ON THE DIFFEOMORPHISM GROUP OF A REDUCIBLE 3-MANIFOLD

Harrie HENDRIKS
Mathematisch Instituut, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands
Darryl McCULLOUGH*
Department of Mathematics, University of Oklahoma, Norman, Oklahoma, USA

Received 26 May 1986
Revised 25 July 1986

Abstract

The loop space of the configuration space of César de Sá-Rourke-Hendriks-Laudenbach is identified as a factor (up to homotopy) of a certain space of imbeddings of a punctured 3-cell B into the compact 3 -manifold M. The restriction map from the diffeomorphism group of M to this space of imbeddings is shown to be a product fibration. As an application, it is proved that the imbedding $\operatorname{Diff}(M$ rel $B \bmod \partial M) \rightarrow \operatorname{Diff}(M \bmod \partial M)$ induces injective homomorphisms of homotopy groups.


```
AMS (MOS) Subj. Class.: Primary 57M99
secondary 57R50, 57R40,55S37
3-manifold reducible 3-manifold
diffeomorphism diffeomorphism group
configuration space
```


1. Introduction

Let M be a connected compact orientable 3-manifold with a sphere boundary component S_{0}. Then M can be constructed as a connected sum of a disk P_{0} whose boundary is S_{0}, with say n irreducible 3-manifolds $P_{1}, P_{2}, \ldots, P_{n}\left(P_{i} \not \equiv S^{3}\right)$ and say g copies of $S^{1} \times S^{2}$. Let D_{i} be the connected sum disk in P_{i}. There is a compact codimension-zero submanifold B of M, diffeomorphic to the closure of the complement of $n+2 g$ disjointly imbedded disks in P_{0}, so that
(1) $S_{0}=\partial B \cap \partial M$, and
(2) $M-B$ is the disjoint union of $P_{i}-D_{i}, i=1,2, \ldots, n$ and g diffeomorphs of $(0,1) \times S^{2}$.

[^0]Consider the space $\operatorname{Imb}\left(B, M \bmod S_{0}\right)$ of imbeddings $B \rightarrow M$ which restrict to the inclusion on S_{0}. Let $\operatorname{Imb}_{\mathrm{e}}\left(B, M \bmod S_{0}\right)$ be the subspace of imbeddings that are extendible to a diffeomorphism of $M \bmod \partial M$ (i.e. restricting to the inclusion on $\partial M)$.

As direct consequence of [5], we will prove the following:
Theorem 1. The restriction map

$$
\operatorname{Diff}(M \bmod \partial M) \xrightarrow{\rho} \operatorname{Imb}\left(B, M \bmod S_{0}\right)
$$

which is a principal fibre bundle with fibre

$$
\prod_{i=1}^{n} \operatorname{Diff}\left(P_{i} \bmod \partial P_{i} \cup D_{i}\right) \times \prod_{j=1}^{g} \operatorname{Diff}\left([0,1] \times S^{2} \bmod \{0,1\} \times S^{2}\right)
$$

is a product fibration.
Remark 1. The analogous principal fibration

$$
\operatorname{Diff}(\hat{M} \bmod \partial \hat{M}) \rightarrow \operatorname{Imb}_{e}(\hat{B}, \hat{M})
$$

where

$$
\hat{M}=M \bigcup_{S_{0}} D^{3} \quad \text { and } \quad \hat{B}=B \bigcup_{S_{0}} D^{3}
$$

is not necessarily a product fibration. For example, if P_{1} and P_{2} are aspherical then in $\hat{M}=P_{1} \# S^{3} \# P_{2}$ the rotations along the connected sum spheres of P_{1} and P_{2} with support in P_{1} and P_{2} respectively are isotopic, but there is no isotopy in the fibre of ρ.

Remark 2. A fibration like the one in Remark 1 has been directly studied by Jahren and by Hatcher in case $\hat{M}=S^{1} \times S^{2}$ or $\hat{M}=P_{1} \# P_{2}$ (see [6,3]). In particular, Hatcher shows that in these cases the space of images of \hat{B} by diffeomorphisms of \hat{M} is contractible.

As an application consider the group $\operatorname{Diff}(M$ rel $B \bmod \partial M$) of diffeomorphisms of M that map B onto B and that restrict to the inclusion on ∂M. We will show the following:

Theorem 2. Suppose none of the irreducible summands P_{i} has as universal cover a homotopy 3 -sphere non-diffeomorphic to S^{3}. Then the inclusion map
$\operatorname{Diff}(M \operatorname{rel} B \bmod \partial M) \rightarrow \operatorname{Diff}(M \bmod \partial M)$
induces injective homomorphisms of homotopy groups.

In fact, the hypothesis is not needed to prove the injectivity at the $\pi_{0}-$ level. On the other hand, we will show that injectivity fails at the π_{i}-level for $i>0$ if some P_{i} is allowed to be a fake 3 -sphere (see Section 4).

2. The configuration space

We will explain here how Theorem 1 fits into the context of configuration spaces as introduced by [1] and elaborated by [5]. In [5] is defined a semi-simplicial complex C_{1}, the configuration space, depending on the manifold M. The following difficult result is proved:

There are H-space morphisms:

$$
\begin{aligned}
& \alpha:\left(F_{g}\right)^{n} \rightarrow \operatorname{Diff}(M \bmod \partial M), \\
& \beta: \Omega C_{1} \rightarrow \operatorname{Diff}(M \bmod \partial M), \\
& \gamma=\text { inclusion: } \prod_{i=1}^{n} \operatorname{Diff}\left(P_{i} \bmod \partial P_{i} \cup D_{i}\right) \times \Omega O(3)^{g} \subset \operatorname{Diff}(M \bmod \partial M)
\end{aligned}
$$

so that the map defined by

$$
h(x, y, z)=\alpha(x) \circ \beta(y) \circ \gamma(z)
$$

is a homotopy equivalence.
Here, F_{g} denotes the free group on g generators. It may be considered as a free factor of $\pi_{1}(M)$ corresponding to $\pi_{1}\left(\#_{g} S^{1} \times S^{2}\right)$. For $\left(x_{i}\right)_{i=1}^{n} \in\left(F_{g}\right)^{n}, \alpha(x)$ corresponds to the composition of the slidings of the summands P_{i} along a loop representing $x_{i} . \Omega O(3)$ corresponds to $\operatorname{Diff}\left([0,1] \times S^{2} \bmod \{0,1\} \times S^{2}\right)$ by the Smale Conjecture (see [4]).

For applications of the theorem of [5] one may need knowledge of the space C_{1}. Although we feel that the space C_{1} does not have a very complicated homotopy type, its definition is unhappily very delicate. Our main theorem will describe ΩC_{1} in more familiar terms.

Theorem 3. The composition

$$
\left(F_{\mathrm{g}}\right)^{n} \times \Omega C_{1} \xrightarrow{\alpha \cdot \beta} \operatorname{Diff}(M \bmod \partial M) \xrightarrow{\rho} \operatorname{Imb}\left(B, M \bmod S_{0}\right)
$$

is a homotopy equivalence.

Theorems 1 and 3 follow immediately from the result of [5] stated above by using the following lemma (where we take $S=\left(F_{g}\right)^{n} \times \Omega C_{1}$ and $G=$ $\prod_{i=1}^{n} \operatorname{Diff}\left(P_{i} \bmod \partial P_{i} \cup D_{i}\right) \times \Omega O(3)^{\mathrm{g}}$ and ρ as in Theorem 1).

Lemma 1. Let G be a group and $\rho: E \rightarrow B$ a principal G-bundle, with G acting on the right on E. Let S be a space and $h: S \times G \rightarrow E$ a G-equivariant map which is a weak homotopy equivalence. Then
(1) $\mu: S \rightarrow B$ defined by $\mu(s)=\rho h(s, 1)$ is a weak homotopy equivalence.
(2) If S and B are dominated by $C W$-complexes, then μ is a homotopy equivalence and ρ admits a section.

Proof. Part (1) is immediate. If S and B are dominated by CW-complexes, then μ admits a homotopy inverse ν. Then, $b \mapsto h(\nu(b), 1)$ is a homotopy section to ρ. By the homotopy lifting property of ρ it is homotopic to a section.

3. Application

We will prove Theorem 2. Recall that a 3-manifold is said to satisfy the Poincaré Conjecture if every compact contractible codimension-zero submanifold is a 3-ball (see [7]). The next two lemmas show that under our hypothesis, every compact subset of the universal cover \tilde{M} of M can be imbedded in R^{3}.

Lemma 2. Suppose M is a compact 3-manifold none of whose irreducible summands has universal cover a fake 3 -sphere. Then \tilde{M} satisfies the Poincaré Conjecture.

Proof. Passing to the orientable double cover if necessary, we may assume that M is orientable. Let P be an irreducible summand of M. By Theorem 3 of [9], the universal cover of P is irreducible. Since it is not a fake 3 -sphere it must satisfy the Poincaré Conjecture. Since \tilde{M} can be constructed by removing open 3-balls from the universal covers of the irreducible summands (including S^{3}) and then identifying copies of the resulting manifolds along some of their 2 -sphere boundary components, results from Appendix I of [7] now show that \tilde{M} satisfies the Poincaré Conjecture.

Lemma 3. Suppose N is a noncompact simply connected 3-manifold which satisfies the Poincaré Conjecture. Let K be a compact subset of N. Then K is contained in a submanifold which is a connected sum of punctured handlebodies.

Proof. K is contained in a compact codimension-zero submanifold V. We will use the terminology and results of Section 2 of [8]. By Lemma C and the fact that N is simply connected, there is a sequence of simple moves (of type 2) which changes V into a union H_{0} of compact simply connected submanifolds. Since N satisfies the Poincaré Conjecture, each component of H_{0} is a punctured 3-cell. By Theorem 1 of [8], we can attach 1-handles to H_{0} and then move the result H by isotopy to contain V. We also may assume H to be connected. Since N is simply connected, H must be a connected sum of punctured handlebodies.

We now proceed with the proof of Theorem 2. Let $\operatorname{Diff}_{e}\left(B \bmod S_{0}\right)$ denote the union of the components of $\operatorname{Diff}\left(B \bmod S_{0}\right)$ of diffeomorphisms which extend to a diffeomorphism of $M \bmod \partial M$. Note that $\rho^{-1}\left(\operatorname{Diff}_{e}\left(B \bmod S_{0}\right)\right)=$ $\operatorname{Diff}(M \operatorname{rel} B \bmod \partial M)$ and denote by ρ^{\prime} the restriction of ρ to this space. Since
ρ and ρ^{\prime} are product fibrations with the same fiber, the theorem follows readily from the next lemma:

Lemma 4. Suppose every compact subset of \tilde{M} can be imbedded in R^{3}. Then the inclusion

$$
\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \rightarrow \operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right)
$$

induces injective homomorphisms of homotopy groups.

Remark 3. By the Smale Conjecture, $\operatorname{Diff}\left(B \bmod S_{0}\right)$ has the homotopy type of $\Omega B_{0, n+2 g}$ where $\Omega B_{0, n+2 g}$ is the classical configuration space [2] of subsets of $n+2 g$ elements of $R^{3}\left(\cong \operatorname{Int}\left(P_{0}\right)\right)$.

Proof of Lemma 4. Consider the universal covering $p: \bar{M} \rightarrow M$. Let \tilde{S}_{0} be a component of $p^{-1}\left(S_{0}\right)$, and let \tilde{B} be the lift of B such that $\tilde{S}_{0} \subset \partial \tilde{B}$. Let $\tilde{S}_{i}(1 \leqslant i \leqslant n+2 g)$ be the other boundary components of \tilde{B}. There is a well defined map

$$
\lambda: \operatorname{Imb}\left(B, M \bmod S_{0}\right) \rightarrow \operatorname{Imb}\left(\tilde{B}, \tilde{M} \bmod \tilde{S}_{0}\right)
$$

defined by the unique path lifting property of p (as B is simply connected).
Let $\left\langle\phi_{t}\right\rangle \in \pi_{q}\left(\operatorname{Diff}\left(B \bmod S_{0}\right)\right)$, with $q \geqslant 0$, and suppose that $\left\langle\phi_{t}\right\rangle$ is trivial in $\pi_{q}\left(\operatorname{Imb}\left(B, M \bmod S_{0}\right)\right)$. Then the lifted element $\lambda_{*}\left(\left\langle\phi_{t}\right\rangle\right)$ is trivial in $\operatorname{Imb}\left(\tilde{B}, \tilde{M} \bmod \tilde{S}_{0}\right)$. The image of a trivializing homotopy lies in a compact subset $K \subset \tilde{M}$, containing \tilde{B}, and from Lemmas 2 and 3 we may choose an imbedding of K into a 3-ball D so that \tilde{S}_{0} is carried onto ∂D. Regarding $\operatorname{Imb}\left(\tilde{B}, K \bmod \tilde{S}_{0}\right)$ as a subspace of $\operatorname{Imb}\left(\tilde{B}, \tilde{M} \bmod \tilde{S}_{0}\right)$, we find that $\lambda_{*}\left(\left\langle\phi_{t}\right\rangle\right)$ is trivial in $\pi_{q}\left(\operatorname{Imb}\left(\tilde{B}, K \bmod \tilde{S}_{0}\right)\right)$.

Since each P_{i} is either non simply connected or has nonempty boundary, none of the \tilde{S}_{i} bounds a ball in \tilde{M}. Therefore for each $i, 1 \leqslant i \leqslant n+2 g$, there exists a point $x_{i} \in D$ such that
(1) $x_{i} \notin K$, and
(2) x_{i} lies in the ball in D bounded by \tilde{S}_{i}.

Now consider the composition

$$
\begin{aligned}
\operatorname{Diff}\left(B \bmod S_{0}\right) & \rightarrow \lambda^{-1}\left(\operatorname{Imb}\left(\tilde{B}, K \bmod \tilde{S}_{0}\right)\right) \rightarrow \operatorname{Imb}\left(\tilde{B}, K \bmod \tilde{S}_{0}\right) \\
& \rightarrow \operatorname{Imb}\left(\tilde{B}, D-\left\{x_{1}, x_{2}, \ldots, x_{n+28}\right\} \bmod \tilde{S}_{0}\right)
\end{aligned}
$$

Using the Smale Conjecture [4] it is easy to show that this composition is a homotopy equivalence. This shows that $\left\langle\phi_{t}\right\rangle$ is trivial.

4. Remarks

We will make two remarks. Without the hypothesis in Theorem 2 we still have the following remark.

Remark 4. The following map induced by inclusion is injective:
$\pi_{0} \operatorname{Diff}(M$ rel $B \bmod \partial M) \rightarrow \pi_{0} \operatorname{Diff}(M \bmod \partial M)$.
Proof sketch. Let $f \in \operatorname{Diff}(M$ rel $B \bmod \partial M)$ with f isotopic to Id $\bmod \partial M$. We have to see that $\left.f\right|_{B}$ is isotopic to $\left.\mathrm{Id}\right|_{B}$ in $\operatorname{Diff}_{e}\left(B \bmod S_{0}\right)$. As f induces the identity homomorphism of the fundamental group of (M, S_{0}),f preserves each boundary component of each handle component (i.e. diffeomorph of $[0,1] \times S^{2}$) of $M-\operatorname{Int}(B)$.

Let S be the permutation group of indices $\{1,2, \ldots, n\}$ generated by the transpositions (i, j) for which P_{i} and P_{j} are closed and orientation preservingly diffeomorphic. Then it follows from [5] that there is a surjective homomorphism $\pi_{0} \Omega C_{1} \rightarrow S$. (In fact, C_{1} admits an S-covering, which corresponds to a concept of configuration distinguishing diffeomorphic factors.) Now $\left.f\right|_{B} \in \operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right)$ comes from a particularly simple loop λ in ΩC_{1}, namely one with 'support' in P_{0} (under $\rho \alpha \cdot \beta$). It can be seen that the permutation determined by λ is exactly the permutation of the components of ∂B determined by $\left.f\right|_{B}$. As $\left.f\right|_{B}$ is isotopic to $\left.\mathrm{Id}\right|_{B}$ in $\operatorname{Imb}\left(B, M \bmod S_{0}\right)$, this permutation will be the identity and therefore $\left.f\right|_{B}$ is isotopic to Id in $\operatorname{Diff}_{\mathrm{e}}\left(B \bmod S_{0}\right)$.

Let $M=P_{1} \# P_{0} \# P_{2}$, so that $g=0$ and there are only two irreducible summands (except P_{0}). We will prove the following:

Remark 5. If P_{1} or P_{2} is a fake 3-sphere, then the inclusion

$$
\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \rightarrow \operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right)
$$

induces the trivial homomorphism of homotopy groups in dimensions greater than 0.

Proof. Suppose for the moment that it is not the case that P_{1} and P_{2} are closed and orientation preservingly diffeomorphic. Then it follows from Hatcher [3] (see Remark 2) that $\operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right)$ is homotopy equivalent to ΩC^{\prime} with $C^{\prime}=P_{1} \# P_{2}$. Furthermore in this case we have

$$
\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \simeq \operatorname{Diff}\left(P_{0} \bmod \left\{x_{1}, x_{2}\right\} \cup S_{0}\right) \simeq \Omega S^{2}
$$

And $\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \rightarrow \operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right) \quad$ corresponds to the map $\Omega S^{2} \rightarrow$ $\Omega\left(P_{1} \# P_{2}\right)$ induced by a homeomorphism from S^{2} onto the connected sum sphere of $P_{1} \# P_{2}$. If P_{1} or P_{2} is homotopy equivalent to S^{3}, then this map is nullhomotopic!

Now we consider the case when P_{1} and P_{2} are closed and orientation preservingly diffeomorphic. Then C^{\prime} will be a quotient of $P_{1} \# P_{2}$ by a fixed point free involution T that permutes P_{1} and P_{2}. Moreover, $\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \simeq \Omega R P^{2}$ and the map $\operatorname{Diff}_{e}\left(B \bmod S_{0}\right) \rightarrow \operatorname{Imb}_{e}\left(B, M \bmod S_{0}\right) \quad$ corresponds to the map $\Omega R P^{2} \rightarrow$ $\Omega\left(P_{1} \# P_{2} / T\right)$ induced by a homeomorphism from $R P^{2}$ onto the quotient of the connected sum sphere. Again, if P_{1} and P_{2} are homotopy spheres this mapping will give trivial homomorphisms of homotopy groups of dimension greater that 0 .

References

[1] E. César de Sá and C. Rourke, The homotopy type of homeomorphisms of 3-manifolds, Bull. Amer. Math. Soc. 1 (1979) 251-254.
[2] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111-118.
[3] A. Hatcher, On the diffeomorphism group of $S^{1} \times S^{2}$, Proc. Amer. Math. Soc. 83 (1981) 427-430.
[4] A. Hatcher, A proof of the Smale Conjecture, $\operatorname{Diff}\left(S^{3}\right)=O(4)$, Annals of Math. 117 (1983) 553-607.
[5] H. Hendriks and F. Laudenbach, Difféomorphismes des sommes connexes en dimension trois, Topology 23 (1984) 423-443.
[6] B. Jahren, One parameter families of spheres in 3-manifolds, Ph.D. Dissertation, Princeton University, Princeton, New Jersey, 1975.
[7] F. Laudenbach, Topologie de la dimension trois. Homotopie et isotopie. Astérisque 12 (1974).
[8] D.R. McMillan, Jr., Compact, acyclic subsets of 3-manifolds, Mich. Math. J. 16 (1969) 129-136.
[9] W. Meeks, L. Simon, and S.T. Yau, Imbedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Annals of Math. 116 (1982) 621-659.

[^0]: * We thank the Research Council of the University of Oklahoma and the National Science Foundation for their financial support of the second author.

