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The main result of this paper is that the group Diff(S1×S2) of diffeomorphisms

S1×S2→S1×S2 has the homotopy type one would expect, namely the homotopy

type of its subgroup of diffeomorphisms that take each sphere {x}×S2 to a sphere

{y}×S2 by an element of the isometry group O(3) of S2 , where the function x,y
is an isometry of S1 , an element of O(2) . It is not hard to see that this subgroup is

homeomorphic to the product O(2)×O(3)×ΩSO(3) , this last factor being the space

of smooth loops in SO(3) based at the identity. This has the same homotopy type as

the space of continuous loops. These loopspaces have H2i(ΩSO(3);Z) nonzero for

all i , so we conclude that Diff(S1×S2) is not homotopy equivalent to a Lie group.

Diffeomorphism groups of surfaces and many irreducible 3-manifolds are known to

be homotopy equivalent to Lie groups (often discrete groups in fact), and S1×S2 is

the simplest manifold for which this is not true.

Via the Smale conjecture, proved in [H], the calculation of the homotopy type of

Diff(S1×S2) reduces easily to a problem about making families of 2 spheres in S1×S2

disjoint. To state the problem in slightly more generality, let M3 be a connected

3 manifold containing a sphere S2 ⊂ M3 that does not bound a ball in M3 , and

let S2×[−1,1] ⊂ M3 be a bicollar neighborhood of this S2 . Let E be the space of

smooth embedding f :S2→M3 whose image does not bound a ball, and let E′ be the

subspace of embeddings f for which there exists x ∈ [−1,1] with f(S2) disjoint

from {x}×S2 . The result we need is:

Theorem. If any two embedded 2 spheres in M that do not bound a ball are isotopic,

then the inclusion E′↩ E is a homotopy equivalence.

The hypothesis is satisfied for both S2 bundles over S1 , and one can determine

the homotopy type of Diff(M3) for the nonorientable bundle just as for S1×S2 . The
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only other 3 manifolds that satisfy the hypothesis of the theorem are connected sums

of two irreducible 3 manifolds. For these the theorem implies that Diff(M3) has

the homotopy type of the subgroup leaving invariant a 2 sphere that splits M as

a connected sum. This essentially reduces the calculation of the homotopy type of

Diff(M3) to the calculation for the two irreducible summands.

Proof: Since E and E′ are homotopy equivalent to CW complexes, it suffices to show

that the inclusion E′↩E induces isomorphisms on all homotopy groups. Represent

an element of πk(E,E
′) by a smooth family of embeddings ft ∈ E for t ∈ Dk , with

ft ∈ E′ for t ∈ ∂Dk . Since E′ is open in E there is a subdisk Dk0 ⊂ intDk such that

ft ∈ E′ for t ∈ Dk − intDk0 . Choose a basepoint ∗ ∈ S2 and let pt = ft(∗) and

Mt = ft(S2) .
Our first task is to find a finite number of slices Ni = {xi}×S2 ⊂ [−1,1]×S2 ⊂ M3

together with closed k balls Bi ⊂ intDk such that:

(1) Mt is transverse to Ni for all t ∈ Bi .
(2) The interiors of the Bi ’s form an open cover of Dk0 .

(3) Ni ≠ Nj for i ≠ j .

(4) pt ∉ Ni for t ∈ Bi .
For fixed t ∈ Dk0 the slices {x}×S2 that are transverse to Mt are dense in [−1,1]×S2

by Sard’s theorem, so we may choose such a slice that is disjoint from pt . This slice

will remain transverse to Mt and disjoint from pt for all nearby t as well, say for t in

a ball Bt centered at t . By compactness the cover of Dk0 by the interiors of the balls

Bt has a finite subcover, so we have a finite collection of balls Bi with corresponding

slices Ni satisfying (1), (2), and (4). By a small perturbation of the slices Ni we can

achieve (3) as well without affecting the other three conditions since if Mt is transverse

to a slice then it is also transverse to all nearby slices.

Let Cit be the collection of circles of Mt ∩Ni for t ∈ Bi . Thus Cit is a finite set.

Let Ct = ∪iCit , the union over all i such that t ∈ Bi . Each circle ct ∈ Ct bounds a

unique disk DM(ct) ⊂ Mt − {pt} . Choose functions ϕt :Ct→(0,1) such that

(5) ϕt(ct) < ϕt(c
′
t) whenever DM(ct) ⊂ DM(c′t)

with ϕy(ct) varying smoothly with t ∈ Bi for ct ∈ Cit . For example we could let

ϕt(ct) be the area of the disk f−1
t (DM(ct)) ⊂ S2 , where the total area of S2 is nor-

malized to be 1.

It will be very convenient to have one further condition satisfied:

(6) ϕt is injective on Cit for each i with t ∈ Bi .
To achieve this, first replace each Ni by k + 1 nearby slices Nij . If these are suf-

ficiently close to Ni the conditions (1), (3), and (4) will still hold. Let Cijt be the

set of circles of Mt ∩ Nij and let Ct be the union of the Cijt ’s. Choose functions

ϕt :Ct→(0,1) satisfying (5) as before. For each Nij there is a subset Kij of Bi where

ϕt is not injective on Cijt . After a small perturbation of the functions ϕt to make the
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graphs of the functions t,ϕt(ct) have general position intersections in Dk×(0,1)
we may assume that each Kij is a finite union of codimension one submanifolds of

Bi , the submanifolds where the values of ϕt on two circles in Cijt coincide, and we

may assume that all these codimension one submanifolds have general position in-

tersections. In particular this implies that ∩jKij is empty, being a union of general

position intersections of k+ 1 codimension one submanifolds of Dk . Thus for small

enough open neighborhoods Vij of Kij in Bi we have Dk0 = ∪i,j int(Bi − Vij) . By

construction ϕt is injective on Cijt for t ∈ Bi − Kij . Now choose finitely many small

balls Bijl covering Bi − Vij disjoint from Kij , with corresponding slices Nikl near

Nij such that (1)-(4) hold for these. Each circle ct in Mt ∩ Nij determines a nearby

circle clt in Mt ∩ Nijl , and we choose for ϕt(c
l
t) a value near ϕt(ct) such that (5)

holds for the circles c1
t , c

2
t , ··· . (For example, we could obtain ϕt(c

l
t) from ϕt(ct)

by adding or subtracting some small constant times the area of the annular region

between f−1
t (ct) and f−1

t (c
l
t) in S2 .) With {Bijl} for {Bi} and {Nijl} for {Ni} we

still have (1)-(5), and (6) holds since any two circles clt in Mt ∩Nijl are associated to

different ct ’s in Mt ∩Nij , and the ϕt values of these ct ’s are different since Bijl is

disjoint from Kij .

By compactness of the balls Bi there is an ε > 0 such that the conditions (5) and

(6) take the stronger forms

(5ε) ϕt(ct) < ϕt(c
′
t)− ε whenever DM(ct) ⊂ DM(c′t) .

(6ε) |ϕt(ct)−ϕt(c′t)| > ε for all pairs ct ≠ c
′
t in Cit .

After these preliminaries we now begin the construction of an isotopy Mtu of

Mt = Mt0 which eliminates all the circles of Ct . First we describe the construction

of Mtu for a fixed value of t , and then after this is done we will describe the small

modifications needed to make Mtu depend continuously on t .
For fixed t , suppose inductively that for some ct ∈ Ct we have constructed Mtu

for u ≤ϕt(ct) and the following conditions are satisfied:

(a) The isotopy Mtu , u ≤ϕt(ct) , is stationary in a neighborhood of ct .
(b) The isotopy Mtu for u ≤ϕt(ct) moves DM(ct) to a disk D′M(ct) with the property

that int(D′M(ct))∩Nj = ∅ for each j such that t ∈ Bj .

We call such a ct a primary circle of Ct . Let Ni be the slice containing ct . Since

D′M(ct) ∩ Ni = ct , then since the manifold M3 has exactly two isotopy classes of

embedded spheres, exactly one of the two disks into which Ni is cut by ct , say DN(ct) ,
is such that the 2 sphere D′M(ct)∪DN(ct) bounds a 3 ball in M3 . Denote this 3 ball

by B(ct) . Its boundary has a corner along ct , with interior angle less than π rather

than greater than π , otherwise Ni would be contained in the ball B(ct) . Note that

B(ct)∩Nj = ∅ for each j ≠ i with t ∈ Bj , since ∂B(ct)∩Nj = ∅ by (b).

The isotopy Mtu for ϕt(ct) ≤ u ≤ ϕt(ct) + ε is now constructed to eliminate

ct by isotoping D′M(ct) across B(ct) to DN(ct) and a little beyond. If there are any
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other circles of Cit in int(DN(ct)) remaining at time u = ϕt(ct) , this isotopy also

eliminates them, as indicated in the figure below which shows the analogous situation

one dimension lower. We call such circles secondary circles.

N

N

i Ni

Mtu

cB ( )t

cu ( )tt

cD ( )t

ct ct

M cD ( )t
′

= ε+ϕcu ( )tt= ϕ

Note that this isotopy eliminating the primary circle ct ∈ Cit during the u interval

[ϕt(ct),ϕt(ct)+ ε] does not change Mt,ϕt(ct)∩Nj for any Bj containing t with j ≠ i
since B(ct)∩Nj = ∅ for these slices.

If the interval [ϕt(ct),ϕt(ct)+ ε] overlaps another interval [ϕt(c
′
t),ϕt(c

′
t)+ ε]

for a primary circle c′t ∈ Cjt , then by (5ε) the disks D′M(ct) and D′M(c
′
t) are disjoint,

and by (6ε) we have i ≠ j so the disks DN(ct) and DN(c
′
t) are disjoint. It then follows

from (b) that the boundary spheres of the balls B(ct) and B(c′t) are disjoint, and in

fact that the balls themselves are disjoint. The two isotopies eliminating ct and c′t
thus have disjoint supports and can be performed independently.

The process of eliminating circles of Ct can now be repeated inductively, to pro-

duce an isotopy Mtu for 0 ≤ u ≤ 1 with the final Mt1 disjoint from all Ni with

t ∈ Bi .
It remains to make the isotopies Mtu depend continuously on t . The most ob-

vious obstacle to continuity is the fact that as t leaves a ball Bi the circles of Cit are

deleted from Ct and hence an isotopy eliminating a primary circle ct ∈ Cit during

the u interval [ϕt(ct),ϕt(ct)+ε] is suddenly not performed. To fix this problem we

introduce a tapering process. For each i let B′i ⊂ intBi be a concentric ball such that

the interiors of the B′i ’s still cover Dk0 . Let ψi :Bi→[0,1] be such that ψi(∂Bi) = 0

and ψi(B
′
i) = 1. Then we refine the prescription for Mtu by specifying that for an iso-

topy eliminating a primary circle ct ∈ Cit during the u interval [ϕt(ct),ϕt(ct)+ ε] ,
only the portion of this isotopy with u ≤ ψi(t) is to be used. Thus for u > ψi(t)
we simply forget about the slice Ni and the way Mtu intersects Ni . This creates no

problems since isotopies eliminating primary circles of Cit have no effect on circles

of Cjt for j ≠ i .

The other thing we need to do to make Mtu depend continuously on t is to ar-

range that the isotopies eliminating the primary circles ct ∈ Ct vary continuously with

t . Let us first specify more precisely how these isotopies are to be constructed. For a

neighborhood N(D′M(ct)) of D′M(ct) in Mtu choose a collar N(D′M(ct))×[0,1)↩M3
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containing B(ct) and disjoint from the Nj ’s not containing ct , with N(D′M(ct))×{0} =
N(D′M(ct)) . Then the isotopy of D′M(ct) just slides each point x along the arc

{x}×[0,1) . The family of isotopies Mtu will then be continuous if we can choose

the collars to vary continuously with t .
After a small perturbation we may assume the graphs of all the functions ϕt

and ψi have general position intersections. The projections of these intersections

into Dk then give a stratification of Dk , whose strata are open manifolds of various

dimensions. Consider the problem of constructing Mtu over a stratum, assuming

inductively that the construction has already been made over strata of lower dimen-

sion, and in particular over the boundary of the stratum. The ordering of the circles

of Ct by the functions ϕt is the same throughout the stratum. By induction we may

assume Mtu has already been constructed for u ≤ϕt(ct) for some primary circle ct .
As part of this construction we have already chosen collars on N(D′M(ct)) over the

boundary of the stratum, and we wish to extend these collars over the stratum itself.

The stratum can be obtained from its boundary by attaching a sequence of handles,

so it suffices to construct collars over a handle Dn×Dk−n agreeing with given collars

over ∂Dn×Dk−n . First extend over a neighborhood of ∂Dn×Dk−n using isotopy ex-

tension. Call these collars old collars. Since a handle is a k dimensional disk, collars

over the handle itself exist by isotopy extension. Call these new collars. To make the

old and new collars agree near ∂Dn×Dk−n we first push the old collars away from

N(D′M(ct)) by sliding them along the [0,1) factors of the new collars, compressing the

interval [0,1) into the subinterval [δ(t),1) , where δ(t) goes from 0 on ∂Dn×Dk−n
to a value near 1 as we move away from ∂Dn×Dk−n , a value close enough to 1 so

that the subcollars N(D′M(ct))×[0,1 − δ(t)) contain B(ct) . Then we can trim away

the undesired parts of the old and new collars to create a continuously varying family

of hybrid collars. (Details are left to the reader.)

Having the family of isotopies Mtu of the submanifolds Mt we can apply isotopy

extension to get a family of isotopies ftu of the embeddings ft with ftu(S
2) = Mtu .

The balls Bi were chosen to be disjoint from ∂Dk so Mtu is independent of u for

t ∈ ∂Dk , and we may assume the same is true of ftu . Thus ftu provides a homotopy

of the given map (Dk, ∂Dk)→(E,E′) to a map with image in E′ , finishing the proof

that πk(E,E
′) = 0 tu

Corollary. The map O(2)×O(3)×ΩSO(3)→Diff(S1×S2) sending (α,β, γ) to the

diffeomorphism (x,y),
(
α(x), β(y)γx(y)

)
, is a homotopy equivalence.

Proof: Let G ⊂ Diff(S1×S2) be the subgroup described at the beginning of the paper,

consisting of diffeomorphisms of the form (x,y), (α(x), βx(y)) for α ∈ O(2)
and βx ∈ O(3) . To show that πk(Diff(S1×S2),G) = 0 for all k , start with a family of

diffeomorphisms gt :S1×S2→S1×S2 representing an element of this relative homo-

topy group. By the theorem we may assume the embeddings ft = gt ||{x0}×S2 are
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in E′ for all t . The projection of ft(S
2) onto S1 is then an arc varying continuously

with t , so we may choose a point xt ∈ S1 outside this arc, also varying continuously

with t . Thus we may view ft as a family of embeddings of S2 in the complement of

{xt}×S2 , which we can identify with S2×(0,1) . By the Smale conjecture the space of

2 spheres in S2×(0,1) that do not bound a ball is contractible, so we can deform the

family gt , staying fixed for t ∈ ∂Dk , so that gt({x0}×S2) is a sphere {yt}×S2 for

all t . Again by the Smale conjecture Diff(S2×I) has the homotopy type of the sub-

group of diffeomorphisms taking slices S2×{x} to slices S2×{y} , so after a further

deformation of gt we may assume it has this property as well. Since the inclusion

O(3)↩ Diff(S2) is a homotopy equivalence by [S] we can assume further that each

restriction gt ||{x}×S2 lies in O(3) . Finally, by lifting a deformation retraction of

Diff(S1) into O(2) we can deform gt into G . All these deformations can be assumed

to be fixed for t ∈ ∂Dk . Thus we have πk(Diff(S1×S2),G) = 0. (Note that this ar-

gument works also for the nonorientable S2 bundle over S1 , with the appropriately

modified definition of G .)

Projecting S1×S2 onto S1 gives a homomorphism G→O(2) whose kernel K can

be identified with the group of smooth maps S1→O(3) . This homomorphism is a

principal bundle, and it has a cross section, so it is a product bundle and G is homeo-

morphic to O(2)×K . (Algebraically, G is only a semidirect product, not a product.)

Since O(3) is a group, the space K of smooth maps S1→O(3) is homeomorphic to

the product of O(3) with the space ΩSO(3) of smooth loops in SO(3) based at the

identity. tu

The loopspace ΩSO(3) has two path components, and they are homotopy equiva-

lent as is the case for all loopspaces. The path component consisting of homotopically

trivial loops can be identified with ΩS3 since S3 is the universal cover of SO(3) . It

is one of the standard applications of the Serre spectral sequence to compute that

Hi(ΩS3;Z) is Z for i even and 0 for i odd.
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