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ON NORMAL MICROBUNDLES

Morris W. Hirscut

(Received 6 January 1966)

§1. INTRODUCTION
JoHN MILNOR invented the microbundle [6, 7], and proved the following basic theorems:

(A). (EXISTENCE OF INVERSE MICROBUNDLES). For any microbundle & over a polyhedron,
there exists a microbundle n such that & @ n is trivial.

Then M x 0 has a normal microbundle in V x R? for some q.
h d

(B). (STABLE EXISTENCE OF NORMAL MICROBUNDLES). Lef M be a submanifold of V.

(C) (STABLE ISOTOPY OF NORMAL MICROBUNDLES). If & and &, are normal microbundles
on M in.V, then for some k, £, @ & and L@ & are isotopic normal microbundles on M x 0

inV xR~

The purpose of this articie is to give new proofs of these facts. The ingenious construc-
tions of Milnor and Lashof-Rothenberg are replaced by the standard approach of first
pi'O'v'iﬁg the results for coordinate neighborhoods and then ulduuuuB on the number of

coordinate neighborhoods needed to ¢ yproducts of the proofs, new pp
bounds are found for the dimension of n in (A) rain (B), and for k in ((‘\ The earlier

pounds are iound Ior the nension of ¢ 201 i 2 <

bounds were exponential in dim £ or dim M, while the new ones are quadratic, and in
many special cases, linear. (In the piecewise linear case, however, the results of Haefliger—
Wall [2] are much stronger. They prove, for example, that if dim V = 2 dim M, then M
must have a normal microbundle.)

All definitions, theorems and proofs are set in both the piecewise linear and topological
categories.

§2. OUTLINE OF PROOFS

The logical order of the proofs of Milnor and Lashof-Rothenberg is, roughly, (A) =

(R \ = ((‘\ In the present paper this order is reversed, More nrpmcplv a relative form of (O)
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is proved for the special case where M is an open set in Euclidean space. Next an isotopy
extension theorem is proved, for isotopies of normal microbundles; its use requires addition
of a trivial line bundle. Since every manifold is covered by a finite number of open sets that
are homeomorphic to open sets in Euclidean space, (C) and (B) follow. Itis well known that

t The author is a Sloan Fellow.
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(B) = (A), since any microbundle & over a polyhedron B is stably isomorphic to 7| B,
where M is a manifold containing B, and t,, is its tangent microbundle. By (B), M has a
normal microbundle in some Euclidean space; therefore 1,,, and hence &, has an inverse,

§3. TERMINOLOGY

A microbundle ¢ of dimension »n is a diagram

i p
(:B—-E—->B
having the property that for each x e B there exist neighborhoods U < Bof x and V < E of
i(U), and a homeomorphism 4 : ¥ — U x R such that p(¥) = U, and the diagram

|4
/1IN
i/ \p
7/

/

UxR"

commutes, where n, denotes projection on the first factor. Thus p ° i = 1, the identity
map of B. In the PL category, naturally, the maps 7, p and / are piecewise linear. The total
space of & is E, the base space is B, the projection is p, and i is the zero section. We may write
E = E{ or p = p,, etc. Usually B is identified with i(B). If i is understood we may write
¢=(p.,E B).
The trivial microbundle over B of dimension » is
x0 L2
&(B): B— B xR"— B.
If M is a manifold without boundary, the tangent microbundle of M is
d T
t(M)=1ty M—s> MxM— M,
where d universally denotes the diagonal map d(x) = (x, x). In addition, the second tangent

microbundle of M is
d ny

My M—> M xM— M,

Let V be a manifold containing M. A normal microbundle on M in V is a microbundle

M—sE— M
where E is a neighborhood of M in Vand i : M — E is the inclusion.

Let P < Vbe a subset. An isotopy of Pin Vis a homotopy f;: P— Fsuch thatf; = 1,
and the map
F:PxI->VxI Flx,t)=(f{(x),t

is an embedding.
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Let &, and &; be normal microbundles on M in V; let K = M be a subset. A rel K
isotopy from &, to &, is an isotopy f, : E — ¥ such that, putting E¢; = E; fori =0, 1,

(i) E = Vis a neighborhood of M in E,;
(i) f,is fixed on M and on E, N py 'K;
(iii) £, is a microbundle isomorphism &, ~ &,. That is, f;(E) < E;, and the diagram

I
E—— S E,
/
N A
\,
N
M

commutes.

If such an isotopy exists, then &, is rel K isotopic to &, written &, ~ £, rel K, If &, =~ &, rel a
neighborhood of K, we write £, ~ &, rel [K]. In this case p, = p, in a neighborhood of K in
E, n E, or in other words, &, and £, have the same K germ. In most instances the germ of a
microbundle is the object of interest, rather than the whole microbundle. The notion of
“germ” is made precise as follows. Given the submanifold M < F and a subset K = M,
consider pairs (U, &) where U = M is an open neighborhood of K, and & is a normal micro-
bundle on Uin V. Define (U, &) and (U”, &) to have the same K germ if there exists a neigh-
borhood W of K in E¢ n EE such that p,| W= p, | W. The equivalence class of (U, &)
under this equivalence relation is the K germ of €, denoted by [£],. We say that [£] extends
over M if there exists a normal microbundle n on M in V such that [y]x = [€]k-

Given microbundles &: B—— E—:—> B and 75: E—j-> Di—> E, the composition

Jot pogq

toniséon: B—> D—> B.

Given &£ and a map f: B' — B, the induced microbundle f*& : B’—.—>E’—p-> B'is defined
in the usual way:
E'={(x,y)e B’ X E|f(x) =p(y)},
p'(xy)=x,
i'(x) = (x, if (x)).
The projection =, : B’ x E — E induces the natural map E' — E.

The Whitney sum & @ n, where 5 is a microbundle over B, is defined to be the compos-
(i,0) pomy
ition & o (p*n). We identify & @ &" with the microbundle B~—> E x R"~— Bin the natural

way.
For any space Y in the category, define the microbundle

1xi 1xp
YXx¢E:YXB——>YXE——>YXB.

This is essentially the same as n%¢, induced by the projection n,: ¥ x B— B.

The composition of germs of microbundles is defined in the obvious way as the germ
of the composition of microbundles.
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§4. STATEMENT OF THE MAIN THEOREMS
Throughout the rest of the paper it is assumed that
KcUcMcV
where M is an m-manifold and V is a manifold, both without boundaries; U is an open
subset of M and K is a closed subset of M.
For any k, we shall customarily identify a set 4 with 4 x 0 = 4 x R,
THEOREM 1, Letg= (m + 1)2, Then:

(b) If & is a normal microbundle on U in V, the K germ of & @ & extends over M in
V x R
(c) If &, and &, are normal microbundles on M in V having the same K germ, then

(o@Dl E @t 1rel[K]

Remark. Theorem 2 can be proved with “smoothable” replaced by “homeomorphic
to a PL manifold”, and with ¢ = 4m.

Still better estimates hold for spheres:

THEOREM 3. Let M = S™. Then:

(a) S™ has a normal microbundle in V x R™"*? andin V x R™ifm = 1,3 or 7.

(b) If K # & and & is a normal microbundle on U in V, the K germ of £ ® e"*! extends

ovor S in UV x Rmt1
ver 3T In V X K .

L4

(¢) If &, and &, are normal microbundies on S™ in V having the same K germ, then
Lo @™ 2 & @™t rel[K]
Moreover, if M =1, 3 or 1, then
o®e" 2 @emrelK.
THEOREM 4. Let & be a microbundle of dimension n over a polyhedron B of dimension d.
There exists a microbundle n over B of fibre dimension (2 + n)(2n + d) + 2n such that E ® n is

PRSI . |
triviai.

§5. SYMMETRIC MANIFOLDS

An open subset of Euclidean space has two important properties: it is parallelizable and
symmetric. A manifold M is parallelizable if t,, is trivial. It is symmetric if 7,(M) ~ 7,(M),
con51der1ng 11(1\/[) and rZ(M) as normal microbundles on the diagonal d(M) < M x M.

o al s anifold of a svmmetric m <pian i ad _
ll. lb €a. by uld.l. pcu buUllld nitoia o1 a Syl 1meiric

nanifold is s 'yuuuculb, N0r
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generallv. 2 mani ic if it immerses in 32 svmmetric mani
g a ma c if 1t immerses 1

wilwaeidyy peit-2tisy peiys 18 212223 AR & Oy fixiiiVviiw diidvaiix

0
he cartesian product of symmetric manifolds is symmetric.

1d of the came di-
1d o the same a1

-

mension. It is clear that

111 :

A proof or disproof of the conjecture that ali manifolds are symmeiric wouid be inter-
esting.
LEMMA 5. (a) Every open subset of R™ is symmetric.
(b) Every smoothable topological manifold is symmetric.

Proof. (a) By the preceding discussion it suffices to prove that R = R* is symmetric.
In the topological case this is obvious, since one can rotate counterclockwise each vertical
line in R? about its intersection with the diagonal until it is horizontal. The resulting isotopy
from 7,(R) to 7,(R) is not piecewise linear, however. To take care of the PL case, define a
trivialization of 7,(R) by

g1 :Rx (=L, D)->RxR;  Gix,»)=(x,x— ).
Define a PL isotopy by

v oy Yif N <
AT ), ALV =

for 0 £t < 1. Then g, trivializes 7,(R), and g, is fixed on R x 0. Therefore g,g;! is a PL
isotopy from 7,(R) to 1,(R).

Part (b) follows from the uniqueness of tubular neighborhoods of smooth submanifolds;
see [4].

Remark. Tt is true that a compatibly smoothable PL manifold is symmetric as a PL
manifold; the proof requires the triangulation of vector bundles [3, 5].

Next we consider normal microbundleson M =d(M)in M x V,whered: M > M x V
is the diagonal embedding. There is always
d m
y|MiM—> MxV-— M.
On the other hand, suppose that M has a normal microbundle £ in V. We may assume that
E¢ = V. Then there is also the normal microbundie
d pom
G M— MxV——M,

n=mn
2 r

re:

To see that £* is actually a microbundle, observe that it is the composition

*=1(M) o (M x )
of

1xp
MxXEMcXMcMxV——MxM

and

d 72
PPN

T,(M): M —— M x M — M.
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To compare &* with 1, | M, express 1,;| M as the composition
Ty | M =7 (M)° (M x ).

LeMMA 6. If M is symmetric then t,| M and &* are isotopic normal microbundles on
dM)c M x V.

Proof. By definition of “symmetric”, t,(M) & 7,(M). Therefore the compositions of
7,(M) and 1,(M) with M x ¢ are isotopic.

COoROLLARY 7. If € and n are normal microbundles on M in V, then £* ~ n*.
Proof. Each is isotopic to 74| M.
Corollary 7 can be proved in a relative form:

LeMMA 8. Assume M is symmetric. Let &, and &, be normal microbundles on M in V
having the same K germ. Then

&6 = & rel [K].
Proof. We may assume that £,|U =&, | U, and that E¢; = V. Let the projection of
¢;be p;: V- M. We shall find a neighborhood E of d(M) in M x ¥, and isotopies
futE-MxV, i=0,1
from &f to 1, | M, such that

@) fo,; = identity,

(i) there is an open set U; < U with K = U, and U; < U, such that f, ; and f, , restrict

tanny fram (F 1 TT Xk ta » 1 TT
WOPY ifOIN \§; ) V1) WO Ty | Uy
=7

HAUD(U; % (&;]Uy)). Recall the assumption that &, | U =&, | U.

th

+ a oanan 100
UL Jurnc v

Here (¢;| U*
Assuming for the moment that such isotopies have been chosen, it is easy to see that
hy = f1* o f.0 is a rel [K] isotopy from &3 to &7,
To define f, o and f,;, let A <= M x M be a neighborhood of the diagonal, and let
g:: A— M x M be an isotopy from 7,(M) to t,(M). The “covering homotopy theorem”
provides a neighborhood E of d(M) in (1 x p) 14 = M x V, and homotopies fiitE>
M % V of microbundle maps M x &; — M x &; such that the diagrams

St
MxVo>E——s>MxV

.

MxMoA——>MxM

ge

commute, the vertical maps all being 1,, X p;. Since g, is an isotopy, so is f; ;. Moreover,
we can first choose f; o and then choose f; ; to agree with it over a neighborhood of K in 4.

It is easy to see that f, ; is an isotopy from &¥ to 1y | M as required.
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LEMMA 9. Assume that M is parallelizable. Let r: V — M be a retraction. There is an
embedding h: V x R™ — M x V that makes commutative the diagram

V x R"™
x 0 / \\\1:
4 \
N
14 Y 14
N\
x| A
v L/
MxV
Proof. As Milnor observed in [7], the total space of r*z,(M) can be identified with
M x V in a natural way making r*t,(M) isomorphic to the microbundle

(r.1) 2
V——MxV—YV,

which is the bottom edge of the diagram in the Lemma. Since M is parallelizable, r*z,(M) ~
£™(V); the diagram of ¢"(V) is the top edge. Therefore / exists as required.

THEOREM 10. Let M be parallelizable.
(a) M has a normal microbundle in V' x R™.
(b) Assume that M is also symmetric. If &, and & are normal microbundles on M in V
having the same K germ, then
(o D™ & @ emrel[K]
Proof. (a). Follows from Lemma 9, because the embedding A: VxR"> M x V
takes M x 0O onto d(M), which has the normal microbundle 1, | M.

(b). It is easy to see that if /4 is as in Lemma 9, then, for any normal microbundle
&on M in V, his an isomorphism & @ £™ — £*. Hence the fact that £§ ~ £¥ rel [K] (Lemma
8) implies that &, @ ™ = &, @ &™ rel[K].

Further progress requires an extension theorem for isotopies. The one given below is
unsatisfactory in that it requires the addition of a trivial line bundle. This could perhaps
be avoided by closer examination of the specific isotopies used in Lemmas 6 and 8.

First a definition. Two isotopies, defined in neighborhoods of K in a space X, have the
same K germ if they agree in some neighborhood of X in X.

THEOREM 11. (ISOTOPY EXTENSION THEOREM). Let E be a neighborhood of K in V, and let
Jfi: E~ V be an isotopy fixed on M ~ E. There exists a neighborhood E’ of M in V x R and
an isotopy H, : E' - V x R which is fixed on M and has the same K germ as f, x 1.

Proof. We first point out that ¥ and M need not be manifolds; it is only necessary that
V be a normal space.

Choose open neighborhoods E,, E;, E, of K in E such that £, = E, E, < E,, and
JAE,) < E foralltel. Let ¢: ¥V~ R be such that (¥ — E,) = 3 and @(E,) =0. Define



236 MORRIS W, HIRSCH

T:VxR=VxRby T(x, c\_(y v—m(t“ Obvio lyTisa_h__

T:Rx T TIsothat 7(s,t) =tfors= —3%,and 7(s, 1) =0 fors £ —1.
nnﬁne F:ExRoVxRby Fix \=(Ff Y Clearly FIF < {—-1 ) ig an
Define F, | EX R X R by Fix, s} = Vt(“)\,@,,u, Clearly F,]JE X {—4,cC) s an

isotopy.

Define G,: ExR-> Vx Rby G, =T 'F, i
To obtain a formula for G,, first define p =p(x, s, t) = 7(s — @(s), ). Then

Gx, ) = (f,(x), s — @(x) + @.f,(x)).

If xe E, then ¢(x) =0, and, since f,(x) € Ej, also f(x) =0. If =1} then p=1.

Therefore
GlE;, x (-3, 0)=f, x L

In other words, G, has the same K germ as f, x 1.

If x e M then f,(x) = x, making G, fixed on M x R.

AN

If xe E — E, then ¢(x) = 3; if also s < 1, then s — ¢(x) < —1 making p = 0. Hence
G,|(E — Ey) x (— o0, 1) = identity.

Therefore G, | E x (—4%, 1) extends to an isotopy H, of a neighborhood E' of Min V (-1, 1)
which is the identity on (V' — E;) x (— o0, 1). The theorem is proved.

Applying Theorem 11 to the case where f, is an isotopy of | U, £ being a normal
microbundle on M in V, we arrive at the following corollary.

COROLIARY 12, Lot F Mo V 2 M be g normal mn-rnhunr]lo and E cp 1[] an open

UL ARY vz oC 4L Ularnilesd

neighborhood of K. Iff,: E~ p~'U is an isotopy of & | U to a normal microbundle non Uin V,
there is an isotopy h, of ¢ @ &' to a normal microbundle { on M in V x R such that

(a) h, has the same K germas f; x 1 : EXxR—> V x R;

() ¢ has the same K germ as n ® &'.
In particular,

(c) the K germ of £ @ &' extends over M in V x R.

With the Isotopy Extension Theorem at our disposal, we can supplement Theorem 10
with the following result.

THEOREM 13. Assume that M — K is parallelizable and symmetric. If & is a normal
microbundle on U in V, the K germ of { @ e™*! extends over M in V x R"*1,

Proof. Let K’ be a closed neighborhood of K in M which lies in U. By replacing
Mby M — K, Uby U— K, and Kby K’ — K, we may assume that M is parallelizable and
symmetric.

Recall that 7, | M is a normal microbundie on d(M)in M x V. Moreover, by Lemma 6,
Ty | U and &* are isotopic normal microbundles on d(U) in M x V. By definition, 7, | U
extends to a normal microbundle on d(M)in M x V. Lemma 9 shows that £ @ ™ is isotopic
to a normal microbundle on Uin ¥ x R™ whose K germ extends over M. By Corollary 12c,
the K germ of & @ ¢™*! extends over M, proving the theorem.
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§6. PROOF OF THE MAIN THEOREMS

The breadth b(M) of a manifold M is the smallest number b such that M is covered by
b open, symmetric, parallelizable submanifolds.

Lemva 14. (M) < m + 1.

Proof. Ever m-manifold is covered by m + 1 open sets each of which is contained in
some coordinate neighborhood; see [8]. By Lemma 5, such submanifolds are symmetric, and
they are obviously parallelizable.

THEOREM 15. Put b(M) = b. Then M has a normal microbundle in V x RXm+D -1

Proof. By induction on 5. The case b =1 is covered by Theorem 10a. The inductive
step is handled by Theorem 13. The details are left to the reader.

THEOREM 16. Put (M — K) = b. Then:

(a) If & is a normal microbundle on U in V, the K germ of £ @ ™% 1) extends over M in
V x Rb(m+ 1).

(b) If &y and &, are normal microbundles on M in V having the same K germ, then
fo @ 8b(m+ -1 ~ cl @ 8b(m+l)—1 I'CI[KJ.

Proof. By induction on b. The proof of (a) is similar to that of Theorem 15 and is left
to the reader. The proof of (b) uses Theorem 10b and the Isotopy Extension Theorem
(Corollary 12).

Observe that Theorem 1 follows from Theorems 15 and 16 and Lemma 14.

To prove Theorem 3, concerning the case M = S™, first consider the casesm =1, 3 or 7
—that is, assume that S™ is parallelizable. Then apply Theorem 10 to prove the relevant
parts of (a) and (c). To prove (b), observe that if K # ¢, then S™ — K is symmetric and paral-
lelizable, and hence Theorem 16a applies. Finally, to prove the general case of (a) and (c),
observe that S™ x Ris a symmetric, parallelizable submanifold of ¥ x R. Hence by Theorem
10a, S™ x R has a normal microbundle in (¥ x R) x R™*1, Since obviously $™ has a normal
microbundle in $™ x R, Theorem 3a follows. Part (c) is proved similarly.

Theorem 2 depends on the following generalization of the idea of replacing S™ by the
symmetric parallelizable manifold S™ x R.

THEOREM 17. Suppose there is a symmetric parallelizable manifold N of dimension n,

and a microbundle v: M - N—— M. Then M has a normal microbundle in V x R*", If
is a microbundle over M with v@® u ~ &, then M has a normal microbundle in V x R**¥,

Proof. We may assume a retraction p : ¥V — M. Consider the induced microbundle

VIV WoV
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Since p is a retraction there is a natural embedding N < W; the natural map ¢: W— N
covering p : ¥ — M is then a retraction, and the following diagram commutes:

t

N ¢ W > N

| bt

M >V — M

Since N is symmetric and parallelizable, N has a normal microbundle in W x R”, by Theorem
10a. If M is identified with the zero section of v, then M has a normal microbundle in
W x R" = E(p*v) x R". If v@® u ~ &, then M hasanormal microbundlein E(p*(v @ p)) x R*
= ¥V x R¥*", Since N is parallelizable, 7, ® v ~ ¢", so that one may always take k < n.

Next, a relative form of the last theorem.

THEOREM 18. Let & be a normal microbundle on U in V. Let N be a symmetric paralleliz-
able n-manifold; let r: N - M — K be the projection of a microbundle v. Then the K germ
of E@ ¥t extends over M in V x R¥™¥ 1. If u is a microbundle over M — K such that
V@ p = &, then the K germ of ¢ ® &"***! extends over M in V x R****1,

Proof. As in the proof of Theorem 13, we may replace M by M — K, etc. Thus we
assume that the projection of vis 7 : N - M, and that yu is defined over M also. The rest of
the proof is similar to that of Theorem 17. We may assume that p = r on r~'U. Observe
that the natural map ¢: W— N is a microbundle projection over a neighborhood of K in
r~1U. Call this microbundle #. By Theorem 13, N has a normal microbundle { in W x R**!
having the same K germ as n@é&"t!. It is easy to see that n=(p|p~'U)*¢. In
W x R**1, M has the composite normal microbundle v, {. Over a neighborhood of K,
vol=v® (@&, Thus M has a normal microbundle in

E(P*(V@,Uv)) X Rn+1 =V x Rk+n+1

having the same K germ as ¢ @ &**"*!. Since N is parallelizable we may always take
k<n

Parts (a) and (b) of Theorem 2 now follow because a smooth m-manifold immerses in
R2™ !, the total space of the normal vector bundle of the immersion is a symmetric parallel-
izable manifold N of dimension n = 2m — 1. Part (c) is a consequence of the next theorem.

THEOREM 19. Let &, and &, be normal microbundles on M in V having the same K germ.
Let N be a symmetric parallelizable n-manifold, and r : N - M — K the projection of a micro-
bundle v. Then Ea @ e =~ & @ e* rel[K]. If v pu =&, then £, @ et * x & @ ¥ rel[K].

Proof. Again we may assume that the projection of v is r: N—> M. We may also
assume that &, and &, have projections p;: ¥V — M, for i = 0, 1, that are homotopic rel[K]
(that is, rel a neighborhood of KX).

Let W be the total space of pgv. Thus W = E(é, @ v). Let g, : W — N be the natural
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microbundle map pgv — v that covers p,. Let s: W — V be the projection of pfv. The foll-
owing diagram is commutative:

W——mV

N——mM

Since p, ~ p, rel[K], there is a map g, : W — N which is a microbundle map piv-— v
covering p, : ¥V — M, and which agrees with g, in a neighborhood of K in W.

It is easy to see that g, and g, are projections of normal microbundles #, and 5, on
N in W having the same K germ. Since N is symmetric and parallelizable, 5, ® &" =~
n, @ &" rel[K], by Theorem 10b. Therefore the composite normal microbundles

s Pi
LW xR > W—>V —M, i=0,1,

are isotopic rel[K]. Now W = E(&; @ v). Therefore the composite normal microbundles

ECo®v@®u x R EC@®v) x R = W x R" —> M

are isotopic rel[K], where A: E(n, @ v u) - E({, @ v) is the natural projection. The
theorem is now proved by an identification

E,®veu) x R"X EMy®&) x R'=V x R"**

which comes from an isomorphism v @ u ~ €. The two resulting microbundles V x R**¥
- M are &, @ ",

To prove Theorem 4, start with a parallelizable symmetric 2n-manifold M containing B
as a subcomplex and retracting onto B. For example, let M be the interior of a “regular
neighborhood” of a PL immersion B — R?". The microbundle ¢ extends to a microbundle
over M, also denoted by £. Put E = E£. Observe that 1| B ~ & @ &2", since M is parallel-
izable. Therefore if n is a normal microbundle for E in some RY, then

EDE"D (| B) ~ ¢

It is easy to see that the breadth of the manifold Eis <n + 1, because B, and hence M, can
be covered by # + 1 opens sets over each of which ¢ is trivial. The dimension of Eis 2n + d.
Therefore, by Theorem 10a, if E < R® there is a normal microbundle  on E in
Rs+(r+D@n+d-1) The fibre dimension of # will be s +n(2n+d)—1. A well known
embedding theorem embeds E in R® with s =2dim E+ 1 =2(2n +d) + 1. This proves
Theorem 4.

Remark. With a little more work one can prove a relative form of Theorem 4. This is
left to the reader as an exercise.
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