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Linearization in 3-Dimensional Topology 

A. E. Hatcher 

The message from Thurston is clear: geometry dominates topology in dimension 
three. Our title refers to one important aspect of this geometry, linearity in various 
forms. We shall consider here linearization of automorphisms of 3-manifolds. 
Specifically, we ask, does Diff(M), the group of self-diffeomorphisms of the 
3-manifold M (with the C°° topology), have the homotopy type of the subgroup 
of diffeomorphisms which preserve a given "linear" structure on Ml If so, this is 
strong evidence that the linear structure is really intrinsic to the topology of M. 

EXAMPLES (M closed, orientable). 
(I) M=S3. The linear diffeomorphisms of S3 are the isometries, Isom(»S3) = 

0(4), the orthogonal group. 

The Smale Conjecture. 0(4)a+Diff (S3) is a homotopy equivalence. 
We shall indicate some of the ideas which go into a proof of this below. Previously, 

Cerf had shown that n0 Diff (S3) ^n0O(4). He also proved that the Smale Conjecture 
implies that Diff (M)-^Homeo (M)9 the natural map to the homeomorphism 
group, is a weak homotopy equivalence for all 3-manifolds M. 

(II) M=S3/r, J T C S O (4) acting freely on S3
9 the so-called spherical or elliptic 

3-manifolds. One expects Diff (M) ^ Isom (M)9 but this is known only for RP3. 
(III) M=H3/T9 Tczlsom (i/3), hyperbolic 3-manifolds. Again, one expects 

Diff ( M ) ^ Isom (M), and this is known when M is Haken (= "irreducible, 
sufficiently large" in the older terminology). By a theorem of Mosto w, Isom (M) ^ 
Out(7c1M), the outer automorphism group of %XM (automorphisms modulo inner 
automorphisms), which is not only discrete but finite. 

(IV) M=E3IT,rczlsom(E3)9 euclidean or flat 3-manifolds. Here the linear 
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diffeomorphisms are the afline diffeomorphisms (i.e., affine in the universal cover E3). 
Such an M is Haken, so one can show Diff (M)^AS(M). For example, 
Diff(T3)^GL(3,Z)XT3 (semidirect product). This is considerably larger than 
Isom (T3), which is compact. 

(V) M=SXXS2. This is best regarded as a bundle S2^M-*S1 with linear 
structure group 0(3). Then Diff(S1XS2)c^O(2)X0(3)XßO(3), the bundle 
automorphisms (Rourke-César de Sä). 

(VI) M= jT2-bundle over S1 with gluing map in SL (2, Z) having distinct 
real eigenvalues. Again Diff (M) has the homotopy type of the bundle automorp-
hism group. 

(VII) M Seifert fibered, S1^~M-+B9 over a closed surface B. These include 
the manifolds of I, II, IV, V, but none of those in III or VI. Excluding the manifolds 
in I, II, IV, and V, the Seifert fiber structure is unique, and Diff (M)^{fiber-
preserving diffeomorphisms} except perhaps when B=S2 and there are only three 
singular fibers (the non-Haken cases). Incidentally, the linear structure in a Seifert 
fibering is in the base B9 which is naturally a quotient of the spherical, euclidean, 
or hyperbolic plane by a discrete group G of isometries (perhaps with torsion). 
For example, M could be the unit tangent bundle of such a B9 which has singular 
fibers arising from the elements of G with fixed points (rotations of finite order). 

(VIII) M having a torus decomposition, i.e., a splitting of M into submanifolds 
Mj which are the components of the complement of a finite collection (perhaps 
empty) of disjointly embedded tori Tt in M, such that 

(1) nxTi-^Ti1 M is injective for each i (to rule out the possibility that T. bounds 
a solid torus in M). 

(2) Each Mj is either 
(a) the interior of a compact Seifert fibered manifold, or 
(b) a hyperbolic manifold H3jr of finite volume (having finite volume is almost 

as good as being compact). 
(3) {ÜTj} is minimal, with respect to inclusion, among collections {Tt} satisfying 

(1) and (2). 

Small Exception. For the T^-bundles in VI above it seems better to choose 
{7 .̂}=0 rather than a single fiber T2

9 which is what (l)-(3) would yield. (The 
other T2-bundles over S1 are Seifert-fibered.) 

Perhaps the deepest result in 3-manifolds to date is: 

THEOREM. Every Haken manifold has a torus decomposition which is unique up 
to isotopy. 

This is due to Johannson and (independently) Jaco-Shalen for the Seifert part, 
and to Thurston for the (much harder) hyperbolic part. As far as is known, all 
prime 3-manifolds (i.e., indecomposable as a connected sum) have torus decomposi-
tions, since all known prime 3-manifolds are either Seifert, hyperbolic, or Haken. 
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THEOREM. Diff(M) deformation retracts onto the subgroup of diffeomorphisms 
leaving \JtTt invariant. 

If {Tj^P, the components of Diff(M) are contractible. So the content of 
the preceding theorem is to reduce n0Ditt(M) essentially to the n0 Diff(Mj)'s. 
For example, one can say that n0 Diff (M) is generated by: 

diffeomorphisms which permute the 7Vs and the M/s, 
Dehn twists along the TVs, 
isometries of the hyperbolic M/s, 
fiber-preserving diffeomorphisms of the Seifert M/s. 
This is reminiscent of Thurston's normal form for diffeomorphisms of surfaces. 
(IX) M nonprime. Rourke and César de Sa have largely reduced Diff (M) 

iii this case to Diff(My) for the prime factors Mj of M9 plus the homotopy 
theory of certain "configuration spaces". This seems to be rather complicated in 
general. 

THE SMALE CONJECTURE: Diff (S3)^0(4). 

There are many statements well-known to be equivalent to this, e.g., 
(1) The space of unknotted smoothly embedded circles in R3 deformation retracts 

onto the subspace of round (i.e., planar, constant curvature) circles. 
(2) The space of smoothly embedded 2-spheres in R3 deformation retracts onto 

the subspace of round (i.e., constant curvature) 2-spheres. 
Of these, (1) seems hopeless: there appears to be no canonical way of unknotting 

the unknot. At first glance, (2) seems even harder if one looks at embedded 2-spheres 
with apparent knots, like the following: 

Nonetheless, (2) can be proved, using only elementary (but complicated) dif-
ferential topology. Intuition suggests there ought, also, to be an analytic proof of (2), 
based on some physical model for 2-spheres in R3. However, somewhere the 
topology or geometry of three dimensions will have to enter, since the analog of (2) 
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either for 3-spheres in Ä4 or for 4-spheres in R5 is definitely false (this is directly 
traceable to the existence of exotic 7-spheres). 

What one actually proves is the following technical variant of (2): a smooth 
family gt\ S2a+R3 parametrized by t£Sk extends to a smooth family gt: B3a+R3. 
For fc=0 this is essentially due to Alexander, and for k= 1 this is what Cerf showed 
to calculate nQ Diff (S3) ^ Z2. 

The good property of 2-spheres in R3 is that they can be sliced into simpler and 
simpler 2-spheres by surgery on horizontal circles: 

Ü Ü Ö 
(Note this fails for S^cuR", n^4.) 
The process can be iterated: surger all the circles of intersection of the given 

2-sphere with more and more horizontal transverse planes. Eventually a point is 
reached when further surgeries no longer yield significantly simpler 2-spheres. 
We call such 2-spheres, somewhat loosely, "indecomposable". 

It is easy to reverse the surgery process, gluing together extensions gt. So the 
problem becomes to construct gt on the "indécomposables". This must be done 
in a canonical way, which works for fc-parameter families of "indécomposables". 

A further problem is that one cannot choose the same horizontal slicing planes 
for all t£Sk

9 but only locally in t. That is, one covers Sk by balls Bi9 associated 
to each of which is a finite collection of horizontal planes Ptj transverse to gt(S2) 
for t€Br One surgers gt(S2) using the planes Ptj for t£Bt. So on intersections 
of B.'s9 the "indécomposables" are being further surgered (subdivided), and one 
must take pains to make the extensions gt on "indécomposables" invariant under 
such subdivision. 

Thus the heart of the problem is understanding the "indécomposables". For small 
values of k9 one can perturb the family gt so that the height functions on gt(S2) 
form a generic fc-parameter family, and then write down a complete catalog of the 
types of "indécomposables". This is how Cerf proceeded for k=l. But for general 
k this approach fails (because smooth singularities are classified only for small 
codimensions k). 

So one must forget height functions, and instead look at "indecomposable" 
2-spheres from the top. This viewpoint leads to the following basic definition: 
The contour of a 2-sphere laR3 is the quotient space of the 3-ball laR3 bounded 
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by I, obtained by identifying points x and y in I whenever there is a vertical 
line segment in Ë joining x and y. 

EXAMPLE. 

Contour = 2-disc with a "flap" or "tongue" 
i 

In general, the part of gt(S2) between two adjacent slicing planes Pfj has the 
following key property (after a preliminary normalization): Each vertical line in 
R3 meets this part of gt(S2) in a connected set (perhaps empty). Using this, one 
proves that the contour of an "indecomposable" is always a disc with finitely many 
tongues attached successively, either to the disc or to previously attached tongues. 
("Attaching a tongue" means attaching a disc D along a subdisc which meets 
dD nontrivially.) 

To get the canonical extensions gt on "indécomposables", the procedure is: 
Shrink each tongue in turn down to the arc along which it attaches. This lifts to an 
isotopy of the "indecomposable", ending with a 2-sphere whose contour is a disc. 
For this, gt is easily constructed. Then reversing the isotopy which shrank the 
tongues, one obtains gt on the original "indecomposable" by isotopy extension 
(which is canonical). This uses Smale's theorem Diff (S2)c* 0(3), to make gt 

canonical. 
The hard work comes in making this shrinking-of-contours process mesh with 

the subdivision (slicing) of "indécomposables" mentioned earlier. 
One might well ask if shrinking of contours could be applied to the original 

gt(S2). Unfortunately, one can easily construct examples of 2-spheres in JR3 whose 
contours cannot be continuously shrunk, within themselves, to any subdisc. (Such 
contours are contractible but not collapsible, in the sense of PL topology.) So the 
slicing process is necessary. 

APPLICATION. 

THEOREM (C. B. THOMAS). If the Smale Conjecture is true, then: A 3-manifold 
M with universal cover S3 has the homotopy type of one of the spherical manifolds 
S3/T (for some r e : SO (4) acting freely on S3 as isometries). 
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In particular, ^M&T. To classify such Af's there remains the problem of 
showing that T can act on S3 only in the standard linear ways. This is known 
for some T's e.g., Z29 Zi9 Z69 Z89 generalized quaternion (of order 2k)9 binary 
tetrahedral and octahedral. (See the article of Rubinstein for references.) It is 
unknown, in particular, for r cyclic of odd order (e.g., Z3!), and for the binary 
icosahedral group. 
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