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We consider the question of reducing the homeomorphism problem for

pairs of topological spaces to the homeomorphism problem for single spaces.

Of particular interest is the strength of the invariant X — A of the pair (X, A).

In the first chapter we discuss the problem in its general setting. In the second

chapter we consider the embedding of «-spheres in the «4-2 sphere, and in

particular the case « = 2. Instead of the complement Sn+2 — S", we use the

exterior of Sn in Sn+2 (i.e., the complement of an open regular neighborhood

of Sn). We prove that there are at most two nonequivalent locally flat em-

beddings of S2 in S4 with homeomorphic exteriors. In certain classical cases,

the exterior is a complete invariant for the embedding. In the third chapter

we consider the structure of embeddings in more detail. The main result is

that any locally flat orientable surface in four-space is the boundary of an

orientable three-manifold in four-space. In the fourth and final chapter, we

consider the embedding of «-spheres in the « + 2 sphere for values of « other

than 2. The situation for w>2 resembles that for n = 2, while the case w=l

stands apart from the rest.

I. The general problem

1. Introduction. One of the central problems of topology is that of dis-

covering techniques for deciding whether two given spaces, X and X', are

homeomorphic. Related to this is the homeomorphism problem for pairs of

spaces, (X, A) and (X', A'), with A CX and A'CX'. In this case the two

pairs are said to be homeomorphic if there exists a homeomorphism A of X

onto X' such that h(A) = A'. It is customary to assume that the problem for

single spaces "precedes" that for pairs of spaces, and hence to begin the

second problem with the assumption that X is homeomorphic to X' and A

to A'. In this sense, the second problem really asks in what ways A can be

embedded in X. We refer to this as the knotting problem lor A in X. If X and

A are manifolds, and the allowable embeddings restricted to some nice class,

then there seems to be hope for reducing the knotting problem for A in X
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to a homeomorphism problem (s) for some nice class of spaces (2).

Henceforth, whenever we discuss the homeomorphism of (X, A) with

(X', A') we shall always be assuming that X is homeomorphic to X' and A

to A'. The most immediate necessary condition for the homeomorphism of

these pairs is the homeomorphism of X — A with X' —A'. When A is a point

and X a closed arc, this condition is of course sufficient. It is also sufficient

when A is a simple closed curve and X is a closed two-dimensional separable

Hausdorff manifold. The condition is, however, no longer sufficient when A

is a pair of disjoint simple closed curves and X is Euclidean three-space, even

though we may restrict the embeddings to be semi-linear (see [l]). Once we

permit the embeddings of A in X to be wild, X — A becomes a hopelessly in-

adequate invariant (see [2]).

If X and A are manifolds, then X — A is an open manifold. For the con-

structions we have in mind, it would be more convenient if X — A had a

boundary. This may be achieved in a sense by removing from X not only A

but a nice open neighborhood of A. The following paragraphs discuss this

procedure in detail.

An embedding, A, of an orientable closed A-manifold Mk in an orientable

re-manifold Mn will be called smooth if h can be extended to an embedding of

MkXEn~k in Mn, where En~~k is the closed unit ball in re —A dimensional

Euclidean space, and Mk is identified with MkXorigin. The embedding A

will be called semi-linear if both Mk and Mn are combinatorial manifolds, and

A is a simplicial homeomorphism of some rectilinear subdivision of Mk onto

a subcomplex of some rectilinear subdivision of Mn. If Mk is already a sub-

set of Mn, then M* will be said to be smoothly (semi-linearly) embedded in

Mn if the inclusion mapping is smooth (semi-linear).

Suppose Mk has a neighborhood MkXEn~k in Mn. Let Bn~k he the open

ball in re —A space of radius 1/2. Then Mn— (MkXBn~k) is called an exterior

of Mk in Mn. Thus if Mk is smoothly embedded in Mn, then Mk has an ex-

terior in Mn which is an orientable re-manifold with boundary. It is clear that

when the boundary MkXSn~k~1 is removed from an exterior of Mk, what re-

mains is homeomorphic to Mn — Mk. When re is larger than three, it is not

generally known whether two different exteriors of Mk in M" are homeo-

morphic. For much of what we shall do, it is not necessary to know that the

exterior of Mk in Mn is uniquely defined. Whenever it becomes desirable to

have a fixed exterior, we shall restrict ourselves to smooth, semi-linear em-

beddings of Mk in Mn for which there exists a homeomorphism of MkXEn~k

onto a closed regular neighborhood of Mk in the interior of M", taking

MkXorigin onto Mk. In such a case, we shall use the complement of the open

(') The last occurrence of the word nice in this sentence is essential, for otherwise we could

derive from the pair (X, A) the mapping cylinder of the inclusion ACX. If X and A are mani-

folds, such a derived space would in general be a complete invariant for the knotting problem

of A in X.
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regular neighborhood of Mk as the exterior of Mk in Mn. It is necessary to note

that in this situation the exterior of Mk is independent of the regular neigh-

borhood of Mk chosen, for any two regular neighborhoods of Mk in the interior

of Mn are connected by a semi-linear homeomorphism of Mn onto itself tak-

ing the one neighborhood onto the other (see [4]).

2. The isotopy extension theorem. Suppose now that A is smoothly em-

bedded in X and A' is smoothly embedded in X', in such a way that some

exterior of A in X is homeomorphic to some exterior of A' in X' under a

homeomorphism A. We ask when A can be extended to a homeomorphism of

X onto X' taking A onto A'. To this end, we desire something like a homotopy

extension theorem, which will tell us that the extendability of A depends only

on some class of mappings containing A.

The relevant concept is that of isotopy. Two homeomorphisms, A and A',

of X onto Y are called isotopic if there is a map

H: XX [0, 1]^ F

such that H(x, 0)=A(x), H(x, l)=A'(x), and A/, defined by ht(x) = H(x, t),

is a homeomorphism of X onto Y for all tC [0, 1 ]. The definition is sometimes

relaxed by not requiring that ht be onto. Since X will always be a closed mani-

fold here, the two versions are equivalent.

Corresponding to the classical homotopy extension theorem of Borsuk,

there is an isotopy extension theorem. The proof is straightforward and will

not be given. The real difficulty comes in applying the theorem, for it is

usually much harder to show that two homeomorphisms are isotopic than it

is to show that they are homotopic.

Theorem (2.1). Isotopy extension theorem. Let A CX have a neighbor-

hood of the form AX[0, 1 ] in which A appears as A X0. Let A X [0, 1) be open

in X and ix[0, 1 ] its closure. Let h:A—>A be a homeomorphism which extends

to a homeomorphism g: (X, A)—>(X, A). Let h! be a homeomorphism of A which

is isotopic to A under the isotopy 77. Then h' extends to a homeomorphism g' of

(X, A) which is isotopic to g under an isotopy G which extends 77.

3. The annulus theorem. Of importance in classifying the homeomor-

phisms of a manifold with respect to isotopy is the annulus theorem, to be

stated below. It is intimately connected with the isotopy classification of the

homeomorphisms of the «-sphere. A proof of this theorem in all dimensions

has not been found. Both the annulus theorem and the isotopy classification

theorem for the homeomorphisms of Sn can be proved using the additional

hypothesis that certain submanifolds of Sn can be triangulated. Since three-

dimensional manifolds can be triangulated, the results obtained will be suffi-

cient for the particular problem discussed in chapter two.

Let 5n_1 be a smooth n — \ sphere in the «-sphere Sn. Then the closures of

the complementary domains of 5"_1 are closed «-cells [5]. Suppose now that

•S?-1 and S^~1 are disjoint smooth « — 1 spheres in Sn. Then the union of

S^~l and S^~l has three complementary domains in S" (four, if «= 1, but this
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case needs no further explanation). Let A denote the closure of that domain

which has both re — 1 spheres for its boundary. A is an re-manifold with bound-

ary, which we shall call an annular region. It is conjectured that any annular

region is homeomorphic to Sn~1X [0, l]. The basis for this conjecture lies in

the fact that it can be proved under the additional assumption that the re — 1

spheres are semi-linearly embedded in the re-sphere.

The isotopy classification theorem for the re-sphere states that there are

just two isotopy classes of homeomorphisms of the w-sphere, those of degree

1 and those of degree — 1.

Theorem (3.1). Suppose that, for k^n, every annular region in the k-sphere

can be triangulated. Then (lk) and (2k) below are true for k^n.

(D Every annular region in the k-sphere is homeomorphic to Si_1X [0, l].

(24) Every homeomorphism of Sh which is homotopic to the identity (i.e., of

degree +1) is also isotopic to the identity.

In this paper we will be most interested in (13), which follows directly

from [8; 30]. For this reason, the somewhat long proof of Theorem (3.1),

which may be found in the author's thesis, is omitted here. Also note that the

hypothesis for Theorem (3.1) with « = 3 is established by [7; 8]. Thus (I4)

and (2k) hold for k ̂ 3. (23) is included in the doctoral thesis of D. E. Sander-

son and also follows from a paper of G. Fisher [10].

4. The general strategy. Let Mk be a closed orientable A-manifold

smoothly embedded in the orientable re-manifold M". Consider an exterior

Mn-(MkXBn~k) of Mk in Mn. Let M\ be a copy of Mk, smoothly embedded

in M\, a copy of Mn. Let M$—(MlXBn-k) he an exterior of M\ in M\. Sup-

pose these two exteriors are homeomorphic. How close does this come to the

homeomorphism of the pairs (MH, Mk) and (Afi, M\) ? Let A be a homeomor-

phism from the former exterior to the latter. The extendability of A to a

homeomorphism of (Afn, Mk) onto (M", M\) depends only on the restriction of

h to the boundary MkXSn~k-1 of Mn — (MkXBn~k). We thus have a homeo-

morphism from the boundary of Af * XBn~k to the boundary of M\X Bn~k which

we wish to extend over MkXBn~k so as to carry Af*Xorigin onto AffXorigin.

We have thus temporarily removed Mn from the problem. Sometimes A can

be extended in the desired way, sometimes it cannot. The extendability of h

depends only on the isotopy class of A, by Theorem (2.1). Thus instead of con-

sidering the group of all homeomorphisms of MkXSn~k~l, we can factor out

the normal subgroup consisting of those homeomorphisms which are isotopic

to the identity. The quotient group, 3C, is the group of homeomorphism types

of MkXSn'k~1. It has also been called the homeotopy group of MkXSn~k~l

(see [ll]). Every smooth embedding of Mk in Mn with exterior homeomorphic

to Mn — (MkXBn~k) can be obtained by identifying the boundary of MkXBn~k

with the boundary of Mn — (MkXBn~k) via a homeomorphism A in the group

G of all homeomorphisms of MkXSn~k~l. The homeomorphism class of the

resulting pair depends only on the isotopy class of A. Some identifications
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may not even give Mn for the adjunction space, while other non-isotopic

homeomorphisms may nevertheless give homeomorphic pairs. In any case,

a natural beginning for the problem of deciding how many nonequivalent

embeddings possess homeomorphic exteriors is the computation of the group

3C of homeomorphism types of Mk X Sn~k~l.

II. The embedding of two-spheres in the four-sphere

5. Introductory remarks. The remainder of the paper will be devoted to

the knotting problem for the «-sphere in the «4~2 sphere. The case w=2

enjoys a crucial position in this family, and is the subject of the present

chapter. The dimension is low enough to avoid most of the unpleasantries

of higher dimensional Euclidean topology, yet just high enough to escape

the difficult algebraic problems that hamper the investigation of ordinary

knots in the three-sphere.

Let S2 be a smoothly embedded two-sphere in the four-sphere, S4. 52 has

a neighborhood of the form S2XE2 with boundary S2XS1. As explained in

§4, we are interested in the group 3C of homeomorphism types of S2XSi.

Recall that an element of 3C is an isotopy class of homeomorphisms of

S2 X S1. A homeomorphism of S2 X S1 induces an automorphism of

Hi(S2XS1; Z) *=>Z and an automorphism of H2(S2XS1; Z) ~Z, each of which

depends only on the isotopy class of the homeomorphism. The automor-

phism group in each case is Z2, so we get a homomorphism <p: 3Q,-^Z2-\-Z2.

Let r: S2—>52 be the antipodal map, and s: S1—»S1 the map induced on

the unit circle in the complex plane by complex conjugation. Let 3C' ~Z2-\-Zi

be the subgroup of 5C generated by the isotopy classes of the map (1, 1),

(1, s), (r, 1), and (r, s). Let p be the isomorphism of Z2-\-Z2 with the subgroup

3C' of 3C determined by the condition <pp=i.

The main result of this chapter will be that the kernel of <p is isomorphic

to Z2. But a normal subgroup of order two is central. This and the fact that

<p splits implies that K,^Z2-\-Z2-\-Z2.

Theorem (5.1). K.(S2XS1) ~Z2+Z2+Z2.

As remarked above, it remains to be shown that ker <p «Z2.

6. Outline of the proof. For the purposes of the proof, we shall think of

S2 as the unit sphere in three-space, and of Sl as the space of real numbers

modulo 1. Denote by 1 the identity homeomorphism of S2XSl. Let 4>a denote

a rotation of S2 about a diameter through the north and south poles through

an angle 2wa in some fixed direction. Define the homeomorphism Tof S2XSl

by
T(x, t) = (<S>t(x), t).

By the type of a homeomorphism of S2XSl we shall mean the image of its

isotopy class under <p. Thus the kernel of <p consists of the isotopy classes of

the homeomorphisms of type (1, 1). Both 1 and Tare of type (1, 1). We will
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show that any homeomorphism of S2XSX of type (1, 1) is isotopic either to

1 or to T. Let A be any homeomorphism of S2XSl of type (1, 1). In stage one

of the proof, we will deform h isotopically until h/S2X0 is the identity. In

stage two, we further deform A isotopically until h/S2\/Sl is the identity,

where S*\/Sl = (S2X0)U (north poleX-S1). Now let C he a small circle on S2

about the north pole. In stage three we deform A isotopically until h/S2X0

is the identity and A takes CXS1 onto itself. In the fourth stage we further

deform A until in addition to having the properties attained in stage three, A

also has the form of a "standard" re-tuple twist on CXS1. In the fifth stage,

we deform A until h/S2X0 is the identity and h takes CXS1 onto itself

either by the identity or by a single twist in a fixed direction. In stage six,

we deform A either into 1 or into T. The final stage is devoted to showing that

T is not homotopic to 1 ; a fortiori, not isotopic to 1.

7. A preliminary theorem. Denote the closed interval [0, l] by 7. In this

section we give the isotopy classification of the homeomorphisms of S1X7

whose restrictions to the boundary B= (51X0)U(51X1) are the identity.

Note that a point of SlXl is a pair of real numbers, the first number being

taken mod 1 and the second restricted to the interval [0, l]. Gb will denote

the group of homeomorphisms of SlXI whose restrictions to B are the iden-

tity. Gb is topologized by the compact-open topology. Gb0 will denote the arc-

wise connected component of the identity in Gb. Every homeomorphism in

Gb is isotopic to the identity, but the isotopies will in general move points on

B. An isotopy which moves no points on B is called a B-isotopy. Go is then the

set of homeomorphisms of SXXI which are 73-isotopic to the identity.

Let hEGb. We are going to define the winding number, w(h). Let r\ be the

isomorphism of iri(Sl, 0) with Z which takes the class of the path /(/)=/

onto 1. Let a he any path in SlXl from (0, 0) to (0, 1). Let pi: 51X7-^51 be

the natural projection. Then pia is a closed path in S1 based at 0. Hence

[pia] is an element of iri(Sl, 0) and r][pia] = w(a) is an integer, called the

winding number of the path a. Now take hEGh and consider the number

w(ha)—w(a).

Lemma (7.1). w(ha)—w(a) is independent of a.

First note that if a is homotopic to a! (relative to end points), then w(a)

= w(a'). Let f be the path defined by f(/) = (0, /). Then a is homotopic to

fjS, where ß is a closed path in 5'X1 based at (0, 1). Now ha is homotopic to

h(Cß) = A(f)A(/3) = A(f)/3. Since w(a) = w($ß) = w(f) + V[pß] and w(ha)
= w(h(C)ß)=w(hC)+r][piß], w(ha)—w(a) = w(hC)—w(t¡), where f is a fixed

path independent of a. This proves the lemma.

We now define the winding number of A, w(h), to be w(ha) —w(a) for any

path a in SlX I from (0,0) to (0, I). Then w(h-h') =îy(A-A'a)— w(a) = w(h-h'a)

— w(h'a)-\-w(h'a)—w(a) = w(h)-srw(h'). Thus w defines a homomorphism
w: Gb-^Z.
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Theorem (7.2). The kernel of w is Gg.

P-isotopic homeomorphisms in Gb have the same winding number. Hence

Gq is contained in the kernel of w. We must show that an arbitrary homeo-

morphism in Gb with winding number zero is P-isotopic to the identity.

The crux of the proof is to deform Agker w P-isotopically until A/f is the

identity. Cutting Sl XI along f yields a two-cell, on which A acts in the obvious

way. But A is the identity on the boundary of this two-cell, and hence is iso-

topic to the identity under an isotopy which is stationary on the boundary

(see [ó]). This isotopy may be interpreted as a P-isotopy of A on S1XI.

I

rvj__
la lb

Figure 1

The procedure of deforming A until A/f is the identity is nothing more than

an exercise in the use of the Schönflies theorem (see, for example, [12]). We

content ourselves here with an outline of this process. Let 7 be a polygonal

arc in SlXl which meets B only in (0, 0) and (0, 1), and which is close

enough to Af so that A_1y does not meet (1/2) X7. Then, using a technique

described in detail in [13], A may be deformed P-isotopically so that A carries

Ç onto y. Since w(Ç) =0, ^(7) = 0. 7 is then slightly deformed, P-isotopically,

so that all of its intersections with f are actual crossings, rather than tan-

gencies or coincidences. Proceeding along 7 from (0, 0) to (0, 1), we pass

through various intersections with f, some of these from the "left," others

from the "right" (not forgetting the intersections at (0, 0) and (0, 1)). If

there are any interior intersections, then there must be a pair of intersections,

u and v, one from the right and the other from the left, which are adjacent

on 7, and at least one of which is not on the boundary B. The situation is

shown in Figure la. The simple closed curve formed by the arcs of f and 7

between u and v bounds a two-cell D in S1XI. SlXl is deformed P-isotopi-

cally so that the arc of 7 between u and v slides over D to the other side of f,

thus removing at least one of the intersections u and v (and both if u and v

are interior intersections). During the deformation, all intersections between
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u and v on f are also removed (see Figure lb). This procedure is iterated until

7 meets f only at (0, 0) and (0, 1). The technique of [13] is then employed

to deform y until it coincides with f. Thus A has been deformed P-isotopically

until A(f) =f. But any homeomorphism of an arc which leaves the end points

fixed is isotopic to the identity (under the obvious linear isotopy). This iso-

topy extends to a P-isotopy of SlX7, and so finally A/f is the identity. This

completes the proof. Theorem (7.2) states in effect that two homeomorphisms

in Gb are P-isotopic if and only if they have the same winding number.

8. Stage one. Let A be a homeomorphism of S2XS1 of type (1, 1). In this

section we will deform A isotopically until A/52X0 is the identity.

A subset A ' of the metric space X is said to be an e-approximation to the

subset A of X if there exists a homeomorphism/: A—>A' which moves each

point of A a distance less than e.

Introduce a metric in S2XSl.

Lemma (8.1). There is a number e>0 swcA that if S is a smooth two-sphere

in S2XSX which is an e-approximation to S2 X0, then there is a homeomorphism

f: S2XS1-*S2XS1 which takes S2X0onto Sand which is isotopic to the identity.

The homeomorphism/ will be constructed asf=f2-fi, where/i takes 52X0

onto S2X1/2 and/2takes S2X1/2 onto S. Define/i by/i(x, t) = (x, t + i/2).fi is

isotopic to the identity. Suppose now that we can construct a homeomorphism

g of S2XS1 onto itself which takes 52X0 onto 5 and 52Xl/2 onto itself, but

which we do not know is isotopic to the identity. Then f2 = g/ig-1 takes 52Xl/2

onto 5 and is isotopic to the identity because f\ is. Hence f=f2-fi takes

52X0 onto 5 and is isotopic to the identity, thus satisfying the conditions of

the lemma.

It remains, therefore, to construct g. Cut S2XSl along 52Xl/2 and embed

in three-space as the region between concentric spheres about the origin of

radii 1 and 3, with 52X0 going into the sphere of radius 2. Choose e so small

that if 5 is a smooth two-sphere in S2XSl and k a homeomorphism of S onto

52X0 which moves no point more than e, then 5 is disjoint from 52Xl/2

and the straight line segment between a point on 5 and its image under k

(all viewed in three-space) lies in the region between the spheres of radii 1

and 3. Thus 5 must separate the two copies of S2Xl/2, just as 52X0 does,

for 5 is homotopic to 52X0 in the annular region of three-space. The two

regions of S2XS1 bounded by 5 and 52Xl/2 are each homeomorphic to

S2XI by (13) of Theorem (3.1). Since the two regions of S2XS1 bounded by

52X0 and 52Xl/2 are also homeomorphic to S2Xl, the construction of the

homeomorphism g is immediate, and the lemma is proved.

Lemma (8.2). Let h be a homeomorphism of S2XS1 onto itself. Then A can be

deformed isotopically until h(S2X0) is disjoint from S2Xl/2.

Triangulate S2XS1 so that 52X0 and S2Xl/2 appear as subcomplexes.
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By [14] there is a polyhedral two-sphere 5 in S2XSl which is an e-approxima-

tion to h(S2X0), where e is chosen so small that A(S2X0) can be deformed iso-

topically onto 5. Deform S slightly so that it is in general position with re-

spect to S2Xl/2. We have thus far succeeded in deforming A so that A(S2X0)

is a polyhedral two-sphere whose intersection with S2 X1/2 consists of a num-

ber of disjoint simple closed curves. The technique of removing the intersec-

tions is a straightforward generalization of the technique employed in the

proof of Theorem (7.2), as follows.

Let C be an innermost curve of intersection on S, and let 7?i be a two-cell

on 5 bounded by C which contains no other curves of intersection. C divides

52Xl/2 into two two-cells. Let Di he that one which when added to Di

forms a two-sphere which bounds a three-cell E in S2XSX. That Di can be so

chosen is seen immediately by looking at the universal covering space of

S2XS1. S is then deformed isotopically by sliding 7)i over E to the other side

of 52Xl/2. During this deformation, all the curves of intersection lying on

Di are also removed. See Figures 2a and 2b. Iterating this procedure proves

the lemma.

s*xt     I
■y.-j

2a 2b

Figure 2

Theorem (8.3). Let h be a homeomorphism of S2XSl of type (1, 1). Then

A can be deformed isotopically until h/S2X0 is the identity.

Using Lemma (8.2), h can first be deformed isotopically until h(S2X0)

is disjoint from 52Xl/2. Then the two regions of S2XS1 bounded by h(S2X0)

and 52Xl/2 are homeomorphic to S2XI by (I3) of Theorem (3.1). As in

Lemma (8.1), we may deform A(52X0) isotopically onto S2X0 by first de-

forming it onto 52Xl/2. Since A is of type (1, 1), A now takes S2X0 onto itself

with degree +1, and is thus isotopic to the identity by (22) of Theorem (3.1).

Extending this isotopy to S2 X S1 by taking the product with the identity map

on S1 finally deforms A so that h/S2X0 is the identity. Note that the theorem

also holds if h is of type (1,-1).

if-- ¿r.

^_-_-

Í

---?     f- A

1
i-S'Xi

S---J Lk_-_-
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9. Stage two. In this section we begin with a homeomorphism A of

S2XS1 of type (1, 1), whose restriction to 52X0 is the identity. We will de-

form A isotopically until h/S2\/S1 is the identity.

Since h/S2X0 is the identity, we may cut S2XSl along 52X0 and inter-

pret A as a homeomorphism of 52X7 whose restriction to the boundary B of

52X 7 is the identity (for this it is essential that A be of type (1, 1) rather than

of type (1, —1)). Let xn and x„ denote the north and south poles of S2. We

will proceed to deform A P-isotopically (see §7) until h/xnXl is the identity.

Such a P-isotopy can be interpreted as an isotopy on S2XSl which is station-

ary on 52X0, and the desired result will have been obtained. In order to

interpret an isotopy of A on S2XI as an isotopy on S2XS1, it is only necessary

that this isotopy behave identically on the two boundary spheres of S2XI.

Nevertheless, we restrict ourselves to P-isotopies in order to preserve the

analogy with the results of §7.

Suppose for the moment that the following lemma has been proved.

Lemma (9.1). Let abe a polygonal arc in S2XIfrom (xn, 0) to (x„, 1) which

meets B only at its endpoints. Then there is a B-isotopy of S2XI taking a onto

Xn X Í .

Let x' be a point of S2 close to the north pole xn. Since A(x„X7) is of dimen-

sion 1, it cannot disconnect (x', 0) from (x', 1). Hence let a be a polygonal arc

from (x', 0) to (x', 1) in S2XI which meets P only at its endpoints, and which

is disjoint from h(xnXI). We are not concerned with intersections of a and

XnXI, although they can easily be avoided.

The set PUa is locally tame (see [15]), and since PUA(x„X7) is the image

of PU(x„X7) under a homeomorphism of S2XI, PWA(x„X7) is also locally

tame. Since a is disjoint from A(x„X7), the set PWaWA(x„X7) is locally

tame. Thus by [15] there is a triangulation of S2XI in which both a and

h(xnXl) appear as polygonal arcs, although x„X7 may not be polygonal in

this triangulation.

Let 77i be an isotopy (not P-isotopy) of 52X7 which takes h(x„XI) onto

a polygonal arc y (in the new triangulation) from (x', 0) to (x', 1). 77i can

at least be chosen to behave identically on the two boundary spheres. Two

applications of Lemma (9.1) yield a P-isotopy H2 taking 7 onto a. But now

returning to our original affine structure (induced by some fixed inclusion

of S2XI in three-space), we can find an isotopy (not P-isotopy) i73 taking a

onto a polygonal arc ß from (x„, 0) to (x„, 1). Hi can also be chosen to behave

identically on the two boundary spheres. A final application of Lemma (9.1)

deforms ß P-isotopically onto xnXI, via the P-isotopy Hi. So far h(xnXl)

has been deformed back onto x„X7. A final P-isotopy 776 deforms A so that

h/xnXl is the identity. The compound isotopy H=HiH2HiHiHi is not a

P-isotopy, but does behave identically on the two boundary spheres of S2XL

Let G be an isotopy which behaves on every S2 Xt as H behaves on the bound-
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ary spheres. Then G begins and ends at the identity. Hence G~l-H is a 73-

isotopy which accomplishes just what 77accomplished, namely to deform h so

that h/xnXI is the identity.

We turn now to the proof of the lemma. For convenience we think of

S2XI as the closed region between the spheres of radii 1 and 2 about the

origin in three-space. We first deform a 73-isotopically so that when we look

at S2XI from one side, no part of a is hidden behind 52X0 (the inner sphere

in three-space). Slightly displacing the vertices of a leaves only double "cross-

ings" (see Figure 3a). Proceeding inward along a from (xn, 1), we come to the

first crossing (see Figure 3b). We deform the dotted arc (ab) into the solid

arc (ab) by slipping it half way around a neighborhood of S2 X1. This reduces

the number of crossings by one, and when repeated finally deforms a 73-

isotopically so that a has no crossing points when viewed from one side. Then

(*., 1)

3a 3b
Figure 3

a is deformed 73-isotopically onto the plane of the paper, during which de-

formation the points on a are either stationary or move horizontally. Using

Theorem (7.2), a is deformed 73-isotopically into the standard form of a spiral

arc circling about the intersection of S2XI and the plane of the paper as it

proceeds from (xn, 0) to (xn, 1). Lifting this arc several times over 52X0

finally places a in coincidence with x„XI, thus proving Lemma (9.1).

The results of this section are expressed in the following theorem.

Theorem (9.2). Let h be a homeomorphism of S2XS1 of type (1, 1) whose

restriction to S2X0 is the identity. Then A can be deformed isotopically until

h/S2\/S1 is the identity.

10. Stage three. We begin now with a homeomorphism A of SPXS1 such

Û
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that h/S2\/S1 is the identity. Let C he a small circle on S2 about the north pole

x„, and C a slightly larger concentric circle. Let D and D' be the two-cells

bounded by these circles on S2 which contain xn. As in §9, interpret A as a

homeomorphism of S2XL Keeping C fixed, make C so small that h(DXI)

C(Int D') XI. Let T = (D'XI)-A((Int D)XI).

Lemma (10.1). T is a solid torus.

The boundary of T is locally tame, hence tame [15], and is easily seen to

be a torus. Then by Dehn's Lemma [16], T is a solid torus if and only if

7Ti(r)=Z.

But CX7 is a deformation retract of (D — x„)Xl, and h/xnXl is the

identity. Hence h(CXl) is a deformation retract of h(DXl)—xnXI. Thus

T is a deformation retract of (D'—xn)Xl. But iri((D'— xn) XI) = Z. Hence

tti(T) = Z, and the lemma is proved.

From the retraction, one sees that h(CXl) carries a generator of tti(T).

Consequently there is a homeomorphism of D'XI onto itself which carries

h(CXI) onto CX7and is the identity on the boundary of D'XI. By [6], such

a homeomorphism is isotopic to the identity under an isotopy which is sta-

tionary on the boundary of D'XI. Such an isotopy therefore extends, via

the identity, to a 73-isotopy of S2XI which carries h(CXl) back onto CX7.

Interpreting these results on S2XSl, we obtain the following theorem.

tô

Ö

fc

ö       Ö
Figure 4

Theorem (10.2). Let h be a homeomorphism of S2XSl such that h/S2\/S1 is

the identity. Let C be a small circle on S2 about the north pole, xn. Then A can be

deformed isotopically until h/S2X0 is the identity and h takes CXS1 onto itself.

11. Stage four. Looking at S2XI again, assume that h is the identity on

B and takes CX7 onto itself. By Theorem (7.2), h/CXl is isotopic to a stand-

ard re-tuple twist. If for example we parametrize C by the angle <j> mod 27r,

then h/CXl is isotopic to one of the maps f„(<t>, /) = (c> + 27rre/, /). This B-
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isotopy on CX7 clearly extends to a P-isotopy on S2Xl, and hence may be

interpreted as an isotopy on S2XS1. This completes stage four.

12. Stage five. In this stage we continue to deform A until either h/CXl

is the identity (i.e., /0) or h/CXI=fi, according as the n in stage four is

even or odd. Figure 4 shows one part of this deformation process, in which »

is changed by two. This process, repeated sufficiently often, completes stage

five.

13. Stage six. Let 7C = (52X0)W(52X1)U(CX7). Starting with the
homeomorphism A of S2XSl of type (1, 1), we first deformed A isotopically

until A/52X0 was the identity, thus permitting us to interpret A as a homeo-

morphism of S2XI. The identity homeomorphism 1 and the homeomorphism

Tof S2XSl, described in §6, both restrict to the identity on 52X0, and may

thus be interpreted as homeomorphisms of S2XI. The results up to this point

may be summarized by saying that if A is a homeomorphism of S2XI whose

restriction to the boundary P is the identity, then A can be deformed B-

isotopically until h/K is either the identity or coincides with T/K.

Lemma (13.1). Let f and g be two homeomorphisms of S2XI whose restric-

tions to B are the identity and which agree on CXI. Then f and g are B-isotopic.

For f~lg/K is the identity. But S2XI — K consists of two disjoint open

three-cells whose boundaries are nonsingular and contained in K. Since f~lg

cannot interchange these three-cells, the restriction to each cell is a homeo-

morphism which is the identity on the boundary and hence isotopic to the

identity under an isotopy which is stationary on the boundary by [ó]. Putting

these two isotopies together yields a P-isotopy of f~lg with the identity. Hence

f is P-isotopic to g.

Hence viewed on S2XI, either A is P-isotopic to the identity or A is P-

isotopic to T. Reinterpreting our results on S2 X S1 yields the following theorem.

Theorem (13.2). Let h be a homeomorphism of S2XSl of type (1, 1). Then

either h is isotopic to the identity or else h is isotopic to the homeomorphism T

described in §6.

14. Stage seven. In this final stage we will show that T is not homotopic

to 1, and, a fortiori, not isotopic to 1. Denote by^ithe projection of S2XSl

onto S2 and by p2 the projection of S2XSl on S1. Then T is homotopic to 1

if and only if pi-T is homotopic to pi and p2-T is homotopic to p2. But

p2-T=p2, hence we must show that pi- T is not homotopic to pi. To do this,

we use the classification of maps of a three-dimensional complex into the two-

sphere given by Pontrjagin [17]. Let y2 be a generator of 772(52; Z). Then a

necessary condition for pi-T to be homotopic to pi is that (pi-T) * (y2)

= pi*(y2)CH2(S2XSu, Z). This condition is satisfied, for (pi-T)*(y2)

= pi* (y2) =z2 is a generator of H2(S2XS1; Z). Hence if S2XSl is triangulated

as a simplicial complex, pi ■ T can be deformed homotopically until it coin-
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cides with pi on the two-skeleton of S2XS1. Thus we define a difference co-

chain d3(pi, pi-T) which represents an element z3 of HS(S2XS1; 7r3(52)).

Choose a fixed isomorphism of tti(S2) with Z so that we may consider z3 as

an element of H3(S2XSl; Z). The theorem of Pontrjagin then states that

pi ■ T is homotopic to pi if and only if there exists a one-dimensional cohomol-

ogy class z1EH1(S2XS1; Z) such that

(1) z3 = 2z1 U z2.

In order to demonstrate that pi- T is not homotopic to pi, we must show

that z3 is an odd multiple of a generator of H3(S2XSl; Z). For the purposes of

computation it is most convenient to consider S2XSl as a CW-complex with

a single cell in each dimension up through three. It is easily seen that we get

the same answers this way as by using a simplicial complex. Decompose 51

into a one-cell with collapsed boundary plus a zero-cell. Similarly decompose

S2 into a two-cell with collapsed boundary plus a zero-cell. Form S2\ZSX by

identifying the zero-cells. This gives us the two-skeleton of S2XSl. Now

take a closed three-cell and collapse an annular region on its boundary to an

arc in the obvious way. Its boundary now consists of a pair of two-spheres

joined by an arc. Identify the two-spheres so that the ends of the arc come

together. The boundary of the three-cell is now an S2\/S1, which is the two-

skeleton of our CTF-decomposition of S2XS1. Thus the three-cell with the

above identifications on its boundary gives us S2XSl.

Let S3 be a three-sphere with upper hemisphere E% and lower hemisphere

Pi and equatorial two-sphere S2. Collapse the equatorial two-sphere to

S2\/Sl in the manner indicated in the above paragraph. We thus obtain two

copies of S2XSl joined along S2\ZSl. Map one copy, say that determined by

7x!¡_, into S2 by the map pi. Map the other copy into S2 by the map pi-T.

Since T is the identity on S2\/S1, we obtain a well-defined map /: S3-^S2.

The cohomology class z3 is an odd multiple of a generator of H3(S2XSl; Z)

if and only if the Hopf invariant of / is odd.

Choose two points, a and b, on S2 other than x„. Let A and B he the com-

plete inverse images of a and b under/. A and B are simple closed curves, and

the Hopf invariant of / is given, up to sign, by their linking number. Let

A(~\E\= A+,and so forth. Figure 5a shows A+ and B+inE3+; Figure 5b shows

A- and 73_ in Pi. In Figure 5c we have deformed ^4_and 73_ isotopically in

Pi. Using Figures 5a and 5c, the construction of a disc bounded by B and inter-

sected exactly once by A is immediate. Hence the Hopf invariant of / is

±1, and thus pi- T is not homotopic to pi. This completes the final stage in

the proof of Theorem (5.1).

We have, in addition, proved the following theorem.

Theorem (14.1). Two homeomorphisms of S2XSl are isotopic if and only

if they are homotopic.



322 HERMAN GLUCK [August

15. Two-spheres in the four-sphere with a given exterior. Let S2 be a

smooth two-sphere in the four-sphere Si. Let E2 denote a closed two-cell and

P2 its interior. Let S2XE2 be a neighborhood of S2 in S4 with smooth bound-

ary, so that S4 — (S2XB2) =A4 is an exterior of S2. What other two-spheres in

S4 have an exterior homeomorphic to .44? Joining the boundary S2XS1 of the

5b 5c

Figure 5

neighborhood S2XE2 of S2 to the boundary S2XSX of A*, we obtain a four-

manifold M* and a distinguished smooth two-sphere in if4. Every smooth

embedding of a two-sphere in a four-manifold with an exterior homeomorphic

to A* may be obtained, up to homeomorphism, in this manner. By Theorem

(2.1), the homeomorphism type of the pair obtained depends only on the

isotopy class of the homeomorphism, /, used to join the two boundaries.

Hence, by Theorem (5.1), there are at most eight nonequivalent smooth em-

beddings of a two-sphere in a four-manifold with a given exterior. A fortiori,

there are at most eight nonequivalent smooth embeddings of S2 in S4 with a

given exterior. In this section we will cut this number down to two.

We are thus given S2XE2 with boundary S2XSX, and A* with boundary

S2XS1. Identify the two boundaries (ideally, not physically) so that we may

speak of a homeomorphism connecting them as a homeomorphism of S2XS1
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onto itself. If Ai was obtained as the exterior of some given two-sphere in the

four-sphere, then there is a natural way of doing this. The particular identi-

fication, however, is unimportant, and is done only for the convenience it

affords us in the verbal description of our constructions. If / is a homeomor-

phism of S2XS1 onto itself, let [/] denote the isotopy class of/ in the group

of homeomorphisms of S'XS1. Thus [/] is an element of X(S2XSl).

Lemma (15.1). Let the pair (M*, S2) be obtained by joining S2XE2 to A* by

the homeomorphism f of S2XSl. Similarly, let the pair (N*, S2) be obtained by

joining S2XE2 to Ai by the homeomorphism g of S2XSl. If [g-1] [f]CW, then
(M\ S2) is homeomorphic to (N\ S2).

Refer to §5 for notation. Note that the homeomorphisms (1,1), (l,s),

(r, 1) and (r, s) of S2XSX extend to homeomorphisms of (S2X7i2, 52Xorigin)

onto itself. By Theorem (2.1), if [A]£3C', then the homeomorphism A of

S2XSl also extends to a homeomorphism of (S2XE2, S2Xorigin). Suppose

now that [g_1][/] = [g-1/] is an element of SO.'. We construct a homeomor-

phism A of (M4, S2) onto (NA, S2) as follows. On A4, let A be the identity. On

S2XS1 viewed as the boundary of A*, A is still the identity. But on S2XSl

viewed as the boundary of 52X£2, & = g-1/. By the above remarks, g-1/

extends to a homeomorphism A of (52XP2, 52Xorigin), which we take as the

definition of A on S2X-E2. Thus A is a homeomorphism of (M4, S2) onto

(N\ S2).

Corollary. Let S2 be a smooth two-sphere in S* with exterior A*. Let

(Mi, S2) be obtained by joining S2XE2 to A* by the homeomorphism f of S2XSX.

If [f]E3C', then (J174, S2) is homeomorphic to the original pair (S4, S2).

Theorem (15.2). There are at most two nonequivalent embeddings of a two-

sphere in the four-sphere with a given exterior.

The following lemma shows that the simple technique of Lemma (15.1) is

incapable of cutting down the number of possibly nonequivalent embeddings

of S2 in S4 with a given exterior from two to one.

Lemma (15.3). The homeomorphism T of S2XSl onto itself does not extend

to a continuous map of S2XE2 onto itself.

Suppose T extends to the map 7" of S2XE2 onto itself. Then piT extends

to the map piT of S2X752 onto S2. Identify S2 with S2Xorigin, so that pi

may be identified with the projection of S2XE2 onto S2Xorigin. Shrinking

S2XS1 over S2XE2 to S2Xorigin yields a homotopy of pxT with piT'pi.

Since the induced mappings p\ and (piT)* of 772(52; Z) onto H2(S2XSl; Z)

coincide, £iT'/,S2Xorigin must have degree 4-1. Hence piT'pi is homotopic

to pi. Thus piT is homotopic to pi, contradicting the results of §14. Hence

no such extension T" exists, and the lemma is proved.
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If Lemma (15.1) is to be strengthened by replacing 3C' by 3C, then the

above lemma shows, in effect, that the proof must depend upon an analysis

of the structure of A4.

Again let S2 be a smooth two-sphere in 54 with an exterior A*. Join the

boundary S2XSl of 52XP2 to the boundary S2XS1 oí A* by the homeomor-

phism T. We obtain a manifold Af4 with a distinguished smooth two-sphere,

52Xorigin, which has an exterior homeomorphic to A*. Theorem (5.1) and

Lemma (15.1) imply that the original pair (S4, S2) and the new pair (Af4, S2)

give the only possible smooth embeddings of a two-sphere in a four-manifold

with an exterior homeomorphic to ^44. Two questions now arise. Is Af4 a four-

sphere? If so, is (Af4, S2) homeomorphic to (S4, S2)? Until stated to the con-

trary, Af4 will have the meaning given above.

16. Af4 is a homotopy four-sphere. T induces the identity automorphism

of 7Ti(52X51), since T/S2\/Sl is the identity. Thus, by the van Kampen

theorem [18; 19], Af4 has the same fundamental group as S4, i.e., Af4 is

simply connected.

Lemma (16.1). 772(Af4; Z) = 0.

Consider the following part of the homology sequence of the pair (Af4, ^44).

(1) Hi(A*) A 772(M4) 1+ Hi(M\ A*) -* Hi(A*).

By Alexander duality, H2(A*) =772(Int Ai) = Hi(S2XE2) = 0, and Hi(A*)

= Hi(lnt A*) = Hi(S2XE2) = Z. By excision, H2(M4, A4) = Hi(S2XE2, S2XS1)

= Z. A generator of 772(Af4, ̂ 44) is carried by x„XP2. Under d, this generator

goes into the generator of 77i(^4) represented by XnES1. Hence d is an iso-

morphism, and thus/ is the zero homomorphism. But i is also the zero homo-

morphism, since 772(^44)=0. Then by exactness, 772(Af4)=0.

Since Af4 is orientable, 773(Af4) =771(M4) =0, 77„(Af4) =Z, and 7fB(Af4) =0

for re>4. Thus Af4 is a simply connected four-dimensional manifold with the

homology groups of the four-sphere.

We construct a mapping/ of Af4 onto S4 as follows. Choose a four-simplex

of Af4, and collapse the complement in Af4 of its interior to a point. Map the

resulting four-sphere homeomorphically onto S4. The induced mapping,

f*: 7f4(Af4; Z)—>774(54; Z) is clearly an isomorphism. That/ is then a homo-

topy equivalence follows from the next lemma, proved as corollary to Theo-

rem 3 of [20].

Lemma (16.2). Let X and Y be connected compacta which are absolute neigh-

borhood retracts. If X and Y are simply connected and f: X—> Y induces isomor-

phisms /*: Hn(X)-^Hn(Y) for all re^2, then f is a homotopy equivalence.

Hence Af4 is a homotopy four-sphere. If the generalized Poincaré conjec-

ture is true in dimension four, then Af4 is homeomorphic to the four-sphere.

However, to prove directly that Af4 is homeomorphic to the four-sphere

necessitates an analysis of A4. One way to obtain this result is to show that
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the homeomorphism T of S2XS1, considered as the boundary of ^44, is always

extendable to a homeomorphism of ^44. Using the construction of Lemma

(15.1) this would not only show that il74 is a four-sphere, but would also show

that (Ü74, S2) is homeomorphic to (S4, S2). We turn, therefore, to the problem

of extending T to a homeomorphism of A*.

17. Spinning manifolds. Let $>< be a rotation of S2 about the axis through

the north and south poles through an angle 2irt in a fixed direction. Then

{$(}, tC [0, l], is a one-parameter family of homeomorphisms of S2 beginning

and ending at the identity. Let M3 be a compact three-manifold with the

single boundary component S2. If {í>¿} can be extended to a one-parameter

family of homeomorphisms {í>(} of M3, beginning and ending at the identity,

then {$(} is said to determine a spinning of M3, and we say that M3 can be

spun. It is easily shown that this definition is independent of the way we

identify our unit two-sphere with the two-sphere boundary of M3.

Consider the two-sphere 52X0 on the boundary S2XSX of .44. Suppose

that 52X0 is the boundary of a three-manifold il73 in A* whose intersection

with S2XSl is precisely 52X0. We say that M3 is smoothly embedded in .44

if M3 has a neighborhood M3XI in ^l4 whose intersection with S2XSl is a

neighborhood 52X7 of 52X0 on S2XSl. Suppose now that 52X0 bounds a

smooth M3 in .44. Then using Theorem (3.1), it is easy to show that M3 has

a neighborhood Ms XI in Ai whose intersection with S2X 54s 52X [-1/4,1/4].

Theorem (17.1). Let S2 be a smooth two-sphere in SA with exterior A*. Sup-

pose that S2X0 is the boundary of an orientable three-manifold M3, smoothly

embedded in A*. If M3 can be spun, then the homeomorphism T of S2XSl ex-

tends to a homeomorphism of A4.

Recalling the definition of $t given at the beginning of this section, T is

defined by T(x, t) = (<Pi(x), t). T is clearly isotopic to the homeomorphism T*

defined by

T*(x, t) = (3>21+i/2(x), t), for 0 g / ^ 1/4 and for 3/4 g / á 1;

T*(x, t) = (x, t), for 1/4 g í ^ 3/4.

T* simply concentrates the rotational action of T between f = 3/4 (= —1/4)

and ¿=1/4. By Theorem (2.1), it is sufficient to extend T* to a homeomor-

phism of ^44. By assumption, M3 has a neighborhood in AK of the form

M3X [-1/4, 1/4] whose intersection with 52X51 is 52X [-1/4, 1/4]. Since

M3 can be spun, the one-parameter family of homeomorphisms {$t} of S2

extends to a one-parameter family of homeomorphisms {i>(} of M3, beginning

and ending at the identity. We can thus extend T* on S2XSl to T* on

(52X51)W(M3X[-l/4, 1/4]) by defining

T*(m, t) = (i2<+i/2(w), /), for m CM3 and -l/4|/g 1/4.

Look now at the open set U xn Ak on which T* has not yet been defined. On

the boundary of U, T* has been defined as the identity. Thus extend T*
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over U via the identity, which completes the extension of T* over A* and

proves the theorem.

Corollary. Under the same conditions stated in Theorem (17.1), (Af4, S2)

is homeomorphic to (S*, S2), and hence there is, up to homeomorphism, just one

smooth embedding of S2 in a four-manifold with an exterior homeomorphic to A*.

By Theorem (17.1), T extends to a homeomorphism T of ^44. Define a

homeomorphism A of (S4, S2) onto (Af4, S2) as follows. On A\ let h=T. Thus

on S2XSl viewed as the boundary of ^44, h=T. Hence on S2XSX viewed as

the boundary of S2XE2, A is the identity. Then extend A, via the identity,

over S2XE2, and the corollary is proved.

18. Restriction to the semi-linear case. From this point on we shall as-

sume that S2 is a smoothly embedded, semi-linear two-sphere in the four-

sphere S4 (see §1 for definitions).

Suppose that S2 is a semi-linear two-sphere in S4. If v is a vertex of S2,

then the link of v on S2 is a simple closed curve, while the link of v in S4 is a

three-sphere. If this simple closed curve is unknotted in this three-sphere, then

S2 is said to be locally flat at v. If S2 is locally flat at all of its vertices, then S2

is said to be locally flat. Every smoothly embedded semi-linear two-sphere in

S* is clearly locally flat. Conversely(3), every locally flat semi-linear two-

sphere in S4 is smoothly embedded, and its regular neighborhoods are homeo-

morphic to S2XE2.

Let S2 be a locally flat semi-linear two-sphere in S4. Suppose it is known

that S2 bounds an orientable semi-linear three-manifold Af3 in S*. A* is the

complement in S4 of an open regular neighborhood of S2. Then it is clear that

A4r~\M3 is a three-manifold whose boundary two-sphere lies on the boundary

of A4. Af3 may also meet the boundary of A4 elsewhere, but these intersections

can be pushed off the boundary. Once this is done, the deformed A*C\M3 is

smoothly embedded in A4 by [22]. Furthermore, the boundary of AiC\M3

can be taken as52X0ona parametrization of the boundary of A4 as S2XSl.

Finally, AiC\M3 is easily seen to be homeomorphic to Af3. Hence in order to

satisfy all the hypotheses of Theorem (17.1), it would have to be shown that

Af3 could be spun.

A first step will be to show that every locally flat semi-linear two-sphere

in S4 is the boundary of an orientable semi-linear three-manifold in S4.

III.  THE EMBEDDING OF ORIENTABLE SURFACES IN FOUR-SPACE

19. Preliminary remarks. Let Af2 be a locally flat, polyhedral, closed

orientable surface (not necessarily connected) in Euclidean four-space R*. In

this chapter we will outline a proof that Af2 is the boundary of an orientable

polyhedral three-manifold in 7?4. The arguments may be found in greater de-

tail in the author's thesis.

(') The proof given in [21 ] is incorrect. A new proof will appear shortly.
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M2 is first deformed slightly so that its intersections with the horizontal

hyperplanes R3 = {(xi, x2, x3, xi):xi = t} are as simple as possible. In particu-

lar we arrange that no two vertices of M2 have the same t'th coordinate for

*'= 1, 2, 3 or 4, and that no two-simplex of M2 lies in a plane parallel to the

X4 —axis. If R3 contains the vertex v of M2, then, since no other vertex of M2

lies in R3t, the number of points on the link of v in il72 with fourth coordinate t

is finite and even. It is arranged, by slight deformation of M2, that this num-

ber, n, assumes only the values 0, 2 and 4.

Now as t decreases, M2(~\R3 changes isotopically, except at the finite num-

ber of singular values of t lor which P,3 contains a vertex of Ü72. If «= 0 at a

vertex t; of Ü72, then as / decreases through the fourth coordinate of this vertex,

M2C\R3 changes isotopically, except that an unknotted simple closed curve

shrinks to a point and then disappears (or vice versa). This will be called an

elliptic transformation. If « = 2 at v, then as t decreases through the fourth

coordinate of v, M2f\R3 changes isotopically. If » = 4 at v, then as t decreases

through the fourth coordinate of v, M2C\R3 changes isotopically, except that

two arcs come together at their midpoints and then separate like the cross-

sections of a saddle surface. This will be called a hyperbolic transformation.

MM
Figure 6

20. The construction of M3. What we have in mind is to find orientable

surfaces in the R3 whose boundaries are precisely M2f~\R3, in such a continu-

ous way that when considered together they form an orientable three-mani-

fold M3 whose boundary is M2. The selection of these orientable surfaces,

M3C\R3, is carried out with decreasing t, and is begun, as M2C\R3 opens up

from a point into an unknotted simple closed curve, by having M3C\R3t open

up from a point into a two-cell. If M2C\R3 changes isotopically, M3r\R3 can

be dragged along isotopically. It remains to decide what to do with M3f~\R3

when M2C\R3 undergoes hyperbolic and elliptic transformations.

In the hyperbolic case, the arcs which come together already form part

of the boundary of a cross-sectional surface and the hyperbolic transforma-

tion could be extended to the surface as shown in Figure 6, except for the

possibility that a number of sheets of the surface may be in the way. These

sheets are simply pierced one after the other with decreasing t, the cuts being
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joined as in Figure 7 to preserve orientability of the cross-sections. Finally,

when no more sheets are in the way, the original hyperbolic transformation is

extended to the cross-sectional surface. That this final transformation does

not destroy the orientability of the cross-sections is shown in §21.

In the case of the elliptic transformations, if with decreasing / a point

opens up into an unknotted simple closed curve, we simply introduce another

Figure 7

component of the cross-sectional surface which with decreasing / opens up

from a point into a two-cell. The serious case occurs when a component of

Af2n7?f shrinks to a point and then disappears with decreasing /. Call this

component Ci, and let c2, • • • , ck be the other boundary curves of the com-

ponent G of the cross-sectional surface containing a. Since Ci is unknotted by

the local flatness of Af2, let D be a polyhedral two-cell in R3 bounded by Ci.

Figure 8

Let c' be a simple closed curve on G lying in a small neighborhood of Ci and

"parallel" to ci. Because the cross-sectional surface, and hence G, is orienta-

ble, the linking number of c' with Ci is the same as the sum of the linking

numbers of the Ci, ■ ■ ■ , ck with a. But each of these linking numbers is zero,

since Ci is about to shrink to a point away from all these curves. Because the
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linking number of c' with Ci is zero, the cross-sectional surface can be de-

formed so that a small neighborhood of ci on G meets D only at C\, while the

total intersection of the cross-sectional surface with D consists of a number

of simple closed curves. Each of these intersections can be removed by stand-

ard hyperbolic transformations with decreasing /, as shown in Figure 8, until

finally D meets the cross-sectional surface only at its boundary curve C\. By

a slight deformation of Af2, the original elliptic transformation can be altered

so as to shrink Ci to a point along D, closing up a component of the cross-

sectional surface and completing the construction for the elliptic transforma-

tion.

When finally / has decreased below the minimum value attained by the

fourth coordinates of points of Af2, the cross-sectional surface consists of a

number of closed orientable surfaces in a three-dimensional hyperplane R3. It

remains to shrink off the components of this surface to points with decreasing

/.If the resulting Af3 is to be a manifold, this must be done by first changing

these components into two-spheres. But R. H. Fox has shown in [25, Theo-

rem 2] that whenever we are given a number of polyhedral closed orientable

surfaces in three-space, not all of which are two-spheres, a hyperbolic trans-

formation may be found which either decreases the total genus or else in-

creases the number of components with positive genus while leaving the total

genus unaltered. We carry out such a transformation with decreasing /, and

repeat the procedure until all the components of the cross-sectional surface

are two-spheres, which may then be shrunk to points as / decreases further,

completing the construction of Af3.

R. H. Bing has pointed out to me that if we are willing to allow a three-

dimensional cross-section, then the argument can be completed as soon as

the cross-sectional surface becomes closed, for every closed surface in three-

space, whether connected or not, is certainly the boundary of a three-dimen-

sional region.

As the various transformations undergone by the cross-sectional surfaces

are topologically equivalent to those experienced by a cross-section of a

hypersurface in 7?4 (with due regard being taken of the fact that Af3 has a

boundary), it is easily seen that Af3 is a manifold. Since the cross-sections are

orientable and the various transformations preserve orientations, Af3 is also

orientable.

It remains to be seen that the final transformation in the hyperbolic case

does not destroy the orientability of the cross-sections.

21. The orientability of the cross-sectional surfaces. Let c\, c2, • • ■ , ck

be a family of disjoint oriented simple closed curves on an orientable two-

manifold Af2. The family will be said to be oriented consistently if for each

component D, of Af2 — (U< £,•), the orientation of the boundary of D¡ is induced

by one of the two possible orientations of D¡.

By a nonsingular value of / we shall now mean a value of Z for which the
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cross-sectional surface M3(~\R3 is a manifold without singularity. We will

show that M3C\R3 can be oriented in such a way as to make M2H\R3, with

orientations induced by M3r\R3, a consistently oriented family of simple

closed curves on M2. In particular, the cross-sectional surfaces will be orienta-

ble. If M3(~\R3 is oriented so that M2C\R3 is consistently oriented with re-

spect to M2, then we refer to M3C\R3 as being consistently oriented (with

respect to M2).

If t is in the first interval of nonsingular values, M2i~\R3 is a simple closed

curve on M2 which has expanded from a point, and therefore separates M2.

Since M2 is orientable, each of the residual components of this curve can be

oriented so as to induce a given orientation on the curve. This orientation

then gives an orientation for M3C\R3, so that at the beginning the cross-sec-

tional surface can be consistently oriented. We must show that the various

transformations to which the cross-sectional surface is subjected with de-

creasing / do not destroy this property.

In an elliptic transformation in which a curve c expands from a point, one

of the domains of M2 — c contains no other curves, and hence c may be

oriented so that M2C\R3 is still consistently oriented. This orientation of c

gives an orientation for the new two-cell bounded by c in M3C\R3, and hence

M3i~\R3 is still consistently oriented. If in the elliptic transformation a curve

c shrinks to a point, then again one of the domains of M2 — c contains no other

curves. Hence the remaining curves are still consistently oriented, and M3C\R3

remains consistently oriented as one of its components loses a boundary

curve.

Suppose now that we have a hyperbolic transformation during which

curves c and c' come together at a point (the case c = c' is not excluded). For

such a transformation to occur, it is necessary that c and c' appear together

in the boundary of some domain of M2 — (M2C\R3). Since this domain is

orientable, c and c' can only come together with their orientations "locally

opposite." Then the new cross-sectional surface is still orientable, and its

orientation is induced from that of the old cross-sectional surface in the

obvious way. To see that the new M3C\R3 is consistently oriented, we have only

to observe the hyperbolic transformation undergone by M2C\R3 on M2.

Locally, one domain of M2 — (M2C\R3) is split, while two others are joined.

The new domains then receive orientations in a natural way from the old,

and these new orientations demonstrate the consistent orientation of the new

M2C\R3. Since the orientation of the new M2C\R3 is also induced by the orien-

tation of the new M3i~\R3, the new M3C\R3 is consistently oriented.

The auxiliary transformations used in §20 do not affect the consistent

orientation of the cross-sectional surfaces, and hence we have shown that the

cross-sectional surfaces may be consistently oriented, and that the consistent

orientation behaves continuously under the various transformations.

We now have
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Theorem (21.1). Every locally flat polyhedral closed orientable surface in

Euclidean four-space is the boundary of an orientable polyhedral three-manifold

in four-space.

22. Two-spheres in the four-sphere which are uniquely determined by

their exteriors. Let S2 be a locally flat semi-linear two-sphere in S4. By

Theorem (21.1), S2 is the boundary of an orientable semi-linear three-mani-

fold Af3 in S*. §18 and the corollary to Theorem (17.1) imply that if Af3 can

be spun, then any two-sphere in S* whose exterior is homeomorphic to the

exterior of S2 is actually equivalent to S2. Recall that in the semi-linear case,

the exterior is a uniquely defined semi-linear four-manifold. If every locally

flat semi-linear two-sphere in S4 were the boundary of a three-manifold in

S4 which could be spun, then the exterior of S2 would be a complete invariant

for the embedding in the semi-linear case(4). While we are unable to show this,

it is at least clear that some two-spheres in S4 bound three-manifolds which

can be spun. For example, if (S4, S2) is obtained by spinning a knot in three-

space (see [27 ; 28]), then an orientable surface bounded by the knot spins into

a three-manifold bounded by S2. But the very method of generation of this

three-manifold shows that it can be spun in the sense of §17. Noting that a

two-sphere obtained by spinning a tame knot is locally flat, we have the

following result.

Theorem (22.1). Every semi-linear two-sphere in the four-sphere obtained

by spinning a tame knot is uniquely determined by its semi-linear exterior.

IV.   THE EMBEDDING OF TV-SPHERES IN THE N + 2 SPHERE

23. N>2. In this brief chapter we consider the possibility of obtaining

results for n¿¿2 similar to those obtained for w = 2. The problem divides

naturally into the case w>2 and the case re= 1.

When re>2, we are faced with the problem of determining the group of

homeomorphism types of S"XSl. Unfortunately, most isotopy problems for

manifolds of dimension greater than three are as yet unsolved. The best we

can say is that if G is the group of homeomorphisms of SnXS1 and G¿ the

normal subgroup consisting of those homeomorphisms homotopic to the iden-

tity, then G/Gl =Zi+Zi-\-Zi. The proof is simple, but depends heavily upon

the classification of maps of an re + 1 complex into the re-sphere given by

Steenrod [29]. If two homeomorphisms of SnXS1 are isotopic if and only if

they are homotopic, then G/Go = G/Gó, and we immediately obtain the result

that there are at most two non-equivalent smooth embeddings of an re-sphere

in the re+ 2 sphere with a given exterior. While we are unable to prove that

every locally flat polyhedral re-sphere in re + 2 space is the boundary of a poly-

(*) Those three-manifolds which can be spun (in a somewhat more restrictive sense) have

been characterized in [31].
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hedral «4-1 manifold, we can at least obtain a result about spun «-spheres

similar to Theorem (22.1).

24. N= 1. Here the problem is entirely different, for the group of homeo-

morphism types of SlXS1 is no longer finite, but is the two-dimensional uni-

modular group. Furthermore, when a neighborhood of Sl is adjoined to its

exterior by a homeomorphism other than the identity, the resulting three-

manifold may not be the three-sphere. It seems, at least in simple cases, that

whenever one gets the three-sphere, the new knot is equivalent to the original

one. Partial results are easily obtained, however, and we state without proof

the following theorem.

Theorem (24.1). Let k and k! be tame knots in S3 such that S3 — k is homeo-

morphic to S3 — k'. If k is a torus knot, then k and k' are equivalent.
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