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3-MANIFOLD FUNDAMENTAL GROUP

JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

ABSTRACT. We give a criterion on a group 7w and a homomorphism w: ©# — C2 under which
closed 4-manifolds with fundamental group 7 and orientation character w are classified up to
homotopy equivalence by their quadratic 2-types. We verify the criterion for a large class of
3-manifold groups and orientation characters, in particular for the fundamental group = of any
closed, orientable 3-manifold whose finite subgroups are cyclic, provided w vanishes on every
element of 7 of finite order. We deduce a homeomorphism classification of closed, orientable
4-manifolds with infinite dihedral fundamental group Z/2 x Z/2.

1. INTRODUCTION

The study of 4-manifolds up to homotopy equivalence began with the work of Whitehead and
Milnor [Whi49, Mil58], who gave a full classification in the closed, simply connected case. An
appropriate generalisation of Whitehead and Milnor’s classification to aim for was formulated by
Hambleton-Kreck [HKS88], as follows.

Question 1.1. For which fundamental groups can we classify closed 4-manifolds up to homotopy
equivalence in terms of the quadratic 2-type?

Smooth structures will play no role here, so we work in the generality of topological 4-manifolds.
The quadratic 2-type Q(M) of a closed, connected, based 4-manifold M, with a local orientation at
the basepoint, consists of the data

QM) := (m1 (M), w2 (M), kar, wi (M), Aar)-

Here mo(M) is considered as a Z[my(M)]-module, ky; € H3(m(M);ma(M)) is the k-invariant
classifying the Postnikov 2-type of M, wi (M) € H*(M;Z/2) is the first Stiefel-Whitney class, and
Ayr: (M) X (M) — Z[m1(M)] is the equivariant intersection form. In this article, instead of
wy (M) we will consider equivalently the orientation character wys : 71 (M) — {£1}. An isomorphism
between the quadratic 2-types Q(M) and Q(M') of 4-manifolds M and M’ consists of a pair of
isomorphisms g;: (M) — m(M') for ¢ = 1,2, that respect the k-invariant, and such that ¢;
intertwines the orientation characters, and g, induces an isomorphism of the intersection forms.

There has been considerable progress on an affirmative answer to Question 1.1 in special
cases, for example certain finite fundamental groups by Hambleton—Kreck [HK88|, Kasprowski—
Powell-Ruppik [KPR24], and Kasprowski-Nicholson—-Ruppik [KNR22], all in the oriented setting.
For geometrically 2-dimensional fundamental groups that satisfy the Farrell-Jones conjecture,
Hambleton—Kreck—Teichner [HKT09] showed that the homotopy classification is determined by the
quadratic 2-type together with the ws-type.

A key tool in the articles [HK88, KPR24, KNR22] is a criterion due to Hambleton—Kreck [HKS88,
Theorem 1.1 (i)] for finite fundamental groups, which when satisfied implies that an isomorphism of
quadratic 2-types Q(M) — Q(M’) is induced by a homotopy equivalence M ~ M’. We generalise
the Hambleton—Kreck criterion in Theorem 2.4. Our new criteria can be applied to all fundamental
groups, not just finite groups. In other words, we show that for 4-manifolds satisfying the conditions
in Theorem 2.4, the homotopy type is determined by the quadratic 2-type.

Then we investigate whether the conditions of Theorem 2.4 are satisfied by 3-manifold groups,
namely those groups that arise as the fundamental group of some (not necessarily orientable) closed
3-manifold. To state our main theorem we introduce the following terminology.
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Definition 1.2. Let 7 be a 3-manifold group, i.e. 7 = m1(Y") for some closed 3-manifold Y, and
let w: m — C5 be a homomorphism (which need not be the orientation character of Y). Suppose
that Y has prime decomposition Y1 # - - - #Y;,,. We say the pair (7, w) is admissible if w vanishes
on every element of 7 of finite order, and if whenever 7 (Y;) contains finite order elements, Y; is
either a lens space or S* x RP?.

The second condition in the definition means that summands Y; with fundamental group a
non-cyclic finite 3-manifold group are inadmissible, as are summands Y;, other than S x RP?, that
contain a two-sided RP?.

Remark 1.3. In particular, if 7 is the fundamental group of a closed, orientable 3-manifold whose
finite subgroups are cyclic, and w vanishes on every element of finite order, then (7, w) is admissible.

Theorem 1.4. Let 7 be a 3-manifold group and let w: m — Cy be a homomorphism, such that
(m,w) is admissible. Let M and M’ be closed 4-manifolds, locally oriented at the basepoints. Suppose
that w1 (M) and 71 (M') are both isomorphic to 7, via isomorphisms that pull back w to wyr and
wpy respectively. N

Then every isomorphism Q(M) — Q(M') between the quadratic 2-types of M and M’ is realised
by a homotopy equivalence. In particular, M and M’ are homotopy equivalent if and only if they
have isomorphic quadratic 2-types. Homotopy equivalences are assumed to be basepoint and local
orientation preserving.

Theorem 1.4 includes the homotopy classification for oriented 4-manifolds with the following
fundamental groups.

(1) Fundamental groups of closed, oriented, aspherical 3-manifolds, i.e. COAT groups.
(2) Free products of finitely many cyclic groups. In particular, the infinite dihedral group
Do ZZ/2%7)2.
(3) The group Z x Z/2.
Note that Hambleton—Kreck’s result [HK88, Theorem A] already covered finite groups with 4-
periodic cohomology, so in particular finite fundamental groups of closed 3-manifolds. Theorem 1.4
also includes many nonorientable cases.

The proof of Theorem 1.4 relies on the following foundational results of Baues—Bleile and
Hambleton—Kreck. Let f: M — Py(M) and f': M’ — P,(M’) be 3-connected maps to the
respective Postnikov 2-types, and suppose there is a homotopy equivalence g: Py(M) = Py(M’).
Let m := m(P2(M'")), and identify all relevant fundamental groups with 7 using f, f’, and g.
Suppose that there is a homomorphism w: m — {+1} that determines the orientation characters of
M and M’. Then by [HK88, Theorem 1.1] and [BB08, Corollary 3.2] (stated below as Theorem 2.1)
there is a homotopy equivalence h: M — M’, with h, = (f)"! o g. o fu: m(M) — 7;(M’), for
i = 1,2, if and only if there are (twisted) fundamental classes [M] and [M'] such that g, o f.([M]) =
FLM) € Hy(Py(MY); Z2).

Our conditions from Theorem 2.4, if satisfied, imply that an isomorphism Q(M) =N Q(M') gives
rise to a homotopy equivalence g: Po(M) = Py(M’) as above such that g, o f,([M]) = f.([M']),
and hence by Theorem 2.1 to a homotopy equivalence between M and M’. The majority of the
proof of Theorem 1.4, which starts in Section 3 and culminates in Section 9, consists of careful
verification of the criteria from Theorem 2.4.

As another application of our criteria from Theorem 2.4, in Corollary 10.2 we give a new proof
of [HKT09, Theorem 5.13]. This was part of the proof of the classification of 4-manifolds with
geometrically 2-dimensional fundamental groups from that article. See Section 10.1 for details.

Remark 1.5. A homotopy classification via Q(M) as in Theorem 1.4 does not hold for all fundamental
groups. In particular, while it holds for Z x Z/2 in the orientable case, the analogous statement does
not hold for fundamental group Z x Z/p whenever there are non-homotopy equivalent 3-dimensional
lens spaces with fundamental group Z/p. To see this consider S! x L and S* x L', where L and
L’ are lens spaces with w1 (L) = Z/p = 71(L'). Then by considering Z-covers we see that S! x L
and S' x L' are homotopy equivalent if and only if L and L’ are homotopy equivalent. However
(St x L) = 0= ma(S! x L') and so S! x L and S* x L’ have isomorphic quadratic 2-types, even
if L and L’ are not homotopy equivalent.



HOMOTOPY CLASSIFICATION OF 4-MANIFOLDS 3

We also check that the criteria from Theorem 2.4 do not hold in this case. Conditions (1), (3), and
(4) hold trivially since w3 (S! x L) is trivial. More precisely, using the notation from Theorem 2.4,
we can take B = B(Z X Z/p), so in particular Hy(B;Z[Z x Z/p]) = 0, and Im 95 = {0}. However
the images of [S! x L] and [S! x L'] in Hy(Z x Z/p;Z) are distinct, so in particular their difference
does not lie in Im ¢ 5. Hence condition (2) does not hold.

Remark 1.6. The restrictions on the orientation character in Theorem 1.4 are necessary. Even
for fundamental group Z/2 and nontrivial orientation character, the homotopy type of M is not
determined by Q(M) as can be seen from work of Kim, Kojima, and Raymond [KKR92].

Remark 1.7. In this paper we use the term PD,,-complex to refer to a finite n-dimensional Poincaré
duality complex. A group G is said to be a PD, -group if the classifying space K(G,1) is a
PD,-complex. The proof of Theorem 1.4 extends to the case that 7 is a free product *;_, G;, where
the factors G; are either P D3-groups or cyclic. This may be a spurious generalisation, as it remains
an open question whether every PDs-group is the fundamental group of a closed 3-manifold.
Note that the finiteness conditions on PD,-complexes and PD,-groups in the literature some-
times differ. For example the algebraic definition of a PD,,-group from [BE73] does not require
that the group be finitely presentable, and for every n # 4 there are examples of such groups that
are not finitely presentable by [Dav98, Theorem C], and so do not have finite classifying spaces.

1.1. Stable homeomorphism for COAT and Z X Z/2 fundamental groups. Recall that
4-manifolds M and M’ are said to be stably homeomorphic if there exists some k > 0 such that
M#k(S? x 5?) is homeomorphic to M'#k(S? x S?). Since closed, oriented 4-manifolds with COAT
or Z x Z/2 fundamental group are stably homeomorphic if they are homotopy equivalent and have
equal Kirby—Siebenmann invariant [KLPT17, Corollary 1.6; KNV24, Theorem B| we obtain the
following statement.

Corollary 1.8. Let M and M’ be closed, oriented 4-manifolds with w1 (M) = w1 (M') either a COAT
group or isomorphic to Z x Z/2. Then M and M’ are orientation preserving stably homeomorphic
if and only if they have equal Kirby—Siebenmann invariant and their quadratic 2-types are stably
isomorphic.

Similar stable classification statements for 4-manifolds with COAT fundamental groups were
obtained in [KLPT17, Theorem 9.1] and [HH19, Theorem B]. The latter result of Hambleton—
Hildum covers more 3-dimensional groups than COAT groups, but when restricted to COAT groups
their result is covered by [KLPT17, Theorem 9.1]. To compare [KLPT17, Theorem 9.1] with
Corollary 1.8 note that the former used the ws-type, but did not consider the k-invariant, whereas
in the latter we use the quadratic 2-type, including the k-invariant, but the ws-type does not
appear.

A stable classification for manifolds with fundamental group Z x Z/2 was obtained in [KPT21,
Theorem 1.2] using modified surgery over the normal 1-type [Kre99], but using a thoroughly different
set of invariants.

1.2. Homeomorphism classification for 4-manifolds with infinite dihedral fundamental
group. Given a homotopy classification as in Theorem 1.4, a natural question is whether this
can be upgraded to a homeomorphism classification using surgery theory. The first and most
famous instance of this is due to Freedman [Fre82]; once he established that surgery theory could
be applied topologically in dimension four for trivial fundamental groups, he improved Whitehead
and Milnor’s homotopy classification [Whid9, Mil58] of closed, simply connected 4-manifolds to a
homeomorphism classification. (Initially, Freedman’s classification was stated for 4-manifolds that
can be smoothed away from a point. However shortly afterwards Quinn showed [Qui82] that this
holds for all connected 4-manifolds.)

For non-simply-connected 4-manifolds, a prerequisite for applying surgery theoretic methods
is that the fundamental group be good, a class of groups that contains finite groups and solvable
groups, and is closed under subgroups, quotients, extensions, and colimits [FT95, KOPR21].

In particular the infinite dihedral group D := Z/2 % Z/2 is good, since it fits into an extension
0= Z — Dy — ZJ/2 — 0. As Z/2 % Z/2 = 7 (RP*#RP?) it is one of the groups covered
by Theorem 1.4, with respect to the trivial orientation character. In addition the Whitehead
group Wh(Dy,) = 0, since Wh(Z/2) = 0 and Wh(Z/2 x Z/2) = Wh(Z/2) & Wh(Z/2) by [Sta65],
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which simplifies the application of surgery theory. We focus on D, obtaining a homeomorphism
classification for closed, oriented 4-manifolds with fundamental group D, in terms of the quadratic
2-type, the Kirby—Siebenmann invariant, and an additional invariant s(M, ). This invariant is
due to Kreck, Liick, and Teichner [KLT95a, Definition 2.1], although we give a slightly different
description that applies to topological 4-manifolds.

Definition 1.9. Let M be a closed, oriented 4-manifold and let a: 71 (M) =5 Do be an isomor-
phism. If the universal cover M is not spin, then set s(M, a) = 0. We assume for the rest of the defi-
nition that M is spin. The isomorphism « induces a map f: M — RP*VRP>* ~ RP>*U[0, 1JURP*>,
which is well-defined up to homotopy. Let S be a regular preimage of % € [0,1] under f. Then
the inclusion S C M lifts to an inclusion S C M and the unique spin structure of M induces a
spin structure on S. Let N be a spin 4-manifold with spin boundary S. The submanifold S C M
decomposes M into two parts, i.e. M = My Ugs Mgr. We define

s(M,a) := (6(MpUg —N)/8 + ks(My, Us —N),0(MgrUg N)/8 + ks(MrUs N)) € Z/2 x Z]2.

For more details see [KLT95a, Section 2]. In particular, s(M,«) is a stable homeomorphism
invariant of (M, «) by [KLT95a, Lemma 2.2].

We can now state the promised homeomorphism classification.

Theorem 1.10. Let My and My be closed, oriented 4-manifolds with isomorphisms o : 71 (M;) =
Dy, fori=1,2. Then My and Ms are orientation preserving homeomorphic over D if and only
if

(1) My and My have isomorphic quadratic 2-types over Do,

(2) ks(My) = ks(Ms), and

(3) S(M1,041) = S(Mg,az) S Z/2 X Z/2
Moreover, if conditions (2) and (3) hold, then every isomorphism of the quadratic 2-types over Do
is realised by a homeomorphism My — M.

Here, we say that My and My are homeomorphic over Dy, if there exists a homeomorphism
f: My — Ms such that ay = ag o f. Similarly an isomorphism of Q(M;) and Q(Ms) over Dy is
an isomorphism of the quadratic 2-types where the constituent isomorphism g: w1 (M) S mn (Ms)
intertwines a1 and ao, i.e. a1 = as0g.

Remark 1.11. Let M7 and My be closed, oriented 4-manifolds with isomorphisms «; : 71 (M;) =N D,
for i = 1,2. Let 2,y € H*(D4;Z/2) be the elements obtained from pulling back the generator
of HY(Z/2;7/2) using the map on group cohomology induced by the standard projections Do, =
7/2x7/2 — 7,/2, to the first or second factor respectively.

(i) Note that condition (1) in Theorem 1.10 implies, by Theorem 1.4, that M; and M, are
homotopy equivalent over D.,. The StiefeAl:Whitney classes are homotopy invariant, which
follows from the Wu formulae. Thus M; is spin if and only if M is spin, and also
we(My) = of (2? + y?) if and only if wa(Ms) = (2% + y?).

(ii) Of course if the M; are both not spin, then Theorem 1.10(3) holds automatically by
definition of s(M;, «;).

(iii) Let M be a closed, oriented 4-manifold and let a: 71 (M) =+ D4 be an isomorphism. We
will show in Remark 11.2 that if M is spin and wy(M) # o (22 + y2), then s(M, ) is
determined by the signature o(M) and the Kirby—Siebenmann invariant ks(M). So again
Theorem 1.10 (3) holds automatically in such cases as a consequence of conditions (1) and
(2)-

(iv) If each M; is spin and wo(M;) = a(z% + y?), then Theorem 1.10 (3) is an important extra
condition. For example, let E denotes the unique S2-bundle over RP? with orientable but
not spin total space. There exists a unique 4-manifold xE, which is homotopy equivalent to
E, but not (stably) homeomorphic to E. Then Teichner [Tei97] showed that the closed,
oriented 4-manifolds EF#FE and xE# xE are homotopy equivalent, have vanishing Kirby—
Siebenmann invariants, but are not (stably) homeomorphic. See [KPR22, Example 5.11]
for additional discussion of these examples.
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1w

Do
), we

(v) Let M be a closed, oriented 4-manifold together with an isomorphism a: w1 (M)
Let B: Z/2 x Z/2 — 72 be given by (a,b) + a + b. Then if wy(M) = a*(2? +y
have that

[\~

ks(M) = B(s(M,)) + o(M)/8.

This follows by Novikov additivity of the signature and additivity of the Kirby—Siebenmann
invariant. So the invariants are not independent.

(vi) Ttem (iv) also shows that the analogue of Corollary 1.8 does not hold for fundamental group
Doo.

(vii) We would like to remove ‘over Do’ from the statement of Theorem 1.10, but we have not
been able to do so. This would follow if we knew that every closed 4-manifold M with
fundamental group D, admits a homotopy self-equivalence that sends a — b and b — a.

In some cases we can simplify the classification. In Section 11.4, specifically in Proposition 11.8,
we show that in some cases we do not need to control the k-invariant, and instead it suffices to
control the wy-type. A special case is the following corollary, in which we try to minimise the
algebraic topological computations needed to apply it.

Corollary 1.12. Let M and M’ be closed, oriented, smooth 4-manifolds with fundamental group
7 := Do, and equivariant intersection forms both isomorphic to H(Iw)@® \, where X is a nonsingular
Hermitian form on a stably free Zm-module. Then M#CP? and M'#CP? are homeomorphic, as

are M#@2 and M’#@2,

Here H(I7) denotes the hyperbolic form on It @ Inf, where It := ker(e: Zn — 7Z) is the
augmentation ideal of the group ring and I7" = Homg, (I7, Zr); see the conventions below.

Remark 1.13. Other known homeomorphism classifications of closed, oriented 4-manifolds are due to
Freedman—Quinn [FQ90] for fundamental group Z, Hambleton-Kreck [HK88, HK93] for finite cyclic
fundamental groups, Hambleton—-Kreck—Teichner [HKT09] for some geometrically 2-dimensional
groups, especially solvable Baumslag—Solitar groups, and Hambleton—Hildum [HH19] for some cases
(spint and pre-stabilised) involving cohomological dimension 3 groups.

In the closed, nonorientable case we have classifications by Wang [Wan95] for fundamental
group Z, Hambleton—Kreck—-Teichner [HKT94] for fundamental group Z/2, 4-manifolds homotopy
equivalent to RP*#RP* by Brookman-Davis-Khan [BDKO07] (see also Jahren-Kwasik [JK06]), and
Hambleton—Hillman [HH23] for 4-manifolds homotopy equivalent to quotients of 5% x S2.

1.3. Homeomorphism classification for 3-manifold fundamental groups. In Sections 12.1
and 12.2 we place limitations on the Zm-modules, and the sesquilinear Hermitian forms on them,
that can arise as the invariants of 4-manifolds. In Section 12.3 we consider what the surgery exact
sequence tells us about the classification of homotopy equivalent 4-manifolds whose fundamental
group is a torsion-free 3-manifold group. Theorem 12.6 applies to all such groups, giving an
upper bound on the number of s-cobordism classes of such 4-manifolds, in both the smooth and
topological categories. Then specialising again to solvable groups we obtain the following result on
the homeomorphism classification.

Corollary 1.14. Let M be a closed 4-manifold whose fundamental group w is a torsion-free,
solvable 3-manifold group. There are at most two homeomorphism classes (including that of M) of
closed 4-manifolds with quadratic 2-type isomorphic to Q(M) and with the same Kirby—Siebenmann
tnvariant.

Conventions and notation. All manifolds are assumed to be closed, connected, and based. They
are considered as topological manifolds by default. Our n-manifolds X are also assumed to be
endowed with a local orientation at the basepoint, which determines a (twisted) fundamental class
[X] € H,(X;Z"). Homotopy equivalences, homeomorphisms, and stable homeomorphisms are
assumed to respect the basepoint and the local orientation, and hence in the oriented case to be
orientation preserving.

We use the symbol Cy to denote the multiplicative group {£1}. The symbol Z/2 denotes the
additive group {0,1}. The symbol Y5 denotes the symmetric group on two elements. The symbol
Fy denotes the field of two elements. The symbol Z~ denotes the integers as a Z[Z/2]-module,
where 1 € Z/2 acts by multiplication by —1.
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We will always assume that 7 is a finitely presented group and that w: m — Cs is a homomorphism.
When we say that a 4-manifold M has fundamental group 7 and orientation character w, we mean
that M comes with an identification m (M) =, 7, such that m (M) — m = Cy is the orientation
character of M.

For a topological space X homotopy equivalent to a CW complex, the Postnikov 2-type is
denoted by P2(X). We always choose a model CW complex for Py(X).

For a left Zr-module A we write AT for the left Zr-module given by Homz, (A, Zx), turned into
a left module using the involution of Zn sending g — w(g)g~—!. Similarly, for a map f: A — B of
Zm-modules, we have the induced left module homomorphism ff: Bt — A", When G < 7 is a
subgroup, for a ZG-module A, we will denote the module Homyz (A, ZG) by A*.

Outline. Section 2 gives our promised criteria in Theorem 2.4. This can be combined with
[HK88, BB08]| to provide homotopy classifications. This combination is presented as Corollary 2.8,
which states that homotopy classifications can be proven for 4-manifolds satisfying conditions (1) —
(4) of Theorem 2.4.

Sections 3 to 8 are concerned with showing that these conditions are satisfied by the 4-manifolds
considered in Theorem 1.4. More precisely, in Section 3 we prove general results about the second
homotopy groups of 4-manifolds and in Section 4 we show that Theorem 2.4 (1) holds in our setting.
Next, in Section 5 we consider the injectivity of the map ev*, which is condition (4) of Theorem 2.4.
In Section 6 we give general criteria under which the map B4 : Z¥ @z, I'(A) — Her" (A7) is injective,
where A is a Zm-module. Condition (3) of Theorem 2.4 calls for the kernel of By, (p,zx) to be
contained in the kernel of the map ¢p: ZY ®z, Hy(B;Zr) — Hy(B;Z"). That this holds for
the 4-manifolds in Theorem 1.4 is shown in Section 7. Section 8 introduces a property of groups,
that we call Property 4HL, short for 4th Homology Lifting. This property is useful to establish
Theorem 2.4 (2). We show that the groups considered in Theorem 1.4 have Property 4HL. With
these results in hand, we give the proof of Theorem 1.4 in Section 9.

In Section 10 we present two more applications of Corollary 2.8, using it to recover [HKT09,
Theorem 5.13] and [HK88, Theorem 1.1(i)]. Then in Section 11 we prove Theorem 1.10.

In Section 12 we provide additional information on various classifications of 4-manifolds with
torsion-free 3-manifold fundamental groups.
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2. GENERAL STATEMENTS ON HOMOTOPY CLASSIFICATION

In this section we state and prove Theorem 2.4, which will be our main technical tool going
forward. Before doing so we recall the result of [HK88, BB08| and the definition of Whitehead’s
universal quadratic functor. We end the section by giving a more detailed outline of the upcoming
proof of Theorem 1.4.

2.1. Classification via the fundamental triple. In general, the homotopy classification of
closed 4-manifolds is given by the fundamental triple: the Postnikov 2-type B, the orientation
character w, and the image of the fundamental class in Hy(B;Z"). This was shown by Baues and
Bleile [BBO08, Corollary 3.2], extending work of Hambleton and Kreck [HK88, Theorem 1.1], in the
following result.

Theorem 2.1 ([BB08,HKS8]). Let M and M’ be closed 4-manifolds, both with fundamental group
7. Let B be a connected, 3-coconnected CW complex, also with fundamental group identified with .
Fiz a homomorphism w: m — Cy. Assume there are 3-connected maps f: M — B and f': M' — B
inducing the identity maps on fundamental groups, and such that wo f.,wo f.: 7™ — Cs give
the orientation characters of M and M’ respectively. If f.([M]) = f.([M']) € Ha(B;Z"), then
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M ~ M’, via a (basepoint and local orientation preserving) homotopy equivalence that induces the
identity on fundamental groups and induces (f1)~! o fi: mo(M) =N mo(M').

The main difficulty in applying Theorem 2.1 lies in computing the image of the fundamental
class. In the case of finite fundamental groups, it is known in some cases that the image of
the fundamental class in the homology of the Postnikov 2-type is determined by the equivariant
intersection form. More precisely, by work of Hambleton and Kreck [HK88, Theorem 1.1 (i)]
together with an improvement by Teichner [Tei92] (see [KT21, Corollary 1.5] for the published
version), for finite fundamental groups the quadratic 2-type of M determines its homotopy type
if the abelian group Z" ®z, I'(H2(M;Zn)) is torsion-free. Here I' denotes Whitehead’s universal
quadratic functor, which we recall presently. For w = 0, this condition was shown to hold for
finite groups that are cyclic [HK88|, abelian with 2 generators [KPR24] and dihedral [KNR22]. In
Section 2.3 we state and prove Theorem 2.4, which gives a generalisation of the Hambleton—Kreck
criterion that can be applied to all fundamental groups.

2.2. Whitehead’s T groups. In [Whi50], Whitehead defined the universal quadratic functor T.
Here, a function f: A — B between abelian groups is said to be quadratic if f(—a) = f(a) for
all @ € A and if the function A x A — B, given by (a,b) — f(a+b) — f(a) — f(b) is bilinear.
The functor IT' is the universal quadratic functor in the sense that there exists a quadratic map
~v: A — T'(A) with the property that for every quadratic map f: A — B there exists a unique
linear map I'(f): T'(A) — B with f =T'(f) o~.

For a free abelian group A, the group I'(A4) is isomorphic to the group of fixed points of A ®7 A
under the Ys-action permuting the two copies of A. If A is a Zmw-module then the diagonal action
of 7 gives A ®z A the structure of a Zm-module, and T'(A) C A ®7 A is a Zm-submodule. A direct
consequence of [Whi50, Sections 10 and 13] is that for a connected, 3-coconnected CW complex B
with fundamental group 7, we have an isomorphism I'(Ho(B; Zn)) & Hy(B; Zr).

2.3. A criterion for homotopy classification via the quadratic 2-type. Let M be a closed
4-manifold with fundamental group 7w and orientation character w: m — Cs. We consider the
equivariant intersection form A\y; as a Hermitian form on H?(M;Zr). For a left Zr-module A we
denote the left Zm-module given by Homgz, (A, Z), turned into a left module using the involution
of Zm sending g — w(g)g~!, by AT. We denote the group of Hermitian forms on a Zr-module C
by Her"(C') and we denote sesquilinear forms by Sesq™(C'). When w is the constant map, we may
suppress the superscript. When A is free as an abelian group, we have the homomorphism

Ba: Z¥ @z, T(A) — Her" (AT) (2.2)

a®b— ((f,9) = fla)g(b)),
as in [Hil06, Section 7].

Remark 2.3. This is a special case of the following, which defines B4 also when A is not necessarily
free as an abelian group. Consider the quadratic function f: A — Her" (A") given by a +— ((f, g) —
f(a)g(a)). By the universal property of T, there is an induced map I'(A) — Her" (A"), and it
is straightforward to check that this factors through Z" ®z, I'(A4), yielding a homomorphism
7Y @z, T(A) — Her" (A"). We omit the details, since henceforth we will only consider cases where
A is free as an abelian group.

Recall from the previous section that by [Whi50, Sections 10 and 13], for a connected, 3-

coconnected CW complex B with fundamental group w, we have an isomorphism
T: Z" @pr Hy(B;Zr) = 7 @z ['(Ho(B; Z1)).
For any connected CW complex B with fundamental group 7, let
ev*: Her"(Hy(B;Zn)') — HerV(H?(B; Z))
denote the homomorphism induced by the evaluation map ev: H?(B;Zn) — Hy(B;Zm)! taking
a— (= anz). Let
pp: 2Y @z Hy(B;Zw) — Hy(B;Z")

denote the homomorphism given by reduction of coefficients. Now we state our main technical
theorem.
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Theorem 2.4. Let M and M’ be closed 4-manifolds with fundamental group © and orientation
character w: m — Cs. Let B be a connected, 3-coconnected CW complex with fundamental group
also identified with w, and let f: M — B and f': M’ — B be maps that induce the identity on
fundamental groups. Assume further that, for some k € Z, the following holds.

(1) The module Hy(B;Zw) is free as an abelian group.
(2) The difference k(f[M] — (f")«[M']) € Hy(B;Z") lies in the image of the map pp: Z" Qzx
Hy(B;Zr) — Hy(B;Z%).
(3) The kernel of By, (pyzx) oY is contained in the kernel of pp: 7 @zx Hy(B; Zm) — Ha(B; Z").
(4) The map ev*: Her” (Hy(B;Zm)') — Her" (H?(B;Zr)) is injective.
Then kf M) = kf.[M'] € Hy(B;Z™) if and only if fudy = fLA\nr € Her" (H?(B; Z)).
Remark 2.5. We will only apply Theorem 2.4 (in Sections 9 and 10) in the case k = 1. We prove
the result for general k in case this version is useful in the future.

Remark 2.6. We will see in the upcoming proof of Theorem 2.4 that rather than conditions (3)
and (4) above, we only need the kernel of the composition ev* 0B,z © T to be contained in
the kernel of ¢p. We prefer the current formulation since in our applications of this result we will
verify the conditions individually. As we will show in Section 5, there are several general methods
to conclude the injectivity of ev*, and in the setting of Theorem 1.4 the map ev* is in fact an
isomorphism.

Proof of Theorem 2.4. Consider the diagram
LY @z Hy(B; Zm) —"— Hy(B;Z")
lBHﬁB;zw)oY leB (2.7)
Her" (Ho(B; Zr)t) —<“ Her”(H?(B; Zn)).
Here we used (1) to define the map By, (p;zr). The map ©p is defined using the cap product as
= ((a,8) = (B,anz)).

Commutativity of the diagram follows as in the proof of [Hil06, Lemma 10]. Since A\p; and Appr are
induced by the cap product with the corresponding fundamental class, it follows from naturality of
the cap product that k(f.[M]— fL[M']) € Hy(B;Z") maps to k(flar — fiAn) € Her" (H?(B; Zr))
under Op.

The only if direction can now be proven without using (2), (3), or (4). Suppose that

kf.[M] = kf.[M'] € Ho(B; Z®).

Then k(f.[M] — f.[M’']) = 0 and hence k(f\yr — fidyr) = 0 € Her” (H?(B;Zr)). However,
Her" (H?(B;Zr)) is torsion-free since Zr is torsion-free, and so

fdu = fidap € Her" (H?(B; Zn)).

To prove the if direction, we suppose that filys = filar € Her" (H?(B;Zx)). By (2), there is

some x € ZY Qg Hy(B;Zm) such that
op(x) = k(f[M] = (f))[M']) € Hy(B; Z").
Then
Op o ¢p(r) = Op(k(f.[M] = (f)[M"]) = k(fdy — fidur) =0,
and so by commutativity
ev* oBy,(zr) 0 T(x) = 0.

By (4) ev* is injective, so x € ker(By,(pyzx) © T). By (3), ker(Bp,(pzr) © T) C ker(¢p), and thus
kE(f«[M] — (f")[M']) = pp(x) = 0. It follows that kf.[M]=kf.[M'] € Hy(B;Z") as desired. O

We will frequently apply the combination of Theorems 2.1 and 2.4 to obtain our homotopy
classifications. To make this easier, we give the statement that we will use in the following corollary.
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Corollary 2.8. Let M and M’ be closed 4-manifolds with fundamental group ™ and orientation
character w: m — Cs. Let B be a connected, 3-coconnected CW complex with fundamental group
also identified with w. Let f: M — B and f': M’ — B be 3-connected maps inducing the identity
on fundamental groups. Assume that, for k = 1, the conditions (1) — (4) of Theorem 2.4 hold.
Let g; .= (f')ito fu: mi(M) — m;(M'), and suppose that (g1, g2) induces an isomorphism between
the quadratic 2-type of M and that of M'. Then there exists a (basepoint and local orientation
preserving) homotopy equivalence h: M =s M’ such that h, = g;: m;(M) — m;(M’) fori=1,2.

Proof. By assumption, conditions (1) — (4) of Theorem 2.4 hold, so we can apply that theorem, for
k = 1. The assumption that (g1, g2) induces an isomorphism between the quadratic 2-type of M
and that of M’ implies that fily = fiA\yr € Her" (H?(B;Zm)). Hence Theorem 2.4 implies that
f«[M] = fl[M'] € Hy(B;Z"). Now Theorem 2.1 implies that the desired homotopy equivalence
h: M — M’ exists. O

2.4. Outline of the proof of Theorem 1.4. We will use Corollary 2.8 to prove Theorem 1.4,
with the culmination of the proof presented in Section 9. That is, we will show that conditions
(1) = (4) of Theorem 2.4 hold for closed 4-manifolds with 3-manifold fundamental group 7 and
orientation character w, such that (7,w) is admissible. We sketch the proof for each condition
individually next.

(1) In Section 4 we introduce a property of groups which we call P2FA (Definition 4.1). By
definition if a 4-manifold M has P2FA fundamental group, then 7o (M) is free as an abelian
group. We will show in Proposition 4.10 that 3-manifold groups are P2FA, which shows
that Theorem 2.4 (1) holds in our setting.

(2) In Section 8 we introduce the 4th homology lifting property of a pair (m,w), which we
abbreviate to Property 4HL, where 7 is a group and w: # — C5 is a homomorphism.
Roughly, this property gives a criterion to decide whether an element in the codomain
of ox: Z" Rz Ha(X;Z¥) — Hy(X;ZY) lies in the image of px, for an arbitrary CW
complex X with m1(X) = 7 and homomorphism w: 7 — Cs. This is helpful for proving
Theorem 2.4 (2) since we can apply the criterion to the element f,[M]— (f).[M’], using the
notation of Theorem 2.4. We will show in Proposition 8.22 that (7, w) has Property 4HL
when 7 is as in Theorem 1.4, enabling the application of the criterion in our setting. For
the proof we first address the cases of finite groups, PDs-groups, the infinite cyclic group,
and the group Z x Z/2 individually. In these cases the primary tool is the Leray—Serre
spectral sequence for the fibration B— B— BH , where B is a connected, 2-coconnected
CW complex and H = m(B). With these individual cases established, the final result is
proven by considering how Property 4HL behaves under free products.

(3) In Section 6 we give general criteria under which the map Ba: Z% @z, I'(A) — Her" (A')
is injective, where A is a Zm-module. When By, (p.zx) is injective, for B and 7 as in
Theorem 2.4, since T is an isomorphism it follows that condition (3) is satisfied. However,
in our setting, the map By, (p,zr) is not necessarily injective. Therefore in Section 7 we
specialise to the case of admissible 3-manifold groups and orientation characters. Here we
use our previous results on the second homotopy groups from Section 3 and once again
use the Leray—Serre spectral sequence. Special care is needed for the case of Z x Z/2
fundamental group. Finally we show in Corollary 7.10 that Theorem 2.4 (3) holds in our
setting.

(4) We will show in Proposition 5.9 that for 4-manifolds with 3-manifold fundamental group
the map ev* is in fact an isomorphism, showing that Theorem 2.4 (4) holds. The proof of
Proposition 5.9 is rather general, depending on the homology and cohomology groups of 7
with Zn coefficients, and consisting of an analysis of certain exact sequences arising from
the universal coefficient spectral sequence.

We end this section by remarking that while Sections 4 and 7 are rather specific to our setting,
Sections 3, 5, 6, and 8 contain a number of general results that are likely to be useful to those
interested in proving homotopy classification results for other fundamental groups.
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3. THE SECOND HOMOTOPY GROUP FOR 4-MANIFOLDS WITH 3-MANIFOLD FUNDAMENTAL GROUP

In this section we study mo(M) = Ho(M; Zr) for 4-manifolds M whose fundamental group = is a
3-manifold group. In Section 3.1 we recall a general result on the stable isomorphism class of w4 (M),
without restriction on the fundamental group. In Section 3.2 we consider cases for which 71 (M) is
the fundamental group of an irreducible 3-manifold. In Section 3.3, we investigate ma (M) when
m1 (M) is a 3-manifold group that is an admissible nontrivial free product. Finally in Section 3.4 we
prove that the stable isomorphism class of mo(M) determines the image of the fundamental class of
M in Hy(m; Z"), where m = w1 (M).

We will express the stable isomorphism classes of the second homotopy groups in terms of twisted
augmentation ideals, which we define next.

Definition 3.1. Let v: 7 — C5 be a homomorphism. Let I7¥ <Zx denote the twisted augmentation
ideal, i.e. the kernel of the twisted augmentation map

Ev: L — 7"

sending g € 7 to v(g). When v is the constant map to 1 € Cs, we use the symbol I7 for the
(untwisted) augmentation ideal.

We will use the following elementary lemma several times, so we record it here.

Lemma 3.2. Let w be a group and let w: m — Cy be a homomorphism. The map

w: Zm — 7 ang — Zw(g)ngg. (3.3)

gem gem
induces a left Zmw-module isomorphism w: Zrx® — Z.

3.1. A general result on w3 (M). We start this section by recording the following fact regarding
the stable isomorphism types of second homotopy groups of 4-manifolds. Recall that two 4-manifolds
are said to be CP?-stably homeomorphic if they become homeomorphic after connected sum with

copies of CP? and CP?.

Lemma 3.4. Let M and M’ be closed 4-manifolds with fundamental group m and orientation
character w: 1 — Ca, along with classifying maps cpr: M — B and cpp: M — Brw (not
necessarily inducing the identity on m1). If (car)«([M]) = (ca)«([M']) € Hy(m; Z%)/ £+ Aut(rw),
then o (M) and mo(M') are stably isomorphic as Zm-modules.

Proof. By [Kre99] (see also [KPT22, Theorem 1.2, Section 1.5]), in the case that (car)«[M] =
(ear)«[M'] € Hy(m; Z")/ + Aut(n), the manifolds M and M’ are CP*-stably homeomorphic if and
only if they have equal Kirby—Siebenmann invariants. In other words, possibly after connected sum
with a copy of «CP?, they become CP?-stably homeomorphic. Connected sum with CP?, CP?, or
+CP? changes the second homotopy group by direct sum with Zz. This completes the proof. O

3.2. Irreducible 3-manifold groups. In this section we study me (M) for 4-manifolds M such
that m (M) is either Z x Z/2, infinite cyclic, a finite 3-manifold group, or a PD3s-group. We will
consider these cases individually.

In the following special case of [HK88, Proposition 2.4; Ham09, Theorem 4.2; KPT22, Proposition
1.10], we use the fact that Hy(m;Z) = 0 for the group 7 in the statement. When 7 is a torsion-free
3-manifold group this follows from the fact that the cohomological dimension cd 7 < 3.

Lemma 3.5 ([HK88,Ham09, KPT22]). Let M be a closed 4-manifold such that m = w1 (M) is cyclic
or a torsion-free 3-manifold group and let w: m — Cq be the orientation character of M. Assume

that w is trivial if © is finite cyclic. Let F b G Irbe a presentation for the augmentation ideal
I and write d;: Gt = F1 for the dual map, where F and G are free Zm-modules. Recall that here
we use the involution g — w(g)g™! to turn G and FT into left modules. Then mo(M) is stably
isomorphic to ker(dy) & coker(d}).

Recall that an R-module A is said to be stably free if there exist m,n > 0 such that A® R™ = R™.

Lemma 3.6. Let M be a closed 4-manifold with infinite cyclic fundamental group. Then mwo(M) is
free.
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Proof. The augmentation ideal IZ is free as a Z[Z]-module. Then 0 — IZ M 17 s a presentation
for 17, and hence w5 (M) is stably free by Lemma 3.5. For every k, any projective Z[Z*]-module is
free [Swa78, Theorem 1.1], see also [Lam06, Corollary V.4.12]. Hence m2(M) is free as claimed. O

For 4-manifolds with fundamental group a finite 3-manifold group, we have the following special
case of [HK88, Remark 2.5]. The application requires the fact that an arbitrary finite 3-manifold
group has 4-periodic cohomology and that for finite 3-manifold groups the projective modules P; in
[HK88, Remark 2.5] can be chosen to be free.

Lemma 3.7 ([HKS88]). Let 7 be a finite 3-manifold group. Let M be a closed, orientable 4-manifold
with fundamental group w. Then mo(M) is stably isomorphic to It @ Homy(Iw,Z).

In the special case of an orientable 4-manifold with finite cyclic fundamental group m, we deduce
that mo(M) is isomorphic to Im @ I, as we see next.

Lemma 3.8. For the group w := Z/n, the dual Homz(Im,Z) = It* of the augmentation ideal IT
is isomorphic to Im. In particular, for a closed, orientable 4-manifold M with fundamental group m,
the second homotopy group ma(M) is stably isomorphic to It @ Ix.

Proof. Let w:=Z/n = (T | T"). Dualise the sequence 0 — It — Zn = Z — 0, where ¢: Zm — Z
is the augmentation map, to obtain

(Z = Homy(Z,7)) 2, (Homy,(Zn, Z) = Zx) — Homg(I,Z) — Exty(Z,7) = 0.

It follows that the cokernel of the norm map Z N zn sending 1+ 14T +---+T" "1 is isomorphic
to Homy(Im,Z). From the short exact sequence

0525 72 =5 720 5 7,

we see that Homy(Im,Z) 2 Zr/Im N = Zz/ker(1 — T) 2 Im(1 — T) = kere = I, as needed. The
second statement now follows from Lemma 3.7 since Z/n is a finite 3-manifold group. g

The analogues of the previous lemmas do not hold for nonorientable 4-manifolds as can be seen
by considering RP*. This is a further reason that we restrict ourselves in Theorem 1.4 to cases
where the orientation character is trivial on the finite cyclic subgroups.

Lemma 3.9. Let 1 = Z x Z/2 = (t,T | [T,t],T?) and let v': 7 — Cy be given by v'(t) = 1 and
V'(T) = —1. Let M be a closed 4-manifold with fundamental group 7 and orientation character w
such that w(T) = 1. Let v := wv'. Let ¢: M — Br induce an isomorphism on fundamental
groups. Then mo(M) is stably free if c.([M]) # 0 in Hy(m;Z") = Z/2 and otherwise mo(M) is
stably isomorphic to It @ It if c.([M]) = 0.

Proof. By Lemma 3.4, for a fixed w, the stable isomorphism class of w2 (M) only depends on c.[M].

By [KPT21, Lemma 7.5], the module 72 (M) is stably free if ¢.[M] # 0 and w is trivial. For
w(t) = —1, the same holds, because we can construct a model with trivial my, as follows. Let
7: RP® — RP? be an orientation reversing self-homeomorphism, e.g. induced by reflection across
the equator of S3. Then the mapping torus T, of 7 has orientation character w and c,[T}] # 0.
Also it has trivial 72, by the long exact sequence of the fibration RP® — T, — S*. Tt follows that
mo (M) is stably free for all 4-manifolds with orientation character w and c.[M] # 0, as needed.

In [KPT22, Section 5|, it was shown that if ¢.[M] = 0, then w2(M) is stably isomorphic to
ker dy @ coker d2), where (Cl,d.) is the standard 2-periodic free Zr-module resolution of Z:

1-T 1+7T 1-T

Zm Zm Zm Zm < Z
ds do dq
@ @D N B %
N N
Zr —2L 7 1= Zn

and d?, denotes the cochain map from the cochain complex Homgz, (C, Z7®).
The summand ker ds is independent of w, and as in [KPT21, Lemma 7.11] we have

kerdy, 2 Imds 2 C3/kerds 2 C3/Imdy =2 Cy/Imdy = Cy/kerd; 2 Imd; = I
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The map d?, is given by
Zn — T s 7

N
N

D g
N

14T
Zn —1 s 71,

We show that the cokernel of this map is I7”. Recall the Zm-module isomorphism Zm" = Zr
from Lemma 3.2. Tensoring the above free resolution of Z with Zn" over Zn and applying this
isomorphism, we obtain the free resolution

14T 1-T 14T
Zm + Zr Zm + Zm c
dy 4 dy A di 4
\0 Z \0
N / @ oﬁ@& @ N :
1-T 14T
Zr Zr + Zm

coker d?, = cokerdy = C;/Imdy = Cy/ kerd! = Im d? = kere, =: I7".

- Z".

Thus we have

So ma(M) is stably isomorphic to I @ In?, as required. O

Finally we consider the case of PDs-groups. Below note that since any two aspherical PDs-
complexes with the same fundamental group are homotopy equivalent, the orientation character for
a PD3 group is well-defined. Also note that in this case the orientation character is determined by
7, via the natural right action of m on H3(m;Zn) = Z. Hence v’ in the next lemma is defined in
terms of 7.

Lemma 3.10. Let w be a PDs-group. Let M be a closed 4-manifold with fundamental group @ and
orientation character w: m — Co. Let v’ be the orientation character of the aspherical PDs-complex
associated to w. Let v :=wv'. Then mwo(M) is stably isomorphic to Im".

Proof. Let X be an aspherical PDs-complex with fundamental group w. We can assume that X
has a single 0- and 3-cell. Consider the cellular Zzr-chain complex

C3(X) 22 Oy(X) 22 01(X) L Co(X)

of X. Since X is aspherical, C;/Imdy = Cji/kerd; = Imd; = kere = Im, and so ds is a
presentation homomorphism of I7. Moreover kerdy = C3(X) is free. By Lemma 3.5, mo(M) is
stably isomorphic to coker d; Since X is a PDs-complex with orientation character v/, d; is a

presentation homomorphism for I7? by Poincaré duality. It follows that mo(M) is stably isomorphic
to Iv. O

Corollary 3.11. Let w be a PD3-group. Let M be a closed 4-manifold with fundamental group .
Then mo(M)T is finitely generated and stably free.

Proof. First note that mo (M) is finitely generated as a Zm-module. Let w: m — C4 be the orientation
character of M and let v be the orientation character of the aspherical PD3-complex associated
to . By Lemma 3.10, mo(M) is stably isomorphic to the twisted augmentation ideal I7¥, where
v := wv'. Hence it suffices to show that (I7%) is finitely generated and free. Dualising the short
exact sequence I7t¥ — Zm — 7", we obtain the exact sequence

(Z°)' = (Zr)t = (In")! = Extl_(Z°, Zr).
Since 7 is infinite, (Z¥)" = 0. Furthermore we have
Ext} (Z°,Zm) = H(m; Zn") = Hy(m; ZW””/) =0.

Here we used that Z7?" = Zz® is a free Zm-module, because it is isomorphic to Zm via the map w
from (3.3). Hence (I7¥)" = (Zr)! is finitely generated and free, as required. O
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3.3. 3-manifold groups that are free products. Now we start considering 72 (M) in the case
that m (M) is a 3-manifold group that is a nontrivial free product. The first few results hold
generally, but we quickly specialise to the case that the pair (w1 (M), wys) is admissible, as in
Theorem 1.4.

Lemma 3.12. Let G and H be finitely presented groups. Let w: G — Cy and w': H — Cy be
homomorphisms. Then the twisted augmentation ideal I(G * H)w*w/ of G x H is isomorphic to the
direct sum Ind&™ 1G* @ ndGH THY'.

Proof. Choose a model for BG and tensor its ZG-chain complex with ZG" over ZG to obtain a

free resolution
G,w df'w G,w

d
s g 2 oG LGV 7.
Similarly, a model for BH gives a free resolution
, dH,w/ , dH,w’ How! ,
s o 2 ol 2 g S v

Here the module homomorphism %% : ZG™ — Z™ is the unique left Zr-module homomorphism
sending 1 — 1, which sends )" ngg — Y ng4. It factors as

W, Ew
G Zp L2y T Sy YA

using the left Zm-module isomorphism w from Lemma 3.2 and the map ¢, from Definition 3.1. It
follows that w induces a left Zm-module isomorphism ker &% = kere,, = IG™. So by exactness
IGY = ker G+ = coker(dS™) and TH®' = kereH' 2 coker(di").

Write 7 := G * H. The space BGV BH is a model for B(G * H). So we can take its Zr-chain
complex and tensor with Zz“**" over Zm (which does not affect exactness) to obtain a free resolution
of Zw*w' | To compare it with the previous resolutions for G and H, we need the following.

For every ZG-module A, there is an isomorphism Ind% (A)***" 2 Ind%(A") given by v ® a
(w*w)(y)y ®a for all v € 7 and a € A. Similarly, Indf(A")**" = Indf((A)*") for every
ZH-module A’. To use this consider

C.(Bm;Zr) = C.(BGV BH; Zx) = Ind%, C¢ @ Ind}, CH.

’
wWHwW

Tensoring with Znw

(Indg, CE)*** @ (Indfy CH)»**" = Indg €7 @ Indf, /.

over Zm yields

Hence the Zm-chain complex of BG V BH tensored with Zrv* over Zm gives the free resolution

/ IndZ S @Ind a2

Indf, C%* @ Indf, ¢

’
Ind% dS"* +Ind7, df-® ;o gmwsw! /
1 1 Zﬂ_w*w Zw*w .

- = Ind% OS5 @ Indf, CFF

Hence by exactness

I(G* Hyw*' = [ = coker(Ind% dS™* & Indy, di*") = IndZ, coker(dS™) & Ind}; coker(d ")
= Indf IGY @ Indfy THY = Ind&* 1G* @ Ind G TH™'

as desired. 0O

We will use the following useful fact several times, which is due to the first-named author [Hil95];
an alternative proof was given later in [KLT95b]. When Lemma 3.13 applies we say that M stably
splits as a connected sum.

Lemma 3.13 ([Hil95]). Let M be a closed 4-manifold and suppose that m (M) =« G;. Then up
to connected sum with copies of S x S?, M is homeomorphic to a connected sum of 4-manifolds
# M, with fundamental groups m (M;) = G;.

The previous lemma is helpful since for a connected sum M;# Ms of manifolds M and N, we
have that

mo(My#Ms) 2 Ind 7 70 ™ M) o (M) @ Tnd T 70 ™ ) 7 (A1), (3.14)

Therefore, for a 4-manifold M with 71 (M) = 7, connected sum with S? x S? adds copies of Zr & Zn
to the second homotopy group, so the stable isomorphism type does not change.
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For the remainder of this section, let (7, w) be admissible, with 7 a 3-manifold group and w
an orientation character. Then, by the prime decomposition theorem for 3-manifolds, there is a
decomposition of the form

T F o (%2 Zi) % (%521 Gy) * (%ot Hi), (3.15)

for some r,s,t > 0, with F' a free group, Z; a finite cyclic group for each i, G; a PD3-group for
each j and Hy 2 Z x 7Z/2 for each k.

In the following proposition, and elsewhere, we will use that for either admissible w: Z x Z/2 =
H — (5, we have Hy(H;Z"v) = Z/2. When w is trivial, this is straightforward to see from
the Kiinneth theorem. When w is nontrivial, this can be obtained by writing out the standard
Z H-module resolution of Z, tensoring with Z", and computing the homology.

Proposition 3.16. Fiz a decomposition for m as in (3.15). Let M be a closed 4-manifold with
fundamental group m and orientation character w: m — Co such that (m,w) is admissible. By
reordering the factors of w if needed, we assume that there exists 0 < t' <t such that the image of
the fundamental class [M] in

t

Hy(m 2) = @ Ha(Hy; ) = (2/2)"

k=1
is trivial in the first t' summands and nontrivial for k > t'. Then o (M) is stably isomorphic to
Indf ITY @ Indf, IT,

where )

r= (*::1 Zl-) * (*;7:1 Gj) * (*2:1 Hk) (3.17)
and )

I = (%_y Zi) * (%=1 Hy) (3.18)

are subgroups of m in the canonical way. Here v = wv': ' — Cy, where v’ is trivial on each
Z;, is the projection onto the second factor on Z x 7./2 (followed by the canonical isomorphism

Z/2 — Cs3), and on each Gj factor it is the orientation character u; of the aspherical PDs-complex
with fundamental group G;.

Proof. By Lemma 3.13, M is stably homeomorphic to

(a7 Y 0 Y (a0,

where each of M¥, M% M% , and M™* has fundamental group F, Z;, G, and Hy, respectively.
Therefore, we know that mo (M) is stably isomorphic to

T s t
Indy, o (M") @ @ Indy, w2 (M%) @ @ Indf, mo (M) & @D Indf, mo (M), (3.19)
i=1 Jj=1 k=1
Next we will consider each summand individually.

By Lemmas 3.6 and 3.13, and using (3.14), we see that 7o (M) is stably free. The induction is
also stably free, so up to stable isomorphism, the first summand can be ignored.

By Lemma 3.8 we know that each my(M?%:) is stably isomorphic to IZ; © IZ;. Similarly, by
Lemma 3.10, each 75 (MS7) is stably isomorphic to IG;j, where v; = wu;: G; = C2 and u; is the
orientation character of the aspherical PD3s-complex with fundamental group G;. The M He factors
are slightly more complicated. We saw in Lemma 3.9 that mo(MH*) is isomorphic to IHy & TH},
with v = wu' and «' the projection onto the second factor of Hy = Z x Z/2, followed by the
isomorphism Z/2 =, Cb, in the case of k < ', or 7 (M*v) is stably free for t > k > t'. Applying
these facts to (3.19), we see that mo(M) is stably isomorphic to

T s t’
Pmdy, (1z @ 12;) © @ Indg, IG & @ Indfy, (1Hy, & TH}!) (3.20)
i=1 j=1 k=1
T T s t’ t’
~Pndy, 1Z; & @ Indy, 12; & PIndg, IGY & P Indfy, 1H, & €D Indy, TH.
i=1 i=1 j=1 k=1 k=1
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Here we use that the induction of a direct sum is the direct sum of the inductions. We claim
that this decomposition equals Indf IT? & Indf, IT'. To see this, start with each of Indf IT” and
Indf, ITY, and apply Lemma 3.12 iteratively, splitting off one factor at a time in the free product
(3.17) or (3.18) respectively. Use that Ind Ind% = Ind}, for subgroups H < K < 7. This shows
that
r s t
Indf IT = @) Indy, 1Z; & @ Indg, IG} © @) Indfy, TH,
i=1 j=1 k=1
by definition of v. Similarly, we see that
T t’
Indf, IT' = (P Indy, 1Z; © @ Indf;, THy.
i=1 k=1

To complete the proof note that each summand of (3.20) appears precisely once as a summand of
precisely one of Indf IT? or Indf, IT". |

Corollary 3.21. Let w be a torsion-free 3-manifold group. Let M be a closed 4-manifold with
fundamental group m and orientation character w: m — Co such that (7w, w) is admissible. Then
ma(M) is stably isomorphic to IT" where v is defined as follows. Since 7 is torsion-free, there is
a decomposition m = F x (*j’zlGj), where F' is a free group and each G; is a PD3-group. Then
we have v = wv': m — Cq, where v’ is trivial on F, and on each G; factor it is the orientation
character u; of the aspherical PDs-complex with fundamental group G .

Proof. By Proposition 3.16, ma(M) is stably isomorphic to Indp IT", where I' = *_,G;. Since
IF 2 ZF, Ind{ IT" is stably isomorphic to I7¥ by Lemma 3.12. |

3.4. The second homotopy group mwa(M) determines the image of the fundamental class
in Hy(m;Z™). We conclude the section with a result showing that the image c.([M]) € Hy(m; Z™)
of the fundamental class in the group homology is determined by the stable isomorphism class
of mo(M), for a map ¢: M — B inducing an isomorphism on fundamental groups. We obtain a
corollary (Corollary 3.23) that we will use in the proof of Theorem 1.4 in Section 9 in order to be
able to apply Property 4HL; see Section 8 for details on the latter.

Proposition 3.22. Fiz a decomposition for w as in (3.15). Let M be a closed 4-manifold with
fundamental group m and orientation character w: m — Co such that (m,w) is admissible. Let
c: M — Bm be a continuous map inducing the identity on fundamental groups. By reordering
the factors of w if needed, we assume that there exists t' < t such that c,([M]) in Hy(m; Z") =
@D, Hi(Hy; Z") = (Z,/2)! is trivial in the first t' summands and nontrivial for k > t'.

Then Homg, (mo(M), ZHy,) is stably free as a ZHy-module if and only if k > t'. Here the w-action
on ZHy, is given by the projection to Hy and left multiplication.

Proof. By Proposition 3.16 we know that mo(M) is stably isomorphic to
Indf ITY @ Indf, ITY,
where
D= (xj_; Zi) * (%521 Gy) * (*}=y Hy)
and
= (*le ZZ-) * (*2:1 Hk)
are subgroups of 7 in the canonical way. Here v = wv’: I' — Cs, where v’ is trivial on each Z;, is

the projection onto the second factor on Z x Z/2 followed by an isomorphism Z/2 =N Cs, and on
the G it is the orientation character of the aspherical PDs-complex with fundamental group Gj.
Then, for each k, the module Homg, (72 (M), ZH}) is stably isomorphic to

Homgy, (Indf IT" & Ind}, IT', ZHy,) = Homg, (Ind} IT", ZH}) & Homg, (Ind}, IT', ZHy,).
Let us consider the two summands separately. We know by iteratively applying Lemma 3.12 that

Indf /T* = @ IndjIL".

L a factor
of I' in (3.17)
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Then, by adjunction, for each k the module Homy, (Indf IT?, ZH},) is isomorphic to
P HomyzL(IL",Resy ZHy,).

L a factor
of '

Similarly, using Lemma 3.12 and adjunction, Homy, (Ind{ IT’, ZH},) is isomorphic to

P Homgzy (IL,Res], ZHy).

L' a factor
of T

By hypothesis the 7 action on ZH}, is given by projection to Hy. Therefore,

Z @y ZHy, if L+ Hy,
Z_I:I]€7 lfL:Hk

Here we write Z ®z Z H}, to emphasise that the L action on ZHj, is trivial when L # Hj. Therefore
in the case that k > ¢/, the module Homy, (w2 (M), ZH},) is stably isomorphic to a direct sum
of copies of ZH}, ®z Homgr(ILY,7Z) = Homyy (ILY,Z ®z ZH}) and ZHj, ®z Homgr (IL,Z) =
Homy (IL',7Z ®z ZH}), which are both free, as needed. On the other hand, if k¥ < t, then
Homy, (mo (M), ZHy,) is stably isomorphic to Homgpy, (IH},ZHy) & Homgy, (IHy, ZHy). The
proof will be completed by showing that the latter is not a free module.

From [KPT21, Lemma 7.14] we know that Homgzg, (I Hx, ZH}y) = IH}. We will show that TH}
is not projective, which implies that Homz, (IH};7 ZHy)®Homg, (I Hy,, ZHy) is not free. Suppose
that I H} were projective. Then IH} — ZH) — 7’ is a projective resolution for Z, implying that
H;(Hy;Z") =0 for all ¢ > 1. This is a contradiction since Hy = Z X Z/2, and its group homology
with Z" coefficients can be computed by hand, writing out a 2-periodic free resolution and tensoring
with Z%. This completes the proof. O

Res] ZHy = {

Corollary 3.23. Let m be a 3-manifold group and let w: m — Cy be a homomorphism such that
(m,w) is admissible. Let M and M’ be closed 4-manifolds with fundamental group m, and common
orientation character w: m — Cs. Let c: M — Bm and ¢’: M’ — Bw be maps inducing the given
identifications m (M) 2 m and m (M') = w. Suppose that M and M’ have isomorphic quadratic
2-types. Then c,([M]) — (¢ )«([M']) = 0 € Hy(m; Z").

As in Propositions 3.16 and 3.22, Hy(m; Z") = @, Ha(Hy; Z*) = (Z/2)*. By Proposition 3.22,
the image ¢.[M] is nontrivial in the kth summand if and only if Homg, (7m2(M), ZH},) is stably free.
Proof. Since M and M’ have isomorphic quadratic 2-types, in particular mo(M) = mo(M'),
and hence for each Hj factor of 7, we know Homy, (mo(M),ZHy) is stably free if and only if

Homy, (me(M"),ZH},) is stably free. Hence by Proposition 3.22 the images c.([M]) and (¢).([M'])
agree in Hy(m; Z™), and so their difference vanishes. O

4. P2FA AND P2FA* GROUPS

The main goal of this section is to prove Proposition 4.10, showing that if a 4-manifold M has a
3-manifold group as fundamental group, then w5 (M) is free an abelian group. We do not need to
restrict to admissible (7, w) here. We begin by introducing a relevant property of groups.
Definition 4.1. Let 7 be a finitely presented group.

(i) A group 7 is P2FA if, for all closed 4-manifolds M with fundamental group 7 and for all
orientation characters, mo(M) is free as an abelian group.

(ii) Further, a P2FA group is said to be P2FA* if mo(M)T is free as an abelian group for all
closed 4-manifolds M with fundamental group 7 and for all orientation characters.

The following exact sequence will be useful in the proof of the next lemma.
Remark 4.2. By the universal coefficient spectral sequence [Lev77, Theorem 2.3], the sequence
0 — H2(m Zr) <5 HA(X; Zn) < Ho(X;Zm)T — H3(m; Zr) <> H3(X;Zn) (4.3)

is exact for any space X and any 2-connected map c: X — Bm; see e.g. [Hil02, Lemma 3.3] or
[KPT21, Proposition 3.3] for the derivation.
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If X is a 3-manifold with fundamental group 7 and orientation character w, then H?(X;Zr) =

Hy(X;Zm") = 0 by Poincaré duality. In this case, it follows from the exactness of (4.3) that
H?(m;Zr) = 0. If X = M is a 4-manifold then H?(M;Zn) = 0, by Poincaré duality.

Lemma 4.4. A group 7 is P2FA if and only if H?(m; Z) is free as an abelian group.

It is not known whether H?(rw;Zm) is free as an abelian group for every finitely presentable
group 7. There are finitely generated groups for which H?(r;Z) is not free [Geo08, Chapter 13].

Proof. By (4.3), H?(m;Zx) is a subgroup of H?(M;Zn) = Hy(M;Zx™), which is isomorphic to
ma(M) as an abelian group. So if 7 is P2FA, then H?(7;Zr) is free as an abelian group.

For the converse, let (Cy,d.) be a free resolution of Z as a Zmr-module. Let M be a closed
4-manifold with fundamental group 7. By [HK88, Proposition 2.4; Ham09, Theorem 4.2; KPT22,
Proposition 1.10], 72 (M) is stably an extension of ker dy and coker d?. The module ker dy is always
free as an abelian group since it is a submodule of the free module C5. The extension

0 — kerd®/Imd* — C?/Imd? — C?/kerd® — 0,
together with the fact that C?/ker d® = Im d3, gives rise to the extension
0 — H?(C*) — coker d® — Tm d* — 0. (4.5)

Since Im d? is also a submodule of the free module C3, it is free as an abelian group, and so coker d?,
and hence mo(M), is free as an abelian group if and only if H?(C*) = H?(rm;Zn) is free as an
abelian group. ]

Recall that a group 7 is said to be F'P, if there is a resolution of Z by Zm-modules such that
the first n terms are finitely generated projective modules, and that 7 is F'P if there is a resolution
with nonzero groups in only finitely many degrees.

Lemma 4.6. Let m be a P2FA group. Suppose that H3(m;Zx) is free as an abelian group or that
is FP3. Then w is P2FA*.

Proof. Let M be a closed 4-manifold with fundamental group 7. Then M is homotopy equivalent
to a finite 4-dimensional CW complex X (see [FNOP25, Theorem 3.17] for references). We first
assume that 7 is F'P;. Then there is a resolution (P, dT) with P; a finitely generated projective
Zm-module for i < 3. In particular ker dj = Imdj is finitely generated. Let C, = (C\(X;Zn),dX)
be the cellular chain complex of the universal cover of X, considered as a complex of finitely
generated free left Zr-modules. Since 0 — kerdy — P, — P — Py — Z — 0 and 0 — kerdy —
Cy — C1 = Cy — Z — 0 are both exact, with ker d], P;, and C; finitely generated, it follows from
Schanuel’s lemma that ker d is finitely generated. Hence mo(M) =2 Hy(M;Zw) = Hy(C,) is finitely
generated as a Zm-module. Let k be such that m2(M) is a quotient of (Z7)*. Then by left exactness
mo(M)T is a subgroup of ((Zm)*)T = (Zm)*, so is free as an abelian group. Thus 7 is P2FA*.

Now we assume that H?(m; Zn) is free as an abelian group. As above, let C, = (Ci(X;Zn),dZ)
be the cellular chain complex of the universal cover of X, where X is a finite 4-dimensional CW
complex homotopy equivalent to M. Let K := X be the 2-skeleton of X, and consider a CW
model for Br with 2-skeleton K. Let (CT,dT) be the free resolution of Z as a Zm-module obtained
from the cellular chain complex of Ew. Let ¢: X — Bw be a map that is the inclusion K — B on
the 2-skeleton. Then ¢ induces a map of the chain complexes that is the identity in degrees up to
two. There is a short exact sequence

0= kerdd 2 (kerdd/Imd%) ® O 2=% cokerd% — 0,

where 4, j,p, and g are the canonical inclusion and projection maps. Using that d2 = d%, this fits
into the following commutative diagram, where j’,p’, ¢/, and all unlabelled arrows are again the
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canonical inclusion and projection maps.

0

|

kerd2 /Im d3, ——— kerd3 /Imd%

Jieo |
(p,i) j

0 — kerdy —= (kerd%/Imd%)® C? ——%— cokerd} —— 0

- | |

0 —— kerd% 9, (ker d% / ker d2) & C? N C?/kerd®> —— 0

| |

0 0

Since kerd3 C C? and C?/kerd? = Imd3 C C3 are free as abelian groups, it follows from the
bottom exact sequence that (ker d5 /kerd2) & C? is free as an abelian group. The middle vertical
sequence identifies this term with coker ¢* @ C2?. Hence coker c* is free as an abelian group.

By (4.3) we have the short exact sequence

0 — coker ¢* — Hy(M;Zn)t — H3(m; Zm) — 0.
Hence Hy(M;Zr)t is free as an abelian group if H3(7;Z) is free as an abelian group. O

Corollary 4.7. Suppose that w is a PD,,-group for some n. Then w is P2FA*. In particular, the
trivial group, Z, and all PDs-groups are P2FA*.

Proof. If 7 is a PD,,-group, then H*(m;Zm) = H, _;.(m;Zx) € {0,7} is free as an abelian group
for all k. Thus « is P2FA by Lemma 4.4 and is P2FA* by Lemma 4.6. ]

Let 7 be a finitely presented group. Recall that for G < 7 and a ZG-module A, we denote the
module Homyg (A, ZG) by A*. As usual, for a Zm-module A, we denote the module Homgy, (A, Zn)
by Af.

Lemma 4.8. Let w be a finitely presented group, and let G < 7 be a subgroup, let A be a ZG-module,
and let w: m — Cy be a homomorphism. Then the map
a: Ind%(A*) — (Ind A)T
Y@ [ (v©ar yfla)d)
is(ar)z isi)morphism. As usual, we view (Indl A)T as a left module using the involution v — 7 =
w(y)y -

Proof. The map « is the composition

o

Ind% (A4*) — Homze(A, ZG) @z¢ Zr — Homyg (A, ZG @z Zr) ——— (Indf A)f
1@ fr—— (am fla) @7 ———— (a— fla) ®7) ——— (Y®a = 1f(a)y).

Here the first isomorphism follows from the definition, switching the left module structure to a right
module structure using the involution on Zn. The second isomorphism uses the fact that Zr is a
free ZG-module. The third isomorphism uses adjunction, and can be factored into the following
three isomorphisms:

(Indg A)T = Homy, (Indf A, Z7) = Homze (A, Ress Zn) = Homga (A, ZG Qzq Zr). |

Lemma 4.9. Let Y be an orientable 3-manifold and let m := w1 (Y'). By the prime decomposition
theorem for orientable 3-manifolds, ™ = (*le Li) * (*3?:1 Gj), for some k,s, where each L;
is infinite cyclic or finite, and each G; is a PDs-group. Then H3(m;Zm) = ®j_1E;, where
E; :=7n Qzq, Z = Indgj (Z).
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Proof. The classifying space Br splits as a wedge of the classifying spaces BL; and BG;. A
Mayer—Vietoris argument therefore shows that

k s
H®(m; Zm) = @ H*(Ly; Rest, Zm) & @ H*(G;; Resy, Zrr)
i=1 j=1

k

12

H(Li; @ ZL) & & H*(Gj: @ ZG;)
1 w/L; j=1 w/Gj

7

HYLi;ZL) e @ @ H(GyiZG,).

IR
P

i=17/L; i=17/G;
For each i, j, we have H?(L;; ZL;) = 0 and H3(G;; ZG;) 2 7Z, and so
H3(m; Zm) & D Z=P(Zn®za, Z) = D E;
j=17/G, j=1 j=1
as required. 0

Finally we prove the main result of this section showing that 3-manifold groups are P2FA*.
Proposition 4.10. Every 3-manifold group is P2FA*.

Proof. Let m be the fundamental group of a 3-manifold Y. Then H?(r;Zn) = 0 by Remark 4.2,
so 7 is P2FA by Lemma 4.4. Let ©’ := m; (}A/), where Y is the orientation double cover of Y. By
Shapiro’s lemma, H?(m; Zm) = H3(r'; Zn') as Zn'-modules, and thus in particular as abelian groups.
By Lemma 4.9, H3(n'; Zn') is free as an abelian group, and hence so is H?(m;Zx). It now follows
that 7 is P2FA* by Lemma 4.6. ]

By Proposition 4.10, Theorem 1.4 (1) holds for the 4-manifolds considered in Theorem 1.4, and
the map By, a2+ is defined. For these inferences we only need that 3-manifold groups are P2FA.
We will use the fact that they are moreover P2FA* later in Lemma 5.4.

5. INJECTIVITY OF ev*

For this section, fix a finitely presented group 7, a map w: m — Cs, and a connected CW
complex B with fundamental group m. We consider the map

ev': Her“’(HQ(B;Zﬂ')T) — Her" (H?(B; Zr)),

induced by the evaluation map ev: H?(B;Zn) — Ho(B;Zm)!. The following lemma gives a
general method for showing that ev* is injective. Recall that ev* being injective is condition (4)
of Theorem 2.4.

Lemma 5.1. If H(m;Z7) = 0, then ev*: Her" (Hq(B;Zm)') — Her (H?(B; Zr)) is injective.
Proof. As in (4.3), the universal coefficient spectral sequence gives the exact sequence
H*(m; Zw) — H?(B;Zr) <% Hyo(B; Zr)" — H3(m; Zr).
Since we assume H?3(7;Zn) = 0, the map ev is surjective. We show this implies the induced map
ev*: Her"(Hy(B;Zn)') — HerV(H?(B; Z))

is injective. Let 6 € Her" (Hy(B;Zn)") be such that ev*(#) = 0. In other words, 6(ev(z),ev(y)) = 0
for all x,y € H?(B;Zm). For any a,b € Hy(B;Zx)", we have x,y € H?(B;Zn) with a = ev(x) and
b = ev(y), since ev is surjective. Hence 0(a,b) = 0(ev(z),ev(y)) = 0 as claimed. Thus 6 = 0 and
ev* is injective. O

Corollary 5.2. If 7 is virtually free, then ev*: Her" (Hy(B;Zn)") — Her™ (H?(B; Zx)) is injective.

Proof. If 7 is virtually free then it has a free normal subgroup p of finite index, and H%(m; Zn) =
H4(p;Zp) as abelian groups, by Shapiro’s Lemma [Bro94, p.73]. Since p is free these groups are 0
for all ¢ > 1. Hence Lemma 5.1 applies. O
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However, for general 3-manifold groups 7, it can happen that H?(m;Zn) # 0. Nonetheless, the
conclusion still holds when B is the Postnikov 2-type of a 4-manifold with 3-manifold fundamental
group, as we show below. In fact we will show in Proposition 5.9 that in this case ev* is an
isomorphism. For the proof we need the following preliminary results.

Lemma 5.3. Suppose m =2 G« H and let n > 1. Assume that H"(G;ZG) = H"(H;ZH) = 0.
Then H™(m;Zm) = 0.

Proof. Since Br ~ BG V BH, we can see from the Mayer—Vietoris sequence that
H"(m;Zm) = H"(G; Resg Zm) & H" (H; Resy; Zm)

~ fn (G; 92 ZG) @ H" (H; ﬂg/?{ ZH)

=P H"(G;ZG) & P H™(H; ZH) = 0. O
/G w/H

Let 7 be a group. Recall that, for a Zr-module A, we denote the module Homgz, (4, Zx) by Af.
For G < 7 and a ZG-module A, we denote the module Homzg (A, ZG) by A*. In the proof below
we will have two subgroups G, H < 7, and we will consider both ZG-duals and ZH-duals. To avoid
a proliferation of symbols, we will use the same notation in both cases.

Lemma 5.4. Let G be a PDs-group and let m = G x H for some 3-manifold group H. Let M be a
closed 4-manifold with fundamental group w. Then Resg (7r2 (M)T) is projective.

Proof. By Lemma 3.13, M is stably homeomorphic to My# M, with 71 (M) = G and m (M2) = H.
Hence mo(M) is stably isomorphic to

Il’ldg 7T2(M1) (&) Ind% 7T2(M2).
Therefore, Resf; (m2(M)T) is stably isomorphic to

Res; ( (Indg ma(M) ©Tndfy m2(Mz)) ') 2 Resfs ((ndfs ma(M1))1) @ ResF ((Indfy ma(M2))'T) (5.5)

We consider the first summand. By Lemma 4.8 we have that (Indf, mo(M;))" =2 Indf (7o (M7)*),
and hence

ResZ (Indy, 7o (M7))T 22 Resy, IndZ (o (M7)*),
where mo(M;)* := Homyg(m2(M1),ZG). By Corollary 3.11, mo(M;)* is a stably free ZG-module,
hence Resg Indg (ma(M7)*) is projective (but not necessarily finitely generated). This deals with
the first summand of (5.5), and so it remains to consider Resf; ((Indf; o (M2))T).

Again using Lemma 4.8, Res, ((Indf; m2(M>))T) = Resg Indf; (m2(Ms)*), where mo(M)* =
Homgp (m2(Ms2),ZH). By Proposition 4.10 we know that mo(Maz)* is free as an abelian group. We
will finish the proof by showing that Resg Ind7 A is free for every ZH-module A that is free as
an abelian group. By [Bro94, Proposition I11.5.6(b)], Resg Ind}; A is isomorphic to a direct sum
of modules of the form Ind?e} Resﬁ} A, which are again free, since Resf@} A is just A considered
as an abelian group. Therefore we have shown that each summand of (5.5) is projective, which
completes the proof. O

The following lemma concerns general 3-manifold groups, without an admissibility assumption.

Lemma 5.6. Suppose that 7 is a 3-manifold group. Let B = Py(M), where M is a closed 4-manifold
with fundamental group 7. Let A =Zx or A = mo(M)T. Then

Homg (ev, A): Homy, (Hy(B; Zm)', A) — Homg,(H?(B; Zr), A)
s injective.
Proof. Since B can be constructed from M by only adding cells of dimension four and higher, the
map M — P»(M) = B induces isomorphisms 71 (M) — 71 (B), Ho(B;Zn)" — Ho(M;Zx)T, and
H?(B; Zm) = o2 (M;Zz). By naturality of the evaluation map, we obtain the exact sequence

0 — H*(B;Zr) =% Hyo(B; Zn)t — H*(m; Zw) — 0 (5.7)
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from the exact sequence (4.3), where we used H?(m;Zr) = 0 and H3(M;Zn) = 0 as mentioned.
Apply the Homy, (—, A) functor to obtain the exact sequence

0 — Homy, (H?(m; Zr), A) —— Homyy (Ha(B; Zr)t, A) 2N yom, (H?(B; Zx), A).
We need to show that Homg,(ev, A) is an injection. For this, we will show that the left term
Homgz, (H?(w; Zn), A) vanishes.

Let Y be a 3-manifold such that 7 & m(Y) and let 7’ = m (}/}), where Y is the orienta-
tion double cover of Y. By Shapiro’s lemma, H?(m; Zn) & H3(r'; Zn') as Zr'-modules. Hence
Homg,, (H3(m; Z), A) is a submodule of Homg,/ (H?(r'; Zr"), A’), where A’ := ResZ,(A). By the
prime decomposition theorem for orientable 3-manifolds, 7’ & ( xk_ Li) * ( *3_q Gj), for some k, s,
where each L; is infinite cyclic or finite, and each G; is a PDs-group.

By Lemma 4.9, H*(n'; Zn') = ®3_, E;, where E; = Zn' ®zq, L = Indg/j (Z). Hence

Homg. (H*(x'; Zx'), A') = Homgn (@3-, E;, A') = | | Homgz (E;, A')
j=1

= [] Homzx (Ind, Z, A') = [ Homzg, (Z, Resg, A).
j=1 j=1
Let M be the double cover of M corresponding to 7’ < 7. As Zn'-modules we have
7o (M) 2 Homy, (o (M), Ind”, Zn')) = Homg, (m2(M), Coind™, Za') = Homg (mo (M), Zx"),
where Coind?, Zn' = Homy, (Zn,Zx") is the coinduction of Zz’, and for the middle isomorphism
we used that Ind7, Zn’ = Coind, Zn' [Bro94, Proposition II1.5.9]. The last isomorphism used the
Res — Coind adjunction and that Resl, mo(M) = 75(M). For A = mo(M)T it follows that
Resf, A = Res; A’ = Resf, (Homzq(ms(M), Z')).

Hence Resg. A is projective by Lemma 5.4. For A = Zm, the module Resg; A is projective as well.

Since ijis infinite, the only Gj-fixed point in ZG; is the trivial elerilent. Since Resgj Ais
projective, Homyg, (Z, Resg;, A) € Homyg, (Z, P ZG;) = 0. Thus Homg, (H3(7'; Zx"), A") = 0
and hence also Homg, (H?(m; Zn), A) = 0 as claimed. O
Lemma 5.8. Let m & H (*‘;:1 G,) such that H*(H;ZH) = H*(H;ZH) = 0 and each G; is
a PDs-group. Let B = Po(M), where M is a closed 4-manifold with fundamental group w. Let
A=17m or A= mo(M)*, then

Homy, (ev, A): Homy,(Hy(B;Zn)t, A) — Homg, (H?(B; Zr), A)
18 surjective.
Proof. As in the proof of Lemma 5.6, there is a short exact sequence
0 — H*(B;Zrm) <% Hy(B; Zn)! — H3(m; Zn) — 0.
Apply the Homg, (—, A) functor to obtain the exact sequence
Homgy, (Ho(B; Zn)T, A) Homan(ev,A) Homy, (H?(B; Zr), A) —— Ext},_(H?(m; Zx), A).

We need to show that Homg,(ev, A) is a surjection. For this, we will show that the term
Exty, (H?(m;Zn), A) vanishes. We have H3(H;ZH) = 0 and H?(G;;ZG;) = Z*(%) where
w(G;): Gj — Cy is the orientation character of the aspherical PDs-complex with fundamental
group G;. A Mayer-Vietoris argument as in the proof of Lemma 4.9 shows that H>(r; Zr) & ®i_,Ej,

where E; = Zr @z, Z¥(¢1) = Indg, (z¥(©9). Thus Exty, (H3(m; Zr), A) is isomorphic to

EXt%w (H3 (ﬂ; Zﬂ—)v A) = EXt%ﬂ(GBj:lEj’ A) = H EXt%ﬂ' (Ejv A)
j=1

=[] Bxty, (Indg, 209, A) = [] Extyg, (279, Resg, A),
j=1 j=1
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where we again used the Ind-Res adjunction. We consider each factor separately. By Poincaré
duality, we have

Extyg, (29, Resg, A) = H'(Gj; (Resg, A)"(99)) = Hy(G; Resf, A).

Since Resg, A is projective as in the proof of Lemma 5.6 this is trivial. Hence Homz(ev, A) is
surjective as claimed. O

Proposition 5.9. Let m be a 3-manifold group and let w: m — Cy be a homomorphism. Let B =
Py(M), where M is a closed 4-manifold with fundamental group 7. Then ev*: Her" (H?(B;Zn)") —
Her" (Hy(B; Zx)) is injective. If moreover (m,w) is admissible, then ev* is an isomorphism.

Proof. We know
evl := Homg, (ev, Zn): Hy(B; Zm)'" — H?(B;Zx)!

is injective by setting A = Zr in Lemma 5.6. Apply the functor Homgz, (H(B;Zr)", —), which is
covariant and left-exact, to see that

(evT)*: HOH]ZTF(HQ(B;ZTF)T,HQ(B;ZTI')TT) — HOIHZﬂ-(HQ(B;ZTF)T,HQ(B;ZTF)T)

is injective. On the other hand, we can apply Lemma 5.6 using A = H?(B;Zm)! 2 my(M)T to see
that

Homgz (ev, H*(B; Zn)"): Homg, (Hy(B;Zn)", H*(B; Zn)") — Homg, (H?(B; Zx), H*(B; Zx)")

is injective. As a consequence, the composition Homg, (ev, H?(B;Zm)) o (ev'). in the top row of
the commuting diagram

Homgz, (Ho(B; Zm)t, Hy(B; Zr)'T) —— Homg,(H?(B;Zn), H*(B; Zn)")
IR IR (5.10)

Sesq" (Hz(B; Zm)T) Sesq" (H?*(B; Zx))

is injective. Hence the bottom horizontal map is also injective.

Recall that Hermitian forms are the ¥o-fixed points of sesquilinear forms. So ev* is the restriction
of the bottom horizontal map in diagram (5.10) to Hermitian forms. Since the bottom horizontal
map is Yo-equivariant, the first part of the proposition, that ev* is injective, follows by taking
Yo-fixed points.

Now suppose that (7, w) is admissible. Then 7 is a free product of groups that are cyclic,
isomorphic to Z x Z/2, or PDs-groups, as in (3.15). If G is cyclic or isomorphic to Z x Z/2, then
H?*(G;ZG) = H*(G; ZG) = 0. Write m = Hx(+5_, G;), where each G} is a PDs-group and H is the
free product of all the remaining factors. By Lemma 5.3 we see that H?(H;ZH) = H3(H;ZH) = 0.
Thus evl and Homg, (ev, H?(B; Zn)!) are surjective by Lemma 5.8. Arguing as above, this implies
that (ev'),, and therefore ev*, is an isomorphism, as claimed. O

In particular, Proposition 5.9 shows that Theorem 2.4 (4) holds for 4-manifolds with 3-manifold
fundamental group, with no admissibility condition on subgroups or the orientation character.

6. INJECTIVITY RESULTS FOR B

Again, we fix a finitely presented group 7 and a map w: m — Cs. In this section we give general
criteria under which the map Ba: Z* ®z, ['(A) — Her" (AT) is injective, where A is a Zr-module
that is free as an abelian group. The map B4 was defined in (2.2). Note that if A is finitely
generated and projective it is a subgroup of @*Zx for some k, and hence is free as an abelian group.
So the map B4 is defined in this case.

We start the section with the following special case of [Hil21, Theorem 1].

Proposition 6.1 ([Hil21, Theorem 1]). Let A be a finitely generated projective Zm-module. Assume
that there is no g € m of order two with w(g) = —1. Then the map Ba: Z¥ @z, ['(A) — Her" (AT)
s injective.

The following definition appeared in [Ham23, Definition 6.4; Bas60, §4.4, pp. 476-477].
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Definition 6.2. A Zm-module L is called torsionless if there exists a Zm-embedding L — F
where F' is a finitely generated, free Zm-module. The module L is called w-strongly torsionless if
additionally the induced map Z* ®z, I'(L) = Z* ®z, I'(F) is injective.

Note that an arbitrary torsionless Zm-module A is free as an abelian group, since it is a subgroup
of ®*Zx for some k, which is free as an abelian group. Therefore the map B4 is defined. We will
use this fact in the sequel without comment.

Proposition 6.3. Let L be a w-strongly torsionless Zm-module. Assume that there is no g € w of
order two with w(g) = —1. Then Br: Z® @z, T'(L) — Her" (L") is injective.

Proof. Let L Y F be an embedding as in Definition 6.2. Consider the commutative diagram

7" @z T(L) —25 Her” (L)

o Jo
Z¥ @z, T(F) -2 Her® (F1).
The map 0. : Z* ®z, ['(L) = Z" Qz, I'(F) is injective by assumption and the map Bp is injective
by Proposition 6.1. Hence By, is injective as claimed. ]

It is immediate from the definition (Definition 3.1) that twisted augmentation ideals are torsionless.
We now show that they are moreover w-strongly torsionless. The case of 7 finite and v trivial was
done in [HK88, Lemma 2.3].

Lemma 6.4. Let v: m — Cs be a homomorphism. There is an isomorphism
T(In") @ Zr = T (Zn),
which on T'(I7?) is induced by the inclusion I7¥ — Zm. In particular, IT" is w-strongly torsionless.

Proof. As Z is free as an abelian group, I'(Zr) is isomorphic to the group of symmetric elements
of Zm @ Zrw. Therefore I'(Zx) has a Z-basis {g® g, g@h+h®g | g,h € m,g # h}. We also have an
inclusion Zm — T'(Zr) induced by 1 +— 1® 1. Similarly T'(I7”) consists of the symmetric elements
of Im’ ® Iw".

By sending g ® h+ h ® g to —v(gh)(v(g)g — v(h)h) @ (v(g)g — v(h)h)) we obtain a map

0: T(Zrn)/Zw — T(In?).

To see this, since g®@ h+ h® g for g # h is a Z-basis of I'(Zr)/Zm, it suffices to show that the map
is m-equivariant, which is a straightforward verification. Recall that the 7 action on both I' groups
is diagonal, and the action is not twisted by v.

The map I'(I#n?) — T'(Zn) induced by the inclusion I7¥ — Zr yields a map ¢: I'(I7¥) —
I'Zr)/Zm. We have

—v(gh)((v(g)g — v(h)h) ® (v(g)g —v(h)h)) =h @ g+g®h—v(gh)h® h —v(gh)g @ g.
Hence 900 is the identity on I'(Zx)/Zn because ¢ ® g and h @ h lie in Zn C I'(Zx). So 6 is injective.
We will show below that 6 is also surjective. This will imply that we have the following commuting
diagram
0 — Zr —— T'(Zr) —— T (Zn)/Zm —— O

\l)

where i, denotes the inclusion-induced map. Thus 7. provides a splitting of the short exact sequence,
and we deduce that I'(Zn) X T'(I7") @ Z~.

We complete the argument by showing that the map 6 is surjective. Note that {v(g)g — v(h)h |
g,h € 7} gives a Z-basis for I7¥, and therefore

{(v(g)g —v(h)h) @ v(g)g —v(h)h | g,h € T}
U{(v(g)g —v(h)h) @ (v(g")g" —v(h)R') + (v(g')g" — v(h)W) @ (v(g)g — v(h)h) | g,¢', h, k' € T}
is a Z-basis for I'(I7"). By definition of 0,
0(—v(gh)(g@h+h®g)) =v(g)g—v(h)h@v(g)g —v(h)h,
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for g, h € . So it remains to show that elements of the form
(v(g)g — v(h)h) ® (v(g')g" = v(h)M') + (v(g')g" = v(W)R') @ (v(g)g — v(R)h) (6.5)
lie in the image of 6. Set §:= h~'g, § := h~ ¢/, and I/ := h~'’. Then we rewrite (6.5) as
(v(hg)hg — v(h)h) @ (v(hg Yhg' — v(hh'Yhh') + (v(hg' )hg — v(hh')hh') @ (v(hg)hg — v(h)h).

Since the image of 6 is a Zmr-submodule, we can act by v(h)h~!, and it suffices to show that the
resulting elements, which are of the following form, lie in Im 6:

@37~ 1) ® (v(@)F vt )) + (0(@)g ~v(R)R) © (@7~ 1)-
For readability, and since we consider arbitrary g, ¢’, and h’/, we drop the tildes from the notation
and consider:

(v(9)g — 1) @ (v(g)g" —v(h)W) + (v(g)g" — v(h)W) @ (v(g)g — 1)
=(v(g)g -1 @ (v(g)g — 1)+ (v(g)g — 1) @ (1 —v(h')h')
+(v(g)g —1) @ (v(g)g — 1) + (1 —v(h)h') @ (v(g)g — 1).
Hence it suffices to show that elements of the form
(v(g)g —1) @ (v(g)g' — 1)+ (v(g)g' — 1) @ (v(g)g — 1) (6.6)
lie in Im #. Since
(1-v(g9)9) ® (v(g)g —1) =0( —v(9)(1® g+ g©1)) and
(1-w(gg) @ (v(ghy —1)=0(—-v(¢d)1©g +4¢ @1))

are in the image of 6 by definition, we can add these to (6.6), to obtain the following expression,
which lies in Im 6 if and only if (6.6) does.

(v(g)g -1 @ (v(g)g = 1)+ (v(g)g' — 1) ® (v(g)g — 1)
+(1—v(g")g) @ (v(g)g — 1)+ (1 —v(9)g9) ® (v(g)g — 1)
= (v(9)g —v(g")g") @ (v(g)g' — 1) + (v(g")g" —v(9)g) ® (v(g)g — 1)
= (v(9)g — (g’)g ) ( (99 —v(9)9)-

But 0( —v(gg')(9® g + g ®g)) = v(g")g") @ (v(g')g’ —v(g)g), so this lies in the image of
6, and thus indeed (6.6) lies in Im9 ThlS completes the proof that 6 is surjective, and hence an
isomorphism.

For the final sentence of the lemma note that since I'(I7") is a summand of I'(Zr), it follows
that Z* ®z, I'(I7") is also a summand of Z% ®gz, I'(Zx). So I7¥ is w-strongly torsionless, with
F = Zmr, as desired. O

Corollary 6.7. Assume that there is no g € m of order two with w(g) = —1. Let v: m1 — Cy be a
homomorphism. The map Brgw: 7 @z, T(I7V) — Her™ ((I7°)1) is injective.

Proof. By Lemma 6.4, I7" is w-strongly torsionless. Hence By,» is injective by Proposition 6.3. [

Corollary 6.7 shows that B4 is injective for A a twisted augmentation ideal, assuming that w is
trivial on elements of order two. Soon, in Corollary 6.13, we generalise this to show that B4 is also
injective whenever A is stably isomorphic to such a twisted augmentation ideal.

We will use the following lemma due to Baues. In the statement, to form A ®z, A’, we consider
A as a right Zr-module using the involution on Zr given by g +— w(g)g~!.

Lemma 6.8 ([Bau96, (1.2.7)]). Let 7 be a group and let A and A’ be Zw-modules that are free as
abelian groups. Let 1a: A — A® A and 1a: A’ — A® A’ be the canonical inclusions, and define

v Az A>T (A A')
a®ad —a®d+d®a
where we use the description of T(A® A’) as the symmetric elements in (AD A )Y@ (A® A’). Then
T(a) ®T(ta) @ ¢: T(A) B T(A) B Ay A S T(As A')

is an isomorphism.
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Remark 6.9. Furthermore the map
Her” ((A @ A")T) EN Her® (A") @ Her” ((A")") @ Homgz, ((A")T, ATT),
induced by the restrictions along the inclusions of AT and (A’)T into (A @ A’)T, is an isomorphism.

Lemma 6.10. Let A and A" be (left) Zm-modules that are free as abelian groups. Then with respect
to the decomposition of T(A@® A’) from Lemma 6.8, and the decomposition of Her” ((A® A")) from
Remark 6.9, the map Bagas is isomorphic to the direct sum of Ba, Bas, and the map

A ®zr A" — Homgz, ((A)T, ATT)

a®@d — (f— (9 gla)f(a))).

Remark 6.11. Here and throughout we adopt the convention that the tensor product A ®z, A’
of two left Zm-modules A and A’ is formed by converting A into a right Zm-module using the
involution, and then taking the tensor product. We will use the same convention shortly when
forming Tor’™ (A, A").

Proof. The splittings of the domain and codomain, from Lemma 6.8 and Remark 6.9 respectively,
induce the claimed splitting of Baga/. We only show this for the image of A ®z, A" and leave the
other cases to the reader. Here a ® a’ maps under Baga/ to the Hermitian form on (A @ A’)t given
by ((f1,91), (f2,92)) = g1(a’) f2(a). In particular, this is trivial when restricted to Her" (AT) and
Her™ ((A’)1). Hence it maps to Homgz,((A’)t, A™), and this is given by the map claimed. O

Lemma 6.12. Assume that there is no g € w of order two with w(g) = —1. Let A be a torsionless
Zm-module and let k > 0. Then the canonical map from the kernel of Ba: Z¥ ®z,T'(A) — Her" (AT)
to the kernel of Bagzar: Z¥ @zx I'(A @ Zr*) — Her" ((A @ Zn*)T) is an isomorphism.

Proof. Since A ® Zz* is again torsionless, it suffices to consider the case k = 1 by induction. Let
A — F be an embedding into a finitely generated, free Zr-module. By the commutative square

A—— F

lch glcv;:
ATT N FTT,
the map ev, sending a € A to (f — f(a)) € AT is injective.
By Lemma 6.10, Bagz, is given by the direct sum of By, Bz, and evs. By the previous
paragraph ev 4 is injective and By, is injective by Proposition 6.1. It follows that the kernel of B4
is isomorphic to the kernel of B gz, as claimed. O

Corollary 6.13. Assume that there is no g € © of order two with w(g) = —1. Let v: m — Cs be

a homomorphism and let A be a Zm-module. Suppose there exists k,j > 0 such that A ® Zn* =
I7° ® ZnI. Then By is defined and injective.

Proof. Note that by hypothesis A is a subgroup of (Zr)?*! and is therefore free as an abelian
group. Thus the map B4 is defined. By Lemma 6.12, we know that the kernel of B4 is isomorphic
to the kernel of B4gyz,+, via a natural map. By hypothesis this kernel can be identified with that
of By vgza+. Another application of Lemma 6.12 shows this is isomorphic to the kernel of By,
which is trivial by Corollary 6.7. ]

Lemma 6.14. Let A and A’ be torsionless Zm-modules and suppose that Ba: Z* Qz, T'(A) —

Her" (A1) and By : 2 @z, T(A") — Her" ((A")1) are injective. Assume that0 - AL F — Q — 0
is exact with F a finitely generated, free Zm-module. Then the kernel of

Baga: Z% @z, T(A® A') — Her”((A g A"))
is contained in the image of

Tori™(Q, A') = A®zr A' <L @7, T(A® A').
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Proof. By Lemma 6.10, Bg + is the direct sum of B4, Bas, and A®z, A’ — Hom((A’)t, AT). Since
B4 and By are assumed to be injective, the kernel of Bagas: Z* @z, T(A® A’) — Her (A A")T)
is the kernel of A ®z, A’ — Homgz,((A’)t, AT"). Consider the following commuting diagram, where
the latter map is the left vertical map:

Tor}™(Q, A') ———— Agg, A — % pey, A

! I

om(—,jtT
Homgz, (AT, AT 2T gom, (4%, Fi).

Since F' is free, the right hand vertical map can be identified with a sum of copies of ev 4.. Since
eva: A — (AT is injective as in the proof of Lemma 6.12, the right hand vertical map is injective.
The proof is then completed by a diagram chase. O

We end this section with the following result, which we will need in Sections 8 and 10.

Proposition 6.15. Let w be a finite group and let A be a Zm-module that is free as a Z-module.
Then the kernel of Ba equals the torsion subgroup of Z* ®z. T'(A).

Proof. For any Zm-module B that is free as a Z-module, there is a map

Ppow: Z¥ @z, T'(B') — Her”(B)
induced by f®&g ~ ((a,b) — f(a)g(b)). Our notation corresponds to [KPT21, Lemma 4.19], where it
was shown that the kernel of ®5 o is the torsion in Z" ®z, I'(BT). Note that [KPT21, Lemma 4.19]
is stated for a special Zm-module and w = 0. However this proof can be adapted in a straightforward
way to show the statement claimed by replacing the standard norm element with the twisted norm
element » . w(g)g. We apply this with B = AT below.

By [Nic24, Lemma 2.5], A is reflexive, i.e. the map ev: A — AT given by a — (f — f(a)) is an
isomorphism. Considering the commutative diagram

7" Q. F(A) % 7" Quzr F(Aﬁ)

D, 0w
m lAT

Her" (AT)

we see that the kernel of B4 is the torsion in Z ®z, I'(A) as claimed. O

7. PROVING THEOREM 2.4 (3) FOR 3-MANIFOLD FUNDAMENTAL GROUPS

Let 7 be a 3-manifold group and let w: m — Cs be a homomorphism with (7, w) admissible. The
goal of this section is to work towards proving Theorem 2.4 (3) for 4-manifolds M with fundamental
group 7 and orientation character w. Recall that this condition states: the kernel of By, (p,zx) o T
is contained in the kernel of pp: Z" Qz, Hy(B;Zw) — Hy(B;Z™), where B is the Postnikov 2-type
of M. We recall that by Proposition 4.10, Hy(B;Zr) is free as an abelian group, so the map
BHg(B;ZTr) is defined.

In Section 7.1 we obtain upper bounds on the size of the kernel of By, (ar,zx)- In Section 7.2 we
focus on the group Z x Z/2, and we obtain lower bounds on the size of the kernel of ¢, when B is
the 2-type of a 4-manifold with fundamental group Z x Z/2, for a specific stable isomorphism class
of ma(M). In Section 7.3 we again consider 4-manifolds M of type (7, w). For B = Py(M) we use
the results from Section 7.2 to obtain analogous lower bounds on the size of the kernel of pp for all
the fundamental groups considered in Theorem 1.4.

The output of this section is summarised in Corollary 7.10. As explained in the proof of that
corollary, we know that ker¢p is contained in ker By, (as;zr) © T in general. Our upper bounds
from Section 7.1 and lower bounds from Section 7.3 coincide, and we deduce in Corollary 7.10 that
ker(Bp, vz © T) = kerpp in our setting. Of course it then follows that ker(Bp,arz-) 0 1) C
ker ¢ 5, so Theorem 2.4 (3) is satisfied.
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7.1. Upper bounds on the kernel of By, (as;7x) for 3-manifold fundamental groups. As
in Section 3.3, for the remainder of this section, let ™ be a 3-manifold group and let w: @ — C5 be a
homomorphism with (7, w) admissible. Then, by the prime decomposition theorem for 3-manifolds,
we know there is a decomposition of the form

T Fx (*’{zl Z,;) * (*3?:1 Gj) * (*221 Hk), (7.1)

for some 7,s,t > 0, with I a free group, Z; a finite cyclic group for each i, G; a PDs-group for
each j and Hy = Z x Z/2 for each k.

Proposition 7.2. Fiz a decomposition for m as in (7.1). Let M be a closed 4-manifold with
fundamental group m and orientation character w: m — Co such that (m,w) is admissible. By
reordering the factors of 7 if needed, we assume that there exists t' < t such that the image of
the fundamental class [M] in Hy(m;Z%) = @, _, Hy(Hy; Z%) = (Z/2)! is trivial in the first t'
summands and nontrivial for k > t'. Then the kernel of By, (ar;zx) is isomorphic to (Z/2)7 for
some T < 1.

Proof. By Proposition 3.16, Hy(M;Zn) = 7o (M) is stably isomorphic to Indf(IT") & Indp, (ITV),
where
U= (%ot Zi) * (521 G5) * (#h=1 Hi)
and
F/ = (*;’:1 Zz) * (*g:l Hk)
are subgroups of 7 in the canonical way. Here v = wv': I' — Cy, where v’ is trivial on each
Z;, is the projection onto the second factor on Z x Z/2 (followed by the canonical isomorphism

Z/2 — Cs), and on each G, factor it is the orientation character u; of the aspherical PDs-complex
with fundamental group G;. By Lemma 6.12 we therefore have

ker By, (aryzr) = ker Bidg rov@indr, 107

Extend v: I' — Cs to v: m — Cs by taking the trivial map on the factors of 7 not in I'. By
Lemma 3.12, Indf IT? < I'w? and Indf, IT” < I'm, where each inclusion is of a summand. Similarly,
for the inclusion Indf, ITY < Iw, we extend the trivial map on IV to the trivial map on 7. Since
Ind] IT? & Indf, IT” is a summand of I7” & Ind[l, IT’, by Lemma 6.10 we have that

ket Binag rrvemar, i < ket Brzgmar, i

under the natural inclusion from that lemma.

By Corollary 6.7, the map By« is injective for every twisted augmentation ideal I7", where
u: ™ — Cy is an arbitrary homomorphism that vanishes on elements of 7 of order two. Applying
this to u = v, we see that B, » is injective. Also, we have that B, is injective, by setting u to be
the trivial map. It then follows from Lemma 6.10 and the fact that Indf, IT" is a summand of I7
that Blnd;/ 1T is also injective.

Now we want to apply Lemma 6.14 with0 = A - F - Q - 0as 0 — I7¥ = Zr = Z° — 0
and A" = Indf, IT'. The lemma applies because B}, v and Blnd;/ 1 are injective. We deduce using
this and the two previous displayed equations that

ker By, (ar.zq) < ker By wgnar v < Im ( Tor?™ (27, Indf, IT') — I7° ®z, Ind, IT”).
1—*/
Then by the definition, Shapiro’s lemma, and dimension shifting, we have
Tor’™(Z7, Indf, IT') = Hy (m; (Indf, ITY)*7) = Hy (I'; (IT")"") = Hy(I'; Z7)

r t’ t’
~ (D H(Z;2) & @ Ha(His 2) 2 00 P z/2 = (2/2)"
i=1 k=1 k=1
Here the first isomorphism makes use of Remark 6.11, which says that the w-twisted involu-
tion is implicitly used in defining Tor%’r(Zi, Indf, IT); to incorporate this into the group homol-
ogy Hi(m; (Indf, IT")*"), we must give the coefficients an extra w-twisting. Since the image of
Tor?™(Z7,Ind}, IT) = (Z/2)" under a homomorphism is (Z/2)” for some 7 < ', this completes
the proof. O



28 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

7.2. Lower bounds on the kernel of ¢ for fundamental group Z X Z/2. For this subsection
let 7 =7Zx7Z/2=(t,T|[T,t],T?) and let v': 1 — C3 be given by v'(t) = 1 and v/(T) = —1. In
other words, v’ is trivial on the Z factor and nontrivial on the Z/2 factor.

We first consider the case of a specific Postnikov 2-type P with fundamental group Z/2. Note that
this need not be the Postnikov 2-type of a 4-manifold. This will a useful ingredient in Lemma 7.5
where we consider a Postnikov 2-type B with fundamental group =, by comparing with P.

Let Z~ denote the integers as a Z/2-module, so that 1 € Z/2 acts by multiplication by —1. We
use Z to denote the integers considered as a trivial Z/2-module.

Lemma 7.3. Let P be a connected, 3-coconnected CW complex with m1(P) £ Z/2, no(P) 2 Z~ & Z,
and nontrivial k-invariant 0 # kp € H3(Z/2,2- ® Z) = Z/2 ® 0. Then we have isomorphisms

Z ®ziz/2 Ha(P; ZIZ/2]) —> Hy(P;Z)

; !

2ez/2 — 2N g2
Proof. Since P is 3-coconnected, w3(P) = m4(P) = 0. Thus Hy(P;Z[Z/2])) 2 T'(H2(P;Z[Z/2])) =
[(mo(P)) 2 T(Z~ & Z). By Lemma 6.8 we also have

NZ" 0Z)2T(Z)eT(2) & (Z” @27) 272> Z~

and hence
7 ®z[z/2) Hy(P; Z[Z/Q]) =7 ®z)z/2) NZ ®Z) 7’ ® Z/Q.

Next we build the following model for P, where the 4-skeleton is explicit. Let o € m3(RP?) 2 Z be
a generator and Y := RP? U, D*. Then X := Y x CP? has

(X)X 7Z/2; m(X) = my(RP?) @ mo(CP?) = Z~ & Z; and ms(X) = 0.
Furthermore, the inclusion RP?> — Y induces an isomorphism
H*(Z/2; m5(RP%)) = H(Z/2;m5(Y))

sending the k-invariant of RP? to the k-invariant of Y. Note that the first k-invariant of RP? is
nontrivial; if not, there would be a retraction of the inclusion RP? — RP* over the 3-skeleton, i.e.
there would be a retraction RP? — RP?, which by a cup product argument in Z/2-cohomology
cannot exist.

Using the projection X — Y, we have a map H3(Z/2;72(X)) — H3(Z/2;72(Y)) sending the
k-invariant of X to the k-invariant of Y. It follows that the k-invariant of X is nontrivial. So it
follows that up to homotopy equivalence we can build P from X by attaching cells of dimensions 5
and higher. This finishes the construction of X.

By the Kiinneth theorem we have

Hy(X;Z) =2 Hy(Y;Z)® Ho (Y Z) © Ho(YZ) 2 2000 Z =2 72,

Hence Hy(P;Z) is some quotient of Z2. We will now show that it is in fact isomorphic to Z2.
Consider the diagram

Z ®zz/9 Hi(Py ZIZ/2]) —"— Hy(P;Z)
JBH2<P;Z[2/21>°T l@P

Her(Hy(P; Z[Z/2))1) —“— Her(H2(P;Z[Z/2)),

where the map ©p is given by  — ((o, ) = (8, N x)). The diagram commutes as in [Hil06,
Lemma 10]. Here we know that ev* is injective by Corollary 5.2. We also know from Proposition 6.15,
and the fact that T is an isomorphism, that the kernel of the map By, (p,zjz/2)) © T equals the
torsion in Z ®zz,/9) Ha(P;Z[Z/2]). Here we used the fact that Hy(P;Z[Z/2]) = 7o(P) 2 2~ © 7 is
free as an abelian group. Thus we know that the composition ©p o pp is precisely the quotient
by the torsion subgroup. Therefore © p has domain a quotient of Z? and image isomorphic to Z2.
Hence, it follows that Hy(P;Z) = Z?, as claimed. O
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Lemma 7.4. For m = Z X Z/2, let w: m — Cy be a homomorphism with w(T) = 1, and let
v =wv'. Let B be a connected, 3-coconnected CW complex with m1(B) = 7, ma(B) = Iw @ In?,
and k-invariant given by 0 # kg € Z/2 = H3(m; In) < H3(m; Im & I7). Let P be a CW complex

as in Lemma 7.3. Then there exist maps P L B % P such that the composition is a self-homotopy
equivalence of P.

Proof. We will define the map f: P — B, and will sketch the construction of the map B — P. Let

Z.)2 % 7 x 7.)2 2 7.2 be the inclusion and the projection maps.

We begin the construction of a map f: P — B. Define the module homomorphism fy: Z~ — Iw
determined by 1 — 1 — T, and the homomorphism f5: Z — In? determined by 1 — 1+ 7T. To
show that i: w1 (P) — m1(B) and (f1, f2): m2(P) — m2(B) induce a map P — B, note that since
both P and B are connected and 3-coconnected, to determine a map P — B, it suffices to exhibit
homomorphisms 7;(P) — m;(B) for j = 1,2 that respect the k-invariants. More precisely, we have
to show that

i*kp = (f1, f2)<kp € H*(Z/2; Resy o (I & I")).
For this, since both k-invariants are nontrivial and live in a group isomorphic to Z/2, it suf-
fices to show that the maps i*: H*(m; Im) — H*(Z/2;Resy o I) and (f1).: H*(Z/2;27) —
H3(Z/2; Resy, /5 I) are isomorphisms. Here we used the fact that kp lies in H3(m;I7) < H3(m; It
I7?). We have a diagram as follows from dimension shifting using the Bockstein homomorphism
and the sequence 0 — Im — Zn — 7Z — 0:

H2(m;Z) ———— H3(m; I7)

s |

H?(Z/2;Z) —— H*(Z/2; Res], I)

To conclude that the horizontal maps are isomorphisms we used that Resj , Z is a free Z[Z/2]-
module, and H*(Z/2; Q) = 0 for every free Z[Z/2]-module Q. Similarly we can compute directly
that H'(m;Zn) = 0 for i = 2,3. The diagram commutes by naturality of the Bockstein map. That
the left vertical map is an isomorphism is a straightforward computation in group cohomology,
which can be performed by comparing standard free resolutions of Z. We deduce that the right
vertical map ¢* is an isomorphism as well.

It remains to show that (f1). is an isomorphism. For this consider the commutative diagram of
Z[Z/2]-modules:
1-T

0 /s ZZ2)2) —— Z —— 0

Tk

0 — Resg o Im — Resy o Zm —— Z —— 0.

From this we obtain the following commuting diagram, where again the horizontal Bockstein maps
are isomorphisms because both Z[Z/2] and Resj 5 (Z) are free Z[Z/2]-modules.

H2(7)2:7) —=— H3(Z/2;7.7)

- oo

H*(Z)2;Z) —— H*(Z/2;Res], I).

Thus (f1)« is an isomorphism and so 7 together with (f1, f2) induces a map f: P — B.

Now we sketch the construction of a map g: B — P. Define an equivariant maps ¢: Im — Z~
given by sending 1 — 7T to 1 and 1 — ¢ to 0, and define go: I7¥ — Z by sending 1 + 7T to 1 and
1 —1¢to 0. A very similar argument to that in the construction of the map f: P — B, which we
omit, shows that p and (g1,¢92) induces a map B — P. It is straightforward to check that the
composition is the identity on m; and 72, and hence, since P is 3-coconnected and a CW complex,

by Whitehead’s theorem the composition P L B% pisa self-homotopy equivalence of P. O

Lemma 7.5. Form = Z x Z/2, let w: m — Cy be a homomorphism with w(T) = 1 and let
v=wv'. Let B be a connected, 3-coconnected CW complex with m1(B) =, ma(B) = In® In, and
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k-invariant given by 0 # kg € /2 = H3(m; It) < H3(m; It @ I7V). Then the kernel of the map
0B L¥ @zx Hy(B; Zm) — Hy(B;Z") contains a Z,/2 subgroup that injects into Fo @, (r) Ha(B; Fa[n])
under the change of coefficients map

red? : Z¥ ®g, Hy(B; Zn) — Fy @, [x] Ha(B; Fa[n]).

Proof. We first show that the kernel of the map Z ®zz/9) Hs(B; Z[Z/2]") — Hy(B;Z") contains
a Z/2 subgroup. Let P be a CW complex as in Lemma 7.3. By Lemma 7.4, there exist maps

P L B % P such that the composition is a self-homotopy equivalence. Then we have the following
commutative diagram, from considering the latter maps as well as the change of coefficients map.

Fa ®py(z/2) Ha(P;F2[Z/2]) «—— Z ®pjz)9) Hi(P; Z[Z/2]) —5— Hy(P;Z)

[» | |~

Fq ®F2[Z/2] H4(B,F2[Z/2]) — Z@Z[Z/2] H4(B,Z[Z/2]w) H4 B: Zw)

|e-

F2 @, (z/2) Ha(P; F2[Z/2])

The composition g o f is a homotopy equivalence, and therefore the induced map g, o f., which is
the left vertical composition, is an isomorphism. It follows that the left vertical map Fa ®p,[z/9

H,(P;F3[Z/2]) EEN Fo ®p,z/2) Ha(B;F2[Z/2]) is injective. The top right horizontal arrow was
considered in Lemma 7.3 and we know that the kernel, which we denote by K, is precisely the Z/2
summand in Z? G Z/2 = L®gzz2 H4(P; Z[Z/2]). Note that in this map we do not see a contribution
from w, since w(T') = 1. As K is a summand of Z ®zz/2) H4(P;Z[Z/2]), it maps nontrivially to
Fo ®p,(z/2) Ha(P;F2[Z/2]), which then maps also nontrivially to Fy ®p, /2] Ha(B;F2[Z/2]) since
the map f, is injective. By the commutativity of the diagram, we see that K must also map
nontrivially to Z ®zz,/9) Hs(B;Z[Z/2]"), along the central vertical map f,. By definition K maps
trivially to Hy(B;Z") under the composition f, o ¢p. Therefore, by commutativity of the diagram,
the image f.(K) in Z ®zjz/9) Ha(B;Z[Z/2]"), which we know is nontrivial, must map trivially to
Hy(B;Z"). In other words the kernel of the map Z ®zz/9) Ha(B; Z[Z/2]") — H4(B;Z") contains
a Z/2 subgroup as claimed. Moreover, we have shown that this subgroup maps nontrivially to
Fo @, (2/2) Ha(B; F2[2/2)).

Let B be the covering of B with respect to the projection m (B) =Z x1Z/2 — Z/2, and let
B denote the universal cover. We consider the fibration B — B — S and the associated Leray—
Serre spectral sequence I, (S Hy(B; Z)") = Hp+q(B Z¥) = Hpyo(B;Z[Z/2]"). We have that
m3(B) = 0 — Hs(B;Z) is surjective by the Hurewicz theorem, and hence Hi(S'; Hs(B;Z)) = 0.
From the spectral sequence we see that E§, = Z" Qg H4(B Zm) — Hy(B;Z[Z/2]") is an
isomorphism, where the codomain is the homology of the total space. This isomorphism is preserved
under tensoring with Z, and is the left vertical map in the commuting diagram

Z ®zpz2) (L ®ziz) Hy(B; L)) —— LY @ Hy(B; Zr)

E }(,B

L @29 Ha(By Z[Z/2]") —————— Hy(B;Z").

The kernel of the right vertical map ¢p has a Z/2 subgroup, as needed, since this is true for the
kernel of the bottom horizontal map by our previous argument. Repeating this argument with
[y coefficients shows that this subgroup of ker ¢ is mapped injectively to Fo ®p, ] Ha(B; Faln])
under the change of coefficients map. This completes the proof of Lemma 7.5. |

Now we deduce the fact corresponding to Lemma 7.5 for the Postnikov 2-type Bj; of a closed
4-manifold M with fundamental group m = Z x Z/2 and w3(M) stably isomorphic to I @ It".

Corollary 7.6. For m = Z x Z/2, let w: # — Cy be a homomorphism with w(T) = 1 and let
v=wv:m — Co. Let M be a closed 4-manifold with fundamental group m and orientation
character w. Assume further that wo(M) is stably isomorphic to Im @ In®. Let By := Po(M) be
the Postnikov 2-type of M. Then the kernel of the map wp,,: Z* Qzx Hy(Bar; Zmw) — Hy(Bp; ZY)
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contains a Z/2 subgroup that injects into Fo ®p, (] Ha(Bar; F2[r]) under the change of coefficients
map

red}’ : Z* @z Hy(Bu; Zm) — Fy ®F, ] Ha(Bur; Fa[r]).
Proof. Let

M’ := M# + CP?.
We have maps ¢ and p defined by
By i= Py(M) 5 Py(M V S%) ~ Py(M') =: By 2 Py(M),
where p collapses the S? wedge-summand, and whose composition is homotopic to the identity.
This induces a sequence of homomorphisms
2" @z Hy(Bar; Zm) < LY @z Ha(Bar; L) 25 2 @z Ha(Bar; Zm),

whose composition is the identity. It follows that ¢, is injective. Similarly,

15?0 Fay ®p, ) Ha(Bar; Fa[r]) = Fa ®ppr) Ha(Bu; Falr])
is injective, and we have a map

pi?: Fy @pir) Ha(Burr; Fa[n]) = Fa @p,(x) Ha(Bas; Fa[n)).
Claim. The kernel of pp,, contains a Z/2 subgroup that maps injectively under the reduction
of coefficients map redé\/f if and only if the kernel of ¢p,,, contains a Z/2 subgroup that maps
injectively under redéw "

The only if direction is easier, and we prove this first. By naturality of ¢ and since ¢, is injective,
if x € Z% ®znx Ha(Bp;Zm) is an order two element in the kernel of ¢p,,, then v, (z) € Z¥ Qz,
H4(Bypyr; Zmr) is an element of order two in the kernel of pp, , @ Z¥ @z Hy(Byys Zm) — Hy(Ba; 24).
Since (f2 is injective, the image of 2 under the reduction of coefficients map redé\/[ is nontrivial
if and only if this is true for ¢, (2) with respect to red)’ , which can be seen from the following

commuting diagram.

2" Qg Hy(Byr; Zm) —=— 7" Qg Hy(Bap; Zm)

M 4
lredQ lredg/ 1
F

12
Iy ®]F2[7r] H4(BM;F2[7T]) —— [y ®]F[7r] H4(BM/;F2[7T])

This completes the proof of the only if direction of the claim.

Conversely, we start with an element x € ker pp,,, C Z" ®zr Hy(Bap; Zn) of order two, and
assume that the image redéw/ (z) € Fy ®ppr) Ha(Bag; Fa[n]) of 2 is nontrivial. Then by naturality
p«(z) € Z¥ @zr Ha(Bpr; Zm) lies in the kernel of ¢p,, and since p, is a homomorphism p,(z) has
order at most two. We need to show that p,(z) has order exactly two, and that red}! (p.(z)) is
nontrivial.

For N = M, M’, let @3 : Fy ®ppr Ha(By;Fa[n]) = Hy(By;F2) be the version of pp, with
Fo-coefficients. We assert for the moment that (52 restricts to an isomorphism

Faq. o = o
L] kerpg — ker CB,,.-

= , we deduce that pf? restricts to an isomorphism
By

Since pf2| o /f2| = Id, .,

Fs . F, = Fa
.2 kerog = — kergpg .

Since reds’ ,(x) is assumed nontrivial, it follows that p&2(red}’ ,(x)) is nontrivial. Observe that

P2 (red)’ / (z)) = redd! op, (z) by naturality of reduction of coefficients. Since the former is nontrivial,
so is the latter, i.e. p,(x) has nontrivial image under the reduction of coeflicients map. In particular
p«(x) is nontrivial, and so it has order exactly two. Thus to prove the if direction of the claim, it
remains to prove that L]f:"‘| is an isomorphism, which we do next.

For both B = Bj; and B = Bj;s, we consider the fibration B —» B — B, where B de-
notes the universal cover, and the associated Leray—Serre spectral sequence Hy,(Bm; Hy(B;F3)) =

Hpyq(B;Fy). We have Ef ; = Fy @, Hy(B;Fa[n]). Since Hy(B;Fy) = 0 = Hs(B;F,), several
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differentials are necessarily trivial. In particular, there is no ds- or d4-differential with image in
E§,4, so we have homomorphisms as follows, which decompose w%.

—/Imds —/Imds

P53+ By ©p, () Ha(B;Fa[n]) = By — Egy By — Egy BG4 (7.7)

= BSS < Hy(B;Fy).
We will investigate the ds- and ds-differentials presently. First, we have ds-differentials as shown

below, with a commuting diagram with exact rows by naturality of the spectral sequence with
respect to ¢:

aM _
0 — kerd) —— Hs(m;Fo) —>— Ho(m; Ho(Bus; Fa))

Lok i

, dM’ ~
0 —— kerd}!’ —— Hs(m;Fo) —— Ha(m; Ha(Byy;Fa)).
Here the right-most isomorphism uses that HQ(E]\/[; Fs) and Ho (EM/; F3) are stably isomorphic. It

follows that the induced map ker d}! =5 ker di! "is an isomorphism. Next we return to the analysis
of @%M and @%M, from (7.7). Both maps are visible in the following commutative diagram, where

the straight and the diagonal rows are exact. We already showed that (2 is injective. The fact
that moreover (2 restricts to an isomorphism

Fal. F, = Fa
L2 kerpg = kerog .

follows from chasing this diagram.

ker d3* Y
N v
Hg(’IT;HQ(BM;IFQ)) dT&I FQ ®]F2[7r] H4(BM,F2[7T]) B — cokerdé\/l — 0
’ ~
% jﬁz kerdi” k Egu(M) — Ha(Bar; Fa)
~ ~
H3(7T§H2(BM';F2))d71,]F2 ®F, (] Ha(Byy; Foln]) ———— coker d!’ J% 0 k
’ ~

EgSy(M') = Hy(Bay;Fa)

To chase the diagram, let x € ker w%M/ C Fy ®p,[x) Ha(Bn; Fo[r]). By assumption this maps to 0
in Hy(Bp;F2), and hence by injectivity of the bottom right horizontal map goes to 0 in E§S,(M’).
Thus the image of z in coker d}’" lifts to ker d and hence to ker d}’. The image of this lift in
coker d}f maps by exactness of the diagonal top row to 0 in Hy(Bjs;F2), and also by exactness of
the top straight row lifts to y € ker @%M C Fy ®p,[x) Ha(Bar; Fa[n]). By commutativity E2(y) — o
maps to zero in coker d}!" and so lifts to Hs(r; Hy(Byy;Fy)) and hence to Hs(m; Hy(Bay; Fa)). Use
the image of this lift in Fa ®g,x] Ha(Bar; F2[n]) to alter y to ¢’ with (£2(y’) = 2. By exactness we
still have that vy’ € ker cp%M. Hence (2] is surjective as required. This completes the proof of the
claim that 52| is an isomorphism.

It follows that for a 4-manifold X that is CP2-stably homeomorphic to M, the kernel of
om: LY Qzn Hy(Bar; Zm) — Hy(Ba; ZY) contains a Z/2 subgroup that injects into Fo ®p, [
Hy(Byr; For]) under red)’ if and only if, writing Bx := P»(X), the kernel of ¢x: Z* Qg
Hy(Bx;Zm) — Hy(Bx;Z") contains a Z/2 subgroup that injects into Fo ®p,[r) Ha(Bx;Fa[r])
under reds .

By Lemma 3.9, ¢, ([M]) =0 € Hy(m; Z¥) = Z/2, for a classifying map ¢: M — Br inducing an
isomorphism on fundamental groups. Suppose we have a 4-manifold X with fundamental group
7 and ¢, ([X]) = 0 € Hy(m;Z"). Then such an X is CP*-stably homeomorphic to our M by
[KPT22, Theorem 1.2] (which is due to Kreck [Kre99]; however the citation we provided gives the
explicit statement). So it suffices to show that the kernel of pp, contains a Z/2 subgroup that
injects into Fy ®p, (] Ha(Bx;Fz[r]) under the change of coefficients map redg(, and then by the
previous paragraph we deduce the analogous fact for M.
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To construct such a 4-manifold, let X be a double for m and orientation character w, obtained by
definition as the boundary of a 5-dimensional thickening W of the standard 2-complex corresponding
to a presentation for the group 7, with the thickening chosen to have orientation character w. Since
X is the boundary of a 5-manifold with fundamental group 7 and orientation character w, and
therefore (cx).([X]) = 0 € Hy(m; Z™) under a classifying map cx : X — Bw. By [BR82, Theorem 1],
the first k-invariant of a 2-complex K is trivial if and only if 71 (K) has cohomological dimension at
most 2. Thus the k-invariant of W, and therefore of X, is nontrivial. By [KPT21, Lemmas 7.11, 7.12,
and 7.14], mo(X) = I7®In?. Hence Bx is homotopy equivalent to a CW complex B as in Lemma 7.5,
and we deduce from that lemma that the kernel of the map px : Z" Qg Hy(Bx; Zmw) — Hy(Bx; Z")
contains a Z/2 subgroup that injects into Fy ®p,[r] Ha(Bx;Fz[n]) under the change of coefficients
map. This completes the proof of the corollary. O

7.3. Lower bounds on the kernel of ¢ for 3-manifold fundamental groups that are free
products. With the results of the previous subsection in hand, we can now prove the following
result bounding the size of the kernel of the map ¢p, for B the Postnikov 2-type of a 4-manifold
with fundamental group 7 and orientation character w as in (7.1). First we need a lemma showing
how the kernel of the reduction of coefficients map ¢ changes under stabilisation.

Lemma 7.8. Let M be a closed 4-manifold with fundamental group © and orientation character
w: T — Cy. Let B := Py(M) and let B® := Py(M#(S? x S?)) ~ Py(M Vv S? v §%). The map
M — MV S?V S? induces an isomorphism between ker o5 and ker pps.

Proof. The E§’4 term of the Leray—Serre spectral sequence for the fibration B — B — Bnr
converging to H, (B;Z") is Ho(m; Hy(B; Z)") = Hy(m; Hy(B; Zm)®™). Quotienting by the images
of the iterated differentials in the spectral sequence with codomain the terms E(’i 4 induces a map
Ho(m; Hy(B; Zm)") — Fy;. The codomain F is then a subgroup of the output Hy(B;Z") of
the spectral sequence, and, under the identification Ho(m; Hy(B; Z7m)Y) = Z" Qg Ha(B;Zr), the
kernel is precisely the kernel of pp. We have a similar quotient map Ho(m; Hy(B%; Zm)*) — FOB;f
for B®. The idea of the proof is to compare the kernels of these two maps using naturality of the
Leray-Serre spectral sequence.

The inclusion map M — MV S?VS? and the collapse map M V.S?V S? — M induce isomorphisms
on fundamental groups, and hence induce isomorphisms between 71 (B) and 71 (B?). These maps
also induce respectively the inclusion mo(B) & mo(M) — w2 (M) @ Zm? = 75(B*) and the projection
ma(B®) 2 mo(M)®Zn? — mo(M) = my(B) on second homotopy groups. We have that H,(m; Zn) = 0
for all p > 0, and that Hs(B;Zr) = Hg(g; Z) = 0, and similarly for B*. The latter claim holds
because 0 = m3(B) — Hs(B;Z) is surjective in degree three by the Hurewicz theorem. It follows
that the induced maps B — B*® and B® — B induce isomorphisms on H,(m; H,(—;Zx)) for all
p > 0 and all ¢ < 4. Whence naturality of the Leray-Serre spectral sequence implies that the
iterated images of the differentials in Ho(7; Hy(—; Z7)™) and its iterated quotients, for B and B*,
are identified by the inclusion and collapse maps. Thus the kernels of g and ¢p- are isomorphic
as claimed. ]

Lemma 7.9. Let M be a closed 4-manifold with fundamental group m as in (7.1), and orientation
character w: m — Co, such that (w,w) is admissible. Let t' <t be such that, for some identification
as in (7.1), the image of the fundamental class [M] in Hy(m;Z") = @ _, Hy(Hy; Z%) = (Z)2)" is
trivial in the first t' summands and nontrivial for k > t'. Let B := Py(M). Then the kernel of
pp: ZY Qzx Hy(B; Zw) — Ha(B;Z"Y) is an abelian group that needs at least t' generators.

Proof. As M is stably a connected sum by Lemma 3.13, there exists m > 0 and a connected sum
decomposition

M#F£S2 x S22 NHM 4 -4 M,
with 7 (N) 2 F s (#7_, Z;) # (+5_, G;) and m1 (M) = Hy, = Z x Z/2. Let B® := Py(M#m(S? x
52)) ~ Py(M v \/*™ 52). The map M — M v \/*™ S? induces a map B — B*. By Lemma 7.8,

this map induces an isomorphism ker ¢ p =, ker pp=. Hence it suffices to prove the statement of
the lemma with B® in place of B.

Let 7' :=ZxZ/2 = (t,T | [T,t],T?) and v': 7’ — Cy be given by v/(t) = 1 and v/(T) = —1. Let
W denote the composition 7’ < 7 — C5, where the first map is the inclusion as one of the factors
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in (7.1). Let v =wv’. Let M’ be a closed 4-manifold with fundamental group n’ :=Z x Z/2 and
mo(M') =2 Im @ I7”. Let B’ be the Postnikov 2-type of M’.

For each factor Hy of m, k=1,...,t, by Lemma 3.9 there are maps B’ - B* and B* 2% B’
such that py oty ~ Idpg: and py, o tps is homotopic to the constant map for k # k.

Consider the commutative diagram

7% Qur Hy(B'; Zm) —— 7% Qg Hy(B';Zn') —— Hy(B';Z")

J/(Lk)* l(%)* J(ék)*

Z" Qzr Hy(B% Zw) —— LY Qg Hy(B%; Zx') —— Hy(B*;Z")

Here Zn' is defined to be a Zm-module via the map pg. Our goal is to show that the composition of
the two bottom horizontal maps has kernel needing at least ¢’ generators. By our condition above
on the maps tx and py, it will suffice to show that the bottom right horizontal map has nontrivial
kernel. The result will then follow since we have t’' distinct H}, factors in .

For this final step, consider the following commutative diagram, where we have used the change
of coefficients map corresponding to Z — Fs.

Fq ®]F2[7T/] H4(B/;]F2[7T/]) —— 7" Qzpr H4(B/;Z’/T/) e H4(B/;Zw)

j(%)* J(tk)* l(“c)*

Fq ®F2[7r/] H4(BS;IF2[’/TI]) —— 7" Qpnr H4(BS;Z7T/) —_— H4(BS;ZM)

J{(Pk)*

Fo ®p,x) Ha(B'; F2[r'])

The composition B’ < B® 2% B’ is homotopic to the identity, and hence (pg)s o (1) = Id.
It follows that the top left vertical map is injective. By Corollary 7.6, the kernel of the top
right horizontal map has a Z/2 subgroup, call it K, which is mapped nontrivially to Fy @,/
Hy(B';F3[n’]), and onward by the vertical injection (i)« to Fy ®g, [ Ha(B*;Fa[n']). By the
commutativity of the diagram, K is mapped nontrivially to Z" ®z. H4(B*;Zn') under the
middle vertical (tg).. By definition, K maps trivially to Hy(B’;Z"), and so maps trivially to
H,(B*;Z") in the bottom right. Hence by the commutativity of the diagram, the image of K in
2" Rz Hy(B*%;Z7'), which we know is nontrivial, maps trivially to Hy4(B*;Z"). In other words,
the map Z" ®gzn Hy(B*;Z7') — H4(B®;Z") has nontrivial kernel, as desired. O

The following corollary shows that Theorem 2.4 (3) holds for 4-manifolds with fundamental group
masin (7.1). We will also use it in the proof of Proposition 8.22, showing that for a 3-manifold group
7 and homomorphism w: m — Cy such that (7, w) is admissible, the pair (7, w) has Property 4HL.

Corollary 7.10. Let M be a closed 4-manifold with fundamental group 7 as in (7.1) and orientation
character w: m — Co such that (m,w) is admissible. Let t' <t be such that, for some identification
as in (7.1), the image of the fundamental class [M] in Hy(m;Z") = @ _, Hy(Hy; Z%) = (Z/2)" is
trivial in the first t' summands and nontrivial for k > t'. Let B := Py(M). Then the kernel of
B,z o T equals the kernel of pp: 2" ®zx Hy(B;Zm) — Hy(B;Z").

Proof. By the commutativity of the diagram in (2.7), we know that ev* 0B, gz 0T = Op o pp.
Since 7 is a 3-manifold group, by Proposition 5.9 ev* is an isomorphism. Therefore, the kernel of
¢p is contained in the kernel of By, p,zx) o T.

By Proposition 7.2, the kernel of B, (p;zx) o T is a subgroup of (Z/Q)t,, where the image of the
fundamental class [M] in Hy(7; Z") = EBZ:l Hy(Hy; Z%) = (Z/2)! is trivial in the first ¢’ summands
and nontrivial for & > t’. On the other hand, the kernel of ¢ needs at least ¢’ generators by
Lemma 7.9. Therefore the kernel of By, (p.zx) © T equals the kernel of pp, as needed. O

8. PROPERTY 4HL

In this section we discuss the 4th homology lifting property, henceforth known as Property 4HL.
This will help us to show that Theorem 2.4 (2) holds. More precisely, it seeks to establish criteria
for deciding whether an element in the codomain of px: ZY ®yz, Hy(X;Zmw) — Hy(X;Z") lies in
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the image, for an arbitrary CW complex X with 71 (X) = w. We will first define a version for
3-coconnected CW complexes and homomorphisms w: m — Cs, and later we will define a version for
groups. We will end this section by showing that (7, w) has Property 4HL, where 7 is a 3-manifold
group and w: m — C3 is a homomorphism, such that (7, w) is admissible (Proposition 8.22).

8.1. Property 4HL for CW complexes.

Definition 8.1 (Property 4HL). Let X be a connected CW complex and write 7 := 71 (X). Let
w: m — Cy be a homomorphism. We say that (X, w) has Property 4HL if for every 2-connected
map c¢: X — Br and for every

x € ker(cy: Hy(X;Z%) — Hy(m; ZY))

such that
(o, BNy =0¢€Zr
for all o, 8 € H?(X;Z), we have that x lies in the image of ¢ x : Z¥ ®z, Hy(X;Zr) — Hy(X;ZY).

Remark 8.2. Different choices of 2-connected maps ¢: X — B are related by automorphisms of
7, and therefore they determine the same kernel K := ker(Hy(X;Z") — Hy(m;Z™)). So to verify
that Property 4HL holds it suffices to fix one choice of c.

We also note that the image of px equals the image of the map Hy(X;Zn) — Hy(X;ZY), so
we could have equivalently asked for z to lie in the image of the latter map in the definition of
Property 4HL.

The next lemma shows that Property 4HL is independent of stabilisations for 3-coconnected
CW complexes.

Lemma 8.3. Let B be a connected, 3-coconnected CW complex and let m:= m(B). Let cg: B —
Br be a 2-connected map. Let w: m — Cy be a homomorphism. Let B® := Py(BV S?). Then
(B,w) has Property 4HL if and only if (B*,w) has Property 4HL.

Proof. First we need some setup. Let K := ker(Hy(B;Z") — Hy(m; Z")). We consider the Leray—
Serre spectral sequence for the fibration B — B <& B, where B is the universal cover, converging
to H,(B;Z"). Note that Hy(B;Z) = 0. In addition, since B is 3-coconnected, we know B ~
K (m2(B),2), and so 73(B) = 0. By the Hurewicz theorem, the Hurewicz map m3(B) — Hs(B;Z)
is surjective, and hence Hj (E, Z) = 0. Note that K is the term F5 o in the filtration of Hy(B;Z")
given by convergence of the spectral sequence and there is an exact sequence

7" @z Hy(B;Z) = K — E — 0

with E := ESS a quotient of Hy(7;m2(B)"). Here we used that mo(B) = Ho (B;Z). Similarly, for
K* :=ker(H4(B*;Z") — Hy(m;Z")) we have an exact sequence

Z¥ ®zx Hy(B®;Zm) - K° — E° — 0

cBs

with E® the E5% term of the corresponding Leray—Serre spectral sequence for Bs — B* “E% Br.
Again E* is a quotient of Ha(m;mo(B*)*). The isomorphism Ha(m;me(B%)Y) & Hy(m; e (B)Y &
Zw) = Hy(m;me(B)™) induces an isomorphism E* =, E. To see this use the definition of E* and E
as the quotients of Hy(m;mo2(B*)") & Ha(m; m2(B)™) by the image of the d3 map on Hy(Bm; Z").
Then naturality of the spectral sequences shows that the quotients agree.

Consider the inclusion and collapse maps B — BV S? — B. Passing to the Postnikov 2-types
yields maps B = B* £ B. Then, comparing the spectral sequences, using ¢ and p, we obtain the
following induced commutative diagram with exact rows.

7Y @z Hy(B; Zr) K E 0
Z* @z, Hy(B*; L) K* E* 0 (8.4)

bk

Z¥ @z Hy(B; Zr) K E 0
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Now we are ready to prove that (B, w) has Property 4HL if and only if (B*,w) has Property 4HL.
First suppose that (B*,w) has Property 4HL. We will show that (B, w) has Property 4HL. So let = €
K and assume that (o, 3Nx) =0 € Zr for all o, 8 € H*(B;Zw). Define 2° := 1.(z) € Hy(B*,Z").
Then z° lies in K*, because cg: B — B factors through ¢. Moreover for all o®, 3° € H?(B®; Zm)
we have, in Zm, that

(@, 8° Nz®) = (a®, B° Nu(x)) = (&, 1. (F(B°%) Na)) = (* (), " (B°%) Nx) = 0.
Then, since (B*®, w) has Property 4HL, we know that ©° € K* lies in the image of Z" ®z, Hy(B*; Zr).
So z* has trivial image in E*. By the top right square of (8.4), x has trivial image in E, and so
lies in the image of Z" ®yz, Hy(B;Zm). Thus (B, w) has Property 4HL.

It remains to show that Property 4HL for (B, w) implies Property 4HL for (B*®, w). We will apply
essentially the same argument as above, but now using the bottom two rows of (8.4). Assume that
(B, w) has Property 4HL. Let 2° € K* such that (a®, 5 Nz®) =0 € Zn for all o, 3° € H?(B*; Z).
Define x := p.(z°) € Hy(B;Z"). Then x € K since the map cps factors through p. We also have

(a,BNz) = (o, fNpu(a®)) = (o, pu(p"(B) N 2)) = (p"(a), p*(B) N 2®) =0,
for all a, 3 € H?(B;Zr). So by Property 4HL for (B,w), the element x lies in the image of
Z¥ ®z, Hy(B;Zn), and thus has trivial image in E. By the bottom right square of (8.4), the
element z° € K* also has trivial image in F*, and hence lies in the image of Z* ®z, H4(B*; Zr).
Thus Property 4HL for (B, w) implies Property 4HL for (B*®,w). This completes the proof. |

Lemma 8.5. Fori=1,...,n, let B; be a connected, 3-coconnected CW complex with fundamental
group G;. Let X := \/:L:1 B; and let m:= 1 (X) =« G;. Let w: m — Cq be a homomorphism. If
each (B;,w|g,) has Property 4HL, for i =1,...,n, then (X,w) has Property 4HL.

Proof. We will write w; for w|g, to make the proof more readable. Let
K; :=ker(Hy(B;; Z¥") — Hy (G4 Z*%)) and K := ker(H4(X;ZY) — Hy(m; Z%)).
Using the Mayer—Vietoris sequence, we have that K = @, K; and Z" ®z, H4()Z';Z) =
@?:1 7Y ®zc, Hy(Bi;Z), where X and B; are the universal covers. For each x € K with

(a, BNx)y =0 € Zr for all o, 3 € H?(X;Zn), write z; for the image of z in K;. We can view
a;, B; € H?(B;; Zw) as elements of H2(X; Zr), again using a Mayer—Vietoris sequence. Then

<ai,ﬂi M LL‘Z> = <Oéi,ﬁi n $Z> + Z(O, onN LL’j> = <ai7ﬂi N £L'> =0.
J#i
By assumption (B;, w;) has Property 4HL and hence for each ¢ there exists a preimage y; € Z" ®z¢,
H4(§i; Z) of z; € K;. By naturality of the Mayer—Vietoris sequence, taking > . v; € @, K; © K
we have that ox (D, vi) = v € Hy(X;Z"). Hence (X, w) has Property 4HL. O

We will need the following lemma on 3-coconnected CW complexes later in this section to
establish Property 4HL for Z x Z/2, as well as in the proof of Corollary 10.2.

Lemma 8.6. Let B be a connected, 3-coconnected CW complex with fundamental group 7 := w1 (B)
and let w: m — Co be a homomorphism. Assume that wo(B) is projective as a Zw-module. Then
there is an exact sequence

Hs(m; Z) — 7% @z Hy(B; Zr) 225 Hy(B; Z%) — Hy(m; Z%) — 0,
where the third map is induced by some classifying map B — Bw inducing an isomorphism on

fundamental groups.

Proof. Since mo(B) is projective, there is a decomposition mo(B) ® Q = Zn™ for some Zm-module
@ and for some m € N, and hence
Hy(m;m2(B)Y) < Ho(m;ma(B)Y) ® H(m; Q%) = Hy (73 (m2(B) © Q)) = Hy (w3 Za™) = 0

for all n > 0. Furthermore, mo(B) is free as an abelian group, and therefore projective. Thus for the
universal cover B ~ K (ma(B),2) ~ [[ CP* we have Hop41(B;Zn) = Hapy1(B;Z) = 0 for all k.

Consider the Leray—Serre spectral sequence for the fibration B — B — Bm. On the 4-line the only
nontrivial terms are Ho(m; Hy(B;Z)Y) 2 ZY Qypr Hy(B;Zw) and Hy(Bmw; Hy(B;Z)™) = Hy(m; ZY).
The codomains of all differentials going out of Hy(m; Z") are trivial, while the only possibly nontrivial
differential into Z% @z, Hy(B;Zr) is ds: Hs(m; 2") = L% Qzx Hy(B;Z7).
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Hence H,(B;ZY) fits into an extension
0— Z% ®@zr Hy(B;Zm)/Imds — Hy(B;Z") — Hy(m; Z*) — 0
and the lemma follows. ]
8.2. Property 4HL for groups.

Definition 8.7. Let 7 be a finitely presented group and let w: m — Cs be a homomorphism.
We say that (m,w) has Property 4HL if the pair (P2(M),w) has Property 4HL, for every closed
4-manifold M with fundamental group 7 and orientation character w.

Lemma 8.8. Let 7 be a finite group and let w: m — Cy be a homomorphism. Then (7, w) has
Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group 7 and orientation character w. Let
B := Py(M). Let x € Hy(B;Z") be such that (o, 3N x) = 0 for all o, 8 € H*(B,Zx). We will
show that x lies in the image of the map ¢p: ZY Qyz, Hy(B;Zxr) — Hy(B;ZY). We will use the
commutative diagram

7Y ®zn Hy(B; Zr) —22— Hy(B;Z")

J{BHQ(B;ZW)OT l@B

Her" (Hy(B; Zn)t) <= Her”(H2(B;Zx)),

analogous to (2.7). Recall that we know ev* is injective by Corollary 5.2. Since 7 is finite, there
exists k € N such that kz = pp(y) — see for example [KT21, (3.3)]. By Proposition 6.15, y is in
the torsion subgroup of Z¥ ®gz, H4(B;Z) since its image in Her" (H?(B;Zn)) is zero and ev* is
injective. As a result, kz, and therefore also x, is in the torsion subgroup of Hy(B;Z"). Teichner
[Tei92] showed that the torsion subgroup of Hy(B;Z™) lies in the image of ¢ for every finite group
(see also [KT21, Proof of Theorem 3.4]). This completes the proof of the lemma. O

Lemma 8.9. Let m =7 and let w: m — Cy be a homomorphism. Then (w,w) has Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group m = Z and orientation character
w. Let B := Po(M). By Lemma 3.6, we know that mo(M) = m(B) is stably free and therefore
projective. So we can apply Lemma 8.6 to yield the exact sequence

Hs(m; Z%) — Z¥ ®pyr Hy(B; Zr) 225 Hy(B;Z") — Hy(m; Z) — 0.

Since 7 is geometrically 1-dimensional, it follows that the map g is an isomorphism. This implies
that (7, w) has Property 4HL. O

8.3. Property 4HL for P D3-groups.

Lemma 8.10. Let m be a PD3-group and let w: m — Co be a homomorphism. Then (7, w) has
Property 4HL.

Proof. Let X be an aspherical PDs-complex with fundamental group m, orientation character
v': m — Cy, and a single top cell. Then K := X®) has Hy(K;Zr) = Zr and H?(K;Zr) = ItV .
Let v := wv'. By [KPT21, Lemma 7.12], there is a 4-manifold N with fundamental group ,
orientation character w, second homotopy group m3(N) = I7¥ @ Zx, and, under the decomposition

Her® (I7% @ Zr) = Her” (I7°) @ Her" (Zn) ® Homg, (I7", Zx") = Her" (I'7) ® Her” (Zn) & Zn,
where the second isomorphism uses [KLPT17, Lemma 7.5], the intersection form Ay maps to
(0, %,1).

By [Kre99] (see also [KPT22, Theorem 1.2, Section 1.5]), and since Hy(mw; Z™) = 0, every other
4-manifold with fundamental group 7 and orientation character w is homeomorphic to N modulo

connected sum with copies of CP?, @2, and *CP?. Using Lemma 8.3, it suffices to show that (B,w)
has Property 4HL for B := P,(N).

The Leray—Serre spectral sequence for the fibration B— B— Br yields the short exact sequence

0 — Z" @z Hy(B;Z) — Hy(B;Z") % 7 — 0.
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Let y € Hy(B;Z") be a class such that for all o, 8 € H?(B;Zn) we have (o, 3 Ny) = 0, i.e.
y € ker©p. Since 7 is a PDs-group we have that Hy(m;Z") = 0 so there is no corresponding
condition on y. Let k := g(y) be the image of y in Z. We then have to show that k is zero, so that
y lies in the image of Z" @z, Hy(B;Z). It will follow that (7, w) has Property 4HL.

By comparing the above Leray—Serre spectral sequence for B — B — Br with the corresponding
Leray—Serre spectral sequence for N - N — B, via a 3-connected map f: N — B, we obtain a
commutative diagram with exact rows:

o

0 —— Hy(N;Z%) —= Z —— 0

| - F

0 —— Z* @pr Hy(B; Z) —— Hy(B;Z") —— Z — 0.

Therefore, f.[N] € Hy(B;Z") maps to £1 € Z. Thus kf.[N] Fy is in the image of Hy(B;Zw). We
have the commutative diagram

Z¥ ®zr Hy(B; Zr) —22— Hy(B;Z")

J/BHz(B;Zw)OY J/@B

Her" (Ho(B; Zn)t) —<“ Her”(H2(B;Zn)),

again following (2.7). Since y € ker © g we have that O (kf.[N] £y) = kfiln. Let A := fuln.

Then we have that kX lies in the image of ©p o pg. By the diagram, kX lies in the image of

ev* o By, gz © Y. Since T is an isomorphism this implies kA lies in the image of ev* o By, (7
Under the decomposition

Her" (I7° @ Zn) = Her” (I7°) @ Her" (Zn) ® Homg, (I7", Zn') = Her" (I7") @ Her" (Zm) @ Zr,

where the second isomorphism uses [KLPT17, Lemma 7.5], the element kA maps to (0, , k) using
the description of A at the start of the proof. By Lemma 6.10, the component of the image of
kX in Homgz,(I7¥,Zx") = Zx lies in the image of 7% ®z, Zn — Homgz, (I7?,ZxT). Under the
isomorphisms I7° ®z, Zm = ItV and Homg, (I7?, Zn') = Zr, this map corresponds to the inclusion
I7? — Zm. In particular, k lies in the image only for £ = 0. Since above we had that kf.[N] Fy
lies in the image of ¢, and we now know that k = 0, we deduce that y lies in the image of ¢p.
Hence (7, w) has Property 4HL. |

8.4. Property 4HL for Z x 7Z/2. In this subsection let 7 = Z x Z/2 = (t,T | [T, t], T?) and let
v': Zm — C3 be given by v'(t) = 1 and ¢'(T") = —1. Let w: m — C3 be such that w(T) = 1. We
will show in Lemma 8.13 that (7, w) has Property 4HL, but we will need a couple of preliminary
lemmas. Let v = wv’. We will need to consider both the untwisted augmentation ideal I7, as well
as the twisted augmentation ideals I7%, val, and I7°.

Lemma 8.11. Let M be a closed 4-manifold with fundamental group m and orientation character
w such that w(T) = 1. Let B be a connected, 3-coconnected CW complex, and let f: M — B be
3-connected. Then there is an exact sequence

7" @pp Hy(B;Z) — Hy(B; Z") — 7)2 — 0,
and the image of f.[M] in Z/2 is nontrivial.
Proof. If mo(M) = m9(B) is stably free as a Zm-module, then there is an exact sequence
Z¥ Qzx Hy(B;Zm) — Hy(B";Z) — Hy(m;Z%) — 0

by Lemma 8.6. By Lemma 3.9, w2 (M) is stably free if and only if the image of [M] in Hy(m; Z") =
Z/2 is nontrivial. This completes the proof of the lemma in this case.

If mo(M) is not stably free, then it is stably isomorphic to I7 @ I7¥ by Lemma 3.9, where
v = wv’. We now prove the lemma in this case. Let M denote the universal cover of M. Note
that Hy(M;Z%) & HY(M;Z) = HY(m;Z) = 7 and H3(M;Z) & H3(M;Zr) & HY(M;Zrv) =
H(m; Zr") = Z%, where the last isomorphism follows from the fact that 7 has two ends [Geo08,
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Theorem 13.5.5]. Consider the spectral sequence with E? term H,(m; Hq(]\Af; Z)*) converging to
Hyio(M;Z"¥). On the 3-line of the E? page we have

Zw ®Zﬂ flg(ﬂ7 Z) =~ Zw ®Zﬂ— Zw =~ Z,
Hy(m; I @ I7") = Hy (7 In%) @ Hy(m; In) & Hy(m; Z%) @ Ho(m; Z2Y) = 2/2 ® 7)2;
H3(m; ZV) 2 Z/2.
On the E* page, these terms will produce the associated graded group for the cyclic group
Hs(M;Z™). Since only cyclic groups can arise in such an associated graded group, it follows that
the ds-differential Z/2 = Hy(m; Z®) — Hy(m; I7* @ I7?") is nontrivial and thus injective.
On the 4-line of the E? page we have
Hy(m; H3(M; Z)") = Hy(m; Z) 2 Z.& 7./2;
Hy(m; In® & In”) & Hy(m; Z%) & Hs(m; Z¥) 2 7/2 ® 7/2;
Hy(mZ"Y) =2 7)2.
We already saw that the ds map out of Hy(m; Z™) is injective, so that term does not survive to the
E> page. The do-differential Ho(m; I7% @ I7¥") 2 7./2 & Z./2 — Ho(m; H3(M; Z)") & Z is trivial,
so Hy(m; IT™ @ ITFU/) survives to the E® page. Since Hy(M;Z") is again cyclic, the ds-differential
Hy(m; 7)) = Z,)2 — Hy(m; In® @ In¥) = Z/2 & Z,/2 is nontrivial and therefore injective. Hence
from the E° page we obtain an extension Z — Hy(M;Z*) — Hy(m; I7* @ I7¥")/Imdy = 7,/2 — 0.
Now we consider the analogous spectral sequence with E? term H,(m; H (B Z)") converging to
H,,(B;Z"), where B is the universal cover of B. In this case the do-differential Hy(m; In*@In"") =
Z]2®7Z/2 — Hy(m; H3(B;Z)") = 0 is necessarily trivial. Since f: M — B is 3-connected, the

same dg-differentials as above are nontrivial, and we have the following commutative diagram with
exact rows.

7 —————— Hy(M;Z") —— 72 — 0
2 I
2 @gp Hy(B;Z) —— Hy(B;Z%) — 72 — 0

Since [M] is a generator of Hy(M;Z™) it follows that the image of f.[M] is nontrivial in Hy(m; I7* @
In*")/Imdy = 7Z/2 as claimed. O

Lemma 8.12. The map e: It — It'T sending x — (f — f(x)) is an isomorphism.

Proof. The statement of the lemma is independent of w, but w appears indirectly in the proof, in
the involution used to consider I7 as a left module. For simplicity, we assume that w is trivial.

By [KPT21, Lemma 7.14], the map 6: Iz’ = Int sending
1—t — 1-—1¢ 1-¢t — 14T
1—t»—>{1_T N 1_T}and1+Tn—>{1_T 0 }
is an isomorphism. Similarly one sees that the map 6': It i)
1—t —» 1-—t t —» 1-T
1_tH{1+T . 1+T}and1 {1+T -0 }

is an isomorphism. By a straightforward computation,

)T sending

0 =0T oe: Im — (In")l.
It follows that e is an isomorphism as claimed. O

Now we are ready to show that the group Z x Z/2 has Property 4HL with respect to a certain
map Z x Z/2 — Cs.

Lemma 8.13. Let w: ZXZ/2 — Cy be such that w(T) = 1. The pair (ZXZ/2,w) has Property 4HL.
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Proof. Let m := Z x Z/2. Since w(T) = 1, the orientation character is determined by w(t) =
+1 € Cy. For both w(t) = +1, we have that Hy(m;Z*) = Z/2 and thus by [Kre99] (see also

[KPT22, Theorem 1.2, Section 1.5]) up to connected sum with (CIP’z,@2 and xCP? there are only
two homeomorphism classes with fundamental group 7 and orientation character w. By Lemma 8.3,
it suffices to consider one manifold from both classes.

First we consider the case of w trivial. The nontrivial class in Hy(7;Z) = Z/2 is represented by
M = S' xRP?, and the trivial class by a 4-manifold N obtained as the boundary of a 5-dimensional
thickening of the 2-skeleton of Brr.

Consider the nontrivial class in Hy(7; Z) and B := Py(M), where M = S* xRP?. Since m3(B) = 0
and so is certainly projective, by Lemma 8.6 there is an exact sequence

7 ®zn Hy(B; Z) 22 Hy(B;Z) — Hy(m; Z) — 0.

In particular, every class in the kernel of Hy(B;Z) — Hy(m;Z) belongs to the image of Z% ®z,
H,(B;Z) and thus (B, w) has Property 4HL.

Now we consider the trivial class in Hy(m;Z). By [KPT21, Lemma 7.12], the manifold N has
71(N) 2 7, the second homotopy group mo(N) = I7 @ Inf, and hyperbolic intersection form. Let
P := P5(N). We need to show that (P,w) has Property 4HL.

Let f: N — P be 3-connected. By Lemma 8.11, there is an exact sequence

Z @z Hy(P;Z) 225 Hy(PyZ) — Z/2 — 0 (8.14)

and the image of f.[N] in Z/2 is nontrivial. Let y € H4(P;Z) be a class such that («,5Ny) =0
for all a, B € H?(P;Zx), i.e. y € ker ©p. It follows from the spectral sequence computation in the
proof of Lemma 8.11 that the map Hy(P;Z) — Hy(m;Z) is the trivial map, so we must consider all
y € ker ©p. By exactness of (8.14), we have to show that the image of y in Z/2 is trivial. Assume
for a contradiction that y maps nontrivially to Z/2. Then f.[N] —y maps to 0 € Z/2 and hence
lies in the image of pp: Z Rz, H4(ﬁ; Z) — H4(P;Z). We have the commutative diagram

Z @z Hy(P; Zr) —22— Hy(P;7)

J/BHg(P:Zw)OT J{@p

Her(H,(P; Zm)t) —=— Her(H2(P;Zn)).

We have that Op(f«[N] — y) = fudn. Let A := fudny. Then Op(f.[N] —y) = A, and so we
deduce that A lies in the image of ©p o ¢p. By the diagram, it follows that A lies in the image
of evfo B Ha(Pyzr) © T, or equivalently, since T is an isomorphism, that A lies in the image of
ev*o BHQ(P;ZTI’)'

Since P = P»(N), we have that H?(P;Zr) = H?(N;Zn) = Ho(N;Zr) = It @ I7'. Under the
decomposition Her(I7m @ I7!) = Her(I7) @ Her(In') © Homg, (I, I7'T), the element A maps to
(0,0,¢), where e: Im — In'f is as in Lemma 8.12, since A is hyperbolic.

We will obtain a contradiction by showing that A is not in the image of ev* o By, (p;zx). The
desired contradiction will prove that the image of y in Z/2 is trivial after all, and hence by exactness
of (8.14) that y lies in the image of ¢p.

We examine the pre-image of A under ev*. Note that (I7 @ I7h)f = I7T @ I7t. The bottom left
group of Hermitian forms Her(Ho(P;Zx)") has a similar decomposition as in Remark 6.9, with

Her(I7TJr &) ITFH) ~ Her(Iﬂ'T) &) Her(IﬂH) @ HomZﬂ(IﬂTT, ITFH).

The map ev: H?(P;Zn) — Hy(P;Zr)" translates to a map ev: It @ Irl — Izt @ Iz'T given
by (z,9) — (g,e(x)). The coordinates are switched because we used Poincaré duality in the
identification H?(P;Zx) = It @ In'. A straightforward check shows that e lies in the image of ev*,
and that ev*(Id;,+i) = e. That is, one has to check that, (0,0,1d;,+) induces, under the map ev,
the form corresponding to (0,0,e). Moreover ev* is injective by Proposition 5.9, so (0,0,Id )
represents the unique pre-image of A in Her(H(P;Zx)"). So we have to show that (0,0,Id ) is
not in the image of By, (p,zr)-

Now we consider the map By, (p,zx). The compatibility of the decomposition in Lemma 6.8 and
the decomposition from Remark 6.9 with respect to By, (p,zx), as in Lemma 6.10, means it suffices
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to show that Id; ++ does not lie in the image of the map
In @y, Int — HomZW(Iﬂ'H, IWTT)

from Lemma 6.10.
The map e: Im — Ix! is an isomorphism by Lemma 8.12. Using this we have an isomorphism
Homg, (I7't, I71T) 2 Homgz, (I, IT) sending Id .+ to Id;,, and a commutative diagram

Im @y, It le> 7 Qpn Int

| r

T
Homz, (Ix!t, Intt) —“— Homg, (I, ZatT)

E E

Homgy, (I, IT) e Homgy, (I, Zr).

The top vertical maps are those induced by Br,qr.t and Bg,qr.t, described in Lemma 6.10. The
lower vertical maps are induced by e. The horizontal maps are induced by the inclusion j: It — Zr.
We want to see that Id;; is not in the image of the left vertical composition. Under the lower
horizontal map, Id;, maps to the inclusion j: Im — Zm, which lifts to 1®j in the top right Zn @z, I 7.
Thus if we show that 1 ® j is not in the image of the top horizontal map It ®gz, Il — Zn @7, Int,
it follows from the diagram that Id;, is not in the image of the left vertical composition, and hence
that Id;,++ is not in the image of the top left vertical map, as desired.

Recall that v': 71 — Cy is given by ¢'(t) = 1 and v'(T) = —1. Using the group presentation
72 (t,T | [t,T],T?), there is an isomorphism 6~ ': I7T — I7%" sending j to (1 — t); see the proof
of Lemma 8.12. The composition

Ir @z Int 22 Zr @z, It 220 Z 0, I
is the zero homomorphism, where ¢: Zr — Z is the augmentation, and (@6~ 1)(1®j) = 1®(1—1).
Thus if 1 ® j is in the image of j ® Id, it follows that 1® (1 —t) = 0 € Z ®z, I7¥". It therefore
suffices to show that 1 ® (1 — t) is nontrivial. For this we consider the exact sequence

0 — Tor’™(Z,Z"") = 7 Qpx In” — L Qur Lt — L Qg Z¥ — 0.
This can be identified with the exact sequence
O—>Z/2—>Z®Zﬂl7r”/ —Z—7/2—0

where 1® (1 —¢) mapsto0 € Zand 1® (14+T) maps to 2 € Z. Since 1 ® (1 —t) and 1® (1+1T)
generate Z @z, I, it follows that 1 € Z/2 maps to 1® (1 —t). In particular, the latter is nontrivial
as needed.

Recapping, this means that 1 ® j is not in the image of j ® Id, which implies that Id;+; is not
in the image of the restriction of By, (p,zx) to the map IT ®z, I7t — Homg, (I='t, I7ft) that is
the top left vertical map of the previous diagram. This in turn implies that A = f, Ay is not in the
image of ev* oBp,(p,zx), which as explained above leads to the desired contradiction. So y maps to
0 € Z/2, and therefore y lies in the image of ¢p, as required. Thus (7, w) has Property 4HL when
w is trivial.

The case where w(t) = —1 is similar. Here one has to consider the mapping torus M’ of the
orientation reversing involution on RP? in place of S! x RP?, representing the nontrivial element of
Hy(m;Z") = 7/2. Since mo(M') = 0, letting B’ := Po(M’), we again have an exact sequence

7 ®zx Hy(B'; Z) 225 Hy (B, ZY) — Hy(m; Z) — 0

by Lemma 8.6. Again, this implies that every element in the kernel of Hy(B';Z") — Hy(m; Z™)
lies in the image of ¢p/.

For 0 € Hy(m; Z") there is a 4-manifold N’ with 7o (N') & I @ Ix*"" = It & Irt and hyperbolic
intersection form. Here we use that the involution of Zz in this case is given by g — w(g)g~!
so that as a left module I7! is isomorphic to I7%?". Let P’ := Py(N’). We just observed that
Hy(P';Z) is isomorphic to Ha(P;Zw). We also have the exact sequence from Lemma 8.11 for
w(t) = —1. The analysis above applies unchanged, to show that for y € ker ©ps we have that
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y— 0 € Z/2, and hence y € Impp/. This shows that (7, w) has Property 4HL for w(T) =1 and
w(t) = —1. O

8.5. Property 4HL for 3-manifold groups that are nontrivial free products. In this section
we establish Property 4HL for all admissible (7, w), deducing it for 3-manifold groups that are
nontrivial free products of factors for which we already proved Property 4HL in Sections 8.2 to 8.4.

We work initially with an arbitrary finitely presented group m, a subgroup G < 7, and a character
w: ™ — Cs. Only at the end of the section, in Proposition 8.22, do we restrict to admissible
3-manifold groups and orientation characters. For G < m, we also prove results for an arbitrary left
ZG-module A. Recall that 35 denotes the symmetric group on two elements.

Definition 8.15. Let G < 7 be a subgroup. Let w: m — C5 be a homomorphism and define the
composition w: G — 7 2 5. For every ZG-module A we define

Y: IndfL(A®z A) — (Indf A) @z, (IndZ A)
TR (a®d)— (y®a)® (y®ad)
and
€: Sesq”(A) — Sesq" (Indf, A)
A= (v®a,y ®@d) = yA(a,a')y).

In the case that A is free as an abelian group, recall that I'(A4) is isomorphic to the group of fixed
points of A®yz A under the Ys-action permuting the two copies of A. Therefore, taking fixed points,
we obtain

Y¥2: IndE T(A) — D(Indf A) and
£%2: Her"(A) — Her” (Indf A).

Recall that for G < 7, and a ZG-module A, we denote the module Homzg (A, ZG) by A*.
Lemma 8.16. Let G < 7 be a subgroup, let A be a ZG-module, and let w: m — Cy be a
homomorphism. Define the composition W: G < m 3 Cy. Then we have the commutative diagram

nd%(A ®z A) — Ind% A @z, Ind A
5. [Busg (8.17)
Sesq” (A*) -t Sesq” ((Ind, A)1),
where
(1) Ba(y® (a®d)) = ((f,f) = w(v)f(a)f(a")), and
(2) Buaz, a((y®a) @ (v ® d')) = ((h, 1) = h(y @ a)W' (' @ '),
and the maps ¥ and & are from Definition 8.15.

Here we used the isomorphism Sesq™ ((IndZ A)") = Sesq™ (Ind(A*)) induced by the isomorphism
from Lemma 4.8, in order to use the map &.

Proof. We have
Buag, () (¥(y ® (a®@ a'))) = (b, 1) = h(y @ )l (y @ a')).

Applying the isomorphism from Lemma 4.8, we obtain the element of Sesq" (Ind(A4*)) given by
(6 £,0 @ f) = (1f(@)d)(1f/(@)) = w(v)5f (@) f'(a')7.

On the other hand, we also see

EBa(y® (a@a))) = E((h. ') = wnh(a)h' (@) = (6@ f.6' © ') = w(7)6f (@) f' (')

as well. Hence the diagram commutes as claimed. O

Lemma 8.18. Let G < 7 be a subgroup, let A be a ZG-module, and let w: m — Cy be a
homomorphism. Define the composition W: G — 1 =+ Cy. Consider the diagram (8.17). Let x €
Indg;(A) ®zIndg (A) such that Binay,(a)(x) ds in the image of §. Then there exists b € Indg;(A®z A)

such that © — 1(b) is in the kernel of gIndg(A)-
Furthermore, if x is a Yo-fixed point, then b can be chosen to be a Yo-fixed point.
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Proof. Let x = """ 1(9; ® a;) ® (g} ® a;). Using the isomorphism
Sesq®((Indf, A)T) 22 Sesq™ (IndZ, (A*))
coming from Lemma 4.8, we have that
Bunaz, (A)(@) = (Y& £,7' @ f') = > 1 f(ma)gigif (m})¥).
i=1

Since glndg(A) (x) is in the image of &, there exists a A € Sesq” (A4*) such that for all f, f' € A* we

have
n
Z 0)9:9, " (m).

Up to reordering, we can assume that there exists an m such that g; ! g; € Gfori <mandg; ! g ¢ G
for i > m. Note that f(m;)g;g.f'(m}) € Z[G] if and only if g; 'g/ € G. Since \(f, f') € Z[G], it
follows that

I

i=1

and that Y1 (9 ® a;) ® (g; ® af) is in the kernel of gIndg(A)-
By assumption, for each ¢ < m there exists h; € G such that g, = g;h~ . Then (gi@m;) ® (g ®
m}) = (¢; ® a;) ® (g; ® ha};) and hence

m

> (9 ® ai) @ (g) @ af) Zgz ® (a; ® hag)).
i=1
Thus setting b := ), g; ® (a; ® haj) we have that x — 1 (b) is in the kernel of gIndg(A) as required.

Since g; 'g; € G if and only if (¢})'g; € G, the element b defined above is a Yo-fixed point if x
is a Yo-fixed point. O

Now we consider the case that m = *I'_, G;, where the groups G;, for ¢ = 1,...,n are finitely
presented, and for each i we consider left ZG;-modules A;. Let A : @Indci (A;) and let

7
st Indg, (A;) — A denote the canonical inclusion map for each i. Let w: 7 — C be a homomor-
phism, and for each i, consider the composition w;: G; < 7 — C.

Lemma 8.19. Let x € Z* 7, T'(A). The diagram

D2 ©z, Indy, T(A;) LN B 2" @z, T(Indf, Ai)) —— Z" ©z, T(A)

i %
J{@iBAi J{@iBInd” A JB*“
Gy
o

Her™i (A* L Her” ((Ind%. A;)f — =, Her®(Af
i G

commutes, where s and s' are the maps induced by (I'(s;)); and (s;r)l respectively, and each 1;
and &; comes from Definition 8.15. We denote the top composition by ¥>? := s o (@ﬂ/}iz"’) and the
bottom composition by =2 := st o (6]925?2) If Ba(x) lies in the image of %2, then there exists
be PZY @z Indf, T(A;) such that x — ¥>2(b) € ker Ba.

K3

Proof. For every Zm-module U, the map By is obtained from By by taking 3,-fixed points and
noticing that the result factors through Z* ®z, I'(U). The left hand square thus commutes by
Lemma 8.16. The right hand square commutes by naturality of 5.

Now assume that B (z) lies in the image of 272, Let y € @ Her™ (A¥) be a preimage. Then

sH(@:672(y)) = Ba(z). By Lemma 6.10, there exists 2/ € @ Z @z, I'(Indg, A;) with

@iBIndgi Alr!) = @2 (y)
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such that r—s(z') € ker Ba C Z¥®z,'(A). By Lemma 8.18, there exists b € P Z" @z, Indg, (T'(4;))
such that o’ — @, ;2 (b) € ker (®; Brnaz, ). Then
Ba(a — U (b)) = Balx — s(a’) + s(2’ — @7 (b))
= 0+ 5" (@iBrag, () (@’ — 72 (1))
=0.
So x — U*2(b) lies in the kernel of B4 as needed. O

Lemma 8.20. Fori = 1,...,n, let B; be a connected, 3-coconnected CW complex. Let B :=
Py (\, B;). Let fi: B; — B be the composition B; — V,Bi = B. Let m := m(B) and G, := m1(B;)
for each i. Then the square

35 i
Indf, T(Ha(Bi; ZGy)) ——s T(Indfy, Hy(Bi, ZGy)) —225 T(Hy(B: Zm))

! _ !

Ind,, Hy(Bj; ZG;) ) H,(B; Zr)

commutes, where 1/)1-22 is as in Definition 8.15.

Proof. By naturality of Whitehead’s exact sequence [Whi50], the square

P(H (B 7)) "% 1 (Hy(B: 7))

E ) ~

Hy(Bi;Z) —— Hy(B;7)

commutes. We use the isomorphisms H,(B;;Z) = H,(B;; ZG;) and H, (B;Z) = H,(B;Zr). Under
these, fi: Ho(B;;Z) — Ha(B;Z) agrees with the composition

where we omit Resg,, from the notation for readability. Also inverting the vertical isomorphisms,
we obtain the commutative diagram

T(Hy(Bi: ZG1))) — % D(Indf, Hy(Bi, ZGi)) —5 T(Hy(B; Zr))

} _ I

Hu(Bi; ZGy) fuou Ha(B; Zn)

By naturality, the diagram is G;-equivariant, and thus induces the diagram from the statement by
applying Indg,, and also noticing that by doing so I'(u) agrees with 1/11-22. |

Lemma 8.21. Fori =1,...,n, let B; be a connected, 3-coconnected CW complex. Let B :=
Py(\, B;). Let f': B; — B be the composition B; — \/, B; — B. Let m := m(B) and G; := m(B;)
for each i. For each i, let W; denote the composition G; — 1 — Cy. Then the diagram

fi

H,(B;; Z™) Hy(B;Z")

J/eBi J/@B
2

i

Her™ (H2(Bi; ZG)) —— Her" (Ind%, H?(By; ZGy)) —— Her" (H2(B; Zr))

commutes, where 5?2 is as in Definition 8.15.
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Proof. We can extend the diagram as follows.

Hy(B;; Z*%) Hy(B;ZY)

l@)Bi w> (=, —Nz) J/@B

2 fi
¥

Her™ (H2(By; ZGy)) —— Her" (Indfy, H?(By; ZGy)) — Her (H?(B; Z))

The right hand square then commutes by naturality of the Kronecker product since ©g(fi(r)) =
(—,— N fi(x)). To see that the left hand triangle commutes, note that for all = € Hy(B;; Z" ),
a, 3 € H*(B;; ZG;) and g,g' € m we have

(g@a, (¢ @B)Nz) =g, fNa)g =E7(Op,(2)(g@ a9 @ ). O

Proposition 8.22. Let m be a 3-manifold group and let w: m — Cy be a homomorphism such that
(m,w) is admissible. Then (w,w) has Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group 7 and orientation character w. We
have to show that (P» (M), w) has Property 4HL. By Lemma 8.3, it suffices to show this for some
stabilisation of M. By Lemma 3.13, we can thus assume that M = #;M;, where each M; is a
closed 4-manifold with fundamental group w1 (M;) =: G; either cyclic, isomorphic to Z x Z/2, or
a PDs-group. Let B; := P»(M;) and let B := P,(M) ~ P5(\/; B;). For each i, denote by w; the
composition G; < 7 — Cs.

Consider the following diagram with exact rows. The top left and the second-from-bottom left
square are given in Lemmas 8.20 and 8.21, respectively. The maps ¢p,, ¢¥B, Op,, and Op are as in
(2.7). The map =2 is the map induced by (f o £77);, where the terms come from Lemma 8.21.

The second and third rows are part of the long exact sequences for the pair (B,\/, B;). The diagram
commutes by naturality of ¢, £¥2 and O, together with Lemmas 8.20 and 8.21.

Z® @gr @ Indf, T(Ha(Byi; 2G:)) L5 7% @gy T(Hy(B; Zir)) —— coker(WS2)
[

EBiT;ll& T J

2" ®zr Hy(\,; Bi; Zr) ————— 7" Rz, Hy(B;Zn) — 7 @z, Hy(B,\

J/VMPBi ¥B l%

Hy(V; Bi; 2*) = Hy(B;2") ——————— Hu(B,V,; B;;Z")

J/\/i@Bi Op J/

P Her™ (H?(B;; Z.G)) == Her" (H?(B; Zx)) —— coker(2%2)

i
&) eV*T% ev® |

=32

@ Her" (Hy(By; ZG;)*) ————— Her" (Hy(B; Zr)t) ————— coker(2>2)

By Zm)

K2

[y

IR

The vertical map second from the top on the right is an isomorphism by the relative Leray—Serre
spectral sequence [Swi02, Theorem 15.27, Remark 2, p. 351] since H;(B,\/, B;;Zn) = 0 for j < 4.
The maps denoted by ev* are isomorphisms by Proposition 5.9 since 7 is a 3-manifold group. Note
that the composition of the five maps in the middle column is the map By, (B;zr)-

Note that

Hy(\/ Bi; Zr) = @) Hs(Bi; Zm) = @) Indg, Ha(Bi; ZG:),

and 0 = m3(B;) — Hs(B;; ZG;) is surjective for each ¢ by the Hurewicz theorem. Therefore
Hg(\/i B;; Zw) = 0 and the map Z" ®z, Hy(B;Zn) — Z" &z, Hy(B,\/, B;; ZG;) on the second
row is surjective.

Let o € ker(Hy(B;Z") — Hy(m;Z%)) be such that (o, 3N x) =0 for all a, B € H?(B;Zm). We
will show that z admits a lift to Z* ®z, Hs(B;Zn). This will complete the proof that (B, w) has
Property 4HL.
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Let T be the image of x in Hy(B,\/, B;;Z") and let Z be the preimage of T in Z" ®zx
Hy(B,V, B;; Zr) under the isomorphism Z" ®z. Ha(B,\/,; B;; Zr) = Hy(B, V,Bi; Z"). Let
z € 2" Qyr Hy(B;Zw) be a preimage of Z and let y € Z" @y, I'(Ha(B;Z7)) be a preimage under
the top middle isomorphism. Let u denote the image of y in Her" (H?(B;Z)). By the definition
of the map ©p, the element x maps trivially to Her" (H?(B;Zx)). Therefore, z maps to zero in
coker(éEQ), which implies that u lies in the image of the map £>2. Consider the image v of y in
Her" (Ho(B; Zm)") under the map B Ha(B;zr)- Using the vertical isomorphisms between the two
bottom rows of the diagram, we see that v lies in the image of =2, since u lies in the image of =%,

By Lemma 8.19, there exists b € Z* ®zx @, ['(Hs(B;Zn)) such that y — U2 (b) € Z* @z
['(Hy(B;Z)) maps trivially to Her” (Hy(B;Zx)"). In other words y — U*2 (g) is in the kernel of
B, (Byzr)- We know from Corollary 7.10 that in our setting the kernel of By, (p,zr) equals the

kernel of . Therefore, the element 3y — W*2(b) also maps trivially to Hy(B;Z"). Mapping further
to Hy(B,\/,; Bi; Z"), it follows that Z = 0. This implies that T is zero, so x lies in the image of
Hy(\,; Bi;Z"). Let & € Ha(\/,; B;; Z") be a preimage of z.

We know that each individual (B;, w|, (p,) has Property 4HL by Lemmas 8.8 to 8.10 and 8.13.
Therefore by Lemma 8.5, (\/; B;, w) has Property 4HL as well. We will apply this momentarily.
First we check that Z satisfies the desired conditions. We note that Z lies in ker(H4(\/,; B; Z") —
Hy(m;Z")), since the map \/, B — B factors through B and since x maps to 0 in Hy(m; Z").
Moreover, for any «, 8 € H?(\/, B;; Z), we have

(o, BNT) = (e, BN () = (@, 1 (7 (B) N)) = (@), 0" (B) Nw) =0,

where the final equality follows by our assumption on . Now we can apply the fact that (\/, B, w)
has Property 4HL to conclude that 3 admits a lift £ in Z% Qg H4(\/,; Bs; Zr). The image of s in
Z¥ ®yn Hy(B;Zm) is the required lift of x. It follows that (B, w) has Property 4HL as needed. O

9. PROOF OF THEOREM 1.4

With all our preliminary results in hand, we are finally able to prove the main theorem. We
recall the statement for the convenience of the reader.

Theorem 1.4. Let M and M’ be closed 4-manifolds with fundamental group © and orientation
character w, such that 7 is a 3-manifold group and (m,w) is admissible.

Then every isomorphism Q(M) — Q(M') between the quadratic 2-types of M and M’ is realised
by a homotopy equivalence. In particular, M and M’ are homotopy equivalent if and only if they
have isomorphic quadratic 2-types. Here, homotopy equivalences are assume to be basepoint and
local orientation preserving.

Proof. We will apply Corollary 2.8. Assume that M and M’ have isomorphic quadratic 2-types.
By definition this means that for B the Postnikov 2-type of M (and equivalently of M’), we have
3-connected maps f: M — B and f': M’ — B inducing a given identification of the quadratic
2-type. Let 7 := m1(B). By Proposition 4.10, m3(M) and ma(M’) are free as abelian groups, so
Theorem 2.4 (1) holds. Theorem 2.4 (3) holds by Corollary 7.10. Also by Proposition 5.9, ev* is
injective (and in fact an isomorphism), so Theorem 2.4 (4) holds.

Next we show that M and M’ satisfy Theorem 2.4 (2), for k = 1. Consider the element

= fo[M] — (f).[M'] € Hy(B; ZY).

By Corollary 3.23, which applies since M and M’ have isomorphic quadratic 2-types, £ maps to the
trivial element in Hy(7w; Z"). Moreover, since M and M’ have isomorphic equivariant intersection
forms, we also know that (a, 3N x) = 0 for every a, 3 € H*(B;Zr). By Proposition 8.22,  has
Property 4HL. Then by Property 4HL, we conclude that x € Hy(B;Z™) is contained in the image
of Z¥ ®y, Hy(B;Zw). Therefore the given M and M’ satisfy Theorem 2.4 (2), for k = 1.

Since all the requirements of Theorem 2.4 are satisfied, we see by Corollary 2.8 that M and M’ are
homotopy equivalent, via a homotopy equivalence inducing the desired maps (f'); 1o fi: w1 (M) —
(M) and (f');to fu: mo(M) — mo(M). O
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10. APPLICATIONS TO GEOMETRICALLY 2-DIMENSIONAL AND FINITE GROUPS

In this section we reprove a couple of results of Hambleton, Kreck, and Teichner, in order to
demonstrate the wide applicability of our methods. That is, as well as dealing with new fundamental
groups, our methods recover previously known results.

10.1. Geometrically 2-dimensional groups. In [HKT09, Theorem C], Hambleton, Kreck, and
Teichner showed that closed, oriented 4-manifolds with geometrically 2-dimensional fundamental
group 7 that satisfies the Farrell-Jones conjecture, are classified up to s-cobordism by their quadratic
2-type together with their Kirby-Siebenmann invariant and their wo-type. It follows that such
4-manifolds are classified up to homotopy equivalence by their quadratic 2-type together with the
wa-type.

The ws-type is determined by the homotopy type but, as we show in the next example, the
wo-type is not determined by the quadratic 2-type. Thus the ws-type has to be included in the
data for a complete homotopy classification, and the analogue of the statement of Theorem 1.4
does not hold for geometrically 2-dimensional groups.

Example 10.1. Let S? — S2xT? — T2 be the unique S?-bundle over T2 that is orientable but
not spin. Then both S? x T2 and S?XxT? have fundamental group Z? and second homotopy group
7 with the trivial action of Z2. The k-invariants are trivial since Z? is geometrically 2-dimensional.
Since the radical of the intersection form is H?(Z?;Z[Z?]) = Z, the intersection forms are also
trivial.

In particular, S? x T2 and S?xT? have quadratic 2-type (Z2,7,0,0), but are not homotopy
equivalent since only one of them is spin.

We discuss the failure of the conditions in Theorem 2.4, which is that (3) does not hold. Thus
these examples are consistent with Theorem 2.4. The 2-type B is CP* x T2, so H,(B;Z[Z?]) =
H.(CP>;Z), with a trivial Z?-action. We therefore see using the Kiinneth theorem that

YB: Z ®Z[ZQ] H4(B,Z[Z2]) =7 — H4(B,Z) = Z2
is injective. On the other hand the map
Buyazze) © Y L Qgze) Ha(B; Z[Z%]) = Z — Her(Hy(B; Z|Z%))') = Her(Z')

is zero, because Z := Homg,z2((%Z, Z[Z?]) = 0 and hence the codomain is trivial. So it is not possible
for the nontrivial kernel of By, p,zz2)) © T to be contained in the trivial kernel of 5.

The reduced Postnikov 2-type P of a manifold M is a 3-coconnected CW complex that is
determined up to homotopy equivalence by the existence of a 2-connected map cp;: M — P
whose kernel on 7y is the radical R of the equivariant intersection form A;. In particular,
mo(P) 2 mo(M)/R. Such a map cpr: M — P is called a reduced 3-equivalence.

Despite Example 10.1, the quadratic 2-type determines the image of the fundamental class in
the homology of the reduced Postnikov 2-type, when the fundamental group is geometrically 2-
dimensional [HKT09, Theorem 5.13]. This theorem is a key step in the proof of [HKT09, Theorem C].
We perceive a problem with the proof of the former theorem, in particular with the diagram at
the start of the proof. The fixed points I'(A)™ can be trivial, and the map I'(A), — T'(A)™ need
not be defined. This map is used in showing that the diagram commutes. We give a new proof of
[HKT09, Theorem 5.13] below, as a corollary of Theorem 2.4.

Corollary 10.2 ([HKT09, Theorem 5.13]). Let m be a geometrically 2-dimensional group and
let M and N be closed 4-manifolds with fundamental group m, orientation character w, and the
same reduced Postnikov 2-type P. Two reduced 3-equivalences cpr: M — P and cy: N — P satisfy
(err)«[M] = (en)«[N] € Hy(P; ZY) if and only if (car)* A = (en)* AN

Proof. If 7 is geometrically 2-dimensional, then H3(m; Zr) = 0. Then ev* is injective by Lemma 5.1,
so Theorem 2.4 (4) holds. Furthermore, mo(M)/R = mo(P) = Hy(P;Zw) is stably free for any
4-manifold with geometrically 2-dimensional fundamental group by [HKT09, Corollary 4.4]. Hence
Hy(P;Zr) is projective as a Zm-module, and is therefore free as an abelian group, so Theorem 2.4 (1)
holds. In addition By, (p,zx) is injective by Proposition 6.1, since Ho(P;Zm) is projective. Hence
Theorem 2.4 (3) holds automatically.
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Since 7 is geometrically 2-dimensional and Hy(P;Z) is projective, pp: Z* Qzx Hy(P;Z1) —
H,(P;Z") is an isomorphism by Lemma 8.6. Hence Theorem 2.4 (2) holds, and in particular for
k = 1. Thus the corollary follows from Corollary 2.8. |

10.2. Finite groups. We end this section by reproving the result, mentioned just below Theorem 2.1,
of Hambleton—Kreck [HK88, Theorem 1.1 (i)] and Teichner [Tei92] (cf. [KT21, Corollary 1.6]). In
contrast with the previous subsection, no negative inference should be drawn about the published
proofs. Rather, the purpose is to demonstrate that our method is consistent with, and an extension
of, the previously known methods.

Corollary 10.3 ([HKS88, Tei92, KT21]). Let w be a finite group. Let M and M’ be closed 4-
manifolds with fundamental group © and orientation character w. Assume that Z% Qg T'(ma(M))
is torsion-free.

Then every isomorphism Q(M) — Q(M') between the quadratic 2-types of M and M’ is realised
by a (basepoint and local orientation preserving) homotopy equivalence.

Proof. Certainly if M and M’ are homotopy equivalent then they have isomorphic quadratic
2-types. For the converse, suppose that M and M’ have isomorphic quadratic 2-types. We will
apply Corollary 2.8. Let B denote the Postnikov 2-type of M (and therefore also of M’). Therefore
there are 3-connected maps f: M — B and f': M' — B.

We need to check that the conditions of Theorem 2.4 are satisfied. Since = is finite, the dual of
the evaluation map ev*: Her(Hy(B;Zm)') — Her(H?(B;Z)) is injective by Corollary 5.2. This
establishes Theorem 2.4 (4). Since M is closed and has finite fundamental group, as an abelian
group Hs(B;Zn) = Hoy(M;Zm) = HQ(M; 7)== Hz(ﬁ; 7Z) where M is the universal cover. This is
free by the universal coefficient theorem, since Hy (M ;Z) = 0. This establishes Theorem 2.4 (1).

Further, there is an exact sequence 0 — Z% Qg Hy(B;Znw) — Hy(B;Z") — Z/|n| by [HKSS,
p- 89]. Teichner [Tei92] (see also [KT21, Theorem 3.4]) showed that when M and M’ have isomorphic
quadratic 2-types, the elements f.[M] and f,[M’'] in Hy(B;Z™) map to the same element in Z/|x|.
Therefore, f,[M] — f.[M’] lies in the image of the map Z" ®z, Hy(B;Zn) — H4(B;Z"), giving
Theorem 2.4 (2) with k£ = 1. Finally since the map Z* ®z, Hy(B;Zn) — H4(B;ZY) is injective, in
order to establish Theorem 2.4 (3) we have to show that the map By, (p,z) is injective. But this
follows from Proposition 6.15 when Z* ®y, I'(H2(B; Zx)) is torsion-free, which holds by hypothesis.
The result now follows from Corollary 2.8. ]

11. A HOMEOMORPHISM CLASSIFICATION FOR ORIENTED 4-MANIFOLDS WITH INFINITE DIHEDRAL
FUNDAMENTAL GROUP

Let Do = {a,b | a® b?) = Z/2 x Z/2 be the infinite dihedral group. In this section we will prove
Theorem 1.10 from the introduction. The following theorem will be a key ingredient.

Theorem 11.1. Let M and M’ be closed, oriented 4-manifolds with fundamental group Do,. Then
M and M’ are homeomorphic over Do, if and only if they are homotopy equivalent and stably
homeomorphic over D.

Here and throughout the section, we assume that all homotopy equivalences, homeomorphisms,
and stable homeomorphisms are basepoint and orientation preserving, as per our conventions.

In Section 11.1 we compute the stable classification using modified surgery. In Section 11.2 we
compute the structure set using the surgery exact sequence. In Section 11.3 we then combine these
two computations to obtain Theorem 11.1 and hence Theorem 1.10. Finally in Section 11.4 we
show that in some situations one need not compute the k-invariant, and instead computing the
wa-type suffices.

11.1. The stable homeomorphism classification. By modified surgery [Kre99], the stable
classification is determined by the bordism group of the normal 1-type of the manifold. For M
oriented this only depends on (M) and the second Stiefel-Whitney class wq(M). More precisely,
it is given by 71 (M) and the wo-type. By definition, the wy-type is co if the universal cover M is not
spin and otherwise the ws-type is given by an element 6 € H?(w1(M);Z/2) such that ¢*0 = wq(M),
where ¢: M — Bmi(M) is a classifying map. Up to automorphisms of D, there are four wo-types,
as follows. Consider the standard projections p,,pp: Doo — Z/2 determined by p,(a) = 1,pa(b) =0
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and py(a) = 0,py(b) = 1. Let v» € HY(Z/2;7Z/2) be the generator. Define elements of H!(Dso;Z/2)
by

x:=p,(¥) and y := p; (¢).
Then the possibilities for the ws-type are

6 € {c0,0,2% x2 + 1%}

Remark 11.2. For § = 0, the stable classification is determined by the signature. For the cases
6 = 00,22, the stable classification is determined by the signature and the Kirby-Siebenmann
invariant. For § = 0 or z? this is similar to the computation in [Tei97, Lemma 2] using that
Q°PSPIN(B7,/9) = 87 via the signature [Tei92, Section 4.2]. For 6 = oo, bordism over the normal
1-type is given by oriented bordism over BD, [Tei92, Example 2.1.2], and we have Q4(BDo) 2 Z
via the signature.

As mentioned in the introduction, we will use the invariants from Definition 1.9. If the wo-type
of M is 0,00, or 2, this stable homeomorphism invariant is determined by the signature and the
Kirby—Siebenmann invariant, since those determine the stable classification (see Remark 11.2).
Hence we focus on the case of wo-type 2 + y2.

Lemma 11.3. Let 0 = z? +y%. There are precisely four distinct stable homeomorphism classes
with fized identification of the fundamental group with D, wa-type 6 and a given signature z € 8Z.
These classes are represented by homotopy equivalent manifolds and distinguished by s; recall that s
takes values in Z/2 X 7./2.

Proof. By [Kre99, Theorem C], two 4-manifolds with normal 1-type (Do, 2? + y?) are stably
homeomorphic if they admit bordant normal 1-smoothings. By [Tei97, Lemma 2], the bordism
group over this normal 1-type is isomorphic to 8Z & Z/2 & Z/2, where the first summand is given
by the signature. Hence there are at most four stable homeomorphism classes for a given signature.

Consider the bundle $2 — E — RP? with orientable but not spin total space. By [Tei97,
Proposition 1], there exists a manifold xE that is homotopy equivalent to E but has nontrivial
Kirby—Siebenmann invariant. For z € Z, the manifolds EF#FE+#*Eg, xE# x E#*FEg, E# x E#*FEg
and xE# E#* Eg have normal 1-type determined by (Dw,6). Since o(E) = 0, these manifolds have
signature 8z. We have

S(E#E#*FEg) = (0(E)/8+ ks(E),oc(E#°Eg)/8 + ks(E#°Es)) = (0+0,z+ z) = (0,0),

and similarly s(xE# x E#*Eg) = (1,1), s(E# x E#*Eg) = (0,1), and s(xE#E#*Es) = (1,0). It
follows that there are precisely four stable homeomorphism classes with signature 8z and that they
are distinguished by s, as asserted. O

Remark 11.4. If we also consider stable homeomorphisms that induce a nontrivial automorphism
on Dy, then two of the stable classes are identified, namely those with s = (1,0) and s = (0, 1).
Actually, Out(Dy,) =& Cs with the nontrivial element given by the map that swaps a and b. To
see this, it is easier to use the presentation (t,a | a?,atat), where t = ab. Then we see that
Aut(Doo) = {(m,e) | m € Z,e € {£1}}, with (m,e) mapping ¢ to t° and a to at™. Then
(m,e) o (n,m) = (m+ en,en) and hence Doy = Aut(Do) by ¢ — (1,0) and a + (0,1). The
inner automorphisms are generated by the conjugations ¢; = (=2,1) and ¢, = (0,—1), where
¢yt @+ grg~ ' denotes conjugation by g. Hence Out(Doo) = Cs is generated by (1, —1), which is
the map that swaps a and b.

11.2. The structure set. The next step in the proof of Theorem 11.1 is to calculate the relevant
structure set. We will make use of the stable homeomorphism classification in this computation.

Proposition 11.5. Let M be a closed, oriented 4-manifold with fundamental group D,. Then the
structure set S(M) is isomorphic to Hy(M;7Z/2).

For the proof we need the following lemma. The Whitehead group of Z/2 vanishes, and
the Whitehead group is additive with respect to free products by [Sta65]. Hence Wh(Dy,) =
Wh(Z/2) ® Wh(Z/2) = 0, and so throughout this section we may and shall omit decorations from
L-groups and structure sets.

Lemma 11.6 (Connolly-Davis [CD04]). Ls(ZDs) = 0 and Ly(ZDw) = Z3.



50 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

Proof. By [CDO4, p. 1046] we have Ln(ZDa) & La(Z[Z/2]) & Ln(Z[Z/2]) & UNil,(Z, Z, Z). By
Wall [Wal99, Theorem 13A.1], L5(Z[Z/2]) = 0 and L4(Z[Z/2]) = Z*. Furthermore, UNil5(Z; Z, Z) =
UNily(Z;Z,7Z) = 0 and UNily(Z; Z,Z) = UNily(Z; Z,Z) = 0 by [CD04, Theorem 1.10]. Here Davis—
Connolly relied on prior computations by Connolly—Ranicki [CR05], Connolly-Kozniewski [CK95],
and Cappell [CapT74]. a

Proof of Proposition 11.5. The group D, is an extension of abelian groups 0 — Z — Dy, —
Z/2 — 0, and thus a good group (see e.g. [FT95, KOPR21]). Hence we have the surgery exact
sequence

L5(ZDy) - S(M) - N (M) — L4(ZD).
As stated above, decorations are irrelevant for this fundamental group, so we omit them. The set
of normal invariants A/(M) is isomorphic to

N(M) = [M,G/Top] = H*(M;Z) ® H*(M;7Z/2) = 7. & Hy(M;7/2),

where the Z-summand is detected in L4(ZDo,) by the signature. By Lemma 11.6, Ly(ZD) is
torsion-free and hence the kernel of the surgery obstruction map is Ha(M;Z/2). Since L5(ZDs) =0
by Lemma 11.6, S(M) = Hy(M;Z/2) as claimed. |

11.3. The homeomorphism classification. Let M be a closed, oriented 4-manifold together
with an identification of m (M) with Ds,. Let hAut(M, D) denote the group of homotopy
self-equivalences of M that act as the identity on m (M). Again, recall that all homotopy self-
equivalences, homeomorphisms, and stable homeomorphisms are assumed to be orientation preserv-
ing.

Theorem 11.7. Let M be a closed, oriented 4-manifold with fundamental group Do.. Then the
set of homeomorphism classes over Do, of manifolds homotopy equivalent to M, which by surgery
theory is isomorphic to S(M)/hAut(M, Dw,), has:

(1) a single element if M is spin;

(2) two elements distinguished by the Kirby—Siebenmann invariant if M has we-type 0o or x

(3) four elements if M has wo-type x* + y?, distinguished by the invariant s.

2.
)

In all cases, the different classes are pairwise not stably homeomorphic.

Proof. As mentioned above, since Wh(D,) = 0, the forgetful map S*(M) — S"(M) from the
simple to the non-simple structure set is an isomorphism, and so we can consider S(M) as the
simple structure set. Moreover since D, is good, the s-cobordism theorem holds, and so we
can identify the set of homeomorphism classes over D, of manifolds homotopy equivalent to M
with S(M)/hAut(M, D).

By Proposition 11.5, S(M) = Hy(M;Z/2). Tt remains to deduce the action of hAut(M, D) on
the structure set. By Stong [Sto94b, Proposition 3.2], every class in Ho(M;Z/2) =2 S(M) that is
represented by a map R: RP? — M with R*w, (M) = 0 can be represented by a self-homotopy
equivalence of M (which is homotopic to the identity on the 2-skeleton of M).

We first consider the case wg(]T/f ) = 0. Then every element of mo(M) can be represented by a
map R: RP? — M with R*wy(M) = 0 and we have Hy(M;Z/2)/mo(M) = Hy(Duo; Z/2) = (7./2)>.

For elements a,b € Do, = 71 (M), we can choose maps R,, Ry: RP? — M that map to the
elements (1,0) and (0,1) in Hy(Doo;Z/2) = Z/2®7Z/2. The images in Ha(Doo; Z/2) are determined
by the elements of 71 (M) represented by the image of the generator of 71 (RP?), a and b respectively,
since the composition RP? — M < BD. is determined by the induced map on fundamental
groups.

If wy (M) = 0, then both (R,).[RP?] and (Rj).[RP?] in Hy(M;Z/2) = S(M) can be represented
by self-homotopy equivalences by [Sto94b, Proposition 3.2], as in the first paragraph of the proof.
Thus (1) follows. If wy(M) = ¢*22, then again using Stong’s method, the map R,: RP? — M can
be represented by a self-homotopy equivalence of M. Thus S(M)/hAut(M, D) has at most two
elements. In this case, there exists a manifold M’ homotopy equivalent to M with ks(M’) # ks(M)
by [Sto94a] (see also [KPR22, Proposition 5.11]). This implies (2) in the case of wo-type x2.

Now we consider the case of wa-type 22 +y%. As before S(M)/hAut(M) has at most four elements.
Let f: M’ — M be a homotopy equivalence. Then f and f#Id: M'#(S? x S?) — M#(S? x S?)

have the same image under S(M) — Hy(M;Z/2) — Hy(Daso:Z/2). By Lemma 11.3, the four
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classes are pairwise not stably homeomorphic and are distinguished by the values of s. Thus (3)
follows. L

It remains to show (2) in the case of wa-type co. If wy(M) # 0, choose a map S: S? — M
with S*wq(M) # 0. Then there is a basis of @ € Hy(M;Z/2) such that either x or z + [S] can be
represented by a map R: RP? — M with R*wy(M) = 0. Hence S(M)/hAut(M, Do) has at most
two elements. As before, by [FQ90, Sto94b] there exists a manifold M’ homotopy equivalent to M
with ks(M’) # ks(M). This implies (2) in the case of wa-type co. O

Theorem 11.1 is a direct consequence of Theorem 11.7 as follows.

Proof of Theorem 11.1. For M’ ~ M, we deduce from the contrapositive of the last sentence
of Theorem 11.7 that M’ is homeomorphic to M if M is stably homeomorphic to M. Thus
Theorem 11.1 follows from Theorem 11.7. ]

We now prove Theorem 1.10 from the introduction as an application of Theorem 11.1. We
restate the theorem for the convenience of the reader.

I

Theorem 1.10. Let My and Ms be closed, oriented 4-manifolds with isomorphisms o : w1 (M;)
Do,. Then My and Ms are orientation preserving homeomorphic over Do, if and only if

(1) My and My have isomorphic quadratic 2-types over Do,
(2) ks(My) = ks(Ms), and
(3) 8(M1,0¢1) = S(MQ,O(Q) S Z/2 X Z/Q

Moreover, if conditions (2) and (3) hold, then every isomorphism of the quadratic 2-types over D
is realised by a homeomorphism M; — Ms.

Proof of Theorem 1.10. By Theorem 1.4, the homotopy type is determined by the quadratic 2-type.
The homotopy type determines the signature, and by homotopy invariance of Stiefel-Whitney classes,
the homotopy type determines the wo-type. Hence by Theorem 11.7, two oriented 4-manifolds M,
and M; with the same quadratic 2-types are orientation preserving stably homeomorphic if and
only if:

(i) they have equal Kirby—Siebenmann invariants, ks(My) = ks(M;), and

(ii) S(Mo,ao) = S(Ml,Oél) S Z/Q X Z/Q.
If the common ws-type differs from z2 + 32, then by Remark 11.2 the second item s(My, ag) =
s(Mi, o) holds automatically, since the stable homeomorphism classification and hence the invari-
ants s(M;, «;) are determined by the signatures and the Kirby-Siebenmann invariants, which by
the other assumptions already agree. If the wo-type is 22 + y2, then the additional assumption on
s(M;, a;) is necessary.

Then by Theorem 11.1, two oriented 4-manifolds with fundamental group D, are homeomorphic

over D, if and only if they are homotopy equivalent and stably homeomorphic over D,. This
completes the proof of Theorem 1.10. ]

11.4. Replacing the k-invariant with the second Stiefel-Whitney class. If one seeks to
apply Theorem 1.10 in practice, it may be challenging to decide whether two quadratic 2-types are
isomorphic. We do not know whether there is an algorithm to decide this problem. To ease the
burden, we demonstrate next that in some cases one need not compute the k-invariant, and can

instead either compute the wy-type or take connected sum with either CP? or @2.
For an arbitrary group 7 and the augmentation ideal I, let H(I7) denote the hyperbolic form
on I, i.e. the form

(Irn@® It") x (It ® Ir") = Zn
(@, 0), (5, %)) = (y) + v(@).

Proposition 11.8. Let M and M’ be oriented 4-manifolds with fundamental group 7 := D, with
corresponding identifications « and o . Suppose that the equivariant intersection forms are both
isomorphic to H(It) @ A, where X\ is a nonsingular Hermitian form on a stably free Zm-module.

(i) Then M#CP? and M'#CP? have isomorphic quadratic 2-types, and hence by Theorem 1.4
are homotopy equivalent.
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(ii) If M and M’ are almost spin and have the same wo-type wl € H*(m;7Z/2) 2 7./2 x 7./2,
then they have isomorphic quadratic 2-types, and hence by Theorem 1.4 are homotopy
equivalent.

If in addition ks(M) = ks(M"), and if in case (ii) we have moreover that s(M,a) = s(M’, /), then
Theorem 1.10 implies that M and M’ are homeomorphic.

The condition on s-invariants is automatic in case (i) because the universal covers are not spin.
This quickly leads to Corollary 1.12, which we restate.

Corollary 1.12. Let M and M’ be closed, oriented, smooth 4-manifolds with fundamental group
7 := Do and equivariant intersection forms both isomorphic to H(Im)® X\, where X is a nonsingular
Hermitian form on a stably free Zm-module. Then M#CP? and M'#CP? are homeomorphic, as
are M#@2 and M’#@Q.

Proof. Both M#CP? and M’'#CP? have trivial Kirby-Siebenmann invariant as they are smooth.
Since their universal covers are not spin, they also have trivial s-invariant by definition. By
Proposition 11.8, M#CP? and M’'#CP? have isomorphic quadratic 2-types. Hence M#CP? and
M'#CP? are homeomorphic by Theorem 1.10.

Since —H (I) is isometric to H(I7), we can apply the same argument to show that M#CP? and
M'#CP? are homeomorphic. Changing the orientation, it follows that also M #@2 and M’ #@2
are homeomorphic. O

Now we begin working towards the proof of Proposition 11.8. First we introduce a pair of useful
4-manifolds.

Example 11.9. There are two important examples of smooth, oriented 4-manifolds with fundamen-
tal group Z/2, denoted by E and F, that arise as the total spaces of S2-bundles over RP?. Let n be
the canonical line bundle over RP? and let & be the trivial bundle. Then, as in [HK88, Remark 4.5],
we define £ = S(3n) and F = S(n @ 2¢). We already used F in the proof of Lemma 11.3. Kirby
diagrams for E and F are shown in Figure 1; they also appear in [GS99, Example 4.6.5, Figure 5.4.6].

0 0
N O/f\&

FIGURE 1. Kirby diagrams for E (left) and F' (right).

Lemma 11.10. The manifold F is spin while E is not. Further, if p: E — RP? is the bundle
projection and x € H*(RP?;Z/2) = 7./2 is the nontrivial element, then wy(E) = p*(x).

Proof. This can be computed by the Whitney sum formula as follows. Writing F(3n) for the total
space of 31, we have w;(TE @ vgcpgsy)) = j wi(£(3n)), where j: E — E(3n) is the inclusion of
the sphere bundle into the total space. Since E and 37n have orientable total spaces, it follows that
w1 (VECE(3y)) = 0, and hence the line bundle vpc g(sy) is trivial. Therefore wo(TE) = j*w2(£(3n)).
Since

w(TRP?) = (1+ )% =1+ + 22,
where z € H'(RP?;Z/2) is the generator, we compute that
wy(TRP? @ 31) = wa(TRP?) + wy (TRP?)w; (3n) + wa(3n) = 2% + 22 + 22 = 2* € H*(RP*;Z/2),
so wo(TRP? @ 3n) is nontrivial. Then since

wy(TRP? @ 3n) = 2*wo(E(3n)) € H*(RP* Z/2),
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where z: RP? — F(37) is the zero section, we deduce that wy(F(37)) is nontrivial in
H(E(30);2/2) = HA(RP%2,/2) 2 7,2,

and hence wy(E) is the nontrivial element of j*(H?(E(3n);Z/2)) C H*(E;Z/2). The computation
for F is similar, and yields that ws(F) = 0.

Alternatively, the computation of wy follows by [GS99, Corollary 5.7.2] from the Kirby diagrams
for E and F in Figure 1. O

Lemma 11.11. Both E and F have (spin) universal cover S? x S2.

Proof. This can also be computed geometrically using Kirby calculus. Alternatively, note that the
universal covers F' and E are both $2-bundles over $2. We have to argue that the nontrivial bundle
does not arise. For this recall that wy pulls back under the covering map to wsy of the cover. Since
wo(F') = 0, this implies 1mmed1ately that F is spin, and hence is S x S2. For E, the RP? in E
is double covered by the base S? in E and hence the nontrivial we(E) pulls back trivially to E.
Thus FE is also spin and hence is 5% x 52. O

Next we compute some algebraic topological invariants of £ and F'.

Lemma 11.12. Let M € {E,F}. Then M is a rational homology 4-sphere with Hy(M;Z) =
Z]2 = Hy(M;Z), Hy(M;Z) =27 = Hy(M;Z), and H;(M;Z) = 0 otherwise.

Proof. Both E and F have integral handle chain complexes

(2,0) (

79,702 74729 79 4

so in particular they are rational homology 4-spheres. Here the attaching maps of the 3-handles
can be seen by turning the handle decomposition upside down. The Z-homology can be read off to
be as claimed. O

Remark 11.13. The fact that E and F are rational homology spheres can be deduced from
X(E)=2=x(F) and m(FE) =2Z/2 = m1(F).

With Z/2 coefficients, we have Hy(M;7Z/2) =2 Z/2 & Z/2, with one summand generated by an
embedded RP?, denoted by R, corresponding to a section of the S2-bundle. It arises by capping
off the Mobius band that is visible in the Kirby diagram with the core of the 2-handle. The other
summand is generated by an S? fibre and denoted by S, and is again visible in the Kirby diagram as
the disc bounded by the ‘helper circle’ union the core of that 2-handle. The fibre S also represents
the nontrivial element in Hy(M;Z). Identifying H?(FE;Z/2) = Hom(Hz(E;Z/2),7/2) we have
wa(E)(R) =1 and wa(E)(S) = 0, while wa(F)(R) = 0 = w(F')(S), which accords with F' being
spin.

The Z[Z/2]-module chain complexes for F and F' can also be read off from the Kirby diagrams
to be

(T 1) (0,T+1) (T+1,0)
—> D

ziz)2 = 77 9) 2122 & Z[Z/)2] 71220 = 717,/2), (11.14)

where T is the nontrivial element in Z/2 and corresponds to the covering transformation. This is
immediate from the diagrams and Fox calculus for the handle 2-skeleton, and then the remaining
boundary maps can be seen by turning the handle decomposition upside down. We deduce, again
for M € {E, F}, that mo(M) = Hy(M;Z[Z/2]) = ker(T + 1) @ coker(T + 1) 2 Z~ & Z~. We then
compute

H3(Z/2;mo(M)) =2 H¥(Z)2;7- ©®Z7) 2 Z/2 D Z)2.

Lemma 11.15. Let M € {E,F}. The intersection form Apr: ma(M) x mo(M) — Z[Z/2] is
hyperbolic. With respect to a hyperbolic basis for mo(M) =2 Z~ & Z~, we have an identification
H3(Z/2;m(M)) 2 Z/2® Z/2. Then kr = (1,0) and kg = (1,1).

Note that this result agrees with the assertion in [HK88, Remark 4.5].



54 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

Proof. Recall from [EM49, (4.1) and Section 9] that the k-invariant can be computed by con-
structing a partial chain map up to degree 2 of the standard free Z[Z/2]-module resolution

CH? .= C,(2)2:7)2]Z)2)) of Z into CM = C.(M;Z[Z/2]), as follows:
z2jz)2) — N zizy2) — T 279 U 2129

k=(T— 1N llo l(l) l(l)

Z(2/2) gy ZIZ/2 @ Z(L/Y g L2/ —7— ZIZ/2)

The image of the map k under
Homgz o) (C57° ker (da: CAT — CM)) — Homgz o (C5, mo(M)) = Homgz g (C5°, 2~ @ 27)

represents the k-invariant in H3(Z/2;Z~ @ Z~). The cycles (1 — T,0) and (0,1) in C! generate
mo(M) =2 Z~ @& Z~. In this basis, the k-invariant of M is (1,0) € H3(Z/2;7a(M)) 2 7Z/2 & Z/2.

We compute the intersection forms from the diagrams of £ and F with respect to this basis of
my. Note that Homgz o (Z7, Z[Z/2]) = Z~, with the generator given by the homomorphism that
sends 1 — 1 — T'. Hence, chasing through the definition, the hyperbolic form on Z~ is identified
with the form on Z~ @ Z~ that sends ((a,b), (¢,d)) — (1 — T)(ad + bc).

A geometric computation using the Kirby diagram shows that for M € {E, F'} the form A,/ is
represented by

(7 '%7) (Z ez )x (Z-eZ™) = Z[Z/2). (11.16)
The top left entry * is of the form n(1 —T"), because every element in Homgz 5 (Z™, Z[Z/2]) sends
1 to a multiple of 1 — T'. If we ignore all T' terms we obtain (7 §), which gives the intersection
pairing of the universal cover, which we know to be homeomorphic to $? x S$? by Lemma 11.11.
Hence n is even. However, unless n = 0, our given basis is not a hyperbolic basis. Nonetheless we
can change the basis of w9 (M) to a hyperbolic basis, so that the intersection form is represented
by the matrix in (11.16) with * = 0. We want to describe the k-invariant with respect to this
hyperbolic basis of mo(M).

If n =0 mod 4 then the basis change matrix reduces to the identity modulo 2 and the k-invariant
is again given by (1,0) € Z/2 ® Z/2 = H3(Z/2; w2 (M)) with respect to the hyperbolic basis. On
the other hand if n =2 mod 4 then the k-invariant is given by (1,1) € Z/2 ® Z/2.

We show that n = 0 mod 4 for M = F and n = 2 mod 4 for M = FE, so that, as in the
statement of the lemma, kr = (1,0) and kg = (1, 1) with respect to the hyperbolic bases as claimed.
For this we use the intersection form A%, on M with Z~ coefficients and its relationship with the
intersection forms with Z[Z/2] and with Z/2 coefficients. Let ¢~ : Z[Z/2] — Z~ be the twisted
augmentation and let reds: Z~ — Z/2 be reduction modulo 2. Let

e, Ho(M;Z[Z)2]) — Ho(M;Z7) and (reds).: Ho(M;Z™) — Ho(M;Z/2)

be the induced maps on homology. By naturality of the cap product and the Kronecker pairing we
have

e A (@,y) = Xy (5 (), €5 ()
for all x,y € Ho(M;Z[Z/2]) and
redy A%, (u,v) = )\%f ((red2)s(u), (redz).(v))

for all u,v € Hy(M;Z7).
Using the chain complex (11.14) we compute that Hy(M;Z7) = Z~ @ Z~, with basis elements
{R, S} from Remark 11.13 again corresponding to the two 2-handles. Consider the composition

Ho(M:Z7) %2 1M 2/2) 22 72, (11.17)

For M = F this is the zero map since wy is trivial, while for M = E this is given by (1,0), by
Lemma 11.10. We can also consider the composition

w}—)kﬁz (z,x)

Ho(M;Z7) 7~ 2%, 79, (11.18)
The two maps Ho(M;Z~) — Z/2 in (11.17) and (11.18) coincide, because
redy A%, (z,x) = /\ﬁ/[ﬂ((redg)*ac7 (reds).x) = wa((reds).x)
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by the Wu formula. So A%, ((1,0),(1,0)) = m, for some m that is even for M = F and odd for
M =FE.
The element (1,0) € Z~ @ Z~ = (M) = Hy(M;Z[Z/2]) is represented by

(1—1T,0) € Z|Z/2] ® Z[Z/2] = Co(M; Z|Z)2));

this is the element whose square with respect to Ap; gives the entry * in (11.16) we seek to
understand. It maps to (2,0) in Z~ @ Z~ = Hy(M;Z~). Therefore, with e~ : Z[Z/2] — Z~ the
twisted augmentation, we have

dm = )‘JZVI_ ((2’0)7 (2a O)) = 57()\]\/[((170)7 (170))) = gi(n(]‘ - T)) = 2n.

So 2m = n. For M = F we have that m = 2¢ for some ¢, thus n = 4¢ and hence n = 0 mod 4.
For M = E we have m = 2¢ + 1, thus n = 4¢ 4+ 2 and hence n =2 mod 4.

In fact we also verified geometrically using the Kirby diagram that for M = F we have n = —4
and for M = FE we have n = —2, but we prefer to give the algebraic argument here as it is easier
for the reader to verify.

This completes the computation that kr = (1,0) and kg = (1,1) with respect to the hyperbolic
bases of . O

Lemma 11.19. There is a diffeomorphism E#CP? = F#CP?.

Proof. We give a Kirby calculus argument in Figure 2. O

0/ .0 O/ 5 0/ . O

0 1 1
(a) (b) (c)

FIGURE 2. Starting with F#CP? in (a), perform the handle slide indicated by a
dashed arrow to produce (b). After a second handle slide the result is E#CP?
in (c).

Having gathered all this information about E and F' we can now begin considering the 4-manifolds
with infinite dihedral fundamental group arising as their connected sum.

Lemma 11.20. Let w := Do,. The equivariant intersection form of each of the manifolds F#F,
E#F, F#E, and EH#E is isomorphic to the hyperbolic form H(Iw). Their k-invariants lie in
H3(m;Im @ Inh) = (Z/2) @ (Z/2)%. In some hyperbolic bases, their k-invariants are ((1,0), (1,0)),
((1,1),(1,0)), ((1,0),(1,1)), and ((1,1),(1,1)), respectively.

Proof. Let M € {F#F,E#F, F#E,E#E}. Let G; = Z/2 denote the two factors of 7, that is
7= Dy = G1 * G5. Using Lemmas 3.12 and 4.8 we compute that

H(Ir) = H(Indg/2 Z" @lIndg ) Z7)
=} H(Ind%m 77)® H(Indg/2 77)
= Il’ldg/Q H(Z_) &) Indg/Q H(Z_)

Hence by Lemma 11.15, the equivariant intersection form of M is isomorphic to the hyperbolic
form H(Im). In particular

(M) = Ir®Irt = Indg (Z~&(Z7)")®Indg, (Z~ @ (Z27)") =2 Indg, (Z~ ©Z™ )®Indg, (Z- ®Z7).
Therefore, the k-invariant lies in

H?(myma(M)) = H*(m;IndE (Z~ @ Z7)) @ H* (m;Indg, (Z- @ Z7)).



56 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

By Shapiro’s lemma (see e.g. [Bro94, Proposition II1.6.2]),
H3(mIndg, (2= @Z7)) 2 H3(Z/2,2” @ Z7) = H*(Z/2,27) @ H3(Z/2,27) = (Z/2)?,

for each i. We only give the computation of the k-invariant for M = E#F’; the other three
cases are similar. The inclusion of the 3-skeleton E®) into M induces the inclusion G; — 7 on
fundamental groups. Hence the k-invariant of M maps to the image of the k-invariant of E®) in
H?3(G1;Res, ma(M)). Note that Res;, Indg,, Z~ = Z~ & F;, where F; is a free Z|G;]-module, for
each 4, while Res¢; Indg, Z~ is a free Z[G;]-module Fj for i # j by [Bro94, Proposition IIL.5.6].
Using that H?(Gy; F;) = H*(G1; Fj) = 0 for all 4, j, we deduce that

H?(G1;Res, ma(M)) = H?(Gy;Resf, (Indg, (Z~ @ Z7) @ Indg, (Z~ & Z7)))
~ 3G Z- ©Z7)
= (2/2)*.

The map Z~ @ Z~ = my(E®)) — Resf, mo(M) X Z~ & Fy ®Z~ & Iy @ FY is given by the inclusion
of the two Z~-summands. Identifying mo(E®)) = my(E), the k-invariant of E®) equals the k-
invariant of E. Hence the image of the k-invariant of E®) in H3(Gq;Resg, ma(M)) is (1,1) by
Lemma 11.15. Similarly, the image of the k-invariant of F®) in H?(Gy;Resgy, ma(M)) is (1,0),
again using Lemma 11.15. Hence the k-invariant of E#F is ((1,1),(1,0)) as claimed. O

The next proposition proves Proposition 11.8 (i).

Proposition 11.21. Let M and M’ be oriented 4-manifolds with fundamental group m := Do, and
equivariant intersection forms both isometric to H(Im) ® X\, where X\ is a nonsingular Hermitian
form on a stably free Zm-module. Then M#CP? and M'#CP? have isomorphic quadratic 2-types.

Proof. Tt suffices to show that there is an isometry from Ay @ (1) to Ay @ (1) sending the k-
invariant of M#CP? to that of M’'#CP?. By modified surgery theory [Kre99] (see also [KPT22,
Theorem 1.2 and Remark 1.3]) and since Hy(7;Z) = 0, there exist p,p’, ¢,¢" € N such that we have
a homeomorphism

M# ks(M)(xCP?)#pCP*#qCP° = F# F4p/'CP2#¢ TP .

Since the k-invariant of F'#F is nontrivial by Lemma 11.20, so is the k-invariant of M.
Indeed we will need slightly more than just nontriviality. Let G; and G2 both denote Z/2, so
that 7 = G1 * G5. As in the proof of Lemma 11.20, the k-invariant of M lies in

H?(m;ma(M)) = H?(m;IndE (Z~ @ Z7)) @ H? (m;Indg, (Z- @ Z7)). (11.22)

We showed above that M is CP?-stably homeomorphic (possibly with an extra *CP? connected-
summand) to F#F. The k-invariant of F#F is nontrivial in both summands of (11.22) by
Lemma 11.20. Therefore, not only is the k-invariant of M nontrivial, it restricts nontrivially to
each direct summand in (11.22). By the same argument, this is also true for the k-invariant of M’.

Let a; and ap denote arbitrary elements of H3(m;I7 @ Int) which are nontrivial in each
summand under the isomorphism (11.22). Since the equivariant intersection form of M is isometric
to H(Im) @ X and the «; are arbitrary, showing that there is an isometry of H(I7) ¢ (1) that maps
ay € H3(m It @ Int @ Zr) & H3(m; I @ I7') to ay will complete the proof.

Up to the isometry of H(Z™) that interchanges the two summands of Z~ & (Z~)* X Z~ & Z~,
for both i = 1,2, each a; € H3(m; It @ In') is the k-invariant of one of F#F, E#F, F#E or
E#FE by Lemma 11.20. Since

FH#F#CP? & F#E#CP? = E#4F#CP? =~ E4#E#CP?
by Lemma 11.19, there exist enough isometries of H(I7) & (1). O
Finally, the next proposition proves Proposition 11.8 (ii).

Proposition 11.23. Let M and M’ be oriented, almost spin 4-manifolds with fundamental group
7 := Dy, and the same wi € H?*(m;Z/2) = (Z/2)?. Assume that the intersection forms of M and
M’ are both isometric to H(Iw) & X, where X is a nonsingular Hermitian form on a stably free
Zm-module. Then M and M’ are homotopy equivalent.
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Proof. By Theorem 1.4, it suffices to show that there is an isometry mo(M) — mo(M’) that sends
kar to kpr. By assumption there is an isometry ¢: mo(M) — mo(M’), but we have no control over
the behaviour of the k-invariants.

By the stable classification (Remark 11.2 and Lemma 11.3), there are simply connected, spin
4-manifolds L and K, as well as N; € {E, F'}, for i = 1,2, such that

M#L —Ls Ny#No#K «f— M/#L.

Then
U= flo (0@ Idzrgmr)) 0 fi ' me(N1#N2#K) — mo(N1# No# K)

is an isometry. Note that W preserves the k-invariant of N1#No# K if and only if ¢ © ldzrgr, (1)
sends karxr, to kaypsr, which in turn holds if and only if ¢ sends kas to Epsr.

We carry out the argument in the case that N1# Ny = E#F. The other cases are similar. As
before let G; = Z/2 denote the two factors of m, that is 7 := Do, = G * G2. By Lemma 11.20,
since K is simply connected, the k-invariant of E#F#K is

((1,1),(1,0)) € H*(m; mo(E#F#K)) = H*(m;Indf (Z~ @ Z7) & Indg, (Z~ ®Z7))
> (Z/2)* @ (Z/2)%.

As in the proof of Lemma 11.20, the inclusions G; — 7 map the k-invariant to
(1,1) € (Z/2)* 2 H¥(G; Z~ @ Z7) = H*(G1; Resf, mo( E#F#K)),
and
(1,0) € (Z/2)* 2 H*(G; Z~ @ Z7) = H?(Gy; Resgy, mo( E#F#K)).

The inclusion j;: G; — 7 induces the following commutative square.

H3(m; mo( B#FH#K)) —————— H3(m;mo( E#F#K))

| i
Res?, (1)
H3(Gi; Resy, mo(B#F#K)) ——— H3(Gy; Resl, mo( BE#F#K))
Since j (kp#ruk) is nontrivial, so is

(i, yi) = J; W(kpurax) € (Z/2)° = H?(Gi; Ress, mo( E#F#K))

fori=1,2.
As in the proof of Lemma 11.20, using Lemmas 3.12 and 4.8 we compute that

H(I7) = Indj,, H(Z™) @ Indg,, H(Z™),

We can therefore change ¢ (and hence ¥) by the isometry that permutes the two copies of Z~
in H(Z™), if necessary, to arrange that (z;,y;) is the k-invariant of a 4-manifold N/ € {E, F'} for
1 = 1,2. Thus we can construct an isometry

U mo(BHFHK) L mo( E#F#K) = 1o (N #N#K)

that preserves the k-invariant, using that the intersection forms of F and F are isometric. Hence
by Theorem 1.4, the isometry ¥’ is induced by a homotopy equivalence E#F#K — N{#N,#K
over 7. Since a homotopy equivalence over 7 preserves the second Stiefel-Whitney class w3, it
follows that N{ = E and Nj = F. We deduce that ¥ must have already preserved the k-invariant
of kpxruk. From the construction of W it follows that the isometry ¢ maps the k-invariant of M

to that of M'. Again applying Theorem 1.4, ¢ is realised by a homotopy equivalence M = M, as
desired. ]
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12. ADDITIONAL INFORMATION ON CLASSIFICATIONS FOR TORSION-FREE 3-MANIFOLD GROUPS

In this section we prove results primarily about 4-manifolds with torsion-free 3-manifold funda-
mental group. First we consider some aspects of the realisation question, which asks: for a fixed
fundamental group, which values of the quadratic 2-type are realised as the invariants of some
4-manifold? We focus on characterising the modules that arise as mo(M) and the sesquilinear forms
that are realisable as equivariant intersection forms.

After that we investigate what can be said about the s-cobordism and homeomorphism clas-
sifications for 4-manifolds in a fixed homotopy type. In particular, we analyse the surgery exact
sequence and give upper bounds on the number of s-cobordism and homeomorphism classes.

12.1. Realisation of wa(M). We say that two Zr-modules L and L' are strictly stably isomorphic
if L®Zn" = L' ®Zn" for some r € N.

Theorem 12.1. Let M be a closed 4-manifold such that m:= 11 (M) = Gy *...% Gy x F(r), where

G; is a PD3-group for each i, F(r) is free of rank r, and m,r > 0. Let 81 := B1(m;Fa). Then
X(M) = 2+dimF2(F2 Rzr WQ(M)) —pPL—m-—r. (12.2)

Let w: m — Cy be the orientation character of M. Let v': m — Co be trivial on F(r) and the

orientation character of a PDs-complex with fundamental group G; for each j. Then mo(M) is
strictly stably isomorphic to Zn® @ In¥, where s = x(M)+m+7r—2 and v =wv': 7 = Cs.

Proof. Let ¢: M — Bm be a classifying map. Consider the Leray—Serre spectral sequence for
M — M — Br with E%-page H,(m; Hy(M;Fs)) converging to H,,(M;Fs). This gives rise to an
exact sequence

H3(M;Fy) =5 Hs(m;Fy) — Fy ®@gy mo(M) — Hy(M;Fy) <55 Hy(m;Fa) — 0. (12.3)
By naturality of the cap product, the composition
H'(m;Fy) <5 HY(M;Fo) ="M B (M Fo) <5 Hy(m; Fy) (12.4)

agrees with the map — N ¢, [M]. Since Hy(m;Z) = 0, in particular ¢,[M] = 0 and thus the above
composition is trivial. The first two maps of the composition (12.4) are isomorphisms and hence
H3(M;Fy) =5 Hz(m;Fy) is trivial. Tt now follows from (12.3), that
B2(M;F2) = By + dimp, (Fo ®zx m2(M)) — [,

where 8; := §;(m; F3). By Poincaré duality, 83(M;Fy) = 51 (M;F3) = 51. Hence we have

X(M) =2+ B2 + dimp, (F2 ®zx m2(M)) — 83 — 2.
Now we investigate the quantity fs — 83 — 81. If G is a PD3-group, then

B2(G;F2) — B3(GiFa) — B1(Gi Fa2) = Bi(G3F2) — 1 — B1(Gi Fa) = —1

by Poincaré duality. Furthermore,

B2(Z;Fo) — B3(Z;F2) — f1(Z;F2) =0—-0—1=—1.

Since the Betti numbers of a free product are the sums of the Betti numbers of the factors,
and we have m factors that are PDs-groups and r factors isomorphic to Z, this implies that
ﬂg — ,83 — ﬂl = —m —r. Hence

X(M) =2+ B2 + dimp, (Fg ®zx m2(M)) — B3 — 281 = 2 + dimp, (F2 @z m2(M)) — 1 —m — 1
as claimed.

Moreover, there exist £,¢ such that mo(M#L(S? x S?)) = 73(M) @ Z7?* is isomorphic to
Zr" @ It¥ by Corollary 3.21. Then w5 (M) is strictly stably isomorphic to Zx? ~2¢ & I'r, and we
want to show that ¢/ — 2¢ = s, where s = x(M) 4+ m + r — 2 as in the statement of the proposition.
We have

diIn]F2 (]Fg Rzr T&'Q(M#é(SQ X SZ))) =/ + dim]}r2 (FQ Rzr IT(v) =0+ 61.
Here we used that dimp,(F2 ®z, I7¥) = 1. To see this, consider the short exact sequence
0 — Im” — Zm — Z" — 0. Tensoring with Fy ®z, — yields the long exact sequence

Tor}™ (Fq, Zm) — Tors™ (Fa, Z°) — Fa @z 7 — Fa Qg Zw — Fa @z Z° — 0.



HOMOTOPY CLASSIFICATION OF 4-MANIFOLDS 59

Since Tor™ (Fy, Zr) = 0, Tor’™(Fy, Z°) = Hy(m;Fy) = Hy(m;Fa) and Fy @z, Zr = Fy = Fy @, Z7,
so we obtain the exact sequence 0 — Hi(m;F2) — Fo Qpy I — Fy — Fo — 0, from which the
desired equality dimp, (Fy ®z, I7¥) = 31 follows.

Now by (12.2) we therefore have

X(M) +20=x(M#L(S* x S?)) =2+ '+ 1) —Br—m—r=2+0 —m—r.
Hence ¢/ — 20 = x(M) +m +r — 2 = s, as asserted. O

12.2. Realisation of the equivariant intersection forms. Let N be a 3-manifold with funda-
mental group 7 := m(N). Let N, := N\ D3. Then

Mo := O(N, x D*) = (N, x §*) Ugaxs1 (S x D?)

is a 4-manifold with fundamental group 7. Similarly, we can form the Gluck twist M7 := (N, x
SY U, (S? x D?) of My. The manifolds My and M; are called the spin and twist spin of N
respectively.

Plotnick showed that mo (M) = IT & mo(N,) for ¢ = 0,1 but that the intersection forms Ao and
A1 of My and M; are in general not isomorphic [P1o86, Propositions 2.1 and 2.2]. If N is aspherical,
then mo(N) = Znx and In" = Zat [KLPT17, Lemma 7.5]. If N is aspherical and orientable, the
intersection form on M. is given by (i é) In particular, A\o(a, 3) = 0 and A\ (a,8) = af for
a, € It by [Plo86, Section 3]; see also [KLPT17, Section 7.2].

For 7 the fundamental group of a closed, orientable, aspherical 3-manifold, [KLPT17, Theo-
rem 9.6] gives a complete list of stable isomorphism classes of intersection forms of closed, oriented
4-manifolds with fundamental group w. Each of the forms on their list is of the form A & A\ for
¢ =0 or 1. The next theorem shows that every form A @ A¢ is moreover realised as the intersection
form of some PD4-complex. If the group w is solvable, then it is in particular good, in which case
we can also realise the form by a topological 4-manifold.

Theorem 12.5. Let N be a 3-manifold, let m := 71 (N) and let wy: m — Cs be the orientation
character of N. Suppose that there are no elements of order two in ker(wy). Let X be a nonsingular
Hermitian form on a stably free Zm-module and let ¢ = 0,1. Then there is a PDy-complex Z with
fundamental group 7, orientation character wy = wy, and equivariant intersection form A ® A¢. If
N is orientable and w is torsion-free and solvable, then Z is homotopy equivalent to a topological
manifold.

Proof. By [Hil21, Theorem 10], there is a PD4-complex with fundamental group 7 and a 2-connected
degree one map f: Z — M. such that the equivariant intersection form on the surgery kernel
is isomorphic to A. (The hypothesis on 2-torsion is needed here.) Hence it follows from [Ran02,
Proposition 10.21] that Z has equivariant intersection form A @ A..

Now assume that N is orientable and 7 is torsion-free and solvable, then 7 := 71 (N) is either a
PDgs-group or Z. It follows that 7 is cohomologically 3-dimensional.

If N is orientable, then M, and Z are orientable and thus Z has a Top reduction [Ham19,Lan22].
Hence there is a 2-connected degree one normal map g: M — Z. By adding copies of Fg to
M we can assume that the signatures of M and Z agree. In the composition L{1)4(Bw) —
L4(Bw) — L4(Zw), the first map is an isomorphism since 7 is 3-dimensional, and the second
map is an isomorphism since 7 satisfies the Farrell-Jones conjecture [Wegl5]. It follows from
a straightforward consideration of naturality in the Atiyah—Hirzebruch spectral sequence that
the map N(M) = L(1)4(M) — L(1)4(Bm) is surjective. Hence the surgery obstruction map
N(M) % Ly(Zr) is surjective and there exists a 2-connected degree one normal map ¢': M’ — M
with surgery obstruction o(¢’: M' - M) = —o(9: M — Z).

We claim that gog': M’ — Z is a degree one normal map, as we show next. As a composition of
degree one maps, go g’ is degree one, so we only need to show the compatibility of normal structures.
Since the difference of the signatures of M and Z is zero, and o(g') = —o(g), the difference of
the signatures of M’ and M is also zero. By the Hirzebruch signature theorem and since ¢’ is
degree one, we have that (¢')*p1 (vM) = p1(vM’). Since the Stiefel-Whitney classes depend only on
the underlying spherical fibrations, (¢')*wa(vM) = wa(vM’). Dold-Whitney [DW59, Theorems 1
and 2] proved that (stable) orientable bundles over an orientable 4-manifold (or more generally any
PDj-complex X with no 2-torsion in H*(X;Z)) are determined by ws and p;. It follows that the
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map ¢’ pulls back the normal bundle of M to the normal bundle of M’. Hence gog': M/ — Z is a
degree one normal map as claimed.

The homology of the domain of a 2-connected degree one map splits as the direct sum of the
surgery kernel and the homology of the codomain. It follows that the surgery kernel of g o ¢’ is
the direct sum of the surgery kernels of g and ¢’, the surgery obstruction of g o ¢’ is trivial. Since
solvable groups are good [FT95, KQO0] (see also [KOPR21, Example 19.6]), by surgery [OPR21;
FQ90, Chapter 11], g o ¢’ is normally bordant to a homotopy equivalence, and hence there exists a
manifold homotopy equivalent to Z as claimed. (|

12.3. The s-cobordism and homeomorphism classifications. For 4-manifolds with torsion-
free 3-manifold groups, we do not have a complete homeomorphism classification. However by
applying surgery we can obtain some information, which in the case that the group is also solvable
comes very close. We begin by considering arbitrary torsion-free 3-manifold groups. These are in
general not known to be good, so we can only obtain conclusions on the set of 4-manifolds up to
s-cobordism.

Theorem 12.6. Let M be a closed 4-manifold whose fundamental group m is a torsion-free
3-manifold group. Let B3 := B3(m;Z/2) and let 51 := B1(m;Z/2).
(1) There are at most 25 topological s-cobordism classes of 4-manifolds homotopy equivalent
to M and with the same Kirby—Siebenmann invariant.
(2) If M is smooth and orientable, then there are at most 29351 smooth s-cobordism classes
of smooth 4-manifolds homotopy equivalent to M.
(3) If M is smooth and nonorientable, then there are at most 2°3+P1+1 smooth s-cobordism
classes of smooth 4-manifolds homotopy equivalent to M .

Note that if 7 is torsion-free and 7 = m1(Y), for Y a closed 3-manifold, then S5 equals the
number of irreducible factors in a prime decomposition of Y.

Proof. We will only sketch the proof since the strategy is well-known. We refer to [KL22] for a
more detailed treatment and further citations. We give the argument for the topological case and
provide the necessary modifications for the smooth case at the end.

Every 3-manifold group satisfies the Farrell-Jones conjecture by [BFL14, Corollary 1.3]. By
[KL22, Lemma 2.3], every torsion-free 3-manifold group 7 thus satisfies the following properties for
every homomorphism w: m — Cs.

(1) The Whitehead group Wh(m) vanishes,
(2) the assembly map L{1)¥ (Bw) — Ly4(Zw,w) is injective, and
(3) the assembly map L({1)¥(Bw) — Ls(Zm, w) is surjective.
In particular by the first item every homotopy equivalence is simple and every h-cobordism is an
s-cobordism.
Fix w to be the orientation character of M. Let f: N — M be a homotopy equivalence. Let
n(f) € N(M) denote its normal invariant. Recall that

N (M) = [M,G/Top] = [S®° My, L{1)] 2 L{1)Y(M).

Injectivity of L(1)¥ (Bw) — L4(Zm,w) implies that the normal invariant 7(f) of f is contained in the
kernel of V(M) = L(1)¥ (M) — L{1)¥(B~). Using the twisted Atiyah-Hirzebruch spectral sequence,
the kernel of L(1)y(M) — L(1)¥(Bm) is isomorphic to the kernel of Ho(M;Z/2) — Ha(m;Z/2).
Hence, with respect to this identification, n(f) can be represented by an immersed 2-sphere « in
M, i.e. corresponds to an element in the image of 7o (M) — Ho(M;Z/2). If wa(M) vanishes on
«, there exists a homotopy equivalence f’': N — M with trivial normal invariant using Novikov
pinching; see e.g. [KL22, Lemma 3.3] for more details.

We will now show that if wo(M) is nontrivial on «, then N and M have different Kirby—
Siebenmann invariant, cf. [KL22, Proof of Lemma 3.4]. There is a homotopy equivalence g: *CP? —
CP? with normal invariant represented by CP'. The homotopy equivalence f#g: N# x CP? —
M#CP? has normal invariant represented by a + CP'. On this 2-sphere w, now vanishes. Hence
N# « CP? and M#CP? are normally cobordant over M#CP?, again using Novikov pinching,
as above. In particular, they have the same Kirby—Siebenmann invariant. It follows that the
Kirby—Siebenmann invariants of N and M are different, as claimed.
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So far we have shown that every manifold N that is homotopy equivalent to M and has the same
Kirby—Siebenmann invariant is normally cobordant to M. Let W be a choice of normal cobordism.
It has a surgery obstruction o(W) € Ls(Zm,w). If (W) = 0, then N and M are s-cobordant.

We claim that the number of s-cobordism classes is bounded by the order of the cokernel of
the map L(1)¥(M) — Ls(Zm,w). To see this we need to show that if two normal cobordisms
Wy and Wy over M, from M to N; and Ny respectively, are such that o(W;) = o(Ws) €
coker(L(1)¥ (M) — Ls(Zm,w)), then N; and N3 are s-cobordant. By the first paragraph of the
proof of [KL22, Theorem 3.1], we can modify Wj to a normal cobordism W7, also from M to
Ny, with surgery obstruction o(W7) = o(Ws). Stack W] and Ws, gluing them along M, to
obtain a normal cobordism W := —W{ Uy Wy between Ny and Ny with surgery obstruction
o(W) = —a(W{) + a(Ws) = 0. Hence we can surger W to an s-cobordism between N; and Na,
completing the proof of the claim.

Since the assembly map L(1)¥(Bn) — Ls(Zm,w) is surjective, the order of the cokernel of
L{1)¥»(M) — Ls(Zn,w) is the same as that of the cokernel L(1)¥(M) — L(1)¥(Bw). Con-
sidering the twisted Atiyah-—Hirzebruch spectral sequences for M and B, as in the proof of
[KL22, Theorem 3.1], the cokernel of L(1)¥ (M) — L(1)¥(Bm) is isomorphic to the cokernel of
H3(M;7/2) — Hsz(w;Z/2). In particular it has order at most 273. This completes the proof of (1).

For (2), the smooth orientable case, let f: N — M be a homotopy equivalence between smooth
4-manifolds with fundamental group 7. The forgetful map NP (M) — NTP(M) is described by
Kirby—Taylor in [KTO01, Lemma 7]. In the orientable case the forgetful map is injective. We showed
above that N and M are topologically normally bordant over M. Hence by injectivity N and M
are smoothly normally bordant over M. The cokernel of NP# (M x I,0) — NTP(M x I,9) can
be identified with the cokernel of [(M x I,9), (G /O,*)] — [(M x I,0),(G /Top,*)], which is a
subgroup of

[(M x I,0),(B(Top /O),*)] = H*(M x I,0;7Z/2) = H,(M;Z/2) = Hy(7;Z/2),

and therefore has order at most 2°1. Combining this with the argument above, the cokernel of
NP (M x I,0) — Ls(Zr,w) has order at most 2°1%53 and hence there are at most this many
smooth s-cobordism classes of manifolds homotopy equivalent to M, proving (2).

For (3), the nonorientable case the fibre of Idy; under NP (M) — NTP(M) has cardinality
two, again by Kirby—Taylor [KT01, Lemma 7]. In Kirby and Taylor’s lemma there are two cases,
depending on whether the Wu class vo(T'M) vanishes or not, but in both cases the fibre of Id,,
has cardinality two. Hence NN lies in one of two smooth normal bordism classes, each of which has
at most 27175 smooth s-cobordism classes, by the previous argument for (2), which already used
either w-twisted or Z/2-coefficients, and hence applies in the nonorientable case. O

Corollary 12.7. Let M be a closed 4-manifold whose fundamental group 7 is a torsion-free, solvable
3-manifold group. There are at most two homeomorphism classes of closed 4-manifolds homotopy
equivalent to M and with the same Kirby—Siebenmann invariant.

Proof. Such groups do not decompose nontrivially as free products, so Hz(m;Z/2) = 7Z/2 and hence
Bs = 1. Since 7 is solvable it is a good group, so the topological s-cobordism theorem implies
that s-cobordant manifolds are homeomorphic. Therefore Theorem 12.6 (1) implies that within
a fixed homotopy class, and fixing the Kirby-Siebenmann invariant, we have at most 273 = 2
homeomorphism classes. O
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