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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volumc 83, Number 2, October 1981

 ON THE DIIFFEOMORPHISM GROUP OF S1 x S2

 A. HATCHER

 ABsTRAcr. A disjunction technique for families of 2-spheres in 3-manifolds is

 applied to determine the homotopy type of the diffeomorphism group of S Ix S2.

 We operate in the C category throughout. Let M3 be a connected 3-manifold

 having exactly two isotopy classes of submanifolds diffeomorphic to S2. It is an

 exercise in 3-manifold topology to see that a closed 3-manifold satisfying this

 condition is one of the two S2-bundles over sl, or the connected sum of two

 irreducible 3-manifolds. Let &; denote the space of embeddingsf: S2 -* M3 whose
 image does not bound a ball in M3. For a bicollar neighborhood [-1, 1] x S2 c

 M3 of the image of a fixed element of &, let &' c & be the subspace of

 embeddings f: S2 __ M3 whose image is disjoint from {x} X S2 for some x E
 [-1, 1] (depending onj).

 THEOREM. The inclusion map &' -* &; is a homotopy equivalence.

 If one assumes the Smale Conjecture, Diff(S3) 0(4) [3], then the Theorem

 easily implies

 COROLLARY. Diff(S1 x S2) has the homotopy type of the product 0(2) x 0(3) x

 Q20(3).

 The calculation of 7T Diff(S1 x S 2) has been known for a long time, using

 Cerf's "1F4 = 0" theorem. In his thesis [4], B. Jahren showed ?rl(&;, 6') = 0, which
 reduces the calculation of sT Diff(S 1 X S2) to 7T, Diff(S3).

 Results equivalent to the Theorem and Corollary were announced in [1], based

 on the belief that the disjunction technique of [2] for surfaces of higher genus

 extended in straightforward manner to the case of 2-spheres. However, as

 Laudenbach has pointed out, this extension is not straightforward, and the purpose

 of the present paper is to recast the technique of [2] so it does apply to 2-spheres.

 (Laudenbach also has a method for handling 2-spheres in S 1 x S2, not as general
 as the one in this paper.)

 PROOF OF THE THEOREM. Letf, C &6, t C D k, be a smooth family representing an
 element of 7Tk(&, &'), so that ft E U ' for t e aDk. Choose a basepoint * C S2 and

 let pt = ft(*) and M, = ft(S2). By Sard's theorem and the compactness of Dk, we
 may choose a finite number of slices Ni = {xi} X S2 C [-1, 1] X S2 c M3 and
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 428 A. HATCHER

 closed k-balls Bi c D k such that:
 (1) M, is transverse to Ni for t E Bi.

 (2) U iint(B) = Dk.

 (3) Ni N#Af)fori #1j.

 (4) p, Ni fort E Bi.
 Let C,7 be the collection of circles of M, n Ni for t E Bi, and let C, = U i C,, the
 union over all i such that t E Bi. Each circle c, E C, bounds a unique disk

 DM(c) c M, - {p,}. Proceeding inductively over the multiple intersections Bi

 n n Bi, from larger to smaller values of n, we may choose a smooth family of

 functions q,: C, -* (0, 1) satisfying

 (5) 99,(c,) < ,(;c') whenever DM(c,) c DM(c,').

 With a bit more effort, we may also achieve

 (6) p,(c,) # p(c,) for all pairs c, #& c' in Ci.

 To obtain this, first replace each Ni by k + 1 nearby slices Nij= {xj} X S2,
 j = 1, ... , k + 1, for which (1), (3), and (4) still hold. Let C,'g be the set of circles

 of M, n Nq , and let C, be the union of the C/'s, as before. Choose q,: C, -* (0, 1)
 again satisfying (5). For each N,, there is a subset K,, of Bi where p, is not injective
 on C/'. If q, is in "general position", each Ki, will be a finite union of codimension-
 one submanifolds of Bi and Fkf i1 K.- will be empty, for each i. Thus

 U int(Bi - N(Kij)) = Dk
 i,j

 for small enough neighborhoods N(K1,) of Kij. By construction, q, is injective on C,
 for t E Bi - N(K,1). Now choose finitely many balls B,,, in Bi - N(K.1) and
 corresponding slices Nij, near N. so that (1)-(4) hold for these. Each circle
 c, c M, n N. then determines a nearby circle c,1 c M, n Nijq, and we choose for
 p,(c,') a value near qp,(c,) such that (5) holds for the circles c,, c,2 .... With {Bij}
 for { B1) and { N,,} for { N1) we have now achieved (1)-(6), as one can easily check.

 For fixed t, we now construct an isotopy M," of M, = M,o which eliminates all
 the circles of C,. Choose first an E > 0, independent of t, so that the inequalities in
 (5) and (6) take the forms p,(c,) < q,(c,) - E and lg,(c,) - q),(c') < , respectively.
 Next, suppose inductively that for some c, E C,i, M," has been constructed for
 u < q,(c,) such that, for u S p,(c,), (a) M, = Mo near c, and (b) M, restricted to
 DM(c,) is an isotopy of DM(ct) to DM(c,), say, with int(D' (c,)) n Nj = 0 for eachj

 such that t E Bj. We call such a c, a primary circle of C. Since D (c,) n Ni = C,
 then by the characteristic property of the 3-manifold M3, exactly one of the two

 disks into which Ni is cut by c, say DN(c,), is such that the 2-sphere D((c,) U
 DN(cl) bounds a 3-ball B(c,) in M3. Note that B(c,) n Nj = 0 for each j 3 i such
 that t E Bj, since aB(ct) n Nj = 0.

 The isotopy M,. for p,(c,) S u S (p,(c,) + E is now constructed to eliminate c, by
 isotoping DM(c,) across B(c,) to DN(c,), and a little beyond. If there are any other
 circles of C,i in int(DN(cf)) remaining at time u = p,(c,), this isotopy also eliminates
 them (see the figure); we call such circles secondary circles of C.
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 THE DIFFEOMORPHISM GROUP OF S1 X S2 429

 A key property of this isotopy eliminating the primary circle c, E C,' during
 [cpt(c,), T,(c,) + e] is that it does not move M, near any circles of CtJ for j = i, since
 B(c,) n Nj = 0.

 If the interval [T9,(ct), q4p(c,) + e] overlaps another interval [q9,(c'), qp,(c') + e] for a

 primary circle c,' E C/, then by (5) the disks D,(ct) and DMQ(c') are disjoint, and by
 (6), i ? j, so the disks DN(ct) and DN(ct) are disjoint. It follows that B(ct) and B(c,')
 are disjoint. The two isotopies eliminating c1 and c,' during these overlapping
 intervals thus have disjoint supports and can be performed independently. Hence

 for fixed t a well-defined isotopy Mt1, 0 < u < 1, is obtained, eliminating each

 primary circle c, E C, during the u-interval [qg(c,), qp(ct) + e]. From the construc-
 tion it is clear that M,1 n Ni = 0 for t E Bi.

 Observe that for circles of C/', the distinction between primary and secondary is

 independent of t e Bi. For, by (6) the ordering of the circles of C/' is independent

 of t E Bi; and, as noted earlier, an isotopy which eliminates a primary circle of Ci,
 forj # i does not affect any circle of Cr1.

 The isotopy Mu of M, may not depend continuously on t, for the reason that as t
 leaves a ball Bi, the circles of Ci are deleted from C, and hence an isotopy
 eliminating a primary circle c, E C,1 during [9T9(ct), pg(c,) + e] is suddenly not
 performed. This can be remedied by the following tapering process. For each i, let

 B,' c int(B1) be a concentric ball such that {int(B1')} still covers D k. Let Zi be a
 tapering cylinder in Dk x [0, 1] with base Bi x> {0} and top Bi' x { 11, having a
 radius in D k X { u} which decreases constantly as u goes from 0 to 1. The refined

 prescription for M,u then is: for an isotopy eliminating a primary circle c, E C6'
 during [q,(c,), g,(c,) + e], use only the portion of this isotopy supported by the part

 of [q,(c,), qp(c,) + e] inside Zi. In other words, outside Zi we simply forget about
 the slice Ni and the way Mu intersects N.. This creates no problems since isotopies
 eliminating primary circles of C/' leave circles of CJ unchanged forj 4 i.

 To make Mu depend continuously on t it remains only to choose the isotopy

 eliminating a primary c, (E C(/ during [Tp(c,), pg(c,) + e] to vary continuously with t.
 This can be done by choosing for one t e Bi a diffeomorphism of a neighborhood

 of B(c,) onto a standard model, then extending this diffeomorphism to all t e Bi by
 isotopy extension, and then using these diffeomorphisms to pull back a standard

 disjunction isotopy in the model. We can do this for each i separately, and for each

 primary c, E C/' in the order given by pt, since intervals [qp(c,), pg(c,) + e] for
 primary ce's overlap only when their B(c,)'s are disjoint.

 The family of isotopies Mu provides by isotopy extension a family of isotopiesf,.
 of the given fE & & such that fI 6E '. For t near aDk we can choose the slices Ni

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 22:46:39 +00:00������������� 

All use subject to https://about.jstor.org/terms



 430 A. HATCHER

 to be disjoint from M, (since f, is then in &;'), so MtU = M, and (we may assume)
 ft = f fort E aDk. Thus we have shown 7Tk(&;, &') = 0 for anyk. O

 PROOF OF THE COROLLARY. We shall use the following two assertions:

 (a) The space of embeddings S2 _ S2 x R deformation retracts onto the sub-
 space of diffeomorphisms S2 . S2 X {O}.

 (b) The space of diffeomorphisms of S2 x I deformation retracts onto the

 subspace of diffeomorphisms taking slices S2 X { x} to slices S2 x {y }.

 We leave it as an exercise for the reader to verify that (a) and (b) follow from the

 Smale Conjecture. (In fact, they are each equivalent to the Smale Conjecture.)

 To prove the Corollary, let f,: S1 x 52 __51 x S2, t E D k, represent an ele-
 ment of 7Tk(Diff(S 1 X S2), Diff,(S1 x S2)), where the subscript s denotes diffeo-
 morphisms taking slices {x} X S2 to slices {y} X S2. If * E S 1 is a basepoint, then

 by the Theorem, we may assumef I{*} x S2 E &' for all t C Dk . The projection

 of f({*} X S2) onto SI is then an arc varying continuously with t, so we may

 choose x, Ei S varying continuously with t and disjoint from this arc. Thus
 gt(t* X S2) n {Xt} X S2 = 0 for all t. After composingf, with a rotation in the
 S1 factor of S1 x S2, we may assume this xt is a constant point xo E S1, x0 *

 Next we apply (a) to isotopef, so thatfQ({*} X S2) = {*} X S2. Then we apply (b)
 to make f, e Diff,(S1 x S2) for all t C D k. This shows that Diff,(S1 X S)
 Diff(S1 x S2) is a homotopy equivalence. Since Diff(S1) 0(2) and Diff(S2)

 0(3) [5], the Corollary follows. OL

 REMARKS. For the nontrivial S 2-bundle over S 1, this argument shows the
 diffeomorphism group has the homotopy type of the subgroup of diffeomorphisms

 taking fibers to fibers by elements of 0(3) c Diff(S2). In the case of a manifold of

 the form M = Ml M2, where M1 and M2 are irreducible (and not S3), a similar
 argument shows that Diff(M) deformation retracts onto the subgroup of diffeo-

 morphisms which preserve a fixed copy of the nontrivial s2 c M.
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