {x|m > m(x) ≥ 1}. We will prove it for m(x) = m. The proof
of Step 2 follows exactly like the proof of Step 1 with the following
minor modifications. By Lemma 3.22, for almost all s, ∂Bs ∩ O = ∅.
Choose ε1 so that ∂Bε1 ∩ O = ∅. In the proof of Claim 1 use only
{t|(∂Bt ∪ ∂Bt/2)∩O} = ∅. In the paragraph after the proof of Claim 2,
choose {si} so that ε1 > s1 > s2 > . . . → 0 and for each i, ∂Bsi ∩O = ∅.

q.e.d.

Remark 3.35. It follows immediately from the proof of Lemma 3.30
that ∂J is tamely embedded in H

3 at each Type I point of ∂J . A more
extensive argument shows that ∂J is tamely embedded at all the Type
0 points. Therefore by Bing [3] and Moise [Me] ∂J is tamely embedded
in H

3.

Proposition 3.36. If J is a component of H0, then J is a simply
connected manifold with boundary whose interior is J .

Proof. Apply Lemmas 3.30, 3.31 and 3.34. q.e.d.

A collection of smooth simple closed curves λ̂i in S2∞ is locally finite
if in the unit ball model, for every η > 0 there are only finitely many
λ̂i’s of diameter > η.
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Lemma 3.37. Let x, y ∈ S2∞ and {λ̂i} be a locally finite collection
of smoothly embedded simple closed curves in S2∞ −{x, y}, such that no
λ̂i separates x from y. Let r be a Riemannian metric induced from a
closed hyperbolic 3-manifold. To each λ̂i, let Σ̂i be the union of r-least
area D2-limit laminations which span λ̂i. Let Σ̂ = ∪Σ̂i. Let Ĥ = H

3−Σ̂.
If Ĵ is a component of Ĥ, then Ĵ is open and simply connected.

Proof. The proof of Lemma 3.10 shows that Ĥ is an open set. Simple
connectivity follows from the proof of Lemma 3.31. q.e.d.

Lemma 3.38. Let x, y ∈ S2∞, r a Riemannian metric on H
3 in-

duced from the closed 3-manifold M and λ̂1, . . . , λ̂m smooth simple
closed curves in S2∞−{x, y} such that no λ̂i separates x from y. For each
i, let Σ̂i be the union of r-least area D2-limit laminations which span λ̂i

and let Hi be the complementary region of B
3 − Σ̂i which contains x, y.

Then one of the following must hold:

i) x, y lie in the same component H of ∩m
i=1Hi.

ii) There exist λ̂i, λ̂j , λ̂k such that λ̂i ∪ λ̂j ∪ λ̂k separate x from y in
S2∞.

Proof. This is Lemma 4.3 [6] with Σ̂i in place of σi. If m ≤ 3 and
ii) does not hold, then x, y lie in the same component of S2∞ − ∪λ̂i, so
i) follows by Proposition 3.9 [6]. Assuming inductively that the lemma
is true for m < p, we will establish it for cardinality p. Therefore either
ii) holds or

for every j ≤ p, x and y lie in the same component of ∩i�=j Hi.(∗)
We show that if (∗) holds, then either i) holds or for each j and

k, λ̂j ∩ λ̂k 
= ∅. Let τj ⊂ ∩i�=jHi (resp. τk ⊂ ∩i�=kHi) be a prop-
erly embedded path from x to y. By Lemma 3.37, each component
of int(∩i/∈{j,k}Hi) is simply connected. Thus, there exists h : I × I →
∩i/∈{j,k}Hi a homotopy from τj to τk. Either Σ̂k ∩ Σ̂j 
= ∅ and hence
τk ∩ τj 
= ∅ by the proof of Lemma 3.5, or h−1(Σ̂k) and h−1(Σ̂j) are
disjoint closed sets which are disjoint from ∂I × I. Also Σ̂k (resp. Σ̂j)
is disjoint from I × 0 (resp. I × 1). Thus, τk ∩ τj = ∅ implies that there
exists an embedded path τ from 0×I to 1×I disjoint from h−1(Σ̂j∪Σ̂k).
Finally, h◦τ , is a path from x to y in ∩p

i=1Hi and so conclusion i) holds.
(To construct τ , first engulf h−1(Σ̂j) and h−1(Σ̂k) in two disjoint fam-
ilies, each of which is a finite union of closed smooth regions disjoint
from ∂I × I and I × 0 (for h−1(Σ̂k)) or I × 1 (for h−1(Σ̂j)).)
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Now argue as in the last paragraph of the proof of Lemma 4.3 [6].
q.e.d.

Lemma 3.39. There exists a unique unbounded component of H0.
There exists a uniform bound on the diameter of the bounded regions.

Proof. By Proposition 3.9 [6] each σα
0j lies in an e-neighborhood

of the ρ-convex hull of λ0j and by Lemma 3.6 there are only finitely
many outermost 〈g〉-orbits of λ0j ’s. Thus there exists N0 > 0 such the
image under ρ-orthogonal projection of any σα

0j into δ0 has ρ-diameter
< N0/2 and hence the image under orthogonal projection of any Σ0j

has ρ-diameter < N0. By Lemma 3.7 iii), H0 ⊂ Nρ(a, δ0). Let N1 =
2(lengthρ(δ) + N0 + a). Parametrize B

3 − ∂δ0 by D2 × R so that in
these coordinates g(x, t) = (x, t + L), where L = length(δ) and 0 × R

parametrizes δ0 by arclength. Let p : H
3 → δ0 denote ρ-orthogonal

projection.
In the next two paragraphs we show that there exists at most one

component of H0 with diameter ≥ N1 and that any component of di-
ameter ≥ N1 is unbounded. If J1 and J2 are distinct components of H0

such that [−N0, N0] ⊂ p(J1)∩p(J2) then let β1, β2 be paths respectively
in J1, J2 whose orthogonal projections are paths from −N0 to N0. Let
Σ∗ = ∪{Σ0j |0 ∈ p(Σ0j)}. By choice of N0, p(Σ∗) ⊂ (−N0, N0) and so J1

and J2 lie in the same component C of H
3 − Σ∗. Indeed there exists a

closed loop β ⊂ H
3−Σ∗ obtained by concatenating β1, β2 with arcs lying

in D2 ×−N0 and D2 ×N0. By construction D2 × 0∩Σ∗ = D2 × 0∩Σ0.
Thus some component of (D2×0)∩C is hit algebraically nonzero times
by β. This contradicts Lemma 3.37.

If J3 is a component of H0 of diameter ≥ N1 such that p(J3) 
= δ0,
then there exist distinct 〈g〉-translates J1, J2 of J3 such that [−N0, N0] ⊂
p(J1) ∩ p(J2), which contradicts the previous paragraph. Thus if J1, J2

are distinct components of diameter ≥ N1, then they both must project
to all of δ0 and one thereby obtains a contradiction as in the previous
paragraph.

To complete the proof we need to show that there exists a component
of H0 of diameter ≥ N1. Let Z∗ = ∪{Σ0j |p(Σ0j) ∩ [−N1, N1] 
= ∅
and λ0j = h(λ0i) for some i ∈ {1, 2, . . . , m} and h ∈ 〈g〉}. (Recall
Lemma 3.6.) So Z∗ = Σ0j1 , . . . ,Σ0jk

. It follows from Lemma 3.6 that
H0∩D2×[−N1, N1] = ∩k

i=1H0ji∩D2×[−N1, N1]. By Lemma 3.38, there
exists a component J1 of B

3 − Z∗ which contains a properly embedded
path β connecting ∂δ0. For each i, β must lie in H0ji . Thus β ∩ D2 ×
[−N1, N1] lies in some component of H0 and diamρ(β∩D2×[−N1, N1]) ≥
2N1. q.e.d.
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Remark 3.40. This proof together with the usual convergence of
laminations results implies that if r lies in a compact region K of the
space of Riemannian metrics on M , then there exists a uniform bound
N(K) for the ρ-diameter of bounded regions of H0.

Lemma 3.41. If P ′ : H
3 → Mδ =

◦
D2 × S1 is the quotient map

under the action of 〈g〉, then P ′(H0) is the union of open balls and one

open solid torus denoted
◦
T r. The closure

◦
T r is a solid torus denoted

Tr. Therefore H0 ⊂ H
3 is a union of uniformly bounded open balls and

one component
◦
U r whose H

3-closure is a D2×R denoted Ur whose ends
limit on ∂δ0.

Proof. Each component Z of P ′(H0) has π1(Z) ∈ {1, Z} since it is
covered by a component of H0, which by Lemma 3.31 is simply con-
nected, with covering translations contained in 〈g〉. If Z is covered by
a bounded region J, then by Proposition 3.36 and Lemma 3.39 J is a
uniformly bounded ball and hence Z is a uniformly bounded embedded

open ball. If Z is covered by the unique unbounded region
◦
U r, then the

uniqueness of this manifold together with its 〈g〉-invariance and the fact
that its closure Ur is a manifold implies that Z is a compact manifold
with boundary. Z is irreducible since it is covered by an irreducible
manifold. Therefore Z is a solid torus and hence Ur is a D2 × R whose
ends limit on ∂δ0. q.e.d.

Remark 3.42. By further generalizing the argument of Step 3, p.
63 [6] it is not difficult to show that if Z is an open ball, then Z is a
closed ball.

Lemma 3.43. Every core of Tr is a core of Mδ.

Proof. Let {σαk
ij } be a π1(M)-invariant collection of r-least area

D2-limit laminations such that for 1 ≤ i ≤ m, each λ0i is spanned
by 0 < ni < ∞ laminations. Since only finitely many 〈g〉-orbits of
laminations are involved, the technology of [6] applies and we obtain

an immersed solid torus Vα in M . Also if
◦
Tα is the injective lift of

◦
V α

to Mδ, then its closure Tα is an embedded solid torus. Similarly if
◦
Uα

denotes the lift of
◦
V α to H

3 which contains
◦
U r, then Ur the closure of

◦
U r, is an embedded D2 ×R limiting on ∂δ0. Because δ lifts to a core of

Mδ, Cα lifts to a core C̃α ⊂
◦
Tα of Mδ.

Using the local structure of ∂Ur it is not difficult to show that given
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η > 0 there exists a collection of laminations {σαk
ij } as above so that

Ur ⊂ Uα ⊂ Nρ(η, Ur) and hence Tr ⊂ Tα ⊂ Nρ(η, Tr).

Let Cr be a core of
◦
V r with C̃r its closed lift to Mδ. To show that

Cr is a core of Mδ it suffices to show that π1(Mδ − C̃r) = Z⊕Z. This is
equivalent to showing that if T is a solid torus standardly embedded in
Mδ and Tr ⊂ T , then every loop κ ⊂ Mδ − C̃r is homotopic in Mδ − C̃r

to a loop in Mδ − T .
Let κ be a loop in Mδ − C̃r. Since C̃r is a core of Tr, κ is homotopic

in Mδ − C̃r to a loop κ1 in Mδ − Tr. Let η < dρ(κ1, Tr) and choose Tα

so that Tα ⊂ Nρ(η, Tr). As in the proof of Lemma 4.1 [6], each point
of ∂Uα is of Type I and hence ∂Tα is tamely embedded in Mδ. Since
C̃α is isotopically standardly embedded in Mδ this implies that Tα is
isotopically standard in Mδ. Therefore κ1 (resp. κ) can be homotoped
off of any compact set in Mδ via a homotopy disjoint from Tα (resp. Cr).

q.e.d.

Proof of the Solid Torus Theorem: i) Our desired canonical immer-
sion of a D2 × S1 (up to reparametrization) into M is given by q|Tr,
where q : Mδ → M is the covering projection associated to the subgroup

〈g〉 ⊂ π1(M). Note that q|
◦
T r is an embedding since

◦
T r ⊂

◦
Tα and by [6]

q|
◦
Tα is an embedding. Here

◦
Tα is any

◦
D2 × S1 obtained by applying

the insulator construction of [6]. Let Vr denote the immersed solid torus

q|Tr and
◦
V r = q(

◦
T r). (Recall Definition 3.1.)

ii) By Lemma 3.43 if Cr is a core of
◦
V r, then Cr lifts to a core C̃r

of Mδ. Let
◦
V α ⊂ M be obtained from the insulator construction of [6]

and Cα a core of
◦
V α. Since Cα is isotopic to δ and Cr ⊂ Cα it suffices

to show that Cr is a core of
◦
V α. This in turn is equivalent to showing

that C̃r is a core of
◦
Tα. But as noted in the proof of Lemma 3.43, Tα

is isotopically a standard solid torus in Mδ. Therefore C̃r is isotopic to

C̃α in
◦
Tα if and only if is isotopic in Mδ. By Lemma 3.43 they are both

isotopic to a core of Mδ.
As indicated in 3.2, the orientation on δ induces an orientation on

the core Cr of
◦
V r. This orientation has the property that if γ0 is the lift

of Cr with ends limiting on ∂δ0, then γ0 is oriented from the negative
to the positive endpoint. If γ0 and δ0 are viewed as properly embedded
arcs in B

3, then any isotopy of Cr to δ lifts to a proper isotopy of γ0 to
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δ0. This implies that Cr and δ are isotopic as oriented curves.

iii) By the convexity property of Definition 0.4 [6] there exists, for
each j, a totally geodesic plane Pj such that ∂Pj separates ∂δ0 from λ0j .
Therefore Pj separates δ0 from any ρ-least area D2-limit lamination σ0j

spanned by λ0j . Thus δ0 ⊂
◦
Uρ and δ ⊂

◦
V ρ. Reversing the proof of ii) we

see that δ is a core of
◦
V ρ. That argument also shows that the orientation

on δ, viewed as a core of Vρ coincides with the given orientation on δ.
q.e.d.

4. Proof of the Coarse Torus Isotopy Theorem

Notation 4.1. Let RM(M) denote the space of Riemannian met-
rics on M and f : Bn → RM(M) continuous. Let δ be an oriented
simple closed geodesic in the closed orientable hyperbolic 3-manifold M
possessing a non-coalescable insulator family {λij}. Let Vx denote the
canonical immersed solid torus in M associated to the Riemannian met-
ric f(x). If x ∈ Bn, then let dx(p, q) denote distance in M measured by
the Riemannian metric f(x) and let dBn(x, y) denote distance measured
in the standard metric on Bn. Let W ε

x = {y ∈ Vx|dx(y, ∂Vx) ≥ ε}.
Lemma 4.2. Let f : Bn → RM(M) be continuous, where M is

a closed hyperbolic 3-manifold. There exists e > 0 such that if x ∈
Bn, λ a smooth simple closed curve in S2∞ and σ an x-least area D2-
limit lamination spanning λ, then σ ⊂ Nρ(e, C(λ)) where C(λ) is the
hyperbolic convex hull of λ.

Proof. This statement is exactly the last sentence of Proposition 3.9
[6], except the e is uniform over all of Bn. The proof of Proposition
3.9 [6] shows that an e will work for a fixed metric x, provided that
e satisfy the conclusion of Lemma 3.7 [6]. Lemma 3.7 states that if
g : B1 → RM(M), then there exists a uniform e which works for all the
metrics g(x). The proof of Lemma 3.7 works equally well for Bn as it
does for B1, the essential point being the compactness of the parameter
space. q.e.d.

While the Vx’s may not vary continuously in x (see Remark 4.2 [6])
we do have the following key result.
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Non-Encroachment Lemma 4.3. Let M be a closed oriented hy-
perbolic 3-manifold, δ a simple closed geodesic possessing the (π1(M),
{∂δi}) non-coalescable insulator family {λij} and f : Bn → RM(M) a
continuous map.

If x ∈ Bn and ε > 0, then there exists η > 0 such that W ε
x ⊂ W

ε/2
y

if dBn(x, y) < η.

Proof. For t ∈ Bn, let Ut denote the lift of Vt to H
3 whose ends limit

on ∂δ0. We need to show that if z ∈ Ux and dρ(z, ∂Ux) ≥ ε, then for t
sufficiently close to x, z ∈ Ut and dρ(z, ∂Ut) ≥ ε/2.

If this is false, then by the compactness of Ut/〈g〉, there exists
x1, x2, . . . converging to x and a z ∈ Ux such that dρ(z, ∂Ux) ≥ ε and
for all i either z /∈ Uxi or dρ(z, ∂Uxi) ≤ ε/2. Therefore we can assume
one of the following holds:

i) For all i, z ∈ Uxi .

ii) For all i, z /∈ Uxi .

If i) occurs, then by Lemmas 3.6 and 4.2 after passing to subse-
quence we can find a fixed λ0k such that for all i ∈ N there exists
a xi − D2-limit lamination σi

0k spanning λ0k and yi ∈ σi
0k such that

dρ(yi, z) ≤ ε/2. Again passing to subsequence we can assume that
yi → y, where dρ(y, z) ≤ ε/2 and σi

0k → σ0k a x-least area D2-limit
lamination spanning λ0k. (This uses Proposition 3.10 [6] which is stated
for metrics parametrized by B1 rather than Bn, but the proof works for
the more general setting.) By definition of convergence, y ∈ σ0k, which
implies the contradiction dρ(x, ∂Ux) ≤ ε/2.

We now show that ii) cannot occur. Since z ∈
◦
Ux, q(z) ∈

◦
V x and

hence there exists a core γ of
◦
V x passing through q(z). Here q : H

3 → M
is the universal covering space projection. The lift γ̃ ⊂ Ux passing
through z limits on ∂δ0. Arguing as in the previous paragraph it follows
that if y ∈ Bn is sufficiently close to x, then γ̃ ∩ σα

0k = ∅ for all y-least
area D2-limit laminations σα

0k. Since γ̃ lies in the component of B
3−σα

0k

containing ∂δ0, for every σα
0k, it follows that γ̃ ⊂ Uy and hence z ∈ Uy.

q.e.d.

Remark 4.4. The η of Lemma 4.3 is probably not uniform in x.
Indeed, the regions Uxi may limit to a disconnected region, one compo-
nent of which is Ux. In the limit a piece of the Uxi ’s may get pinched
off at an antitangential point or a spike point.
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Lemma 4.5. Let M be a closed hyperbolic 3-manifold with geodesic
δ satisfying the insulator condition. If f : Sn → Diff0(M), then there
exists a cellulation ∆∗ of Bn+1 such that for each cell σ of ∆∗, there
exists a solid torus Tσ such that:

i) If κ is a proper face of σ, then Tσ is a core of
◦
T κ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
T σ.

Proof. Define h : Sn → RM(M) by h(x) = (fx)∗(ρ), the push
forward of ρ. By the contractibility of the space of Riemannian metrics
on a closed 3-manifold, there exists g : Bn+1 → RM(M) extending h.
Fix a non-coalescable insulator family for δ. Thus we can define the

canonical solid tori Vx and the sets W ε
x ⊂

◦
V x for each x ∈ Bn+1.

For each x ∈ Bn+1 let T 0
x ⊂

◦
V x be a D2 × S1 unknotted in

◦
V x.

If x ∈ Sn, then choose T 0
x so that fx(δ) ⊂

◦
T 0

x (Note that fx(δ) is
the geodesic homotopic to δ in M with the hyperbolic metric (fx)∗(ρ).)
Thus for each x ∈ Bn+1, there exists ε0

x > 0 so that T 0
x ∈ W

ε0x
x and by

the non-encroachment lemma for y ∈ Bn+1 sufficiently close to x, say
y in the open set A0

x, then T 0
x ⊂ W

εx/2
y . For x ∈ Sn choose A0

x to have

the additional property that if y ∈ A0
x ∩ Sn, then fy(δ) ⊂

◦
T 0

x.
Fix a finite cover of Bn+1 by elements of {A0

x}, say using {x1, . . . , xp}
def= X 0 so that Sn is covered by a subset {A0

xik
}, with each xik ∈ Sn∩X 0.

Let ∆0 be any piecewise smooth cell division such that if σ ∈ ∆0, then
σ ⊂ A0

xi
for some xi ∈ X 0. Furthermore if σ ∩Sn 
= ∅, then σ ⊂ A0

xi
for

some xi ∈ Sn ∩ X 0. Finally, define T 0
σ = T 0

xi
for some xi as above. If

possible, choose xi ∈ Sn.

For each x ∈ ∆n
0 construct a solid torus T 1

x unknotted in
◦
V x sat-

isfying the following property. If σ1, . . . , σr are the cells of ∆0 which

contain x, then T 0
σ1

∪ . . . ∪ T 0
σr

⊂
◦

T 1
x ⊂ T 1

x ⊂
◦
V x. For x ∈ ∆n

0 let ε1
x be

such that T 1
x ⊂ W ε1

x . By the non-encroachment lemma, there exists a
neighborhood A1

x of x such that if y ∈ A1
x, then T 1

x ⊂ W
(ε1x)/2
y .

Fix a finite cover of ∆n
0 by elements of {A1

x}, say using {x1
1, . . . , x1

q}
def= X 1. Let ∆1 be a piecewise smooth subdivision of ∆0 that only
nontrivially subdivides ∆n, such that if σ ∈ ∆1 has dimension ≤ n,
then σ ⊂ A1

x1
i

for some x1
i ∈ X 1. Furthermore if in addition σ ∩Sn 
= ∅,

then σ ⊂ A1
x1

i
for some x1

i ∈ Sn ∩ X 1. Finally, define T 1
σ = Tx1

i
for
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some x1
i as above. If possible, choose x1

i ∈ Sn. If dim(σ) = n + 1, then

T 1
σ

def= T 0
σ .

In a similar way construct ∆2, . . . ,∆n+1. Here ∆i is obtained from
∆i−1 by subdividing only the (n − i + 1)-skeleton, and has the feature

that if σ is a proper face of τ and dim(τ) ≥ n − i + 2, then T i
τ ⊂

◦
T i

σ.
Finally take ∆∗ = ∆n+1 and Tσ = Tn+1

σ . q.e.d.

Theorem 4.6 (Coarse Torus Isotopy Theorem). Let M be a closed
orientable hyperbolic 3-manifold with geodesic δ satisfying the insulator
condition. If f : Sn → Diff0(M), then there exists a cellulation ∆ of
Bn+1 and a function which associates to each cell σ ∈ ∆ a solid torus
Vσ such that:

i) If κ is a proper face of σ, then Vκ ⊂
◦
V σ and Vκ is isotopic to the

standard embedding in Vσ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
V σ.

Proof. Let ∆∗ be the cell structure arising from Lemma 4.5 and let
∆′ be the relative cell structure of Bn+1 dual to ∆∗. Given a cell σ∗ ∈
∆∗, let σ denote the dual cell. This induces a natural 1-1 correspondence
between cells of ∆∗ and ∆′. The restriction of ∆′ to Sn gives rise to
a regular cell division Σ of Sn. The union of cells of ∆′ and Σ gives a
regular cell division of Bn+1 which we call ∆.

For σ ∈ ∆′, define V ′
σ = Tσ∗ . If σ ∈ Σ is a k-cell, then σ = τ ∩Sn for

a unique (k + 1)-cell τ ∈ ∆′. Define V ′
σ = V ′

τ . The collection {V ′
σ}σ∈∆′

satisfies all our conclusions except that if σ = τ ∩ Sn, then V ′
σ = V ′

τ

(rather than V ′
σ ⊂

◦
V ′

τ .) By appropriately shrinking the {V ′
σ|σ ∈ Σ}

and maintaining the {V ′
τ |τ ∈ ∆′} we obtain the desired collection of

D2 × S1’s which we denote {Vσ}σ∈∆. q.e.d.

5. Another Formulation Of Hatcher’s Theorem

Let Emb(D2 ×S1, R2 ×S1) denote the space of smooth embeddings
with the C∞ topology which take the core of each D2 × S1 to a curve
isotopic to 0 × S1, the core of R

2 × S1. Let Emb0(D2 × S1, R2 × S1)
denote the smooth embeddings isotopic to the standard one.

In [10], Hatcher listed 17 equivalent formulations of the Smale Con-
jecture. Here is another along the same lines.
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Theorem 5.1. Emb0(D2 × S1, R2 × S1) � S1 × S1.

Proof. View Emb0(D2 × S1, R2 × S1) as Emb0(1
2D2 × S1,

◦
D2 × S1),

where 1
2D2 × S1 is the concentric solid torus of radius 1

2 . The map

Diff0(D2 × S1) → Emb0(1
2D2 × S1,

◦
D2 × S1) defined by restricting to

1
2D2 × S1 is surjective and is a fibration by [17], [4]. The fiber is all
diffeomorphisms which restrict to the identity on 1

2D2 × S1. By [9] or
[11, 12] the fiber is contractible and hence Emb0(D2 × S1, R2 × S1) is
homotopy equivalent to Diff0(D2×S1). (Actually they proved this in the
PL category, but as noted in [9], the proof can be promoted to Diff using
[10].) Again restriction is a fibration Diff0(D2 × S1) → Diff0(S1 × S1)
with fiber Diff(D2 × S1, ∂D2 × S1), the space which fixes ∂D2 × S1

pointwise. By [10] Diff(D2 × S1, ∂D2 × S1) is contractible and the
contractibility of that space is equivalent to the Smale conjecture. Thus
Diff0(D2×S1) is homotopy equivalent to Diff0(T 2). Fix a basepoint t0 ⊂
T 2. There is a fibration Diff0(T 2) → Emb(t0, T 2) = T 2 by restriction.
The fiber Diff0(T 2, t0) consists of the basepoint preserving maps of T 2

isotopic to idT 2 . Since the latter space is contractible [8] the proof of
Theorem 5.1 is complete. q.e.d.

Remark 5.2. By tracing back this homotopy equivalence we see
that the S1 × S1 corresponds to maps of Diff0(D2 × S1) which are
compositions of shifts and rolls. Shifts are maps of the form (z, t) →
(z, eiθt) and rolls are of the form (z, t) → (eiθz, t), where z ∈ D2 and
θ, t ∈ S1.

A proof similar to that of Theorem 5.1 yields:

Theorem 5.3. Emb(D2 ×S1, R2 ×S1) � O(2)×O(2)×Ω(SO(2)).

Remark 5.4. The O(2)’s in Theorem 5.3 allow for reflections in the
core and cocore directions of D2×S1. Finally given an element φ of ΩS1,
the loop space of S1, one obtains a diffeomorphism h : D2×S1 → D2×S1

by h(z, t) = (eiφ(t)z, t).

6. The Local Contractibility Theorem

Lemma 6.1. Let δ be a simple closed geodesic in the closed hyper-
bolic 3-manifold M . If f : M → M is a diffeomorphism homotopic to
idM such that f |δ = idδ, then f is isotopic to g : M → M such that:
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(1) g|N(δ) = idN(δ).

(2) g|(M −
◦
N(δ)) is isotopic to id rel ∂N(δ).

Furthermore, given any neighborhood J of δ there exists a g as above
and a N(δ) ⊂ J such that the isotopy from f to g can be supported in
J .

Proof. Given a neighborhood J of δ, let N1(δ) be a small closed
regular neighborhood such that f(N1(δ)) ⊂ J . After an isotopy sup-
ported in J we can assume that f fixes N1(δ) setwise. A priori f |N1(δ)
is isotopic to a finite number of Dehn twists about a meridian, however

M −
◦
N1(δ) is atoroidal, anannular and Haken and so by [13] has a finite

mapping class group. This implies that f |N1(δ) is isotopic to idN1(δ)

and hence we can assume that after another isotopy supported in J ,
that f |N1(δ) = id.

Let q : H
3 → M be the universal covering projection and W 1 def=

q−1(N1(δ)) with {W 1
i } the components of W 1. Since f is homotopic

to idM there exists a lift f̃ such that f̃ |S2∞ = id. Since f |N1(δ) = id,
for all i f̃ |W 1

i = W 1
i and is a translation by some n ∈ Z fundamental

domain units, n being independent of i. Choose N(δ) ⊂
◦
N1(δ) and let

f1 be the map T−nf where T is the following Dehn twist about a torus.

T |N(δ) ∪ (M −
◦
N1(δ))) = id, where the restriction to each concentric

torus about N(δ) in N1(δ) is a shift, the θ (of Remark 5.2) varying from
0 to 2π as one goes from ∂N(δ) to ∂N1(δ). Note that T is isotopic to idM

via an isotopy supported in N1(δ) and if f̃1 is the lift of f1 isotopic to
f̃ , then f̃1|W = idW . Here W = q−1(N(δ)). (This paragraph replaces
the inaccurate second sentence of second paragraph of p. 48 [6].)

To complete the proof, proceed as in the rest of the second paragraph
of p. 48 [6]. q.e.d.

Lemma 6.2. If δ is a simple closed oriented geodesic in the hyper-
bolic 3-manifold M and δ can be isotoped into the solid torus V ⊂ M ,
then the isotoped δ is a core of V . If δ1 and δ2 are two isotoped images
of δ both lying in V , then δ1 and δ2 are isotopic (as oriented curves) in
V .

Proof. Let γ be a curve in V isotopic to δ. Since δ represents a
primitive element of π1(M), γ represents a generator of π1(V ). Thus δ,
γ and V lift to the covering space Mδ with fundamental group 〈δ〉. In
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Mδ we have γ ⊂ V ⊂ Mδ =
◦

D2 × S1 and δ, hence γ, is a core of Mδ.
This implies that γ is a core of V and V is unknotted in Mδ, thereby
proving the first assertion.

The failure of the second assertion implies that δ1 and δ2 represent
oppositely oriented cores. That in turn would imply that the geodesic δ
is isotopic to itself oppositely oriented, an impossibility in a hyperbolic
3-manifold. q.e.d.

Theorem 6.3 (Local Contractibility Theorem). Let δ be an ori-
ented simple geodesic in the closed hyperbolic 3-manifold M and V a

solid torus embedded in M . If H : Sn → Diff0(M) such that Ht(δ) ⊂
◦
V

for each t ∈ Sn, then H extends to a map G : Bn+1 → Diff0(M) such

that Gs(δ) ⊂
◦
V for each s ∈ Bn+1.

Proof. Fix t0 ∈ Sn. After replacing H by H−1
t0

H and V by H−1
t0

(V ),

we can assume that Ht0 = idM and
◦
V is a neighborhood of δ.

We start with the case n = 0 where t0 = 1 ∈ S0. Use Lemma 6.2
to extend H to [−1, 0] ∪ {1} so that H0|δ = H1|δ = idδ. Next use
Lemma 6.1 to extend H to [−1, 1

2 ]∪{1} so that H 1
2
|N(δ) = H1|N(δ) =

idN(δ), and H 1
2
|(M −

◦
N(δ)) is homotopic to id rel ∂N(δ). Finally apply

[21] to extend H to [−1, 1] so that the isotopy H|[12 , 1] is an isotopy
fixed on N(δ). Since, by Lemmas 6.1 and 6.2, these constructions can

be carried out so that Ht(δ) ⊂
◦
V for all t ∈ [−1, 1], the case of n = 0 is

complete.

Claim. If n > 0, then there exists a solid torus regular neighbor-

hood X of δ and K : Bn+1 → Emb0(X,
◦
V ) such that Ht|X = Kt for

each t ∈ Sn.

Proof of Claim. Choose X so that Ht(X) ⊂
◦
V for all t ∈ Sn. Note

that V and X can be parametrized so that Ht0 |X ∈ Emb0(X,
◦
V ) is

the standard inclusion. If n > 1, then the Claim follows directly from

Theorem 5.1. Now assume that n = 1 and H|X : S1 → Emb0(X,
◦
V )

represents a nontrivial element of π1(Emb0(X,
◦
V )). Theorem 5.1 and

Remark 5.2 imply that there exists a map L : S1 × I → Emb0(X,
◦
V )

such that for t ∈ S1, L(t,0) = Ht|X; for s ∈ I, L(t0,s) = idX ; for
t ∈ S1, L(t,1) is a composition of twists and rolls and (L|S1 × 1)|∂X
represents a nontrivial element of π1(Diff0(∂X)). By the Palais-Cerf
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covering isotopy theorem [17], [4], L extends to a map K : S1 × I →
Diff0(M) such that K|S1×0 = H and K(t0,s) = idM if s ∈ I. Therefore,

if N = M −
◦
X, then Bt

def= K(t,1)|N , t ∈ S1, represents a loop in
Diff0(N), based at the identity, which restricts to a nontrivial loop in

Diff0(∂N). This contradicts the fact that
◦
N is a hyperbolic 3-manifold.

(The loop Bt, t ∈ S1 lifts to a path of maps B̃t, t ∈ [0, 1] of H
3 starting

at the identity. The end of this path must be a nontrivial covering
transformation. This contradicts the fact that the diameters of the
homotopy tracks {B̃t(x)|t ∈ [0, 1]} are uniformly bounded.) q.e.d.

By the covering isotopy theorem there exists a map J : Bn+1 →
Diff0(M) which extends K and satisfies Jt0 = idM . The map E : Sn →
Diff0(M) defined by Et = J−1

t Ht satisfies Et0 = idM and Et|X = idX

for all t ∈ Sn. Since M −
◦
X is Haken it follows by [9] or [11, 12]

that E extends to E∗ : Bn+1 → Diff0(M) such that for z∈Bn+1 E∗
z

fixes X pointwise. Define G : Bn+1 → Diff0(M) by Gz = JzE
∗
z . If

t ∈ Sn, Gt = JtE
∗
t = JtEt = JtJ

−1
t Ht = Ht and if z ∈ Bn+1, then

Gz(X) = JzE
∗
z (X) = Jz(X) = Kz(X) ⊂

◦
V . q.e.d.

7. Applications

Definition 7.1. Let Hyp(M) denote the subspace of the space of
Riemannian metrics on M consisting of metrics of constant curvature
−1.

Lemma 7.2. If M is a complete hyperbolic 3-manifold, then
Hyp(M) is homeomorphic to Diff0(M).

Proof. We will show that φ : Diff0(M) → Hyp(M) by f → f∗(ρ)
is bijective. Since idM is the only isometry of M (with respect to a
fixed hyperbolic metric) which is homotopic to idM it follows that φ is
injective. Conversely if ρ′ is a hyperbolic metric on M , then by Mostow
there exists an isometry h : Mρ → Mρ′ such that h is homotopic to idM .
By [7] h ∈ Diff0(M). q.e.d.

Theorem 7.3. The space Hyp(M) of hyperbolic metrics on a com-
plete hyperbolic 3-manifold of finite volume M is contractible.

Proof. If M is closed, then the contractibility of Diff0(M) follows
from Theorem 1.1. If M is noncompact, then the contractibility of
Diff0(M) follows from [9] or [11, 12]. Now apply Lemma 7.2. q.e.d.
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Definition 7.4. If δ is a smooth oriented simple closed curve in
the manifold M , then let Embδ(S1, M) denote the space of smooth
embeddings of an oriented S1 into M whose image is isotopic, as oriented
curves, to δ.

The following application was suggested by Allen Hatcher.

Theorem 7.5. Let δ be an oriented simple closed curve in the
closed hyperbolic 3-manifold M . If M − δ is atoroidal, then

Embδ(S1, M) � S1.

Proof. The fibration Diff0(M) → Embδ(S1, M) defined by restrict-
ing to δ has fiber Diff0(M, δ), the subspace of Diff0(M) that fixes δ point-
wise. The path components of this space are naturally parametrized by
Z, the various components corresponding to the 2πn shifts of δ. If
Y ⊂ M , then let Diff00(M, Y ) denote the subspace of Diff0(M) consist-
ing of all maps isotopic to the identity, via an isotopy fixing Y pointwise.
The theorem follows from the long exact homotopy sequence and the
fact [9], [11, 12] that Diff00(M, δ) is contractible. (Actually it follows
directly from [9],[11, 12] that Diff00(M, N(δ)) is contractible, but that
result can be promoted to the desired one via standard differential topol-
ogy techniques.) q.e.d.
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