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The knot concordance group is

C =
{oriented knots S1 ⊆ S3}

∼
where K ∼ J if and only if there is an embedding C making

S1 × {0, 1} S3 × {0, 1}

S1 × I S3 × I

K∪J

C

commutes. If K ∼ U then K is slice.

Here C could be smooth or locally flat – the difference will not
matter until slide 35.



The algebraic concordance group is

AC =
{square matrices V over Z | det(V − V T ) = 1}

∼
where V ∼ W if and only if V ⊕−W is metabolic.

J. Levine (1969) defined a group homomorphism

ϕ : C → AC, [K ] 7→ [VF ],

where VF is a Seifert matrix of a Seifert surface F for K .

Levine and Stoltzfus showed:

AC ∼= Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.



J. Levine defined a group homomorphism

ϕ : C → AC, [K ] 7→ [VF ].

K is algebraically slice if and only if ϕ([K ]) = 0.

Theorem (Levine 1969)

For (2n− 1)-knots with n ≥ 2, K is algebraically slice ⇔ K is slice.

Theorem (Casson-Gordon, n = 1, 1978)

There is a non-slice, algebraically slice knot.



This is a slice knot.



If K has a genus one Seifert surface F with a simple closed curve
γ ⊆ F representing a metaboliser for the Seifert form, i.e.
ℓk(γ, γ+) = 0, such that γ is itself a slice knot, then K is slice.

If K is algebraically slice but there is no such γ, can we prove that
K is not slice?



Let Kn be the twist knot with n twists.

K 

Seifert form:

VF =

[
n 0
1 −1

]
Kn is algebraically slice if and only if n = t(t − 1) for some t ∈ Z.



The classes [1, t] and [1, 1− t] generate metabolisers, represented
by simple closed curves with self linking numbers:

[
1 t

] [t(t − 1) 0
1 −1

] [
1
t

]
= 0

and [
1 1− t

] [t(t − 1) 0
1 −1

] [
1

1− t

]
= 0.



For K6, the metabolising curves

[1, t] = [1, 3] and [1, 1− t] = [1,−2]

are trefoils T2,3 (non-slice).

(U,3) 

(0,2) 



Recall Kn is algebraically slice if and only if n = t(t − 1) for some
t ∈ Z.

Theorem (Casson-Gordon 1978)

Kn is slice if and only if n = 0, 2.

Theorem (Jiang 1981, Se-Goo Kim 2005)

Algebraically slice, non-slice twist knots are linearly independent
in C.



I will outline the proof that Kt(t−1) is not slice for t ≥ 3, i.e. for
n = t(t − 1) ̸= 0, 2.

Since Kt(t−1) is algebraically slice, we need to use higher-order
obstructions.

This will take the form of the Witt-group valued Casson-Gordon
slice obstruction

τ(K , χ) ∈ L0(Q(ζm)(t))⊗Q,

depending on an auxiliary χ.

Here L0(Q(ζm)(t)) is stable isomorphism classes of sesquilinear,
Hermitian, nonsingular forms over the field of fractions Q(ζm)(t).



The zero-framed surgery S3
0 (K ) on K is an important 3-manifold

in knot concordance.

Theorem (Freedman-Quinn 1982)

A knot K is topologically slice if and only if the zero-framed
surgery S3

0 (K ) bounds a 4-manifold V such that H∗(V ) ∼= H∗(S
1)

and π1(V ) is normally generated by a meridian of K .



For ℓ ∈ N ∪ {∞}, let Mℓ be the ℓ-fold cyclic cover of S3
0 (K ).

Note that TH1(Mpr ) ∼= H1(Σpr (K )).



Theorem (Casson-Gordon)

If K is slice, then for any prime p and r ≥ 1, there is a subgroup P
of TH1(Mpr ) such that P = P⊥ with respect to the linking form

TH1(Mpr )× TH1(Mpr ) → Q/Z,

such that for every χ : TH1(Mpr ) → C∗ of prime power order
m = qk with χ|P = 0, we have

τ(K , χ) = 0.



Next I will define τ(K , χ) and sketch the proof of this obstruction
theorem.

Consider
χ : TH1(Mpr ) → C∗

with image of order m.

Obtain

π1(Mpr ) → H1(Mpr )
∼=−→ TH1(Mpr )⊕ Z (χ,Id)−−−→ Z/m ⊕ Z.



Since Ω3(B(Z/m × Z))⊗Q = 0, there exists s ∈ N and a
4-manifold V with covering spaces as shown:

s


M̃∞

��

// M̃pr

��
M∞ // Mpr

 = ∂


Ṽ∞

��

// Ṽpr

��
V∞ // Vpr

 .

Here for any X in the bottom row, X̃ → X denotes the m-fold
χ-cover and X∞ is the infinite cyclic cover.



Want to consider a twisted intersection form of Vpr . Consider

H∗(Ṽ∞;Z)⊗Z[Z/m×Z] Q(ζm)(t) ∼= H∗(Vpr ;Q(ζm)(t)).

On H2 we have the equivariant intersection form

λχ : H2(Vpr ;Q(ζm)(t))× H2(Vpr ;Q(ζm)(t)) → Q(ζm)(t).

We also have

λQ : H2(Vpr ;Q)× H2(Vpr ;Q) → Q.

Let ι : Q → Q(ζm)(t). Define the Witt-class defect:

τ(K , χ) =
(
[λχ]− ι∗[λ

Q]
)
⊗ 1

s
∈ L0(Q(ζm)(t))⊗Q.



Casson-Gordon Lemma 4

Suppose m = qk is a prime power and

H∗(Y ;Z/q) ∼= H∗(S
1;Z/q).

Consider covers

X̃
m=qk−−−→ X

∞−→ Y

with the degree shown. Then

H∗(X̃ ;Q)⊗Q(ζm)(t) = 0.



Proof of obstruction theorem
Let ∆ ⊆ D4 be a slice disc and set

Y = V := D4 \ ν∆.

Let
P := ker

(
TH1(Mpr ) → TH1(Vpr )

)
and choose χ that vanishes on P.

Ignoring some important slice vs. ribbon issues, χ extends to

χ : TH1(Vpr ) → Z/m.



Consider corresponding covers:

Ṽ∞ → V∞ → V .

By Casson-Gordon Lemma 4,

H2(Vpr ;Q(ζm)(t)) ∼= H2(Ṽ∞;Q)⊗Q(ζm)(t) = 0.

Hence [λχ] = 0 and then it is easy to show

τ(K , χ) = 0.



For every n = t(t − 1), t ≥ 3, and for every metaboliser P of the
linking form, Casson-Gordon chose a χ that vanishes on P and
proved that τ(Kn, χ) ̸= 0, using signatures.

For t = 3, this is related to σ(T2,3) ̸= 0.



Applications of Casson-Gordon invariants.

Theorem (Livingston 1983)

There exists a knot not concordant to its reverse.



Applications of Casson-Gordon invariants.

Theorem (Livingston 2001, Taehee Kim 2005)

Fix a Seifert form V with ∆V (t) = det(tV − V T ) ̸= ±tk . There
exists an infinite family {Ki} of knots with Seifert form V that are
linearly independent in C.



Applications of Casson-Gordon invariants.

Theorem (Gilmer 1982)

There exist algebraically slice knots with arbitrarily large 4-genus.

A. N. Miller 2022: these can be chosen to be amphichiral and
hence order 2 in C.



Applications of Casson-Gordon invariants.

▶ Ruberman 1983, 1988: Casson-Gordon style double slice
obstructions, including for high dimensional knots.

▶ Livingston 1991, Gilmer-Livingston 1992: Alternative proof
using Casson-Gordon invariants of Cochran-Orr’s 1990 result
that there are links with vanishing Milnor’s invariants not
concordant to boundary links, including for high dimensional
links.

▶ Livingston-Naik 2001: used Casson-Gordon invariants to show
that many knots of order 4 in AC have infinite order in C.



Applications of Casson-Gordon invariants.

▶ Friedl 2003: Interpreted Casson-Gordon invariants as
η-invariants.

▶ Friedl-Powell 2012: Casson-Gordon style obstructions for a
2-component link to be concordant to the Hopf link.

▶ A. N. Miller 2017: computed topological slice status of odd
3-strand pretzel knots.



Applications of Casson-Gordon invariants.

▶ A. N. Miller 2023: used Casson-Gordon obstructions to rule
out many satellite operators from being homomorphisms.
(See also later work of Cahn–Kjuchukova 2023,
Miller–Lidman–Pinzón-Caicedo 2024, Cha-Taehee Kim 2025,
and Johanningsmeier–Kim–Miller 2025.)

▶ Livingston 2025: there exist rank-expanding satellite operators
P, i.e. for some K , {P(nK )}n∈Z generates an infinite rank
subgroup of C.



Computing Casson-Gordon invariants.

▶ Twisted Alexander polynomials: Lin 1990, Wada 1994,
Kirk-Livingston 1999, Herald-Kirk-Livingston 2010.
Distinguished more knots from their reverses and mutant
knots, in C. Resolved slice status of most knots up to 12
crossings.

▶ Twisted Blanchfield pairings: Leidy 2006, A. N. Miller-Powell
2018, Powell 2016, Friedl-Leidy-Nagel-Powell 2017,
Borodzik-Conway-Politarczyk 2022-25.
Boundary of a Witt class in L0(Q(ζm)(t)) is a Witt class of
linking forms.
These capture most of the Casson-Gordon invariants and
refine twisted Alexander polynomials.



Computing Casson-Gordon invariants.

▶ Hedden-Kirk-Livingston 2012 and Conway-Min Hoon
Kim-Politarczyk 2023: Used Casson-Gordon invariants and
twisted Blanchfield pairings respectively to show many
algebraic knots (which are all iterated torus knots) are linearly
independent in C: evidence for Rudolph’s conjecture.



Extension of Casson-Gordon invariants.

Theorem (Cooper 1982, Cochran-Orr-Teichner 2004)

Let K be a slice genus one knot. For every genus one Seifert
surface F , there exists a simple closed curve γ ⊆ F with
lk(γ, γ+) = 0 and ∫

S1⊆C
σγ(z)dz = 0.

Here let V be a Seifert form for γ and z ∈ S1 ⊆ C. Define

σγ(z) = sign
(
(1− z)V + (1− z)V T

)
See also Gilmer-Livingston 2013 for a related statement on sums of
signatures at certain prime power roots of unity.



Theorem (Cochran-Davis 2013)

There exists a genus one slice knot K such that for every genus
one Seifert surface F and every simple closed curve γ on F with
lk(γ, γ+) = 0, σγ(−1) ̸= 0 and Arf(γ) ̸= 0.

Kaufmann had conjectured otherwise.



Extension of Casson-Gordon invariants.

Theorem (Cochran-Orr-Teichner 2003)

There exist (topologically) non-slice knots with vanishing
Casson-Gordon invariants.



Extension of Casson-Gordon invariants.

Cochran-Orr-Teichner filtration 2003:

C ⊇ F (0) ⊇ F (0.5) ⊇ F (1) ⊇ F (1.5) ⊇ F (2) ⊇ · · ·

▶ C/F (0.5) ∼= AC;
▶ K ∈ F (1.5) ⇒ τ(K , χ) = 0 for all χ.

Theorem (Cochran-Teichner 2007, Cochran-Taehee Kim 2008,
Cochran-Harvey-Leidy 2008–10, Taehee Kim 2016,
Franklin 2013)

For every n ∈ N0, there are subgroups

Z∞ ⊕ (Z/2)∞ ⊆ F (n)/F (n.5).



Extension of Casson-Gordon invariants.

Theorem (Cha 2010, Cha-Friedl 2013)

The Bing double of the figure eight knot is not slice.



Ribbon concordance (Gordon, 1981).

We say that K1 is ribbon concordant to K0, and write K1 ≥ K0, if
there is a smooth concordance C from K1 to K0 such that

C → S3 × I → I

is a Morse function with no maxima.

s'xso) S 
3 



Theorem (Gilmer 1984)

If K1 ≥ K0, then ∆K0 | ∆K1 .

Conjecture (Gordon 1981)

The relation ≥ is a partial order on the set of isotopy classes of
knots.



Theorem (Gordon 1981)

If K1 ≥ K0 and K0 ≥ K1 and K1 is transfinitely nilpotent, that is if
the lower central subgroup of the commutator subgroup[

π1(S
3 \ K1), π1(S

3 \ K1)
]
α

is trivial for some ordinal α, then K0 = K1.

Holds for K1 constructed by connected sums and cables from
2-bridge knots and fibred knots.



Theorem (Zemke, Levine-Zemke 2019)

If K1 ≥ K0 and K0 ≥ K1, then ĤFK (K0) ∼= ĤFK (K1) and
Kh(K0) ∼= Kh(K1).



Theorem (Agol 2022)

If K1 ≥ K0 and K0 ≥ K1, then K0 = K1.



Question
Does every concordance class contain a unique minimal
representative with respect to ≥?



There is another very influential Casson-Gordon article. I expect
Zupan’s talk to discuss this in detail, so I’ll just briefly mention it
here.



Homotopically ribbon knots.

Definition (Casson-Gordon)

A knot K in a homology 3-sphere M is homotopically ribbon if it
bounds a smoothly embedded disc D in a homology 4-ball V such
that

π1(M \ K ) ↠ π1(V \ D)

is surjective.

If M = S3, V is homeomorphic to D4 so K is exotically slice.

Theorem (Casson-Gordon 1983)

A fibred knot in a homology 3-sphere is homotopically ribbon if
and only if its closed monodromy extends over a handlebody.



Conjecture (Homotopically ribbon implies slice)

A knot K in S3 is topologically slice if and only if K is
homotopically ribbon.

If true this would have far reaching consequences for our
understanding of the (topological) knot concordance group.


