On the Diffeomorphism Group of \$S^1 \times S^2\$
Author(s): A. Hatcher
Source: Proceedings of the American Mathematical Society, Oct., 1981, Vol. 83, No. 2 (Oct., 1981), pp. 427-430
Published by: American Mathematical Society
Stable URL: https://www.jstor.org/stable/2043543
REFERENCES
Linked references are available on JSTOR for this-article: https://www.jstor.org/stable/2043543?seq=1\&cid=pdf-
reference\#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

ON THE DIFFEOMORPHISM GROUP OF $S^{1} \times S^{2}$

A. HATCHER

Abstract

A disjunction technique for families of 2-spheres in 3-manifolds is applied to determine the homotopy type of the diffeomorphism group of $S^{1} \times S^{2}$.

We operate in the C^{∞} category throughout. Let M^{3} be a connected 3-manifold having exactly two isotopy classes of submanifolds diffeomorphic to S^{2}. It is an exercise in 3-manifold topology to see that a closed 3-manifold satisfying this condition is one of the two S^{2}-bundles over S^{1}, or the connected sum of two irreducible 3-manifolds. Let \mathcal{E} denote the space of embeddings $f: S^{2} \rightarrow M^{3}$ whose image does not bound a ball in M^{3}. For a bicollar neighborhood $[-1,1] \times S^{2} \subset$ M^{3} of the image of a fixed element of \mathcal{E}, let $\mathcal{E}^{\prime} \subset \mathcal{E}$ be the subspace of embeddings $f: S^{2} \rightarrow M^{3}$ whose image is disjoint from $\{x\} \times S^{2}$ for some $x \in$ $[-1,1]$ (depending on f).

Theorem. The inclusion map $\mathcal{E}^{\prime} \rightarrow \mathfrak{E}$ is a homotopy equivalence.
If one assumes the Smale Conjecture, $\operatorname{Diff}\left(S^{3}\right) \simeq O(4)$ [3], then the Theorem easily implies

Corollary. Diff $\left(S^{1} \times S^{2}\right)$ has the homotopy type of the product $O(2) \times O(3) \times$ $\Omega O(3)$.

The calculation of $\pi_{0} \operatorname{Diff}\left(S^{1} \times S^{2}\right)$ has been known for a long time, using Cerf's " $\Gamma_{4}=0$ " theorem. In his thesis [4], B. Jahren showed $\pi_{1}\left(\mathcal{E}, \mathcal{E}^{\prime}\right)=0$, which reduces the calculation of $\pi_{1} \operatorname{Diff}\left(S^{1} \times S^{2}\right)$ to $\pi_{1} \operatorname{Diff}\left(S^{3}\right)$.

Results equivalent to the Theorem and Corollary were announced in [1], based on the belief that the disjunction technique of [2] for surfaces of higher genus extended in straightforward manner to the case of 2 -spheres. However, as Laudenbach has pointed out, this extension is not straightforward, and the purpose of the present paper is to recast the technique of [2] so it does apply to 2 -spheres. (Laudenbach also has a method for handling 2-spheres in $S^{1} \times S^{2}$, not as general as the one in this paper.)

Proof of the Theorem. Let $f_{t} \in \mathcal{E}, t \in D^{k}$, be a smooth family representing an element of $\pi_{k}\left(\mathcal{E}, \mathcal{E}^{\prime}\right)$, so that $f_{t} \in \mathcal{E}^{\prime}$ for $t \in \partial D^{k}$. Choose a basepoint $* \in S^{2}$ and let $p_{t}=f_{t}(*)$ and $M_{t}=f_{t}\left(S^{2}\right)$. By Sard's theorem and the compactness of D^{k}, we may choose a finite number of slices $N_{i}=\left\{x_{i}\right\} \times S^{2} \subset[-1,1] \times S^{2} \subset M^{3}$ and

Received by the editors January 21, 1980 and, in revised form, November 6, 1980.
1980 Mathematics Subject Classification. Primary 57M99.
closed k-balls $B_{i} \subset D^{k}$ such that:
(1) M_{t} is transverse to N_{i} for $t \in B_{i}$.
(2) $\cup_{i} \operatorname{int}\left(B_{i}\right)=D^{k}$.
(3) $N_{i} \neq N_{j}$ for $i \neq j$.
(4) $p_{t} \notin N_{i}$ for $t \in B_{i}$.

Let C_{t}^{i} be the collection of circles of $M_{t} \cap N_{i}$ for $t \in B_{i}$, and let $C_{t}=\cup_{i} C_{t}^{i}$, the union over all i such that $t \in B_{i}$. Each circle $c_{t} \in C_{t}$ bounds a unique disk $D_{M}\left(c_{t}\right) \subset M_{t}-\left\{p_{t}\right\}$. Proceeding inductively over the multiple intersections $B_{i_{1}}$ $\cap \cdots \cap B_{i_{n}}$, from larger to smaller values of n, we may choose a smooth family of functions $\varphi_{t}: C_{t} \rightarrow(0,1)$ satisfying

$$
\begin{equation*}
\varphi_{t}\left(c_{t}\right)<\varphi_{t}\left(c_{t}^{\prime}\right) \quad \text { whenever } D_{M}\left(c_{t}\right) \subset D_{M}\left(c_{t}^{\prime}\right) . \tag{5}
\end{equation*}
$$

With a bit more effort, we may also achieve

$$
\begin{equation*}
\varphi_{t}\left(c_{t}\right) \neq \varphi_{t}\left(c_{t}^{\prime}\right) \quad \text { for all pairs } c_{t} \neq c_{t}^{\prime} \text { in } C_{t}^{i} \tag{6}
\end{equation*}
$$

To obtain this, first replace each N_{i} by $k+1$ nearby slices $N_{i j}=\left\{x_{i j}\right\} \times S^{2}$, $j=1, \ldots, k+1$, for which (1), (3), and (4) still hold. Let $C_{t}^{i j}$ be the set of circles of $M_{t} \cap N_{i j}$ and let C_{t} be the union of the $C_{t}^{i j}$'s, as before. Choose $\varphi_{t}: C_{t} \rightarrow(0,1)$ again satisfying (5). For each $N_{i j}$ there is a subset $K_{i j}$ of B_{i} where φ_{t} is not injective on $C_{t}^{i j}$. If φ_{t} is in "general position", each $K_{i j}$ will be a finite union of codimensionone submanifolds of B_{i} and $\cap_{j=1}^{k+1} K_{i j}$ will be empty, for each i. Thus

$$
\bigcup_{i, j} \operatorname{int}\left(B_{i}-N\left(K_{i j}\right)\right)=D^{k}
$$

for small enough neighborhoods $N\left(K_{i j}\right)$ of $K_{i j}$. By construction, φ_{t} is injective on $C_{t}^{i j}$ for $t \in B_{i}-N\left(K_{i j}\right)$. Now choose finitely many balls $B_{i j l}$ in $B_{i}-N\left(K_{i j}\right)$ and corresponding slices $N_{i j l}$ near $N_{i j}$ so that (1)-(4) hold for these. Each circle $c_{t} \subset M_{t} \cap N_{i j}$ then determines a nearby circle $c_{t}^{l} \subset M_{t} \cap N_{i j l}$, and we choose for $\varphi_{t}\left(c_{t}^{l}\right)$ a value near $\varphi_{t}\left(c_{t}\right)$ such that (5) holds for the circles $c_{t}^{1}, c_{t}^{2}, \ldots$ With $\left\{B_{i j l}\right\}$ for $\left\{B_{i}\right\}$ and $\left\{N_{i j l}\right\}$ for $\left\{N_{i}\right\}$ we have now achieved (1)-(6), as one can easily check.

For fixed t, we now construct an isotopy $M_{t u}$ of $M_{t}=M_{t 0}$ which eliminates all the circles of C_{t}. Choose first an $\varepsilon>0$, independent of t, so that the inequalities in (5) and (6) take the forms $\varphi_{t}\left(c_{t}\right)<\varphi_{t}\left(c_{t}^{\prime}\right)-\varepsilon$ and $\left|\varphi_{t}\left(c_{t}\right)-\varphi_{t}\left(c_{t}^{\prime}\right)\right|<\varepsilon$, respectively. Next, suppose inductively that for some $c_{t} \in C_{t}^{i}, M_{t u}$ has been constructed for $u \leqslant \varphi_{t}\left(c_{t}\right)$ such that, for $u \leqslant \varphi_{t}\left(c_{t}\right)$, (a) $M_{t u}=M_{t 0}$ near c_{t}, and (b) $M_{t u}$ restricted to $D_{M}\left(c_{t}\right)$ is an isotopy of $D_{M}\left(c_{t}\right)$ to $D_{M}^{\prime}\left(c_{t}\right)$, say, with $\operatorname{int}\left(D_{M}^{\prime}\left(c_{t}\right)\right) \cap N_{j}=\varnothing$ for each j such that $t \in B_{j}$. We call such a c_{t} a primary circle of C_{t}^{i}. Since $D_{M}^{\prime}\left(c_{t}\right) \cap N_{i}=c_{t}$, then by the characteristic property of the 3-manifold M^{3}, exactly one of the two disks into which N_{i} is cut by c_{t}, say $D_{N}\left(c_{t}\right)$, is such that the 2 -sphere $D_{M}^{\prime}\left(c_{t}\right) \cup$ $D_{N}\left(c_{t}\right)$ bounds a 3-ball $B\left(c_{t}\right)$ in M^{3}. Note that $B\left(c_{t}\right) \cap N_{j}=\varnothing$ for each $j \neq i$ such that $t \in B_{j}$, since $\partial B\left(c_{t}\right) \cap N_{j}=\varnothing$.

The isotopy $M_{t u}$ for $\varphi_{t}\left(c_{t}\right) \leqslant u \leqslant \varphi_{t}\left(c_{t}\right)+\varepsilon$ is now constructed to eliminate c_{t} by isotoping $D_{M}^{\prime}\left(c_{t}\right)$ across $B\left(c_{t}\right)$ to $D_{N}\left(c_{t}\right)$, and a little beyond. If there are any other circles of C_{t}^{i} in $\operatorname{int}\left(D_{N}\left(c_{t}\right)\right)$ remaining at time $u=\varphi_{t}\left(c_{t}\right)$, this isotopy also eliminates them (see the figure); we call such circles secondary circles of C_{t}^{i}.

A key property of this isotopy eliminating the primary circle $c_{t} \in C_{t}^{i}$ during [$\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon$] is that it does not move M_{t} near any circles of C_{t}^{j} for $j \neq i$, since $B\left(c_{t}\right) \cap N_{j}=\varnothing$.

If the interval $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$ overlaps another interval $\left[\varphi_{t}\left(c_{t}^{\prime}\right), \varphi_{t}\left(c_{t}^{\prime}\right)+\varepsilon\right]$ for a primary circle $c_{t}^{\prime} \in C_{t}^{j}$, then by (5) the disks $D_{M}^{\prime}\left(c_{t}\right)$ and $D_{M}^{\prime}\left(c_{t}^{\prime}\right)$ are disjoint, and by (6), $i \neq j$, so the disks $D_{N}\left(c_{t}\right)$ and $D_{N}\left(c_{t}^{\prime}\right)$ are disjoint. It follows that $B\left(c_{t}\right)$ and $B\left(c_{t}^{\prime}\right)$ are disjoint. The two isotopies eliminating c_{t} and c_{t}^{\prime} during these overlapping intervals thus have disjoint supports and can be performed independently. Hence for fixed t a well-defined isotopy $M_{t u}, 0 \leqslant u \leqslant 1$, is obtained, eliminating each primary circle $c_{t} \in C_{t}$ during the u-interval $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$. From the construction it is clear that $M_{t 1} \cap N_{i}=\varnothing$ for $t \in B_{i}$.
Observe that for circles of C_{t}^{i}, the distinction between primary and secondary is independent of $t \in B_{i}$. For, by (6) the ordering of the circles of C_{t}^{i} is independent of $t \in B_{i}$; and, as noted earlier, an isotopy which eliminates a primary circle of C_{t}^{j} for $j \neq i$ does not affect any circle of C_{t}^{i}.

The isotopy $M_{t u}$ of M_{t} may not depend continuously on t, for the reason that as t leaves a ball B_{i}, the circles of C_{t}^{i} are deleted from C_{t} and hence an isotopy eliminating a primary circle $c_{t} \in C_{t}^{i}$ during $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$ is suddenly not performed. This can be remedied by the following tapering process. For each i, let $B_{i}^{\prime} \subset \operatorname{int}\left(B_{i}\right)$ be a concentric ball such that $\left\{\operatorname{int}\left(B_{i}^{\prime}\right)\right\}$ still covers D^{k}. Let Z_{i} be a tapering cylinder in $D^{k} \times[0,1]$ with base $B_{i} \times\{0\}$ and top $B_{i}^{\prime} \times\{1\}$, having a radius in $D^{k} \times\{u\}$ which decreases constantly as u goes from 0 to 1 . The refined prescription for $M_{t u}$ then is: for an isotopy eliminating a primary circle $c_{t} \in C_{t}^{i}$ during $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right.$], use only the portion of this isotopy supported by the part of $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$ inside Z_{i}. In other words, outside Z_{i} we simply forget about the slice N_{i} and the way $M_{t u}$ intersects N_{i}. This creates no problems since isotopies eliminating primary circles of C_{t}^{i} leave circles of C_{t}^{j} unchanged for $j \neq i$.
To make $M_{t u}$ depend continuously on t it remains only to choose the isotopy eliminating a primary $c_{t} \in C_{t}^{i}$ during $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$ to vary continuously with t. This can be done by choosing for one $t \in B_{i}$ a diffeomorphism of a neighborhood of $B\left(c_{t}\right)$ onto a standard model, then extending this diffeomorphism to all $t \in B_{i}$ by isotopy extension, and then using these diffeomorphisms to pull back a standard disjunction isotopy in the model. We can do this for each i separately, and for each primary $c_{t} \in C_{t}^{i}$ in the order given by φ_{t}, since intervals $\left[\varphi_{t}\left(c_{t}\right), \varphi_{t}\left(c_{t}\right)+\varepsilon\right]$ for primary c_{t} 's overlap only when their $B\left(c_{t}\right)$'s are disjoint.
The family of isotopies $M_{t u}$ provides by isotopy extension a family of isotopies $f_{t u}$ of the given $f_{t} \in \mathcal{E}$ such that $f_{t 1} \in \mathcal{E}^{\prime}$. For t near ∂D^{k} we can choose the slices N_{i}
to be disjoint from M_{t} (since f_{t} is then in \mathcal{E}^{\prime}), so $M_{t u}=M_{t}$ and (we may assume) $f_{t u}=f_{t}$ for $t \in \partial D^{k}$. Thus we have shown $\pi_{k}\left(\mathscr{E}, \mathcal{E}^{\prime}\right)=0$ for any k.

Proof of the Corollary. We shall use the following two assertions:
(a) The space of embeddings $S^{2} \rightarrow S^{2} \times \mathbf{R}$ deformation retracts onto the subspace of diffeomorphisms $S^{2} \rightarrow S^{2} \times\{0\}$.
(b) The space of diffeomorphisms of $S^{2} \times I$ deformation retracts onto the subspace of diffeomorphisms taking slices $S^{2} \times\{x\}$ to slices $S^{2} \times\{y\}$.

We leave it as an exercise for the reader to verify that (a) and (b) follow from the Smale Conjecture. (In fact, they are each equivalent to the Smale Conjecture.)

To prove the Corollary, let $f_{t}: S^{1} \times S^{2} \rightarrow S^{1} \times S^{2}, t \in D^{k}$, represent an element of $\pi_{k}\left(\operatorname{Diff}\left(S^{1} \times S^{2}\right)\right.$, $\operatorname{Diff}_{s}\left(S^{1} \times S^{2}\right)$), where the subscript s denotes diffeomorphisms taking slices $\{x\} \times S^{2}$ to slices $\{y\} \times S^{2}$. If $* \in S^{1}$ is a basepoint, then by the Theorem, we may assume $f_{t} \mid\{*\} \times S^{2} \in \mathcal{E}^{\prime}$ for all $t \in D^{k}$. The projection of $f_{t}\left(\{*\} \times S^{2}\right)$ onto S^{1} is then an arc varying continuously with t, so we may choose $x_{t} \in S^{1}$ varying continuously with t and disjoint from this arc. Thus $f_{t}\left(\{*\} \times S^{2}\right) \cap\left\{x_{t}\right\} \times S^{2}=\varnothing$ for all t. After composing f_{t} with a rotation in the S^{1} factor of $S^{1} \times S^{2}$, we may assume this x_{t} is a constant point $x_{0} \in S^{1}, x_{0} \neq *$. Next we apply (a) to isotope f_{t} so that $f_{t}\left(\{*\} \times S^{2}\right)=\{*\} \times S^{2}$. Then we apply (b) to make $f_{t} \in \operatorname{Diff}_{s}\left(S^{1} \times S^{2}\right)$ for all $t \in D^{k}$. This shows that $\operatorname{Diff}_{s}\left(S^{1} \times S^{2}\right) \rightarrow$ $\operatorname{Diff}\left(S^{1} \times S^{2}\right)$ is a homotopy equivalence. Since $\operatorname{Diff}\left(S^{1}\right) \simeq O(2)$ and $\operatorname{Diff}\left(S^{2}\right) \simeq$ $O(3)$ [5], the Corollary follows.

Remarks. For the nontrivial S^{2}-bundle over S^{1}, this argument shows the diffeomorphism group has the homotopy type of the subgroup of diffeomorphisms taking fibers to fibers by elements of $O(3) \subset \operatorname{Diff}\left(S^{2}\right)$. In the case of a manifold of the form $M=M_{1} \# M_{2}$, where M_{1} and M_{2} are irreducible (and not S^{3}), a similar argument shows that $\operatorname{Diff}(M)$ deformation retracts onto the subgroup of diffeomorphisms which preserve a fixed copy of the nontrivial $S^{2} \subset M$.

References

1. E. César de Sá and C. Rourke, The homotopy type of homeomorphism groups of 3-manifolds, Bull. Amer. Math. Soc. 1 (1979), 251-254.
2. A. Hatcher, Homeomorphisms of sufficiently large P^{2}-irreducible 3-manifolds, Topology 15 (1976), 343-348.
3. \qquad , A proof of the Smale conjecture (to appear).
4. B. Jahren, One-parameter families of spheres in 3-manifolds, Ph.D. thesis, Princeton Univ., Princeton, N. J., 1975.
5. S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621-626.

Department of Mathematics, University of California, Los Angeles, California 90024

