Topology and its Applications 26 (1987) 25-31 North-Holland 25

ON THE DIFFEOMORPHISM GROUP OF A REDUCIBLE 3-MANIFOLD

Harrie HENDRIKS

Mathematisch Instituut, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands

Darryl McCULLOUGH*

Department of Mathematics, University of Oklahoma, Norman, Oklahoma, USA

Received 26 May 1986 Revised 25 July 1986

The loop space of the configuration space of César de Sá-Rourke-Hendriks-Laudenbach is identified as a factor (up to homotopy) of a certain space of imbeddings of a punctured 3-cell B into the compact 3-manifold M. The restriction map from the diffeomorphism group of M to this space of imbeddings is shown to be a product fibration. As an application, it is proved that the imbedding Diff $(M \text{ rel } B \mod \partial M) \rightarrow \text{Diff}(M \mod \partial M)$ induces injective homomorphisms of homotopy groups.

AMS (MOS) Subj. Class.: Primary 57M99 secondary 57R50, 57R40, 55S37

3-manifold reducible 3-manifold diffeomorphism diffeomorphism group configuration space

1. Introduction

Let M be a connected compact orientable 3-manifold with a sphere boundary component S_0 . Then M can be constructed as a connected sum of a disk P_0 whose boundary is S_0 , with say n irreducible 3-manifolds P_1, P_2, \ldots, P_n ($P_i \not\equiv S^3$) and say g copies of $S^1 \times S^2$. Let D_i be the connected sum disk in P_i . There is a compact codimension-zero submanifold B of M, diffeomorphic to the closure of the complement of n+2g disjointly imbedded disks in P_0 , so that

(1) $S_0 = \partial B \cap \partial M$, and

(2) M-B is the disjoint union of $P_i - D_i$, i = 1, 2, ..., n and g diffeomorphs of $(0, 1) \times S^2$.

* We thank the Research Council of the University of Oklahoma and the National Science Foundation for their financial support of the second author.

0166-8641/87/\$3.50 © 1987, Elsevier Science Pubslishers B.V. (North-Holland)

Consider the space $\text{Imb}(B, M \mod S_0)$ of imbeddings $B \to M$ which restrict to the inclusion on S_0 . Let $\text{Imb}_e(B, M \mod S_0)$ be the subspace of imbeddings that are extendible to a diffeomorphism of $M \mod \partial M$ (i.e. restricting to the inclusion on ∂M).

As direct consequence of [5], we will prove the following:

Theorem 1. The restriction map

 $\operatorname{Diff}(M \mod \partial M) \xrightarrow{\rho} \operatorname{Imb}_{e}(B, M \mod S_{0})$

which is a principal fibre bundle with fibre

$$\prod_{i=1}^{n} \operatorname{Diff}(P_{i} \operatorname{mod} \partial P_{i} \cup D_{i}) \times \prod_{j=1}^{g} \operatorname{Diff}([0, 1] \times S^{2} \operatorname{mod}\{0, 1\} \times S^{2}),$$

is a product fibration.

Remark 1. The analogous principal fibration

 $\operatorname{Diff}(\hat{M} \mod \partial \hat{M}) \rightarrow \operatorname{Imb}_{e}(\hat{B}, \hat{M})$

where

$$\hat{M} = M \bigcup_{S_0} D^3$$
 and $\hat{B} = B \bigcup_{S_0} D^3$

is not necessarily a product fibration. For example, if P_1 and P_2 are aspherical then in $\hat{M} = P_1 \# S^3 \# P_2$ the rotations along the connected sum spheres of P_1 and P_2 with support in P_1 and P_2 respectively are isotopic, but there is no isotopy in the fibre of ρ .

Remark 2. A fibration like the one in Remark 1 has been directly studied by Jahren and by Hatcher in case $\hat{M} = S^1 \times S^2$ or $\hat{M} = P_1 \# P_2$ (see [6, 3]). In particular, Hatcher shows that in these cases the space of images of \hat{B} by diffeomorphisms of \hat{M} is contractible.

As an application consider the group $\text{Diff}(M \text{ rel } B \mod \partial M)$ of diffeomorphisms of M that map B onto B and that restrict to the inclusion on ∂M . We will show the following:

Theorem 2. Suppose none of the irreducible summands P_i has as universal cover a homotopy 3-sphere non-diffeomorphic to S^3 . Then the inclusion map

 $\operatorname{Diff}(M \operatorname{rel} B \mod \partial M) \rightarrow \operatorname{Diff}(M \mod \partial M)$

induces injective homomorphisms of homotopy groups.

In fact, the hypothesis is not needed to prove the injectivity at the π_0 -level. On the other hand, we will show that injectivity fails at the π_i -level for i > 0 if some P_i is allowed to be a fake 3-sphere (see Section 4).

2. The configuration space

We will explain here how Theorem 1 fits into the context of configuration spaces as introduced by [1] and elaborated by [5]. In [5] is defined a semi-simplicial complex C_1 , the configuration space, depending on the manifold M. The following difficult result is proved:

There are H-space morphisms:

$$\alpha: (F_g)^n \to \operatorname{Diff}(M \mod \partial M),$$

$$\beta: \Omega C_1 \to \operatorname{Diff}(M \mod \partial M),$$

$$\gamma = \operatorname{inclusion}: \prod_{i=1}^n \operatorname{Diff}(P_i \mod \partial P_i \cup D_i) \times \Omega O(3)^g \subset \operatorname{Diff}(M \mod \partial M)$$

so that the map defined by

$$h(x, y, z) = \alpha(x) \circ \beta(y) \circ \gamma(z)$$

is a homotopy equivalence.

Here, F_g denotes the free group on g generators. It may be considered as a free factor of $\pi_1(M)$ corresponding to $\pi_1(\#_g S^1 \times S^2)$. For $(x_i)_{i=1}^n \in (F_g)^n$, $\alpha(x)$ corresponds to the composition of the slidings of the summands P_i along a loop representing x_i . $\Omega O(3)$ corresponds to Diff($[0, 1] \times S^2 \mod\{0, 1\} \times S^2$) by the Smale Conjecture (see [4]).

For applications of the theorem of [5] one may need knowledge of the space C_1 . Although we feel that the space C_1 does not have a very complicated homotopy type, its definition is unhappily very delicate. Our main theorem will describe ΩC_1 in more familiar terms.

Theorem 3. The composition

 $(F_g)^n \times \Omega C_1 \xrightarrow{\alpha \cdot \beta} \operatorname{Diff}(M \mod \partial M) \xrightarrow{\rho} \operatorname{Imb}_e(B, M \mod S_0)$

is a homotopy equivalence.

Theorems 1 and 3 follow immediately from the result of [5] stated above by using the following lemma (where we take $S = (F_g)^n \times \Omega C_1$ and $G = \prod_{i=1}^n \text{Diff}(P_i \mod \partial P_i \cup D_i) \times \Omega O(3)^g$ and ρ as in Theorem 1).

Lemma 1. Let G be a group and $\rho: E \rightarrow B$ a principal G-bundle, with G acting on the right on E. Let S be a space and $h: S \times G \rightarrow E$ a G-equivariant map which is a weak homotopy equivalence. Then

(1) $\mu: S \rightarrow B$ defined by $\mu(s) = \rho h(s, 1)$ is a weak homotopy equivalence.

(2) If S and B are dominated by CW-complexes, then μ is a homotopy equivalence and ρ admits a section.

Proof. Part (1) is immediate. If S and B are dominated by CW-complexes, then μ admits a homotopy inverse ν . Then, $b \mapsto h(\nu(b), 1)$ is a homotopy section to ρ . By the homotopy lifting property of ρ it is homotopic to a section.

3. Application

We will prove Theorem 2. Recall that a 3-manifold is said to satisfy the *Poincaré* Conjecture if every compact contractible codimension-zero submanifold is a 3-ball (see [7]). The next two lemmas show that under our hypothesis, every compact subset of the universal cover \tilde{M} of M can be imbedded in R^3 .

Lemma 2. Suppose M is a compact 3-manifold none of whose irreducible summands has universal cover a fake 3-sphere. Then \tilde{M} satisfies the Poincaré Conjecture.

Proof. Passing to the orientable double cover if necessary, we may assume that M is orientable. Let P be an irreducible summand of M. By Theorem 3 of [9], the universal cover of P is irreducible. Since it is not a fake 3-sphere it must satisfy the Poincaré Conjecture. Since \tilde{M} can be constructed by removing open 3-balls from the universal covers of the irreducible summands (including S^3) and then identifying copies of the resulting manifolds along some of their 2-sphere boundary components, results from Appendix I of [7] now show that \tilde{M} satisfies the Poincaré Conjecture.

Lemma 3. Suppose N is a noncompact simply connected 3-manifold which satisfies the Poincaré Conjecture. Let K be a compact subset of N. Then K is contained in a submanifold which is a connected sum of punctured handlebodies.

Proof. K is contained in a compact codimension-zero submanifold V. We will use the terminology and results of Section 2 of [8]. By Lemma C and the fact that N is simply connected, there is a sequence of simple moves (of type 2) which changes V into a union H_0 of compact simply connected submanifolds. Since N satisfies the Poincaré Conjecture, each component of H_0 is a punctured 3-cell. By Theorem 1 of [8], we can attach 1-handles to H_0 and then move the result H by isotopy to contain V. We also may assume H to be connected. Since N is simply connected, H must be a connected sum of punctured handlebodies.

We now proceed with the proof of Theorem 2. Let $\text{Diff}_e(B \mod S_0)$ denote the union of the components of $\text{Diff}(B \mod S_0)$ of diffeomorphisms which extend to a diffeomorphism of $M \mod \partial M$. Note that $\rho^{-1}(\text{Diff}_e(B \mod S_0)) = \text{Diff}(M \text{ rel } B \mod \partial M)$ and denote by ρ' the restriction of ρ to this space. Since

 ρ and ρ' are product fibrations with the same fiber, the theorem follows readily from the next lemma:

Lemma 4. Suppose every compact subset of \tilde{M} can be imbedded in \mathbb{R}^3 . Then the inclusion

 $\operatorname{Diff}_{e}(B \mod S_{0}) \rightarrow \operatorname{Imb}_{e}(B, M \mod S_{0})$

induces injective homomorphisms of homotopy groups.

Remark 3. By the Smale Conjecture, Diff $(B \mod S_0)$ has the homotopy type of $\Omega B_{0,n+2g}$ where $\Omega B_{0,n+2g}$ is the classical configuration space [2] of subsets of n+2g elements of R^3 (\equiv Int (P_0)).

Proof of Lemma 4. Consider the universal covering $p: \tilde{M} \to M$. Let \tilde{S}_0 be a component of $p^{-1}(S_0)$, and let \tilde{B} be the lift of B such that $\tilde{S}_0 \subset \partial \tilde{B}$. Let $\tilde{S}_i \ (1 \le i \le n+2g)$ be the other boundary components of \tilde{B} . There is a well defined map

 λ : Imb(B, M mod S_0) \rightarrow Imb(\tilde{B} , \tilde{M} mod \tilde{S}_0)

defined by the unique path lifting property of p (as B is simply connected).

Let $\langle \phi_t \rangle \in \pi_q(\text{Diff}(B \mod S_0))$, with $q \ge 0$, and suppose that $\langle \phi_t \rangle$ is trivial in $\pi_q(\text{Imb}(B, M \mod S_0))$. Then the lifted element $\lambda_{\#}(\langle \phi_t \rangle)$ is trivial in $\text{Imb}(\tilde{B}, \tilde{M} \mod \tilde{S}_0)$. The image of a trivializing homotopy lies in a compact subset $K \subset \tilde{M}$, containing \tilde{B} , and from Lemmas 2 and 3 we may choose an imbedding of K into a 3-ball D so that \tilde{S}_0 is carried onto ∂D . Regarding $\text{Imb}(\tilde{B}, K \mod \tilde{S}_0)$ as a subspace of $\text{Imb}(\tilde{B}, \tilde{M} \mod \tilde{S}_0)$, we find that $\lambda_{\#}(\langle \phi_t \rangle)$ is trivial in $\pi_q(\text{Imb}(\tilde{B}, K \mod \tilde{S}_0))$.

Since each P_i is either non simply connected or has nonempty boundary, none of the \tilde{S}_i bounds a ball in \tilde{M} . Therefore for each $i, 1 \le i \le n+2g$, there exists a point $x_i \in D$ such that

(1) $x_i \notin K$, and

(2) x_i lies in the ball in D bounded by \tilde{S}_i . Now consider the composition

Diff $(B \mod S_0) \rightarrow \lambda^{-1}(\operatorname{Imb}(\tilde{B}, K \mod \tilde{S}_0)) \rightarrow \operatorname{Imb}(\tilde{B}, K \mod \tilde{S}_0)$

 $\rightarrow \operatorname{Imb}(\tilde{B}, D - \{x_1, x_2, \dots, x_{n+2g}\} \mod \tilde{S}_0).$

Using the Smale Conjecture [4] it is easy to show that this composition is a homotopy equivalence. This shows that $\langle \phi_t \rangle$ is trivial.

4. Remarks

We will make two remarks. Without the hypothesis in Theorem 2 we still have the following remark.

Remark 4. The following map induced by inclusion is injective:

 $\pi_0 \operatorname{Diff}(M \operatorname{rel} B \mod \partial M) \rightarrow \pi_0 \operatorname{Diff}(M \mod \partial M).$

Proof sketch. Let $f \in \text{Diff}(M \text{ rel } B \mod \partial M)$ with f isotopic to Id mod ∂M . We have to see that $f|_B$ is isotopic to Id $|_B$ in $\text{Diff}_e(B \mod S_0)$. As f induces the identity homomorphism of the fundamental group of (M, S_0) , f preserves each boundary component of each handle component (i.e. diffeomorph of $[0, 1] \times S^2$) of M - Int(B).

Let S be the permutation group of indices $\{1, 2, ..., n\}$ generated by the transpositions (i, j) for which P_i and P_j are closed and orientation preservingly diffeomorphic. Then it follows from [5] that there is a surjective homomorphism $\pi_0 \Omega C_1 \rightarrow S$. (In fact, C_1 admits an S-covering, which corresponds to a concept of configuration distinguishing diffeomorphic factors.) Now $f|_B \in \text{Imb}_e(B, M \mod S_0)$ comes from a particularly simple loop λ in ΩC_1 , namely one with 'support' in P_0 (under $\rho \alpha \cdot \beta$). It can be seen that the permutation determined by λ is exactly the permutation of the components of ∂B determined by $f|_B$. As $f|_B$ is isotopic to Id|_B in Imb(B, M \mod S_0), this permutation will be the identity and therefore $f|_B$ is isotopic to Id in Diff_e(B mod S_0).

Let $M = P_1 \# P_0 \# P_2$, so that g = 0 and there are only two irreducible summands (except P_0). We will prove the following:

Remark 5. If P_1 or P_2 is a fake 3-sphere, then the inclusion

 $\operatorname{Diff}_{e}(B \mod S_{0}) \rightarrow \operatorname{Imb}_{e}(B, M \mod S_{0})$

induces the trivial homomorphism of homotopy groups in dimensions greater than 0.

Proof. Suppose for the moment that it is not the case that P_1 and P_2 are closed and orientation preservingly diffeomorphic. Then it follows from Hatcher [3] (see Remark 2) that $\text{Imb}_e(B, M \mod S_0)$ is homotopy equivalent to $\Omega C'$ with $C' = P_1 \# P_2$. Furthermore in this case we have

 $\operatorname{Diff}_{\mathbf{e}}(B \mod S_0) \simeq \operatorname{Diff}(P_0 \mod \{x_1, x_2\} \cup S_0) \simeq \Omega S^2.$

And $\text{Diff}_e(B \mod S_0) \rightarrow \text{Imb}_e(B, M \mod S_0)$ corresponds to the map $\Omega S^2 \rightarrow \Omega(P_1 \# P_2)$ induced by a homeomorphism from S^2 onto the connected sum sphere of $P_1 \# P_2$. If P_1 or P_2 is homotopy equivalent to S^3 , then this map is nullhomotopic!

Now we consider the case when P_1 and P_2 are closed and orientation preservingly diffeomorphic. Then C' will be a quotient of $P_1 \# P_2$ by a fixed point free involution T that permutes P_1 and P_2 . Moreover, $\text{Diff}_e(B \mod S_0) = \Omega R P^2$ and the map $\text{Diff}_e(B \mod S_0) \rightarrow \text{Imb}_e(B, M \mod S_0)$ corresponds to the map $\Omega R P^2 \rightarrow \Omega(P_1 \# P_2/T)$ induced by a homeomorphism from RP^2 onto the quotient of the connected sum sphere. Again, if P_1 and P_2 are homotopy spheres this mapping will give trivial homomorphisms of homotopy groups of dimension greater that 0.

References

- [1] E. César de Sá and C. Rourke, The homotopy type of homeomorphisms of 3-manifolds, Bull. Amer. Math. Soc. 1 (1979) 251-254.
- [2] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111-118.
- [3] A. Hatcher, On the diffeomorphism group of $S^1 \times S^2$, Proc. Amer. Math. Soc. 83 (1981) 427-430.
- [4] A. Hatcher, A proof of the Smale Conjecture, $Diff(S^3) = O(4)$, Annals of Math. 117 (1983) 553-607.
- [5] H. Hendriks and F. Laudenbach, Difféomorphismes des sommes connexes en dimension trois, Topology 23 (1984) 423-443.
- [6] B. Jahren, One parameter families of spheres in 3-manifolds, Ph.D. Dissertation, Princeton University, Princeton, New Jersey, 1975.
- [7] F. Laudenbach, Topologie de la dimension trois. Homotopie et isotopie. Astérisque 12 (1974).
- [8] D.R. McMillan, Jr., Compact, acyclic subsets of 3-manifolds, Mich. Math. J. 16 (1969) 129-136.
- [9] W. Meeks, L. Simon, and S.T. Yau, Imbedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Annals of Math. 116 (1982) 621-659.