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A HOMOTOPY+ SOLUTION TO THE A-B SLICE PROBLEM

MICHAEL FREEDMAN AND VYACHESLAV KRUSHKAL

Dedicated to the memory of Tim Cochran

Abstract. The A-B slice problem, a reformulation of the 4-dimensional topologi-
cal surgery conjecture for free groups, is shown to admit a link-homotopy+ solution.
The proof relies on geometric applications of the group-theoretic 2-Engel relation.
Implications for the surgery conjecture are discussed.

1. Introduction

Four-dimensional surgery is known to work in the topological category for a class
of good fundamental groups. This result was originally established in the simply-
connected case in [3], and it is currently known to hold for groups of subexponential
growth and a somewhat larger class generated by these [4, 10, 15]. The A-B slice
problem [5, 6] is a reformulation of the surgery conjecture for free groups, which is
the most difficult case.

The A-B slice problem concerns decompositions of the 4-ball. The handle structure
of a decomposition, interpreted as a Kirby diagram, gives rise to a stabilization of a
given link L, see section 2 for a precise definition. In these terms, to show that L is
A-B slice one needs to find a stabilization and band-sums between the components
so that the resulting link is slice. The Generalized Borromean Rings (GBRs) are a
collection of links any coinitial subset of which is universal for surgery. In a recent
work [7] we showed that GBRs have a coinitial subset admitting a link-homotopy
solution to the A-B slice problem. In other words, given such a GBR there exists
a stabilization and band sums so that the resulting link is homotopically trivial (h-
trivial) in the sense of Milnor [18]. Here we sharpen this result:

Theorem 1. The A-B slice problem for a coinitial collection of generalized Bor-
romean rings, forming universal surgery problems, admits a (link-homotopy)+ solu-
tion.

The Generalized Borromean Rings are the collection of links obtained from the Hopf
link by (any non-trivial amount of) iterated ramified Bing doubling. There is a
natural partial order on GBRs where more ramification and more Bing doubling
means “less than”, see figure 1.1.
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>

Figure 1.1. Partial order on Generalized Borromean Rings

An n-component link K is called h-trivial+ if each one of the n links obtained by
adding to K a parallel copy of a single component is homotopically trivial. The
extension from h-trivial to h-trivial+ is of interest in part due to the theorem [11]
that untwisted Whitehead doubles of h-trivial+ links are topologically slice. This
means that the strongest possible version of the A-B slice problem for such links has
a solution. That is, given an h-trivial+ link, there exists a stabilization and band
sums giving a slice link. It is interesting to relate this to Theorem 1 which, starting
with a GBR, finds a stabilization yielding an h-trivial+ link. A natural question is
whether these two stabilizations can be combined to give a genuine A-B slice solution
for GBRs.

As discussed in [7], if a link homotopy solution can be sufficiently improved, this
could lead to an affirmative resolution to the surgery conjecture for all groups. Our
result may be seen as a step in this direction. In terms of Milnor’s µ̄-invariants, [7]
constructs a stabilization giving a link with trivial µ̄-invariants with non-repeating
indices. Theorem 1 improves this to a link with trivial µ̄-invariants with at most
two repeating indices. An interesting question is whether there exists a stabilization
giving a link with all vanishing µ̄-invariants.

The proof of theorem 1 may be extended to give a link-homotopy+k solution, where
+k means that any link obtained by adding a total of k parallel copies of various
components is homotopically trivial. However this gain comes at a price: the amount
of Bing doubling in GBRs for which our methods give a link-homotopy+k solution
grows with k . (The simplest representative link has 22k + 1 components.) It follows
from grope height raising [9] that such a collection of links, for a fixed k , is still
universal for surgery, see [7, Proposition 4.1].

The novel ingredient in the construction of a link-homotopy solution in [7] is a geomet-
ric use of the group-theoretic 2-Engel relation [[y, x], x], in conjunction with handle
slides. An important algebraic feature underlying this construction is the fact that
any 2-Engel group is nilpotent of a fixed class.

One natural way to approach the h-trivial+ condition is to use the 3-Engel rela-
tion. However, as discussed in [7], n-Engel relations for n > 2 are generally not well
understood. Instead, in this paper h-triviality+ is achieved through a systematic
application of the 2-Engel relation. More precisely, we study links modulo a more
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subtle relation which may be termed “(2, 2)-Engel”. Roughly, a group element sat-
isfies this relation if it is trivial modulo the 2-Engel relation in two different ways.
h-triviality+ is seen to be a geometric consequence of this relation.

The background material on the A-B slice problem and the 2-Engel relation is sum-
marized in sections 2, 3. Theorem 1 is proved in section 6.

2. A-B slice links and the relative slice problem

This section gives a brief summary of the relevant background on the A-B slice
problem, the reader is referred to [8], for a more detailed exposition. We also state
the notion of a link-homotopy+ solution to the A-B slice problem, used in theorem 1.

A decomposition of D4 is a pair of compact codimension zero smooth submanifolds
with boundary A,B ⊂ D4 , satisfying conditions (1)-(3) below. Denote

∂+A = ∂A ∩ ∂D4, ∂+B = ∂B ∩ ∂D4, ∂A = ∂+A ∪ ∂−A, ∂B = ∂+B ∪ ∂−B.

(1) A ∪ B = D4 ,
(2) A ∩ B = ∂−A = ∂−B,
(3) S3 = ∂+A ∪ ∂+B is the standard genus 1 Heegaard decomposition of S3 .

The “attaching curves” α, β of A,B (the cores of the solid tori ∂+A, respectively
∂+B ) form the Hopf link in S3 = ∂D4 .

Given a k -component link L = (l1, . . . , lk) ⊂ S3 , let L′ = (l′1, . . . , l
′

k) be its untwisted
parallel copy.

Definition 2.1. A link L is A-B slice if there exist decompositions (Ai, Bi), of D
4

and self-homeomorphisms φi, ψi of D
4 , i = 1, . . . , k such that all sets φ1A1, . . . , φkAk ,

ψ1B1, . . . , ψkBk are disjoint and satisfy: φi(∂
+Ai) is a tubular neighborhood of li and

ψi(∂
+Bi) is a tubular neighborhood of l′i , for each i.

The collection of 2k manifolds {Ai, Bi} are disjointly embedded into D4 by the
restrictions φi|Ai

, ψi|Bi
. Since these maps are restrictions of self-homeomorphisms

of D4 , the embeddings are standard, in the sense that the complement D4
r φi(Ai)

is homeomorphic to Bi , and D4
r ψi(Bi) is homeomorphic to Ai . (This condition

that the embeddings are standard is important: it was shown in [14] that any link
with trivial linking numbers is weakly A-B slice, when this condition is omitted.) A
version of this requirement, in the link-homotopy setting, is stated as condition 2.4.

The 4-dimensional topological surgery conjecture for free groups was reformulated in
[5, 6] in terms of the A-B slice problem for the Generalized Borromean rings (GBRs),
the collection of links formed from the Borromean rings by iterated ramified Bing
doubling. An example is shown in figure 6.1.
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The notion of a link-homotopy+ A-B slice link relies on a choice of handle decom-
positions of the submanifolds {Ai, Bi} . We will analyze them in the context of the
relative-slice problem, introduced in [8].

Given a decomposition D4 = A∪B , without loss of generality it may be assumed [8]
that each side A,B has a handle decomposition (relative to the collar S1 ×D2 × I )
with only 1- and 2-handles. Denote A = (∂+A) × I ∪ H1 ∪ H2 . As usual, the
1-handles will be considered as standard 2-handles H∗

1 removed from the collar,
A = (∂+A× I \H∗

1 )∪H2 . The decompositions constructed in this paper (see section
6) have the property that the 2-handles H2 of each side do not go through the handles
H∗

1 of the same side. (See [7] for a discussion of this terminology.)

Suppose an n-component link L is A-B slice, with decompositions D4 = Ai∪Bi , i =
1, . . . , n. Denote by D4

0 a smaller 4-ball obtained by removing from D4 the collars on
the attaching regions φi(∂

+Ai), ψi(∂
+Bi) of all submanifolds {φi(Ai), ψi(Bi)} . Let

H2 denote the 2-handles of all these submanifolds, and H∗

1 the 2-handles removed
from the collars, corresponding to the 1-handles. Consider H∗

1 as zero-framed 2-
handles attached to D4

0 . (See [7, Section 3.1] for more details.)

Consider the following two links J,K in S3 = ∂D4
0 . J denotes the attaching curves

of the 2-handles H2 , and K the attaching curves of the 2-handles H∗

1 . (Here H2

are 2-handles contained in D4
0 , and H∗

1 are attached to D4
0 with zero framings along

K .) We call the pair (J,K) a stabilization of the original link L. The structure
of the stabilization links which is a consequence of the duality between the 1- and
2-handles of the two sides of each decomposition is shown in figure 2.1.

l′i

li (Ji,Ki)

(K̂i, Ĵi)
∪

∪

Figure 2.1. Stabilization corresponding to an A-B slice link L =
{li} : link pairs (Ji, Ki) ⊂ solid torus neighborhood of a meridian to

li , (K̂i, Ĵi) ⊂ solid torus neighborhood of a parallel copy l′i , and a
diffeomorphism between the solid tori exchanging their meridian and

longitude takes Ki to K̂i and Ji to Ĵi .

Definition 2.2. A link pair (J,K) in S3 = ∂D4
0 is called relatively slice if the

components of J bound disjoint, smoothly embedded disks in the handlebody

HK = D4

0 ∪ zero-framed 2-handles attached along K.
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If a link L is A-B slice, the associated link pair (J,K) is relatively slice. We now
turn to the definition of a link-homotopy+ solution to the A-B slice problem, referred
to in the statement of theorem 1.

Definition 2.3. A k -component link L is link-homotopy+ A-B slice if there exist
decompositions D4 = Ai∪Bi , i = 1, . . . , k and handle decompositions of the subman-
ifolds Ai, Bi so that the associated relative-slice problem (J,K) has a link-homotopy+

solution. In other words, in the context of definition 2.2 for each component l of J
the link J ∪ l′ bounds disjoint maps of disks ∆ in the handlebody HK . Here l′ de-
notes an untwisted parallel copy of l . Moreover, the disks ∆ are subject to condition
2.4 below.

Recall that in the formulation of the A-B slice problem the disjoint embeddings of the
manifolds {Ai, Bi} are required to be standard, see the paragraph following definition
2.1. We formulate a version of this condition in the link-homotopy setting (see [7,
Section 3.1] for a more detailed discussion):

Condition 2.4. Let S be any submanifold in the collection {φi(Ai), ψi(Bi)} . Then
the maps of disks ∆ for the components of J ∪ l′ corresponding to S do not go
through the 2-handles attached to D4

0 along the components of K corresponding to
the same submanifold S .

3. The Milnor group and the 2-Engel relation

We start by giving a brief overview of the Milnor group [18]. Let π be a group
normally generated by a fixed finite collection of elements g1, . . . , gk . The Milnor

group of π , defined with respect to a given normal generating set {gi} , is defined by

(3.1) Mπ = π / 〈〈 [gi, g
y
i ] i = 1, . . . , k, y ∈ G〉〉.

The Milnor group ML of a link L in S3 is set to be the Milnor group Mπ where
π = π1(S

3
r L), defined with respect to meridians to the link components.

Denote by Fg1,...,gk the free group generated by the {gi} , i = 1, . . . , k . The Magnus
expansion

(3.2) M : Fg1,...,gk −→ Z[[x1, . . . , xk]]

into the ring of formal power series in non-commuting variables {xi} is given by

M(gi) = 1 + xi, M(g−1

i ) = 1− xi + x2i − x3i ± . . .

The Magnus expansion induces an injective homomorphism

(3.3) MFg1,...,gk −→ Rx1,...,xk
,

into the quotient Rx1,...,xk
of Z[[x1, . . . , xk]] by the ideal generated by all monomials

xi1 · · ·xik with some index occuring at least twice. Milnor’s µ̄-invariants of a link are
defined in terms of coefficients of the Magnus expansion [19].
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Two links are link-homotopic if they are connected by a 1-parameter family of link
maps where different components stay disjoint for all values of the parameter. If L,
L′ are link-homotopic then their Milnor groups ML, ML′ are isomorphic. More-
over, a k -component link L is homotopically trivial (h-trivial) if and only if ML is
isomorphic to the free Milnor group MFm1,...,mk

. Equivalently, a link is h-trivial if
and only if all its µ̄-invariants with non-repeating indices are trivial.

This paper concerns a stronger version of this equivalence relation. An n-component
link L is called h-trivial+ if each one of the n links obtained by adding to L a parallel
copy of a single component is homotopically trivial. A link is h-trivial+ if and only
if all its µ̄-invariants with at most two repeating indices are trivial.

3.1. 2-Engel groups. Given a group π , consider its lower central series defined by
π1 = π, πn = [πn−1, π]. It is convenient to introduce a concise commutator notation

[g1, g2, . . . , gn] := [[. . . [g1, g2], . . . , gn−1], gn].

This paper concerns geometric applications of the 2-Engel relation [[y, x], x] = 1, or
equivalently [x, xy] = 1. A 2-Engel group π is a group satisfying this relation for all
x, y ∈ π . Note the difference with the definition of the Milnor group (3.1) where this
relation is imposed only on x in a fixed set of normal generators.

The free Milnor group on n generators MFn is nilpotent of class n [18]. In contrast,
the nilpotency class of 2-Engel groups is independent of the number of generators.
This result, building on earlier work of Burnside [1], is due to Hopkins [12] (also see
[16]):

Lemma 3.1. Any 2-Engel group is nilpotent of class ≤ 3 .

A proof in the context of the Milnor group is given in [7]. The following corollary of
the proof [7, Corollary 2.3] will be useful for applications in the next section.

Corollary 3.2. Suppose π is a group normally generated by g1, . . . , gn . Let g ∈ πk

be an element of the k -th term of the lower central series, 4 ≤ k ≤ n. Then g
may be represented in the Milnor group Mπ as a product of (conjugates of) k -fold
commutators of the form [h1, . . . , hk] where two of the elements hi are equal to each
other and to a product of two generators, hj = hm = gi1gi2 for some j 6= m, and
each other element hi is one of the generators g1, . . . , gn .

Figure 3.1 shows examples of links which are a geometric realization (for k = 4) of
the types of commutators that appear in the statement of corollary 3.2. A central
feature of these homotopically essential links is that a 0-framed handle slide (in the
notation of the figure, of the z -curve over the y -curve) gives a split link consisting
of an unknot and a homotopically trivial link pictured in figure 6.2.
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γ1

x y
z

w
γ2

x wy
z

(a) (b)

Figure 3.1. (a): γ1 = [x, yz, yz, w], (b): γ2 = [x, yz, w, yz].

4. A motivating example

Before giving a formal proof of theorem 1 we illustrate the idea underlying h-triviality+

in the set-up in figure 4.1. Start with the Borromean rings and let T1, T2 denote solid
torus neighborhoods of two of the components. Let Li ⊂ Ti be two links embedded
in these solid tori. Denote by Λi a meridian of Ti : a curve in ∂Ti bounding a disk
in Ti , figure 4.1.

l0

T1
T2

L1 L2

Λ1
Λ2

Figure 4.1. The link L = l0 ∪ L1 ∪ L2 in lemma 4.1.

Lemma 4.1. Consider the link L = l0 ∪ L1 ∪ L2 , figure 4.1. Suppose that for each
i = 1, 2 ,

(1) Li ∪ Λi is h-trivial, and
(2) Li is h-trivial

+ in S3 , where Li ⊂ Ti ⊂ S3 and Ti ⊂ S3 is the standard inclusion.

Then L is h-trivial+ .

Figure 4.2 shows an example of a link Li in the solid torus satisfying the assumption
in lemma 4.1: the Whitehead double of the core of the solid torus, and a parallel
copy. (Note that in this example Li ∪ Λi is h-trivial, but Li is not h-trivial in the
solid torus.) Other examples are given by the links in figure 6.2, where the three
components on the right form the link in the solid torus = complement in S3 of the
left-most component.



8 MICHAEL FREEDMAN AND VYACHESLAV KRUSHKAL

Λi

Li

Figure 4.2. An example of a link Li in the solid torus satisfying the
assumptions in lemma 4.1.

Proof lemma 4.1. There are two separate cases to consider: when a parallel copy of
a component of L1 ∪ L2 is added, and when a parallel copy of l0 is added. First
consider L′ := L∪ parallel copy l′1 of a component of L1 . We start with a geometric
argument to show that L′ is h-trivial. The steps below are labeled for referencing in
follow-up sections.

(1) The link L may be built starting with L2∪Λ2 as follows: Bing double Λ2 , denote
one of the resulting components by l0 and insert L1 in a tubular neighborhood of the
other component. Pictured this way, l0 ∪ L1 is contained in a tubular neighborhood
of Λ2 . Consider a link null-homotopy of L2∪Λ2 and extend it to L2∪ (l0∪L1). Self-
intersections of Λ2 during the link-homotopy are implemented by self-intersections
of l0 . This gives a link-homotopy of L where the components of L1 have no self-
intersections, so the same argument goes through when a parallel copy l′1 is added
to L1 . The assumption (2) of the lemma completes the proof that L′ is h-trivial.
h-triviality of L∪ parallel copy of a component of L2 is established analogously.

(2) Now we give another, algebraic, proof that L′ is h-trivial. This argument will be
applicable in the more general setting of theorem 1. Abusing the notation, let l0,Λi

refer to based loops. Then

(4.1) l0 = [Λ1,Λ2],

where

(4.2) Λ1 = Λ2 = 1 ∈Mπ1(S
3
r (L1 ∪ L2)).

It follows that every monomial (other than 1) in the Magnus expansion of l0 has two
sets of repeated variables: one pair corresponding to a component of L1 and another
pair corresponding to a component of L2 . This implies that the link remains h-trivial
when a parallel copy is added to one component of either L1 or L2 .

(3) Now consider L∪ l′0 , where l
′

0 is a parallel copy of l0 . Note that there exist maps
of disks ∆ into D4 bounded by L1 ∪ L2 and a capped punctured torus T c bounded
by l0 in D4 such that all disks and T c are pairwise disjoint. The body of T c is
an embedded genus 1 surface bounded by l0 in S3

r (T1 ∪ T2), with a symplectic
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basis of curves isotopic to Λ1,Λ2 . Extend L1 ∪Λ1 ∪L2 ∪Λ2 by a product in a collar
S3 × I ⊂ D4 , where S3 × 0 is identified with ∂D4 . Then L1 ∪ Λ1 and L2 ∪ Λ2 form
a split link in S3 × 1 which is h-trivial by the assumption (1) of the lemma. The
null-homotopies for Λ1,Λ2 give the caps for T c . Contraction/push-off [9] applied to
T c and its parallel copy give disjoint maps of disks for all components of L ∪ l′0 . �

Remark. Contraction/push-off in part (3) of the proof, if desired, could be iterated
to show that L∪ (any given number of parallel copies of l0 ) is a homotopically trivial
link.

5. A lemma in commutator calculus.

5.1. Lemma 4.1 above illustrates the idea that the improvement from a homotopy
solution in [7] to a homotopy+ solution will follow from allowing two “parallel chan-
nels” or “two participants in a commutator” by which an element can die. More
precisely, the key features of the link l0 ∪ L1 ∪ L2 in figure 4.1 are the expression
(4.1) for l0 , subject to (4.2), and the fact that L1 ∪ L2 is h-trivial+ . The link that
will come up in the proof of theorem 1 is more general than the basic example in
lemma 4.1. This section develops the relevant algebraic framework which generalizes
Corollary 3.2 using the main features described above.

We will refer to the commutators of the form [h1, . . . , hk] in the statement of Corol-
lary 3.2 as almost basic commutators. (This term is meant to avoid confusion with
commutators [gi1, . . . , gik ] which are usually called basic.) Almost basic commuta-
tors are geometrically realized by standard links (figure 3.1) which will be used to
construct decompositions of D4 .

Note that the representation of g in Corollary 3.2 as a product of conjugates of almost
basic commutators holds in the Milnor group, in general it is not valid in the group
π . For the purpose of proving Theorem 1 it is insufficient to work modulo the Milnor
relation, a more subtle equivalence relation is needed.

Let π be a group normally generated by a fixed set of elements {g1, . . . , gn} . Moti-
vated by (4.1), (4.2), consider the relation

(5.1)
[
[gi, g

y1
i ]z1 , [gj, g

y2
j ]z2

]
,

where 1 ≤ i, j ≤ n, and yk, zk are arbitrary elements of π . The notation f ≡ g for
two elements f, g ∈ π will indicate that f · g−1 is in the normal subgroup generated
by the relations (5.1). Technically we will not consider quotients of groups by these
relations, rather (5.1) will be used in section 6 to construct specific h-trivial+ links.

The following lemma establishes a version of Corollary 3.2 in the setting of the re-
lations (5.1). A useful fact about the lower central series to keep in mind is that
[πp, πq] ⊂ πp+q .
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Lemma 5.1. Let π be a group normally generated by {g1, . . . , gn} . Fix k ≥ 4 and
consider a commutator [α, β] where α, β are both elements of the k th term of the
lower central series πk . Then there exists W ∈ π2k such that

(1) [α, β] ≡W , and

(2) W equals in π a product of conjugates of elements of the form [C, β], [α,C ′],
[C,C ′] where C,C ′ are almost basic commutators [h1, . . . , hk] in Corollary 3.2.

Proof of lemma 5.1. Let α′ , β ′ ∈ π denote products of conjugates of almost basic
commutators representing α, β , given by Corollary 3.2,

α · (α′)−1 = 1 ∈ Mπ, β · (β ′)−1 = 1 ∈Mπ.

Note that in general this does not imply [α, β] ≡ [α′, β ′]. Recall the basic commutator
identities, cf. [17, Theorem 5.1]:

(5.2) [x, yz] = [x, z] · [x, y]z, [xz, y] = [x, y]z · [z, y].

Use (5.2) to observe that

(5.3) 1 ≡ [α · (α′)−1, (β ′)−1 · β].

Again using (5.2),

(5.4) [α · (α′)−1, (β ′)−1 · β] = [α, β]γ1 · [(α′)−1, β] · [α, (β ′)−1]γ2 · [(α′)−1, (β ′)−1]γ3

for some γi ∈ π , determined by (5.2). Set W ∈ π to be (a conjugate of) the inverse
of the product of the three right factors in (5.4):

(5.5) W :=
((
[(α′)−1, β] · [α, (β ′)−1]γ2 · [(α′)−1, (β ′)−1]γ3 ]

)
−1)γ−1

.

It follows from (5.3), (5.4) that

(5.6) [α, β] ≡W.

The second statement of the lemma follows from an application of the identities (5.2)
to the definition (5.5) of W . �

5.2. The proof of theorem 1 in section 6 will require an application of lemma 5.1 in
a slightly more general setup. In the context of the lemma, suppose g ∈ π is of the
form

(5.7) g =
[
[α1, β1], [α2, β2]

]
,

where each element αi, βi is in πk , k ≥ 4. Then lemma 5.1 gives W1,W2 ∈ π2k

such that [αi, βi] ≡ Wi , i = 1, 2. Observe that given x, y, z ∈ π , x ≡ y implies
[x, z] ≡ [y, z]. It follows that

(5.8) g =
[
[α1, β1], [α2, β2]

]
≡

[
W1, [α2, β2]

]
≡

[
W1,W2

]
.

Moreover, both W1 , W2 satisfy the conclusion (2) in the lemma.



A HOMOTOPY+ SOLUTION TO THE A-B SLICE PROBLEM 11

6. Proof of theorem 1

As discussed in the introduction (also see [7, Proposition 4.1]) any coinitial subset
of the Generalized Borromean Rings forms a collection of links universal for surgery.
A homotopy A-B slice solution in [7] applies to links obtained from the Hopf link
by keeping one of its components l0 intact and Bing doubling the other components
at least twice, see figure 6.1 for an example of such a link. A homotopy+ solution
constructed in sections 6.1 - 6.3 applies to a collection of higher Bing-doubled links
(still universal for surgery). We start by briefly summarizing the construction of [7].

l0

l1

l2

l3

l4

Figure 6.1. A link in the collection of GBRs.

The decompositions D4 = Ai ∪ Bi for all link components other than the fixed
component l0 are set to be the trivial decomposition, Ai = 2-handle and Bi =
collar on the attaching curve βi . The entire complexity of the construction is in
the decomposition D4 = A0 ∪ B0 for the component l0 . A0 will be defined to be
the collar l0 ×D2 × I with a single 2-handle attached to the core of the solid torus
l0 × D2 × {1} , and many 1-handles governed by the algebraic outcome of lemma
5.1, as explained below. In terms of figure 2.1 (where the index i is understood to
equal 0) the 2-handle is attached to the curve labeled li , Ji is empty since there are
no other 2-handles, and Ki is the Kirby diagram representation of the 1-handles.

Correspondingly, the other side B0 of the decomposition has no 1-handles ( Ĵi in the

figure is empty) and the attaching curves of its 2-handles form the link K̂i .

The link-homotopy solution in [7] uses a geometric implementation of Corollary 3.2,
where each almost basic commutator of the form [h1, . . . , hk] is realized by a standard
link illustrated in figure 3.1. More precisely, building blocks in the construction of the
link K0 , describing the 1-handles of A0 , are shown in figure 6.2. These are h-trivial

counterparts of the links in figure 3.1 where one of the two parallel curves labeled
y, z is removed.

A key point, using the terminology of definition 2.2, is that K0 is the attaching link
for 0-framed 2-handles attached to D4

0 , and parallel copies of each component bound
disjoint copies of the core of the attached 2-handle. The links in figure 3.1 then may
be recovered from links in figure 6.2 by adding the relevant parallel copy.
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Figure 6.2. Links in figure 3.1, with one of the parallel components
y, z removed.

The homotopy solution from [7, Section 4] is schematically shown in Figure 6.3 (a).
This construction will be refined to achieve h-triviality+ in three steps in sections 6.1
- 6.3.

6.1. Consider the link (l0, L) in figure 6.3 (b), obtained by Bing doubling of the
components l1, . . . , l4 of the link in figure 6.1. The argument applies to GBRs that
are more Bing-doubled and ramified; to be concrete we focus here on this simplest
representative link. This section constructs a stabilization of l0 , a link K0 in a
solid torus linking l0 , and a band-sum L♯ of L with (K0 ∪ parallel copies) with the
property:

(l0 ∪ L
♯) is h-trivial+ with respect to adding a parallel copy of a component of L♯ .

(a) (b)

α0 α

l0
K0

(l1, . . . , l4)

K0

M

l0

α β

L

Figure 6.3.

(a): A schematic representation of the link-homotopy A-B slicing in

[7], where (l0, . . . , l4) is the GBR is figure 6.1. (The link K̂0 , and also
bands connecting l2, . . . , l4 with K0 are not shown.)
(b) The modified stabilization K0 , constructed in section 6.1, for the
GBR (l0, L). Here L is obtained by Bing doubling twice the cores of
the two solid tori, and α, β (considered as based loops) represent 4-fold
commutators in the meridians of L.

The dual part K̂0 of the stabilization (figure 6.4) is analyzed in section 6.2. The
addition of a parallel copy of l0 is addressed in section 6.3.

To apply Lemma 5.1, consider π := π1(S
3
rL). L is the unlink, π is the free group,

and l0 is an element of the form [α, β] as in the statement of the lemma. In the
concrete example discussed above, both α, β are 4-fold commutators (more generally
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the argument applies to higher Bing doubles where α, β are k -fold commutators,
k ≥ 4.) According to the statement (2) of the lemma, W is a product of conjugates
of the elements of the form

(6.1) [C, β], [α,C ′], [C,C ′],

where C,C ′ are almost basic commutators as in Corollary 3.2. To construct K0 ,
consider several parallel copies of the meridian to l0 . For each element of the form
(6.1) in the expression for W , take a Bing double of a meridian and thicken the
two resulting components to solid tori. Next we define links K ′, K ′′ , geometrically
representing the given element (6.1) and insert them into these two solid tori. For
each element of the form [C, β] consider a link of the type shown in figure 6.2,
corresponding to the almost basic commutator C . More precisely, K ′ consists of
three components on the right in a link in figure 6.2, considered in the solid torus
complement of the leftmost component. K ′′ is the iterated Bing double of the core
of the solid torus corresponding to the 4-fold commutator β . The analogous Bing
double of links (K ′, K ′′ ) is created for each factor of the form (6.1) in the expression
for W , completing the construction of K0 .

The construction in the preceding paragraph is a generalization of that in [7, Section
4], in particular see figure 4.3 in that reference. The stabilization in [7] was defined
in terms of almost basic commutators C , while here we have Bing doubles of links
corresponding to commutators (6.1).

For each constituent link of K0 of the type in figure 6.2 add a parallel copy to recreate
a link as in figure 3.1. In the relative slice setting these parallel copies bound disjoint
disks in the zero-framed 2-handles attached to D4

0 along K0 . To find a homotopy+

solution to the relative-slice problem, L will be band-summed with the components of
K0 and their parallel copies. In the homotopy solution in [7] the choice of bands was
immaterial. This is due to the fact that all commutators in the construction are of
maximal length, so conjugation does not affect calculations in the Milnor group. The
only relevant constraint for a homotopy solution is l0 = α ·(α′)−1 = 1 ∈Mπ1(S

3
rL),

in the notation of figure 6.3 (a). (The equality l0 = α · (α′)−1 is established using
additivity of µ̄-invariants [2, 13], or by directly reading off the element represented
by l0 in the Milnor group [7, Proof of theorem 1].) The homotopy+ problem is more
sensitive to the choice of bands.

Suppose the bands in the definition of L♯ could be chosen so that the meridian M of
the solid torus in figure 6.3 (b) precisely matched the element W in lemma 5.1. Then
in π one would have l0 = [α, β] ·W−1 ≡ 1, see (5.6). In this case the h-triviality+

with respect to parallel copies of L♯ is proved exactly the same way as in part (2) of
the proof of lemma 4.1.

In fact, to establish h-triviality+ with respect to parallel copies of L♯ it suffices to
choose bands so that M suitably approximates W . Recall that W is a product of
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conjugates of the elements (6.1). The Milnor group Mπ =Mπ1(S
3
rL) is nilpotent

of class equal to the number of components of L. For any choice of bands, each
commutator (6.1) in the expression for W is of maximal length in the power series
of non-repeating monomials. Considering the Magnus expansion (3.2) of the free
group π , note that only the homology class of conjugating elements is relevant.
Indeed, suppose an element W ′ is created by some conjugating elements that agree
homologically with those defining W in Lemma 5.1. Then each term (other than 1)
in the Magnus expansion of W · (W ′)−1 contains either three copies of a variable,
or two pairs of different repeated variables. In either case adding a parallel copy
preserves the condition of being h-trivial. Finally, choose arcs connecting L with
the relevant components of K0 and its parallel copies, homologically matching the
conjugating elements. Perform the band sums along these arcs; such operations do
not interfere with each other since only homological information is relevant. This
establishes h-triviality+ with respect to components of L♯ .

6.2. The link K̂0 . This section modifies the stabilization K0 constructed above,
using the extension of Lemma 5.1 in section 5.2. The goal is to establish h-triviality+

of the link K̂0 in the solid torus, figure 6.4.

K̂0

K0

[α1, β1]

[α2, β2]l0

L

Figure 6.4.

Bing double the link L in figure 6.3 one more time, so that l0 represents the com-
mutator l0 =

[
[α1, β1], [α2, β2]

]
, where each αi, βi is a 4-fold commutator as in (5.7).

Now define the stabilization link in the solid torus linking l0 to be the Bing double
of two copies of K0 from section 6.1. The key point now is that the link K0 was
defined in the previous section using links in figure 6.2 which are h-trivial in the solid
torus, so K0 is also is h-trivial in the solid torus. It follows that the Bing double of

this link is h-trivial+ in the solid torus. The link K̂0 is a copy of K0 in a solid torus

parallel to l0 , figures 2.1, 6.4. Therefore K̂0 is h-trivial+ in this solid torus, and it
does not affect the analysis of the the link l ∪ L♯ . Here L♯ is created using bands
analogously to section 6.1, implementing the algebraic equation (5.8).

6.3. h-triviality+ with respect to l0 . Finally, consider l0 ∪ l
′

0 ∪ L, where l0 ∪ L
is the link in section 6.2 (figure 6.4), and l′0 is a parallel copy of l0 . The goal is to
show that l0 ∪ l′0 ∪ L

♯ is h-trivial. To achieve this, the stabilization will require an
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additional slight modification. (This argument is independent of sections 6.1, 6.2; it
can be carried out in the setting of [7].)

First consider the Borromean rings with a parallel copy l′0 of one of its components l0 ,
figure 6.5. Denoting by m1, m2 the meridians suitably connected to a basepoint and
similarly regarding l0 as a based loop, note that the expression l0 = [m1, m2] holds
regardless of whether l0 is considered as an element of the Milnor group Mπ1(S

3
r

(l1 ∪ l2)) or as an element of Mπ1(S
3
r (l′0 ∪ l1 ∪ l2)). This expression can be read

off from the torus bounded by l0 in the complement of l1, l2 , figure 6.5.

m2

m1

l1 l2

l0

l′0

Figure 6.5.

Similarly, a calculation explained in the following paragraph shows that the expres-
sions read off by the components γi of the elementary Engel links in figure 3.1 are
unchanged when a parallel copy of γi is present, provided that the bands do not
involve the component labeled x (the figure only illustrates the links of this type).
Considering 5-fold rather than 4-fold commutators in Corollary 3.2, the links analo-
gous to the elementary links in figure 3.1 satisfy this property on bands. To be more
precise, consider a 5-fold commutator [gi, g] where g is a 4-fold commutator and
gi is a generator. Then according to Corollary 3.2, g is a product of conjugates of
almost basic commutators C . Using commutator identities (5.2), [gi, g] is then seen
to be a product of conjugates of elements of the form [gi, C]. In the corresponding
link the element gi is represented by a curve which is not part of a band sum.

We will now give details of the calculation mentioned in the previous paragraph. This
calculation may be given in terms of the Milnor group, or it can be read off from
a grope bounded by l0 in the complement of the link. The links discussed above
may be represented as a “composition” (in the sense of [8, Theorem 2.3]) where the
components labeled γi and x of a link in figure 3.1 are identified with the components
l0 , l1 of the Borromean rings in figure 6.5, and the rest of the link (denote it by K )
is inserted in a solid torus neighborhood T of l2 . The following argument applies to
any link K in T . As in figure 6.5,

(6.2) l0 = [m1, m2].

Consider the meridian m2 as an element in the Milnor group of the complement
of K in the solid torus T , Mπ1(T r K). The generators of this Milnor group are
meridians to K and a longitude of the solid torus. Considered as part of figure 6.5,
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this longitude represents the commutator [m1, m0m
′

0]. Substituting this into (6.2),
observe that the only way that the meridian m′

0 appears in the expression for l0 is
as part of the commutator

[m1, . . . · [m1, m0m
′

0] · . . .].

Applying the commutator identities (5.2) and the Milnor relation (3.1), it follows
that omitting [m1, m0m

′

0] from this expression does not change the element in the
Milnor group, establishing the desired claim.

Now instead of iterated Bing doubles in sections 6.1, 6.2 corresponding to 4-fold
commutators consider links corresponding to 5-fold commutators. (For example in
figure 6.1 Bing double any one of the components l2, . . . , l4 .) Given such GBR l0∪L
and stabilization K0 , l0 then may be assumed to be in the subgroup Mπ1(S

3
r (L∪

K0)) of Mπ1(S
3
r (l′0∪L∪K0)). As in the proof in section 6.1, only the homological

information about bands connecting L and K0 and forming L♯ is relevant. Choose
arcs connecting L with K0 so that the corresponding conjugating elements are in
the subgroup Mπ1(S

3
r (L∪K0)) of Mπ1(S

3
r (l′0∪L∪K0)). Now all calculations

in the preceding sections, establishing that l0 = 1 ∈ Mπ1(S
3
r L♯), do not involve

the meridian to l′0 , so l0 = 1 ∈ Mπ1(S
3
r (l′0 ∪ L

♯)). This shows that l0 ∪ l
′

0 ∪ L is
h-trivial. �
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