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Abstract. We give a criterion on a group π and a homomorphism w : π → C2 under which
closed 4-manifolds with fundamental group π and orientation character w are classified up to
homotopy equivalence by their quadratic 2-types. We verify the criterion for a large class of
3-manifold groups and orientation characters, in particular for the fundamental group π of any
closed, orientable 3-manifold whose finite subgroups are cyclic, provided w vanishes on every
element of π of finite order. We deduce a homeomorphism classification of closed, orientable
4-manifolds with infinite dihedral fundamental group Z/2 ∗ Z/2.

1. Introduction

The study of 4-manifolds up to homotopy equivalence began with the work of Whitehead and
Milnor [Whi49Whi49, Mil58Mil58], who gave a full classification in the closed, simply connected case. An
appropriate generalisation of Whitehead and Milnor’s classification to aim for was formulated by
Hambleton–Kreck [HK88HK88], as follows.

Question 1.1. For which fundamental groups can we classify closed 4-manifolds up to homotopy
equivalence in terms of the quadratic 2-type?

Smooth structures will play no role here, so we work in the generality of topological 4-manifolds.
The quadratic 2-type Q(M) of a closed, connected, based 4-manifold M , with a local orientation at
the basepoint, consists of the data

Q(M) := (π1(M), π2(M), kM , w1(M), λM ).

Here π2(M) is considered as a Z[π1(M)]-module, kM ∈ H3(π1(M);π2(M)) is the k-invariant
classifying the Postnikov 2-type of M , w1(M) ∈ H1(M ;Z/2) is the first Stiefel–Whitney class, and
λM : π2(M) × π2(M) → Z[π1(M)] is the equivariant intersection form. In this article, instead of
w1(M) we will consider equivalently the orientation character wM : π1(M) → {±1}. An isomorphism
between the quadratic 2-types Q(M) and Q(M ′) of 4-manifolds M and M ′ consists of a pair of
isomorphisms gi : πi(M) → πi(M ′) for i = 1, 2, that respect the k-invariant, and such that g1
intertwines the orientation characters, and g2 induces an isomorphism of the intersection forms.

There has been considerable progress on an affirmative answer to Question 1.11.1 in special
cases, for example certain finite fundamental groups by Hambleton–Kreck [HK88HK88], Kasprowski–
Powell–Ruppik [KPR24KPR24], and Kasprowski–Nicholson–Ruppik [KNR22KNR22], all in the oriented setting.
For geometrically 2-dimensional fundamental groups that satisfy the Farrell–Jones conjecture,
Hambleton–Kreck–Teichner [HKT09HKT09] showed that the homotopy classification is determined by the
quadratic 2-type together with the w2-type.

A key tool in the articles [HK88HK88,KPR24KPR24,KNR22KNR22] is a criterion due to Hambleton–Kreck [HK88HK88,
Theorem 1.1 (i)] for finite fundamental groups, which when satisfied implies that an isomorphism of
quadratic 2-types Q(M)

∼=−→ Q(M ′) is induced by a homotopy equivalence M ≃ M ′. We generalise
the Hambleton–Kreck criterion in Theorem 2.42.4. Our new criteria can be applied to all fundamental
groups, not just finite groups. In other words, we show that for 4-manifolds satisfying the conditions
in Theorem 2.42.4, the homotopy type is determined by the quadratic 2-type.

Then we investigate whether the conditions of Theorem 2.42.4 are satisfied by 3-manifold groups,
namely those groups that arise as the fundamental group of some (not necessarily orientable) closed
3-manifold. To state our main theorem we introduce the following terminology.
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Definition 1.2. Let π be a 3-manifold group, i.e. π = π1(Y ) for some closed 3-manifold Y , and
let w : π → C2 be a homomorphism (which need not be the orientation character of Y ). Suppose
that Y has prime decomposition Y1# · · · #Ym. We say the pair (π,w) is admissible if w vanishes
on every element of π of finite order, and if whenever π1(Yi) contains finite order elements, Yi is
either a lens space or S1 × RP2.

The second condition in the definition means that summands Yi with fundamental group a
non-cyclic finite 3-manifold group are inadmissible, as are summands Yi, other than S1 × RP2, that
contain a two-sided RP2.

Remark 1.3. In particular, if π is the fundamental group of a closed, orientable 3-manifold whose
finite subgroups are cyclic, and w vanishes on every element of finite order, then (π,w) is admissible.

Theorem 1.4. Let π be a 3-manifold group and let w : π → C2 be a homomorphism, such that
(π,w) is admissible. Let M and M ′ be closed 4-manifolds, locally oriented at the basepoints. Suppose
that π1(M) and π1(M ′) are both isomorphic to π, via isomorphisms that pull back w to wM and
wM ′ respectively.

Then every isomorphism Q(M)
∼=−→ Q(M ′) between the quadratic 2-types of M and M ′ is realised

by a homotopy equivalence. In particular, M and M ′ are homotopy equivalent if and only if they
have isomorphic quadratic 2-types. Homotopy equivalences are assumed to be basepoint and local
orientation preserving.

Theorem 1.41.4 includes the homotopy classification for oriented 4-manifolds with the following
fundamental groups.

(1) Fundamental groups of closed, oriented, aspherical 3-manifolds, i.e. COAT groups.
(2) Free products of finitely many cyclic groups. In particular, the infinite dihedral group

D∞ ∼= Z/2 ∗ Z/2.
(3) The group Z × Z/2.

Note that Hambleton–Kreck’s result [HK88HK88, Theorem A] already covered finite groups with 4-
periodic cohomology, so in particular finite fundamental groups of closed 3-manifolds. Theorem 1.41.4
also includes many nonorientable cases.

The proof of Theorem 1.41.4 relies on the following foundational results of Baues–Bleile and
Hambleton–Kreck. Let f : M → P2(M) and f ′ : M ′ → P2(M ′) be 3-connected maps to the
respective Postnikov 2-types, and suppose there is a homotopy equivalence g : P2(M) ≃−→ P2(M ′).
Let π := π1(P2(M ′)), and identify all relevant fundamental groups with π using f , f ′, and g.
Suppose that there is a homomorphism w : π → {±1} that determines the orientation characters of
M and M ′. Then by [HK88HK88, Theorem 1.1] and [BB08BB08, Corollary 3.2] (stated below as Theorem 2.12.1)
there is a homotopy equivalence h : M → M ′, with h∗ = (f ′

∗)−1 ◦ g∗ ◦ f∗ : πi(M) → πi(M ′), for
i = 1, 2, if and only if there are (twisted) fundamental classes [M ] and [M ′] such that g∗ ◦f∗([M ]) =
f ′

∗([M ′]) ∈ H4(P2(M ′);Zw).
Our conditions from Theorem 2.42.4, if satisfied, imply that an isomorphism Q(M)

∼=−→ Q(M ′) gives
rise to a homotopy equivalence g : P2(M) ≃−→ P2(M ′) as above such that g∗ ◦ f∗([M ]) = f ′

∗([M ′]),
and hence by Theorem 2.12.1 to a homotopy equivalence between M and M ′. The majority of the
proof of Theorem 1.41.4, which starts in Section 33 and culminates in Section 99, consists of careful
verification of the criteria from Theorem 2.42.4.

As another application of our criteria from Theorem 2.42.4, in Corollary 10.210.2 we give a new proof
of [HKT09HKT09, Theorem 5.13]. This was part of the proof of the classification of 4-manifolds with
geometrically 2-dimensional fundamental groups from that article. See Section 10.110.1 for details.

Remark 1.5. A homotopy classification via Q(M) as in Theorem 1.41.4 does not hold for all fundamental
groups. In particular, while it holds for Z×Z/2 in the orientable case, the analogous statement does
not hold for fundamental group Z×Z/p whenever there are non-homotopy equivalent 3-dimensional
lens spaces with fundamental group Z/p. To see this consider S1 × L and S1 × L′, where L and
L′ are lens spaces with π1(L) ∼= Z/p ∼= π1(L′). Then by considering Z-covers we see that S1 × L
and S1 × L′ are homotopy equivalent if and only if L and L′ are homotopy equivalent. However
π2(S1 × L) = 0 = π2(S1 × L′) and so S1 × L and S1 × L′ have isomorphic quadratic 2-types, even
if L and L′ are not homotopy equivalent.
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We also check that the criteria from Theorem 2.42.4 do not hold in this case. Conditions (11), (33), and
(44) hold trivially since π2(S1 × L) is trivial. More precisely, using the notation from Theorem 2.42.4,
we can take B = B(Z × Z/p), so in particular H4(B;Z[Z × Z/p]) = 0, and ImφB = {0}. However
the images of [S1 ×L] and [S1 ×L′] in H4(Z × Z/p;Z) are distinct, so in particular their difference
does not lie in ImφB . Hence condition (22) does not hold.

Remark 1.6. The restrictions on the orientation character in Theorem 1.41.4 are necessary. Even
for fundamental group Z/2 and nontrivial orientation character, the homotopy type of M is not
determined by Q(M) as can be seen from work of Kim, Kojima, and Raymond [KKR92KKR92].

Remark 1.7. In this paper we use the term PDn-complex to refer to a finite n-dimensional Poincaré
duality complex. A group G is said to be a PDn-group if the classifying space K(G, 1) is a
PDn-complex. The proof of Theorem 1.41.4 extends to the case that π is a free product ∗si=1Gi, where
the factors Gi are either PD3-groups or cyclic. This may be a spurious generalisation, as it remains
an open question whether every PD3-group is the fundamental group of a closed 3-manifold.

Note that the finiteness conditions on PDn-complexes and PDn-groups in the literature some-
times differ. For example the algebraic definition of a PDn-group from [BE73BE73] does not require
that the group be finitely presentable, and for every n ̸= 4 there are examples of such groups that
are not finitely presentable by [Dav98Dav98, Theorem C], and so do not have finite classifying spaces.

1.1. Stable homeomorphism for COAT and Z × Z/2 fundamental groups. Recall that
4-manifolds M and M ′ are said to be stably homeomorphic if there exists some k ≥ 0 such that
M#k(S2 ×S2) is homeomorphic to M ′#k(S2 ×S2). Since closed, oriented 4-manifolds with COAT
or Z × Z/2 fundamental group are stably homeomorphic if they are homotopy equivalent and have
equal Kirby–Siebenmann invariant [KLPT17KLPT17, Corollary 1.6; KNV24KNV24, Theorem B] we obtain the
following statement.

Corollary 1.8. Let M and M ′ be closed, oriented 4-manifolds with π1(M) ∼= π1(M ′) either a COAT
group or isomorphic to Z × Z/2. Then M and M ′ are orientation preserving stably homeomorphic
if and only if they have equal Kirby–Siebenmann invariant and their quadratic 2-types are stably
isomorphic.

Similar stable classification statements for 4-manifolds with COAT fundamental groups were
obtained in [KLPT17KLPT17, Theorem 9.1] and [HH19HH19, Theorem B]. The latter result of Hambleton–
Hildum covers more 3-dimensional groups than COAT groups, but when restricted to COAT groups
their result is covered by [KLPT17KLPT17, Theorem 9.1]. To compare [KLPT17KLPT17, Theorem 9.1] with
Corollary 1.81.8 note that the former used the w2-type, but did not consider the k-invariant, whereas
in the latter we use the quadratic 2-type, including the k-invariant, but the w2-type does not
appear.

A stable classification for manifolds with fundamental group Z × Z/2 was obtained in [KPT21KPT21,
Theorem 1.2] using modified surgery over the normal 1-type [Kre99Kre99], but using a thoroughly different
set of invariants.

1.2. Homeomorphism classification for 4-manifolds with infinite dihedral fundamental
group. Given a homotopy classification as in Theorem 1.41.4, a natural question is whether this
can be upgraded to a homeomorphism classification using surgery theory. The first and most
famous instance of this is due to Freedman [Fre82Fre82]; once he established that surgery theory could
be applied topologically in dimension four for trivial fundamental groups, he improved Whitehead
and Milnor’s homotopy classification [Whi49Whi49,Mil58Mil58] of closed, simply connected 4-manifolds to a
homeomorphism classification. (Initially, Freedman’s classification was stated for 4-manifolds that
can be smoothed away from a point. However shortly afterwards Quinn showed [Qui82Qui82] that this
holds for all connected 4-manifolds.)

For non-simply-connected 4-manifolds, a prerequisite for applying surgery theoretic methods
is that the fundamental group be good, a class of groups that contains finite groups and solvable
groups, and is closed under subgroups, quotients, extensions, and colimits [FT95FT95,KOPR21KOPR21].

In particular the infinite dihedral group D∞ := Z/2 ∗ Z/2 is good, since it fits into an extension
0 → Z → D∞ → Z/2 → 0. As Z/2 ∗ Z/2 ∼= π1(RP3#RP3) it is one of the groups covered
by Theorem 1.41.4, with respect to the trivial orientation character. In addition the Whitehead
group Wh(D∞) = 0, since Wh(Z/2) = 0 and Wh(Z/2 ∗ Z/2) = Wh(Z/2) ⊕ Wh(Z/2) by [Sta65Sta65],
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which simplifies the application of surgery theory. We focus on D∞, obtaining a homeomorphism
classification for closed, oriented 4-manifolds with fundamental group D∞, in terms of the quadratic
2-type, the Kirby–Siebenmann invariant, and an additional invariant s(M,α). This invariant is
due to Kreck, Lück, and Teichner [KLT95aKLT95a, Definition 2.1], although we give a slightly different
description that applies to topological 4-manifolds.

Definition 1.9. Let M be a closed, oriented 4-manifold and let α : π1(M)
∼=−→ D∞ be an isomor-

phism. If the universal cover M̃ is not spin, then set s(M,α) = 0. We assume for the rest of the defi-
nition that M̃ is spin. The isomorphism α induces a map f : M → RP∞∨RP∞ ≃ RP∞∪[0, 1]∪RP∞,
which is well-defined up to homotopy. Let S be a regular preimage of 1

2 ∈ [0, 1] under f . Then
the inclusion S ⊆ M lifts to an inclusion S ⊆ M̃ and the unique spin structure of M̃ induces a
spin structure on S. Let N be a spin 4-manifold with spin boundary S. The submanifold S ⊆ M
decomposes M into two parts, i.e. M = ML ∪S MR. We define

s(M,α) := (σ(ML ∪S −N)/8 + ks(ML ∪S −N), σ(MR ∪S N)/8 + ks(MR ∪S N)) ∈ Z/2 × Z/2.

For more details see [KLT95aKLT95a, Section 2]. In particular, s(M,α) is a stable homeomorphism
invariant of (M,α) by [KLT95aKLT95a, Lemma 2.2].

We can now state the promised homeomorphism classification.

Theorem 1.10. Let M1 and M2 be closed, oriented 4-manifolds with isomorphisms αi : π1(Mi)
∼=−→

D∞, for i = 1, 2. Then M1 and M2 are orientation preserving homeomorphic over D∞ if and only
if

(1) M1 and M2 have isomorphic quadratic 2-types over D∞,
(2) ks(M1) = ks(M2), and
(3) s(M1, α1) = s(M2, α2) ∈ Z/2 × Z/2.

Moreover, if conditions (22) and (33) hold, then every isomorphism of the quadratic 2-types over D∞
is realised by a homeomorphism M1 → M2.

Here, we say that M1 and M2 are homeomorphic over D∞ if there exists a homeomorphism
f : M1 → M2 such that α1 = α2 ◦ f . Similarly an isomorphism of Q(M1) and Q(M2) over D∞ is
an isomorphism of the quadratic 2-types where the constituent isomorphism g : π1(M1)

∼=−→ π1(M2)
intertwines α1 and α2, i.e. α1 = α2 ◦ g.

Remark 1.11. Let M1 and M2 be closed, oriented 4-manifolds with isomorphisms αi : π1(Mi)
∼=−→ D∞,

for i = 1, 2. Let x, y ∈ H1(D∞;Z/2) be the elements obtained from pulling back the generator
of H1(Z/2;Z/2) using the map on group cohomology induced by the standard projections D∞ =
Z/2 ∗ Z/2 → Z/2, to the first or second factor respectively.

(i) Note that condition (11) in Theorem 1.101.10 implies, by Theorem 1.41.4, that M1 and M2 are
homotopy equivalent over D∞. The Stiefel–Whitney classes are homotopy invariant, which
follows from the Wu formulae. Thus M̃1 is spin if and only if M̃2 is spin, and also
w2(M1) = α∗

1(x2 + y2) if and only if w2(M2) = α∗
2(x2 + y2).

(ii) Of course if the M̃i are both not spin, then Theorem 1.101.10 (33) holds automatically by
definition of s(Mi, αi).

(iii) Let M be a closed, oriented 4-manifold and let α : π1(M)
∼=−→ D∞ be an isomorphism. We

will show in Remark 11.211.2 that if M̃ is spin and w2(M) ̸= α∗(x2 + y2), then s(M,α) is
determined by the signature σ(M) and the Kirby–Siebenmann invariant ks(M). So again
Theorem 1.101.10 (33) holds automatically in such cases as a consequence of conditions (11) and
(22).

(iv) If each M̃i is spin and w2(Mi) = α∗
i (x2 + y2), then Theorem 1.101.10 (33) is an important extra

condition. For example, let E denotes the unique S2-bundle over RP2 with orientable but
not spin total space. There exists a unique 4-manifold ⋆E, which is homotopy equivalent to
E, but not (stably) homeomorphic to E. Then Teichner [Tei97Tei97] showed that the closed,
oriented 4-manifolds E#E and ⋆E# ⋆E are homotopy equivalent, have vanishing Kirby–
Siebenmann invariants, but are not (stably) homeomorphic. See [KPR22KPR22, Example 5.11]
for additional discussion of these examples.
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(v) Let M be a closed, oriented 4-manifold together with an isomorphism α : π1(M)
∼=−→ D∞.

Let β : Z/2 × Z/2 → Z/2 be given by (a, b) 7→ a + b. Then if w2(M) = α∗(x2 + y2), we
have that

ks(M) = β(s(M,α)) + σ(M)/8.
This follows by Novikov additivity of the signature and additivity of the Kirby–Siebenmann
invariant. So the invariants are not independent.

(vi) Item (iv)(iv) also shows that the analogue of Corollary 1.81.8 does not hold for fundamental group
D∞.

(vii) We would like to remove ‘over D∞’ from the statement of Theorem 1.101.10, but we have not
been able to do so. This would follow if we knew that every closed 4-manifold M with
fundamental group D∞ admits a homotopy self-equivalence that sends a 7→ b and b 7→ a.

In some cases we can simplify the classification. In Section 11.411.4, specifically in Proposition 11.811.8,
we show that in some cases we do not need to control the k-invariant, and instead it suffices to
control the w2-type. A special case is the following corollary, in which we try to minimise the
algebraic topological computations needed to apply it.

Corollary 1.12. Let M and M ′ be closed, oriented, smooth 4-manifolds with fundamental group
π := D∞ and equivariant intersection forms both isomorphic to H(Iπ)⊕λ, where λ is a nonsingular
Hermitian form on a stably free Zπ-module. Then M#CP2 and M ′#CP2 are homeomorphic, as
are M#CP2 and M ′#CP2.

Here H(Iπ) denotes the hyperbolic form on Iπ ⊕ Iπ†, where Iπ := ker(ε : Zπ → Z) is the
augmentation ideal of the group ring and Iπ† ∼= HomZπ(Iπ,Zπ); see the conventions below.

Remark 1.13. Other known homeomorphism classifications of closed, oriented 4-manifolds are due to
Freedman–Quinn [FQ90FQ90] for fundamental group Z, Hambleton–Kreck [HK88HK88,HK93HK93] for finite cyclic
fundamental groups, Hambleton–Kreck–Teichner [HKT09HKT09] for some geometrically 2-dimensional
groups, especially solvable Baumslag–Solitar groups, and Hambleton–Hildum [HH19HH19] for some cases
(spin+ and pre-stabilised) involving cohomological dimension 3 groups.

In the closed, nonorientable case we have classifications by Wang [Wan95Wan95] for fundamental
group Z, Hambleton–Kreck–Teichner [HKT94HKT94] for fundamental group Z/2, 4-manifolds homotopy
equivalent to RP4#RP4 by Brookman–Davis–Khan [BDK07BDK07] (see also Jahren–Kwasik [JK06JK06]), and
Hambleton–Hillman [HH23HH23] for 4-manifolds homotopy equivalent to quotients of S2 × S2.

1.3. Homeomorphism classification for 3-manifold fundamental groups. In Sections 12.112.1
and 12.212.2 we place limitations on the Zπ-modules, and the sesquilinear Hermitian forms on them,
that can arise as the invariants of 4-manifolds. In Section 12.312.3 we consider what the surgery exact
sequence tells us about the classification of homotopy equivalent 4-manifolds whose fundamental
group is a torsion-free 3-manifold group. Theorem 12.612.6 applies to all such groups, giving an
upper bound on the number of s-cobordism classes of such 4-manifolds, in both the smooth and
topological categories. Then specialising again to solvable groups we obtain the following result on
the homeomorphism classification.

Corollary 1.14. Let M be a closed 4-manifold whose fundamental group π is a torsion-free,
solvable 3-manifold group. There are at most two homeomorphism classes (including that of M) of
closed 4-manifolds with quadratic 2-type isomorphic to Q(M) and with the same Kirby–Siebenmann
invariant.

Conventions and notation. All manifolds are assumed to be closed, connected, and based. They
are considered as topological manifolds by default. Our n-manifolds X are also assumed to be
endowed with a local orientation at the basepoint, which determines a (twisted) fundamental class
[X] ∈ Hn(X;Zw). Homotopy equivalences, homeomorphisms, and stable homeomorphisms are
assumed to respect the basepoint and the local orientation, and hence in the oriented case to be
orientation preserving.

We use the symbol C2 to denote the multiplicative group {±1}. The symbol Z/2 denotes the
additive group {0, 1}. The symbol Σ2 denotes the symmetric group on two elements. The symbol
F2 denotes the field of two elements. The symbol Z− denotes the integers as a Z[Z/2]-module,
where 1 ∈ Z/2 acts by multiplication by −1.



6 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

We will always assume that π is a finitely presented group and that w : π → C2 is a homomorphism.
When we say that a 4-manifold M has fundamental group π and orientation character w, we mean
that M comes with an identification π1(M)

∼=−→ π, such that π1(M) → π
w−→ C2 is the orientation

character of M .
For a topological space X homotopy equivalent to a CW complex, the Postnikov 2-type is

denoted by P2(X). We always choose a model CW complex for P2(X).
For a left Zπ-module A we write A† for the left Zπ-module given by HomZπ(A,Zπ), turned into

a left module using the involution of Zπ sending g 7→ w(g)g−1. Similarly, for a map f : A → B of
Zπ-modules, we have the induced left module homomorphism f† : B† → A†. When G ≤ π is a
subgroup, for a ZG-module A, we will denote the module HomZG(A,ZG) by A⋆.

Outline. Section 22 gives our promised criteria in Theorem 2.42.4. This can be combined with
[HK88HK88,BB08BB08] to provide homotopy classifications. This combination is presented as Corollary 2.82.8,
which states that homotopy classifications can be proven for 4-manifolds satisfying conditions (11) –
(44) of Theorem 2.42.4.

Sections 33 to 88 are concerned with showing that these conditions are satisfied by the 4-manifolds
considered in Theorem 1.41.4. More precisely, in Section 33 we prove general results about the second
homotopy groups of 4-manifolds and in Section 44 we show that Theorem 2.42.4 (11) holds in our setting.
Next, in Section 55 we consider the injectivity of the map ev∗, which is condition (44) of Theorem 2.42.4.
In Section 66 we give general criteria under which the map BA : Zw⊗ZπΓ(A) → Herw(A†) is injective,
where A is a Zπ-module. Condition (33) of Theorem 2.42.4 calls for the kernel of BH2(B;Zπ) to be
contained in the kernel of the map φB : Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw). That this holds for
the 4-manifolds in Theorem 1.41.4 is shown in Section 77. Section 88 introduces a property of groups,
that we call Property 4HL, short for 4th Homology Lifting. This property is useful to establish
Theorem 2.42.4 (22). We show that the groups considered in Theorem 1.41.4 have Property 4HL. With
these results in hand, we give the proof of Theorem 1.41.4 in Section 99.

In Section 1010 we present two more applications of Corollary 2.82.8, using it to recover [HKT09HKT09,
Theorem 5.13] and [HK88HK88, Theorem 1.1(i)]. Then in Section 1111 we prove Theorem 1.101.10.

In Section 1212 we provide additional information on various classifications of 4-manifolds with
torsion-free 3-manifold fundamental groups.
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2. General statements on homotopy classification

In this section we state and prove Theorem 2.42.4, which will be our main technical tool going
forward. Before doing so we recall the result of [HK88HK88,BB08BB08] and the definition of Whitehead’s
universal quadratic functor. We end the section by giving a more detailed outline of the upcoming
proof of Theorem 1.41.4.

2.1. Classification via the fundamental triple. In general, the homotopy classification of
closed 4-manifolds is given by the fundamental triple: the Postnikov 2-type B, the orientation
character w, and the image of the fundamental class in H4(B;Zw). This was shown by Baues and
Bleile [BB08BB08, Corollary 3.2], extending work of Hambleton and Kreck [HK88HK88, Theorem 1.1], in the
following result.

Theorem 2.1 ([BB08BB08,HK88HK88]). Let M and M ′ be closed 4-manifolds, both with fundamental group
π. Let B be a connected, 3-coconnected CW complex, also with fundamental group identified with π.
Fix a homomorphism w : π → C2. Assume there are 3-connected maps f : M → B and f ′ : M ′ → B
inducing the identity maps on fundamental groups, and such that w ◦ f∗, w ◦ f ′

∗ : π → C2 give
the orientation characters of M and M ′ respectively. If f∗([M ]) = f ′

∗([M ′]) ∈ H4(B;Zw), then
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M ≃ M ′, via a (basepoint and local orientation preserving) homotopy equivalence that induces the
identity on fundamental groups and induces (f ′

∗)−1 ◦ f∗ : π2(M)
∼=−→ π2(M ′).

The main difficulty in applying Theorem 2.12.1 lies in computing the image of the fundamental
class. In the case of finite fundamental groups, it is known in some cases that the image of
the fundamental class in the homology of the Postnikov 2-type is determined by the equivariant
intersection form. More precisely, by work of Hambleton and Kreck [HK88HK88, Theorem 1.1 (i)]
together with an improvement by Teichner [Tei92Tei92] (see [KT21KT21, Corollary 1.5] for the published
version), for finite fundamental groups the quadratic 2-type of M determines its homotopy type
if the abelian group Zw ⊗Zπ Γ(H2(M ;Zπ)) is torsion-free. Here Γ denotes Whitehead’s universal
quadratic functor, which we recall presently. For w = 0, this condition was shown to hold for
finite groups that are cyclic [HK88HK88], abelian with 2 generators [KPR24KPR24] and dihedral [KNR22KNR22]. In
Section 2.32.3 we state and prove Theorem 2.42.4, which gives a generalisation of the Hambleton–Kreck
criterion that can be applied to all fundamental groups.

2.2. Whitehead’s Γ groups. In [Whi50Whi50], Whitehead defined the universal quadratic functor Γ.
Here, a function f : A → B between abelian groups is said to be quadratic if f(−a) = f(a) for
all a ∈ A and if the function A × A → B, given by (a, b) 7→ f(a + b) − f(a) − f(b) is bilinear.
The functor Γ is the universal quadratic functor in the sense that there exists a quadratic map
γ : A → Γ(A) with the property that for every quadratic map f : A → B there exists a unique
linear map Γ(f) : Γ(A) → B with f = Γ(f) ◦ γ.

For a free abelian group A, the group Γ(A) is isomorphic to the group of fixed points of A⊗Z A
under the Σ2-action permuting the two copies of A. If A is a Zπ-module then the diagonal action
of π gives A⊗Z A the structure of a Zπ-module, and Γ(A) ⊆ A⊗Z A is a Zπ-submodule. A direct
consequence of [Whi50Whi50, Sections 10 and 13] is that for a connected, 3-coconnected CW complex B
with fundamental group π, we have an isomorphism Γ(H2(B;Zπ)) ∼= H4(B;Zπ).

2.3. A criterion for homotopy classification via the quadratic 2-type. Let M be a closed
4-manifold with fundamental group π and orientation character w : π → C2. We consider the
equivariant intersection form λM as a Hermitian form on H2(M ;Zπ). For a left Zπ-module A we
denote the left Zπ-module given by HomZπ(A,Zπ), turned into a left module using the involution
of Zπ sending g 7→ w(g)g−1, by A†. We denote the group of Hermitian forms on a Zπ-module C
by Herw(C) and we denote sesquilinear forms by Sesqw(C). When w is the constant map, we may
suppress the superscript. When A is free as an abelian group, we have the homomorphism

BA : Zw ⊗Zπ Γ(A) → Herw(A†) (2.2)

a⊗ b 7→ ((f, g) 7→ f(a)g(b)),

as in [Hil06Hil06, Section 7].

Remark 2.3. This is a special case of the following, which defines BA also when A is not necessarily
free as an abelian group. Consider the quadratic function f : A → Herw(A†) given by a 7→ ((f, g) 7→
f(a)g(a)). By the universal property of Γ, there is an induced map Γ(A) → Herw(A†), and it
is straightforward to check that this factors through Zw ⊗Zπ Γ(A), yielding a homomorphism
Zw ⊗Zπ Γ(A) → Herw(A†). We omit the details, since henceforth we will only consider cases where
A is free as an abelian group.

Recall from the previous section that by [Whi50Whi50, Sections 10 and 13], for a connected, 3-
coconnected CW complex B with fundamental group π, we have an isomorphism

Υ: Zw ⊗Zπ H4(B;Zπ)
∼=−→ Zw ⊗Zπ Γ(H2(B;Zπ)).

For any connected CW complex B with fundamental group π, let
ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ))

denote the homomorphism induced by the evaluation map ev : H2(B;Zπ) → H2(B;Zπ)† taking
α 7→ (x 7→ α ∩ x). Let

φB : Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw)
denote the homomorphism given by reduction of coefficients. Now we state our main technical
theorem.
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Theorem 2.4. Let M and M ′ be closed 4-manifolds with fundamental group π and orientation
character w : π → C2. Let B be a connected, 3-coconnected CW complex with fundamental group
also identified with π, and let f : M → B and f ′ : M ′ → B be maps that induce the identity on
fundamental groups. Assume further that, for some k ∈ Z, the following holds.

(1) The module H2(B;Zπ) is free as an abelian group.
(2) The difference k(f∗[M ] − (f ′)∗[M ′]) ∈ H4(B;Zw) lies in the image of the map φB : Zw ⊗Zπ

H4(B;Zπ) → H4(B;Zw).
(3) The kernel of BH2(B;Zπ)◦Υ is contained in the kernel of φB : Zw⊗ZπH4(B;Zπ) → H4(B;Zw).
(4) The map ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ)) is injective.

Then kf∗[M ] = kf ′
∗[M ′] ∈ H4(B;Zw) if and only if f∗λM = f ′

∗λM ′ ∈ Herw(H2(B;Zπ)).

Remark 2.5. We will only apply Theorem 2.42.4 (in Sections 99 and 1010) in the case k = 1. We prove
the result for general k in case this version is useful in the future.

Remark 2.6. We will see in the upcoming proof of Theorem 2.42.4 that rather than conditions (33)
and (44) above, we only need the kernel of the composition ev∗ ◦BH2(B;Zπ) ◦ Υ to be contained in
the kernel of φB . We prefer the current formulation since in our applications of this result we will
verify the conditions individually. As we will show in Section 55, there are several general methods
to conclude the injectivity of ev∗, and in the setting of Theorem 1.41.4 the map ev∗ is in fact an
isomorphism.

Proof of Theorem 2.42.4. Consider the diagram

Zw ⊗Zπ H4(B;Zπ) H4(B;Zw)

Herw(H2(B;Zπ)†) Herw(H2(B;Zπ)).

φB

BH2(B;Zπ)◦Υ ΘB

ev∗

(2.7)

Here we used (11) to define the map BH2(B;Zπ). The map ΘB is defined using the cap product as

x 7→
(
(α, β) 7→ ⟨β, α ∩ x⟩

)
.

Commutativity of the diagram follows as in the proof of [Hil06Hil06, Lemma 10]. Since λM and λM ′ are
induced by the cap product with the corresponding fundamental class, it follows from naturality of
the cap product that k(f∗[M ]−f ′

∗[M ′]) ∈ H4(B;Zw) maps to k(f∗λM −f ′
∗λM ′) ∈ Herw(H2(B;Zπ))

under ΘB .
The only if direction can now be proven without using (22), (33), or (44). Suppose that

kf∗[M ] = kf ′
∗[M ′] ∈ H4(B;Zw).

Then k(f∗[M ] − f ′
∗[M ′]) = 0 and hence k(f∗λM − f ′

∗λM ′) = 0 ∈ Herw(H2(B;Zπ)). However,
Herw(H2(B;Zπ)) is torsion-free since Zπ is torsion-free, and so

f∗λM = f ′
∗λM ′ ∈ Herw(H2(B;Zπ)).

To prove the if direction, we suppose that f∗λM = f ′
∗λM ′ ∈ Herw(H2(B;Zπ)). By (22), there is

some x ∈ Zw ⊗Zπ H4(B;Zπ) such that

φB(x) = k(f∗[M ] − (f ′)∗[M ′]) ∈ H4(B;Zw).

Then
ΘB ◦ φB(x) = ΘB(k(f∗[M ] − (f ′)∗[M ′])) = k(f∗λM − f ′

∗λM ′) = 0,
and so by commutativity

ev∗ ◦BH2(B;Zπ) ◦ Υ(x) = 0.
By (44) ev∗ is injective, so x ∈ ker(BH2(B;Zπ) ◦ Υ). By (33), ker(BH2(B;Zπ) ◦ Υ) ⊆ ker(φB), and thus
k(f∗[M ] − (f ′)∗[M ′]) = φB(x) = 0. It follows that kf∗[M ] = kf ′

∗[M ′] ∈ H4(B;Zw) as desired. □

We will frequently apply the combination of Theorems 2.12.1 and 2.42.4 to obtain our homotopy
classifications. To make this easier, we give the statement that we will use in the following corollary.
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Corollary 2.8. Let M and M ′ be closed 4-manifolds with fundamental group π and orientation
character w : π → C2. Let B be a connected, 3-coconnected CW complex with fundamental group
also identified with π. Let f : M → B and f ′ : M ′ → B be 3-connected maps inducing the identity
on fundamental groups. Assume that, for k = 1, the conditions (11) – (44) of Theorem 2.42.4 hold.
Let gi := (f ′)−1

∗ ◦ f∗ : πi(M) → πi(M ′), and suppose that (g1, g2) induces an isomorphism between
the quadratic 2-type of M and that of M ′. Then there exists a (basepoint and local orientation
preserving) homotopy equivalence h : M ≃−→ M ′ such that h∗ = gi : πi(M) → πi(M ′) for i = 1, 2.

Proof. By assumption, conditions (11) – (44) of Theorem 2.42.4 hold, so we can apply that theorem, for
k = 1. The assumption that (g1, g2) induces an isomorphism between the quadratic 2-type of M
and that of M ′ implies that f∗λM = f ′

∗λM ′ ∈ Herw(H2(B;Zπ)). Hence Theorem 2.42.4 implies that
f∗[M ] = f ′

∗[M ′] ∈ H4(B;Zw). Now Theorem 2.12.1 implies that the desired homotopy equivalence
h : M → M ′ exists. □

2.4. Outline of the proof of Theorem 1.41.4. We will use Corollary 2.82.8 to prove Theorem 1.41.4,
with the culmination of the proof presented in Section 99. That is, we will show that conditions
(11) – (44) of Theorem 2.42.4 hold for closed 4-manifolds with 3-manifold fundamental group π and
orientation character w, such that (π,w) is admissible. We sketch the proof for each condition
individually next.

(1) In Section 44 we introduce a property of groups which we call P2FA (Definition 4.14.1). By
definition if a 4-manifold M has P2FA fundamental group, then π2(M) is free as an abelian
group. We will show in Proposition 4.104.10 that 3-manifold groups are P2FA, which shows
that Theorem 2.42.4 (11) holds in our setting.

(2) In Section 88 we introduce the 4th homology lifting property of a pair (π,w), which we
abbreviate to Property 4HL, where π is a group and w : π → C2 is a homomorphism.
Roughly, this property gives a criterion to decide whether an element in the codomain
of φX : Zw ⊗Zπ H4(X;Zw) → H4(X;Zw) lies in the image of φX , for an arbitrary CW
complex X with π1(X) = π and homomorphism w : π → C2. This is helpful for proving
Theorem 2.42.4 (22) since we can apply the criterion to the element f∗[M ]− (f ′)∗[M ′], using the
notation of Theorem 2.42.4. We will show in Proposition 8.228.22 that (π,w) has Property 4HL
when π is as in Theorem 1.41.4, enabling the application of the criterion in our setting. For
the proof we first address the cases of finite groups, PD3-groups, the infinite cyclic group,
and the group Z × Z/2 individually. In these cases the primary tool is the Leray–Serre
spectral sequence for the fibration B̃ → B → BH, where B is a connected, 2-coconnected
CW complex and H = π1(B). With these individual cases established, the final result is
proven by considering how Property 4HL behaves under free products.

(3) In Section 66 we give general criteria under which the map BA : Zw ⊗Zπ Γ(A) → Herw(A†)
is injective, where A is a Zπ-module. When BH2(B;Zπ) is injective, for B and π as in
Theorem 2.42.4, since Υ is an isomorphism it follows that condition (33) is satisfied. However,
in our setting, the map BH2(B;Zπ) is not necessarily injective. Therefore in Section 77 we
specialise to the case of admissible 3-manifold groups and orientation characters. Here we
use our previous results on the second homotopy groups from Section 33 and once again
use the Leray–Serre spectral sequence. Special care is needed for the case of Z × Z/2
fundamental group. Finally we show in Corollary 7.107.10 that Theorem 2.42.4 (33) holds in our
setting.

(4) We will show in Proposition 5.95.9 that for 4-manifolds with 3-manifold fundamental group
the map ev∗ is in fact an isomorphism, showing that Theorem 2.42.4 (44) holds. The proof of
Proposition 5.95.9 is rather general, depending on the homology and cohomology groups of π
with Zπ coefficients, and consisting of an analysis of certain exact sequences arising from
the universal coefficient spectral sequence.

We end this section by remarking that while Sections 44 and 77 are rather specific to our setting,
Sections 33, 55, 66, and 88 contain a number of general results that are likely to be useful to those
interested in proving homotopy classification results for other fundamental groups.
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3. The second homotopy group for 4-manifolds with 3-manifold fundamental group

In this section we study π2(M) ∼= H2(M ;Zπ) for 4-manifolds M whose fundamental group π is a
3-manifold group. In Section 3.13.1 we recall a general result on the stable isomorphism class of π2(M),
without restriction on the fundamental group. In Section 3.23.2 we consider cases for which π1(M) is
the fundamental group of an irreducible 3-manifold. In Section 3.33.3, we investigate π2(M) when
π1(M) is a 3-manifold group that is an admissible nontrivial free product. Finally in Section 3.43.4 we
prove that the stable isomorphism class of π2(M) determines the image of the fundamental class of
M in H4(π;Zw), where π = π1(M).

We will express the stable isomorphism classes of the second homotopy groups in terms of twisted
augmentation ideals, which we define next.

Definition 3.1. Let v : π → C2 be a homomorphism. Let Iπv⊴Zπ denote the twisted augmentation
ideal, i.e. the kernel of the twisted augmentation map

εv : Zπ → Zv

sending g ∈ π to v(g). When v is the constant map to 1 ∈ C2, we use the symbol Iπ for the
(untwisted) augmentation ideal.

We will use the following elementary lemma several times, so we record it here.

Lemma 3.2. Let π be a group and let w : π → C2 be a homomorphism. The map

ω : Zπ −→ Zπ;
∑
g∈π

ngg 7→
∑
g∈π

w(g)ngg. (3.3)

induces a left Zπ-module isomorphism ω : Zπw
∼=−→ Zπ.

3.1. A general result on π2(M). We start this section by recording the following fact regarding
the stable isomorphism types of second homotopy groups of 4-manifolds. Recall that two 4-manifolds
are said to be CP2-stably homeomorphic if they become homeomorphic after connected sum with
copies of CP2 and CP2.

Lemma 3.4. Let M and M ′ be closed 4-manifolds with fundamental group π and orientation
character w : π → C2, along with classifying maps cM : M → Bπ and cM ′ : M ′ → Bπ (not
necessarily inducing the identity on π1). If (cM )∗([M ]) = (cM ′)∗([M ′]) ∈ H4(π;Zw)/ ± Aut(π),
then π2(M) and π2(M ′) are stably isomorphic as Zπ-modules.

Proof. By [Kre99Kre99] (see also [KPT22KPT22, Theorem 1.2, Section 1.5]), in the case that (cM )∗[M ] =
(cM ′)∗[M ′] ∈ H4(π;Zw)/± Aut(π), the manifolds M and M ′ are CP2-stably homeomorphic if and
only if they have equal Kirby–Siebenmann invariants. In other words, possibly after connected sum
with a copy of ⋆CP2, they become CP2-stably homeomorphic. Connected sum with CP2, CP2, or
⋆CP2 changes the second homotopy group by direct sum with Zπ. This completes the proof. □

3.2. Irreducible 3-manifold groups. In this section we study π2(M) for 4-manifolds M such
that π1(M) is either Z × Z/2, infinite cyclic, a finite 3-manifold group, or a PD3-group. We will
consider these cases individually.

In the following special case of [HK88HK88, Proposition 2.4; Ham09Ham09, Theorem 4.2; KPT22KPT22, Proposition
1.10], we use the fact that H4(π;Z) = 0 for the group π in the statement. When π is a torsion-free
3-manifold group this follows from the fact that the cohomological dimension cdπ ≤ 3.

Lemma 3.5 ([HK88HK88,Ham09Ham09,KPT22KPT22]). Let M be a closed 4-manifold such that π = π1(M) is cyclic
or a torsion-free 3-manifold group and let w : π → C2 be the orientation character of M . Assume
that w is trivial if π is finite cyclic. Let F d2−→ G↠ Iπ be a presentation for the augmentation ideal
Iπ and write d†

2 : G† −→ F † for the dual map, where F and G are free Zπ-modules. Recall that here
we use the involution g 7→ w(g)g−1 to turn G† and F † into left modules. Then π2(M) is stably
isomorphic to ker(d2) ⊕ coker(d†

2).

Recall that an R-module A is said to be stably free if there exist m,n ≥ 0 such that A⊕Rn ∼= Rm.

Lemma 3.6. Let M be a closed 4-manifold with infinite cyclic fundamental group. Then π2(M) is
free.
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Proof. The augmentation ideal IZ is free as a Z[Z]-module. Then 0 → IZ Id−→ IZ is a presentation
for IZ, and hence π2(M) is stably free by Lemma 3.53.5. For every k, any projective Z[Zk]-module is
free [Swa78Swa78, Theorem 1.1], see also [Lam06Lam06, Corollary V.4.12]. Hence π2(M) is free as claimed. □

For 4-manifolds with fundamental group a finite 3-manifold group, we have the following special
case of [HK88HK88, Remark 2.5]. The application requires the fact that an arbitrary finite 3-manifold
group has 4-periodic cohomology and that for finite 3-manifold groups the projective modules Pi in
[HK88HK88, Remark 2.5] can be chosen to be free.

Lemma 3.7 ([HK88HK88]). Let π be a finite 3-manifold group. Let M be a closed, orientable 4-manifold
with fundamental group π. Then π2(M) is stably isomorphic to Iπ ⊕ HomZ(Iπ,Z).

In the special case of an orientable 4-manifold with finite cyclic fundamental group π, we deduce
that π2(M) is isomorphic to Iπ ⊕ Iπ, as we see next.

Lemma 3.8. For the group π := Z/n, the dual HomZ(Iπ,Z) = Iπ∗ of the augmentation ideal Iπ
is isomorphic to Iπ. In particular, for a closed, orientable 4-manifold M with fundamental group π,
the second homotopy group π2(M) is stably isomorphic to Iπ ⊕ Iπ.

Proof. Let π := Z/n = ⟨T | Tn⟩. Dualise the sequence 0 → Iπ → Zπ ε−→ Z → 0, where ε : Zπ → Z
is the augmentation map, to obtain

(Z ∼= HomZ(Z,Z)) N−→ (HomZ(Zπ,Z) ∼= Zπ) → HomZ(Iπ,Z) → Ext1
Z(Z,Z) = 0.

It follows that the cokernel of the norm map Z N−→ Zπ sending 1 7→ 1 +T + · · · +Tn−1 is isomorphic
to HomZ(Iπ,Z). From the short exact sequence

0 → Z N−→ Zπ 1−T−−−→ Zπ ε−→ Z,

we see that HomZ(Iπ,Z) ∼= Zπ/ ImN ∼= Zπ/ ker(1 − T ) ∼= Im(1 − T ) ∼= ker ε = Iπ, as needed. The
second statement now follows from Lemma 3.73.7 since Z/n is a finite 3-manifold group. □

The analogues of the previous lemmas do not hold for nonorientable 4-manifolds as can be seen
by considering RP4. This is a further reason that we restrict ourselves in Theorem 1.41.4 to cases
where the orientation character is trivial on the finite cyclic subgroups.

Lemma 3.9. Let π = Z × Z/2 = ⟨t, T | [T, t], T 2⟩ and let v′ : π → C2 be given by v′(t) = 1 and
v′(T ) = −1. Let M be a closed 4-manifold with fundamental group π and orientation character w
such that w(T ) = 1. Let v := wv′. Let c : M → Bπ induce an isomorphism on fundamental
groups. Then π2(M) is stably free if c∗([M ]) ̸= 0 in H4(π;Zw) ∼= Z/2 and otherwise π2(M) is
stably isomorphic to Iπ ⊕ Iπv if c∗([M ]) = 0.

Proof. By Lemma 3.43.4, for a fixed w, the stable isomorphism class of π2(M) only depends on c∗[M ].
By [KPT21KPT21, Lemma 7.5], the module π2(M) is stably free if c∗[M ] ̸= 0 and w is trivial. For

w(t) = −1, the same holds, because we can construct a model with trivial π2, as follows. Let
τ : RP3 → RP3 be an orientation reversing self-homeomorphism, e.g. induced by reflection across
the equator of S3. Then the mapping torus Tτ of τ has orientation character w and c∗[Tτ ] ̸= 0.
Also it has trivial π2, by the long exact sequence of the fibration RP3 → Tτ → S1. It follows that
π2(M) is stably free for all 4-manifolds with orientation character w and c∗[M ] ̸= 0, as needed.

In [KPT22KPT22, Section 5], it was shown that if c∗[M ] = 0, then π2(M) is stably isomorphic to
ker d2 ⊕ coker d2

w, where (C∗, d∗) is the standard 2-periodic free Zπ-module resolution of Z:

· · · Zπ Zπ Zπ Zπ Z

⊕ ⊕ ⊕

· · · Zπ Zπ Zπ

1−T

d3

1+T

d2

1−T

d1

ε

1+T
1−t

1−T
t−

1
1−t

and d2
w denotes the cochain map from the cochain complex HomZπ(C∗,Zπw).

The summand ker d2 is independent of w, and as in [KPT21KPT21, Lemma 7.11] we have

ker d2 ∼= Im d3 ∼= C3/ ker d3 ∼= C3/ Im d4 ∼= C1/ Im d2 ∼= C1/ ker d1 ∼= Im d1 ∼= Iπ.
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The map d2
w is given by

Zπ Zπ

⊕ ⊕

Zπ Zπ.

1−T

1+T
1−w

(t)
t

We show that the cokernel of this map is Iπv. Recall the Zπ-module isomorphism Zπv
∼=−→ Zπ

from Lemma 3.23.2. Tensoring the above free resolution of Z with Zπv over Zπ and applying this
isomorphism, we obtain the free resolution

· · · Zπ Zπ Zπ Zπ Zv.

⊕ ⊕ ⊕

· · · Zπ Zπ Zπ

1+T

dv3

1−T

dv2

1+T

dv1

εv

1−T
1−w

(t)
t

1+T
w

(t)
t−

1

1−w
(t)
t

Thus we have

coker d2
w

∼= coker dv2 ∼= C1/ Im dv2
∼= C1/ ker dv1 ∼= Im dv1

∼= ker εv =: Iπv.

So π2(M) is stably isomorphic to Iπ ⊕ Iπv, as required. □

Finally we consider the case of PD3-groups. Below note that since any two aspherical PD3-
complexes with the same fundamental group are homotopy equivalent, the orientation character for
a PD3 group is well-defined. Also note that in this case the orientation character is determined by
π, via the natural right action of π on H3(π;Zπ) ∼= Z. Hence v′ in the next lemma is defined in
terms of π.

Lemma 3.10. Let π be a PD3-group. Let M be a closed 4-manifold with fundamental group π and
orientation character w : π → C2. Let v′ be the orientation character of the aspherical PD3-complex
associated to π. Let v := wv′. Then π2(M) is stably isomorphic to Iπv.

Proof. Let X be an aspherical PD3-complex with fundamental group π. We can assume that X
has a single 0- and 3-cell. Consider the cellular Zπ-chain complex

C3(X̃) d3−→ C2(X̃) d2−→ C1(X̃) d1−→ C0(X̃)

of X. Since X is aspherical, C1/ Im d2 ∼= C1/ ker d1 ∼= Im d1 = ker ε = Iπ, and so d2 is a
presentation homomorphism of Iπ. Moreover ker d2 = C3(X̃) is free. By Lemma 3.53.5, π2(M) is
stably isomorphic to coker d†

2. Since X is a PD3-complex with orientation character v′, d†
2 is a

presentation homomorphism for Iπv by Poincaré duality. It follows that π2(M) is stably isomorphic
to Iπv. □

Corollary 3.11. Let π be a PD3-group. Let M be a closed 4-manifold with fundamental group π.
Then π2(M)† is finitely generated and stably free.

Proof. First note that π2(M) is finitely generated as a Zπ-module. Let w : π → C2 be the orientation
character of M and let v′ be the orientation character of the aspherical PD3-complex associated
to π. By Lemma 3.103.10, π2(M) is stably isomorphic to the twisted augmentation ideal Iπv, where
v := wv′. Hence it suffices to show that (Iπv)† is finitely generated and free. Dualising the short
exact sequence Iπv → Zπ → Zv, we obtain the exact sequence

(Zv)† → (Zπ)† → (Iπv)† → Ext1
Zπ(Zv,Zπ).

Since π is infinite, (Zv)† = 0. Furthermore we have

Ext1
Zπ(Zv,Zπ) ∼= H1(π;Zπv) ∼= H2(π;Zπvv

′
) = 0.

Here we used that Zπvv′ = Zπw is a free Zπ-module, because it is isomorphic to Zπ via the map ω
from (3.33.3). Hence (Iπv)† ∼= (Zπ)† is finitely generated and free, as required. □
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3.3. 3-manifold groups that are free products. Now we start considering π2(M) in the case
that π1(M) is a 3-manifold group that is a nontrivial free product. The first few results hold
generally, but we quickly specialise to the case that the pair (π1(M), wM ) is admissible, as in
Theorem 1.41.4.

Lemma 3.12. Let G and H be finitely presented groups. Let w : G → C2 and w′ : H → C2 be
homomorphisms. Then the twisted augmentation ideal I(G ∗H)w∗w′ of G ∗H is isomorphic to the
direct sum IndG∗H

G IGw ⊕ IndG∗H
H IHw′ .

Proof. Choose a model for BG and tensor its ZG-chain complex with ZGw over ZG to obtain a
free resolution

· · · → CG,w2
dG,w

2−−−→ CG,w1
dG,w

1−−−→ ZGw εG,w

−−−→ Zw.
Similarly, a model for BH gives a free resolution

· · · → CH,w
′

2
dH,w′

2−−−−→ CH,w
′

1
dH,w′

1−−−−→ ZH εH,w′

−−−→ Zw
′
.

Here the module homomorphism εG,w : ZGw → Zw is the unique left Zπ-module homomorphism
sending 1 7→ 1, which sends

∑
ngg 7→

∑
ng. It factors as

εG,w : Zπw ω,∼=−−→ Zπ εw−−→ Zw,
using the left Zπ-module isomorphism ω from Lemma 3.23.2 and the map εw from Definition 3.13.1. It
follows that ω induces a left Zπ-module isomorphism ker εG,w ∼= ker εw = IGw. So by exactness
IGw ∼= ker εG,w ∼= coker(dG,w2 ) and IHw′ ∼= ker εH,w′ ∼= coker(dH,w

′

2 ).
Write π := G ∗H. The space BG ∨BH is a model for B(G ∗H). So we can take its Zπ-chain

complex and tensor with Zπw∗w′ over Zπ (which does not affect exactness) to obtain a free resolution
of Zw∗w′ . To compare it with the previous resolutions for G and H, we need the following.

For every ZG-module A, there is an isomorphism IndπG(A)w∗w′ ∼= IndπG(Aw) given by γ ⊗ a 7→
(w ∗ w′)(γ)γ ⊗ a for all γ ∈ π and a ∈ A. Similarly, IndπH(A′)w∗w′ ∼= IndπH((A′)w′) for every
ZH-module A′. To use this consider

C∗(Bπ;Zπ) ∼= C∗(BG ∨BH;Zπ) ∼= IndπG CG∗ ⊕ IndπH CH∗ .
Tensoring with Zπw∗w′ over Zπ yields

(IndπG CGi )w∗w′
⊕ (IndπH CHi )w∗w′ ∼= IndπG C

G,w
i ⊕ IndπH C

H,w′

i .

Hence the Zπ-chain complex of BG ∨BH tensored with Zπw∗w′ over Zπ gives the free resolution

· · · → IndπG C
G,w
2 ⊕ IndπH C

H,w′

2
Indπ

G dG,w
2 ⊕Indπ

H dH,w′
2−−−−−−−−−−−−−−−→ IndπG C

G,w
1 ⊕ IndπH C

H,w′

1

Indπ
G dG,w

1 +Indπ
H dH,w′

1−−−−−−−−−−−−−−−→ Zπw∗w′ επ,w∗w′

−−−−−→ Zw∗w′
.

Hence by exactness

I(G ∗H)w∗w′ ∼= Iπw∗w′ ∼= coker(IndπG d
G,w
2 ⊕ IndπH d

H,w′

2 ) ∼= IndπG coker(dG,w2 ) ⊕ IndπH coker(dH,w
′

2 )
∼= IndπG IGw ⊕ IndπH IHw′ ∼= IndG∗H

G IGw ⊕ IndG∗H
H IHw′

as desired. □

We will use the following useful fact several times, which is due to the first-named author [Hil95Hil95];
an alternative proof was given later in [KLT95bKLT95b]. When Lemma 3.133.13 applies we say that M stably
splits as a connected sum.

Lemma 3.13 ([Hil95Hil95]). Let M be a closed 4-manifold and suppose that π1(M) ∼= ∗ni=1Gi. Then up
to connected sum with copies of S2 × S2, M is homeomorphic to a connected sum of 4-manifolds
#n
i=1Mi with fundamental groups π1(Mi) ∼= Gi.

The previous lemma is helpful since for a connected sum M1#M2 of manifolds M and N , we
have that

π2(M1#M2) ∼= Indπ1(M1)∗π1(M2)
π1(M1) π2(M1) ⊕ Indπ1(M1)∗π1(M2)

π1(M2) π2(M2). (3.14)
Therefore, for a 4-manifold M with π1(M) = π, connected sum with S2 ×S2 adds copies of Zπ⊕Zπ
to the second homotopy group, so the stable isomorphism type does not change.
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For the remainder of this section, let (π,w) be admissible, with π a 3-manifold group and w
an orientation character. Then, by the prime decomposition theorem for 3-manifolds, there is a
decomposition of the form

π ∼= F ∗
(

∗ri=1 Zi
)

∗
(

∗sj=1 Gj
)

∗
(

∗tk=1 Hk

)
, (3.15)

for some r, s, t ≥ 0, with F a free group, Zi a finite cyclic group for each i, Gj a PD3-group for
each j and Hk

∼= Z × Z/2 for each k.
In the following proposition, and elsewhere, we will use that for either admissible w : Z × Z/2 ∼=

H → C2, we have H4(H;Zw) ∼= Z/2. When w is trivial, this is straightforward to see from
the Künneth theorem. When w is nontrivial, this can be obtained by writing out the standard
ZH-module resolution of Z, tensoring with Zw, and computing the homology.

Proposition 3.16. Fix a decomposition for π as in (3.153.15). Let M be a closed 4-manifold with
fundamental group π and orientation character w : π → C2 such that (π,w) is admissible. By
reordering the factors of π if needed, we assume that there exists 0 ≤ t′ ≤ t such that the image of
the fundamental class [M ] in

H4(π;Zw) ∼=
t⊕

k=1
H4(Hk;Zw) ∼= (Z/2)t

is trivial in the first t′ summands and nontrivial for k > t′. Then π2(M) is stably isomorphic to
IndπΓ IΓv ⊕ IndπΓ′ IΓ′,

where
Γ =

(
∗ri=1 Zi

)
∗

(
∗sj=1 Gj

)
∗

(
∗t

′

k=1 Hk

)
(3.17)

and
Γ′ =

(
∗ri=1 Zi

)
∗

(
∗t

′

k=1 Hk

)
(3.18)

are subgroups of π in the canonical way. Here v = wv′ : Γ → C2, where v′ is trivial on each
Zi, is the projection onto the second factor on Z × Z/2 (followed by the canonical isomorphism
Z/2 → C2), and on each Gj factor it is the orientation character uj of the aspherical PD3-complex
with fundamental group Gj.

Proof. By Lemma 3.133.13, M is stably homeomorphic to

MF#
( r

#
i=1

MZi

)
#

( s

#
j=1

MGj

)
#

( t

#
k=1

MHk

)
,

where each of MF , MZi , MGj , and MHk has fundamental group F , Zi, Gj , and Hk, respectively.
Therefore, we know that π2(M) is stably isomorphic to

IndπF π2
(
MF

)
⊕

r⊕
i=1

IndπZi
π2

(
MZi

)
⊕

s⊕
j=1

IndπGj
π2

(
MGj

)
⊕

t⊕
k=1

IndπHk
π2

(
MHk

)
. (3.19)

Next we will consider each summand individually.
By Lemmas 3.63.6 and 3.133.13, and using (3.143.14), we see that π2(MF ) is stably free. The induction is

also stably free, so up to stable isomorphism, the first summand can be ignored.
By Lemma 3.83.8 we know that each π2(MZi) is stably isomorphic to IZi ⊕ IZi. Similarly, by

Lemma 3.103.10, each π2(MGj ) is stably isomorphic to IGvj

j , where vj = wuj : Gj → C2 and uj is the
orientation character of the aspherical PD3-complex with fundamental group Gj . The MHk factors
are slightly more complicated. We saw in Lemma 3.93.9 that π2(MHk ) is isomorphic to IHk ⊕ IHu

k ,
with u = wu′ and u′ the projection onto the second factor of Hk = Z × Z/2, followed by the
isomorphism Z/2

∼=−→ C2, in the case of k ≤ t′, or π2(MHk ) is stably free for t ≥ k > t′. Applying
these facts to (3.193.19), we see that π2(M) is stably isomorphic to

r⊕
i=1

IndπZi
(IZi ⊕ IZi) ⊕

s⊕
j=1

IndπGj
IG

vj

j ⊕
t′⊕
k=1

IndπHk
(IHk ⊕ IHu

k ) (3.20)

∼=
r⊕
i=1

IndπZi
IZi ⊕

r⊕
i=1

IndπZi
IZi ⊕

s⊕
j=1

IndπGj
IG

vj

j ⊕
t′⊕
k=1

IndπHk
IHk ⊕

t′⊕
k=1

IndπHk
IHu

k .
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Here we use that the induction of a direct sum is the direct sum of the inductions. We claim
that this decomposition equals IndπΓ IΓv ⊕ IndπΓ′ IΓ′. To see this, start with each of IndπΓ IΓv and
IndπΓ′ IΓ′, and apply Lemma 3.123.12 iteratively, splitting off one factor at a time in the free product
(3.173.17) or (3.183.18) respectively. Use that IndπK IndKH = IndπH for subgroups H ≤ K ≤ π. This shows
that

IndπΓ IΓv ∼=
r⊕
i=1

IndπZi
IZi ⊕

s⊕
j=1

IndπGj
IG

vj

j ⊕
t′⊕
k=1

IndπHk
IHu

k ,

by definition of v. Similarly, we see that

IndπΓ′ IΓ′ ∼=
r⊕
i=1

IndπZi
IZi ⊕

t′⊕
k=1

IndπHk
IHk.

To complete the proof note that each summand of (3.203.20) appears precisely once as a summand of
precisely one of IndπΓ IΓv or IndπΓ′ IΓ′. □

Corollary 3.21. Let π be a torsion-free 3-manifold group. Let M be a closed 4-manifold with
fundamental group π and orientation character w : π → C2 such that (π,w) is admissible. Then
π2(M) is stably isomorphic to Iπv where v is defined as follows. Since π is torsion-free, there is
a decomposition π ∼= F ∗ (∗sj=1Gj), where F is a free group and each Gj is a PD3-group. Then
we have v = wv′ : π → C2, where v′ is trivial on F , and on each Gj factor it is the orientation
character uj of the aspherical PD3-complex with fundamental group Gj.

Proof. By Proposition 3.163.16, π2(M) is stably isomorphic to IndπΓ IΓv, where Γ = ∗sj=1Gj . Since
IF ∼= ZF , IndπΓ IΓv is stably isomorphic to Iπv by Lemma 3.123.12. □

3.4. The second homotopy group π2(M) determines the image of the fundamental class
in H4(π;Zw). We conclude the section with a result showing that the image c∗([M ]) ∈ H4(π;Zw)
of the fundamental class in the group homology is determined by the stable isomorphism class
of π2(M), for a map c : M → Bπ inducing an isomorphism on fundamental groups. We obtain a
corollary (Corollary 3.233.23) that we will use in the proof of Theorem 1.41.4 in Section 99 in order to be
able to apply Property 4HL; see Section 88 for details on the latter.

Proposition 3.22. Fix a decomposition for π as in (3.153.15). Let M be a closed 4-manifold with
fundamental group π and orientation character w : π → C2 such that (π,w) is admissible. Let
c : M → Bπ be a continuous map inducing the identity on fundamental groups. By reordering
the factors of π if needed, we assume that there exists t′ ≤ t such that c∗([M ]) in H4(π;Zw) ∼=⊕t

k=1 H4(Hk;Zw) ∼= (Z/2)t is trivial in the first t′ summands and nontrivial for k > t′.
Then HomZπ(π2(M),ZHk) is stably free as a ZHk-module if and only if k > t′. Here the π-action

on ZHk is given by the projection to Hk and left multiplication.

Proof. By Proposition 3.163.16 we know that π2(M) is stably isomorphic to

IndπΓ IΓv ⊕ IndπΓ′ IΓ′,

where
Γ =

(
∗ri=1 Zi

)
∗

(
∗sj=1 Gj

)
∗

(
∗t

′

k=1 Hk

)
and

Γ′ =
(

∗ri=1 Zi
)

∗
(

∗t
′

k=1 Hk

)
are subgroups of π in the canonical way. Here v = wv′ : Γ → C2, where v′ is trivial on each Zi, is
the projection onto the second factor on Z × Z/2 followed by an isomorphism Z/2

∼=−→ C2, and on
the Gj it is the orientation character of the aspherical PD3-complex with fundamental group Gj .
Then, for each k, the module HomZπ(π2(M),ZHk) is stably isomorphic to

HomZπ(IndπΓ IΓv ⊕ IndπΓ′ IΓ′,ZHk) ∼= HomZπ(IndπΓ IΓv,ZHk) ⊕ HomZπ(IndπΓ′ IΓ′,ZHk).

Let us consider the two summands separately. We know by iteratively applying Lemma 3.123.12 that

IndπΓ IΓv ∼=
⊕

L a factor
of Γ in (3.173.17)

IndπL ILv.
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Then, by adjunction, for each k the module HomZπ(IndπΓ IΓv,ZHk) is isomorphic to⊕
L a factor

of Γ

HomZL(ILv,ResπL ZHk).

Similarly, using Lemma 3.123.12 and adjunction, HomZπ(IndπΓ IΓ′,ZHk) is isomorphic to⊕
L′ a factor

of Γ′

HomZL′(IL′,ResπL′ ZHk).

By hypothesis the π action on ZHk is given by projection to Hk. Therefore,

ResπL ZHk =
{
Z ⊗Z ZHk, if L ̸= Hk

ZHk, if L = Hk.

Here we write Z⊗Z ZHk to emphasise that the L action on ZHk is trivial when L ≠ Hk. Therefore
in the case that k > t′, the module HomZπ(π2(M),ZHk) is stably isomorphic to a direct sum
of copies of ZHk ⊗Z HomZL(ILv,Z) ∼= HomZL(ILv,Z ⊗Z ZHk) and ZHk ⊗Z HomZL′(IL′,Z) ∼=
HomZL′(IL′,Z ⊗Z ZHk), which are both free, as needed. On the other hand, if k ≤ t′, then
HomZπ(π2(M),ZHk) is stably isomorphic to HomZHk

(IHv
k ,ZHk) ⊕ HomZHk

(IHk,ZHk). The
proof will be completed by showing that the latter is not a free module.

From [KPT21KPT21, Lemma 7.14] we know that HomZHk
(IHk,ZHk) ∼= IHv

k . We will show that IHv
k

is not projective, which implies that HomZHk
(IHv

k ,ZHk)⊕HomZHk
(IHk,ZHk) is not free. Suppose

that IHv
k were projective. Then IHv

k → ZHk → Zv is a projective resolution for Zv, implying that
Hi(Hk;Zv) = 0 for all i > 1. This is a contradiction since Hk = Z × Z/2, and its group homology
with Zv coefficients can be computed by hand, writing out a 2-periodic free resolution and tensoring
with Zv. This completes the proof. □

Corollary 3.23. Let π be a 3-manifold group and let w : π → C2 be a homomorphism such that
(π,w) is admissible. Let M and M ′ be closed 4-manifolds with fundamental group π, and common
orientation character w : π → C2. Let c : M → Bπ and c′ : M ′ → Bπ be maps inducing the given
identifications π1(M) ∼= π and π1(M ′) ∼= π. Suppose that M and M ′ have isomorphic quadratic
2-types. Then c∗([M ]) − (c′)∗([M ′]) = 0 ∈ H4(π;Zw).

As in Propositions 3.163.16 and 3.223.22, H4(π;Zw) ∼=
⊕

tH4(Hk;Zw) ∼= (Z/2)t. By Proposition 3.223.22,
the image c∗[M ] is nontrivial in the kth summand if and only if HomZπ(π2(M),ZHk) is stably free.

Proof. Since M and M ′ have isomorphic quadratic 2-types, in particular π2(M) ∼= π2(M ′),
and hence for each Hk factor of π, we know HomZπ(π2(M),ZHk) is stably free if and only if
HomZπ(π2(M ′),ZHk) is stably free. Hence by Proposition 3.223.22 the images c∗([M ]) and (c′)∗([M ′])
agree in H4(π;Zw), and so their difference vanishes. □

4. P2FA and P2FA∗ groups

The main goal of this section is to prove Proposition 4.104.10, showing that if a 4-manifold M has a
3-manifold group as fundamental group, then π2(M) is free an abelian group. We do not need to
restrict to admissible (π,w) here. We begin by introducing a relevant property of groups.

Definition 4.1. Let π be a finitely presented group.
(i) A group π is P2FA if, for all closed 4-manifolds M with fundamental group π and for all

orientation characters, π2(M) is free as an abelian group.
(ii) Further, a P2FA group is said to be P2FA∗ if π2(M)† is free as an abelian group for all

closed 4-manifolds M with fundamental group π and for all orientation characters.

The following exact sequence will be useful in the proof of the next lemma.

Remark 4.2. By the universal coefficient spectral sequence [Lev77Lev77, Theorem 2.3], the sequence

0 → H2(π;Zπ) c∗

−→ H2(X;Zπ) ev−→ H2(X;Zπ)† → H3(π;Zπ) c∗

−→ H3(X;Zπ) (4.3)

is exact for any space X and any 2-connected map c : X → Bπ; see e.g. [Hil02Hil02, Lemma 3.3] or
[KPT21KPT21, Proposition 3.3] for the derivation.
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If X is a 3-manifold with fundamental group π and orientation character w, then H2(X;Zπ) ∼=
H1(X;Zπw) = 0 by Poincaré duality. In this case, it follows from the exactness of (4.34.3) that
H2(π;Zπ) = 0. If X = M is a 4-manifold then H3(M ;Zπ) = 0, by Poincaré duality.

Lemma 4.4. A group π is P2FA if and only if H2(π;Zπ) is free as an abelian group.

It is not known whether H2(π;Zπ) is free as an abelian group for every finitely presentable
group π. There are finitely generated groups for which H2(π;Zπ) is not free [Geo08Geo08, Chapter 13].

Proof. By (4.34.3), H2(π;Zπ) is a subgroup of H2(M ;Zπ) ∼= H2(M ;Zπw), which is isomorphic to
π2(M) as an abelian group. So if π is P2FA, then H2(π;Zπ) is free as an abelian group.

For the converse, let (C∗, d∗) be a free resolution of Z as a Zπ-module. Let M be a closed
4-manifold with fundamental group π. By [HK88HK88, Proposition 2.4; Ham09Ham09, Theorem 4.2; KPT22KPT22,
Proposition 1.10], π2(M) is stably an extension of ker d2 and coker d2. The module ker d2 is always
free as an abelian group since it is a submodule of the free module C2. The extension

0 → ker d3/ Im d2 → C2/ Im d2 → C2/ ker d3 → 0,

together with the fact that C2/ ker d3 ∼= Im d3, gives rise to the extension

0 → H2(C∗) → coker d2 → Im d3 → 0. (4.5)

Since Im d3 is also a submodule of the free module C3, it is free as an abelian group, and so coker d2,
and hence π2(M), is free as an abelian group if and only if H2(C∗) ∼= H2(π;Zπ) is free as an
abelian group. □

Recall that a group π is said to be FPn if there is a resolution of Z by Zπ-modules such that
the first n terms are finitely generated projective modules, and that π is FP if there is a resolution
with nonzero groups in only finitely many degrees.

Lemma 4.6. Let π be a P2FA group. Suppose that H3(π;Zπ) is free as an abelian group or that π
is FP3. Then π is P2FA∗.

Proof. Let M be a closed 4-manifold with fundamental group π. Then M is homotopy equivalent
to a finite 4-dimensional CW complex X (see [FNOP25FNOP25, Theorem 3.17] for references). We first
assume that π is FP3. Then there is a resolution (P∗, d

π
∗ ) with Pi a finitely generated projective

Zπ-module for i ≤ 3. In particular ker dπ2 = Im dπ3 is finitely generated. Let C∗ = (C∗(X;Zπ), dX∗ )
be the cellular chain complex of the universal cover of X, considered as a complex of finitely
generated free left Zπ-modules. Since 0 → ker dπ2 → P2 → P1 → P0 → Z → 0 and 0 → ker dX2 →
C2 → C1 → C0 → Z → 0 are both exact, with ker dπ2 , Pi, and Ci finitely generated, it follows from
Schanuel’s lemma that ker dX2 is finitely generated. Hence π2(M) ∼= H2(M ;Zπ) ∼= H2(C∗) is finitely
generated as a Zπ-module. Let k be such that π2(M) is a quotient of (Zπ)k. Then by left exactness
π2(M)† is a subgroup of ((Zπ)k)† ∼= (Zπ)k, so is free as an abelian group. Thus π is P2FA∗.

Now we assume that H3(π;Zπ) is free as an abelian group. As above, let C∗ = (C∗(X;Zπ), dX∗ )
be the cellular chain complex of the universal cover of X, where X is a finite 4-dimensional CW
complex homotopy equivalent to M . Let K := X(2) be the 2-skeleton of X, and consider a CW
model for Bπ with 2-skeleton K. Let (Cπ∗ , dπ∗ ) be the free resolution of Z as a Zπ-module obtained
from the cellular chain complex of Eπ. Let c : X → Bπ be a map that is the inclusion K → Bπ on
the 2-skeleton. Then c induces a map of the chain complexes that is the identity in degrees up to
two. There is a short exact sequence

0 → ker d3
X

(p,i)−−−→ (ker d3
X/ Im d2

X) ⊕ C2 j−q−−→ coker d2
X → 0,

where i, j, p, and q are the canonical inclusion and projection maps. Using that d2
π = d2

X , this fits
into the following commutative diagram, where j′, p′, q′, and all unlabelled arrows are again the
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canonical inclusion and projection maps.

0

ker d3
π/ Im d2

X ker d3
π/ Im d2

X

0 ker d3
X (ker d3

X/ Im d2
X) ⊕ C2 coker d2

X 0

0 ker d3
X (ker d3

X/ ker d3
π) ⊕ C2 C2/ ker d3

π 0

0 0

=

(c∗,0)

(p,i)

=

j−q

(p′,i) j′−q′

Since ker d3
X ⊆ C2 and C2/ ker d3

π
∼= Im d3

π ⊆ C3
π are free as abelian groups, it follows from the

bottom exact sequence that (ker d3
X/ ker d3

π) ⊕ C2 is free as an abelian group. The middle vertical
sequence identifies this term with coker c∗ ⊕ C2. Hence coker c∗ is free as an abelian group.

By (4.34.3) we have the short exact sequence

0 → coker c∗ → H2(M ;Zπ)† → H3(π;Zπ) → 0.

Hence H2(M ;Zπ)† is free as an abelian group if H3(π;Zπ) is free as an abelian group. □

Corollary 4.7. Suppose that π is a PDn-group for some n. Then π is P2FA∗. In particular, the
trivial group, Z, and all PD3-groups are P2FA∗.

Proof. If π is a PDn-group, then Hk(π;Zπ) ∼= Hn−k(π;Zπ) ∈ {0,Z} is free as an abelian group
for all k. Thus π is P2FA by Lemma 4.44.4 and is P2FA∗ by Lemma 4.64.6. □

Let π be a finitely presented group. Recall that for G ≤ π and a ZG-module A, we denote the
module HomZG(A,ZG) by A⋆. As usual, for a Zπ-module A, we denote the module HomZπ(A,Zπ)
by A†.

Lemma 4.8. Let π be a finitely presented group, and let G ≤ π be a subgroup, let A be a ZG-module,
and let w : π → C2 be a homomorphism. Then the map

α : IndπG(A⋆) → (IndπGA)†

γ ⊗ f 7→
(
γ ⊗ a 7→ γf(a)γ

)
is an isomorphism. As usual, we view (IndπGA)† as a left module using the involution γ 7→ γ =
w(γ)γ−1.

Proof. The map α is the composition

IndπG(A⋆) HomZG(A,ZG) ⊗ZG Zπ HomZG(A,ZG⊗ZG Zπ) (IndπGA)†

γ ⊗ f (a 7→ f(a)) ⊗ γ (a 7→ f(a) ⊗ γ) (γ ⊗ a 7→ γf(a)γ).

∼= ∼= ∼=

Here the first isomorphism follows from the definition, switching the left module structure to a right
module structure using the involution on Zπ. The second isomorphism uses the fact that Zπ is a
free ZG-module. The third isomorphism uses adjunction, and can be factored into the following
three isomorphisms:

(IndπGA)† ∼= HomZπ(IndπGA,Zπ) ∼= HomZG(A,ResπG Zπ) ∼= HomZG(A,ZG⊗ZG Zπ). □

Lemma 4.9. Let Y be an orientable 3-manifold and let π := π1(Y ). By the prime decomposition
theorem for orientable 3-manifolds, π ∼=

(
∗ki=1 Li

)
∗

(
∗sj=1 Gj

)
, for some k, s, where each Li

is infinite cyclic or finite, and each Gj is a PD3-group. Then H3(π;Zπ) ∼= ⊕s
j=1Ej, where

Ej := Zπ ⊗ZGj
Z = IndπGj

(Z).
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Proof. The classifying space Bπ splits as a wedge of the classifying spaces BLi and BGj . A
Mayer–Vietoris argument therefore shows that

H3(π;Zπ) ∼=
k⊕
i=1

H3(Li; ResπLi
Zπ) ⊕

s⊕
j=1

H3(Gj ; ResπGj
Zπ)

∼=
k⊕
i=1

H3(
Li;

⊕
π/Li

ZLi
)

⊕
s⊕
j=1

H3(
Gj ;

⊕
π/Gj

ZGj
)

∼=
k⊕
i=1

⊕
π/Li

H3(Li;ZLi) ⊕
s⊕
j=1

⊕
π/Gj

H3(Gj ;ZGj).

For each i, j, we have H3(Li;ZLi) = 0 and H3(Gj ;ZGj) ∼= Z, and so

H3(π;Zπ) ∼=
s⊕
j=1

⊕
π/Gj

Z ∼=
s⊕
j=1

(Zπ ⊗ZGj
Z) =

s⊕
j=1

Ej

as required. □

Finally we prove the main result of this section showing that 3-manifold groups are P2FA∗.

Proposition 4.10. Every 3-manifold group is P2FA∗.

Proof. Let π be the fundamental group of a 3-manifold Y . Then H2(π;Zπ) = 0 by Remark 4.24.2,
so π is P2FA by Lemma 4.44.4. Let π′ := π1(Ŷ ), where Ŷ is the orientation double cover of Y . By
Shapiro’s lemma, H3(π;Zπ) ∼= H3(π′;Zπ′) as Zπ′-modules, and thus in particular as abelian groups.
By Lemma 4.94.9, H3(π′;Zπ′) is free as an abelian group, and hence so is H3(π;Zπ). It now follows
that π is P2FA∗ by Lemma 4.64.6. □

By Proposition 4.104.10, Theorem 1.41.4 (11) holds for the 4-manifolds considered in Theorem 1.41.4, and
the map BH2(M ;Zπ) is defined. For these inferences we only need that 3-manifold groups are P2FA.
We will use the fact that they are moreover P2FA∗ later in Lemma 5.45.4.

5. Injectivity of ev∗

For this section, fix a finitely presented group π, a map w : π → C2, and a connected CW
complex B with fundamental group π. We consider the map

ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ)),

induced by the evaluation map ev : H2(B;Zπ) → H2(B;Zπ)†. The following lemma gives a
general method for showing that ev∗ is injective. Recall that ev∗ being injective is condition (44)
of Theorem 2.42.4.

Lemma 5.1. If H3(π;Zπ) = 0, then ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ)) is injective.

Proof. As in (4.34.3), the universal coefficient spectral sequence gives the exact sequence

H2(π;Zπ) → H2(B;Zπ) ev−→ H2(B;Zπ)† → H3(π;Zπ).

Since we assume H3(π;Zπ) = 0, the map ev is surjective. We show this implies the induced map

ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ))

is injective. Let θ ∈ Herw(H2(B;Zπ)†) be such that ev∗(θ) = 0. In other words, θ(ev(x), ev(y)) = 0
for all x, y ∈ H2(B;Zπ). For any a, b ∈ H2(B;Zπ)†, we have x, y ∈ H2(B;Zπ) with a = ev(x) and
b = ev(y), since ev is surjective. Hence θ(a, b) = θ(ev(x), ev(y)) = 0 as claimed. Thus θ = 0 and
ev∗ is injective. □

Corollary 5.2. If π is virtually free, then ev∗ : Herw(H2(B;Zπ)†) → Herw(H2(B;Zπ)) is injective.

Proof. If π is virtually free then it has a free normal subgroup ρ of finite index, and Hq(π;Zπ) ∼=
Hq(ρ;Zρ) as abelian groups, by Shapiro’s Lemma [Bro94Bro94, p.73]. Since ρ is free these groups are 0
for all q > 1. Hence Lemma 5.15.1 applies. □
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However, for general 3-manifold groups π, it can happen that H3(π;Zπ) ̸= 0. Nonetheless, the
conclusion still holds when B is the Postnikov 2-type of a 4-manifold with 3-manifold fundamental
group, as we show below. In fact we will show in Proposition 5.95.9 that in this case ev∗ is an
isomorphism. For the proof we need the following preliminary results.

Lemma 5.3. Suppose π ∼= G ∗ H and let n > 1. Assume that Hn(G;ZG) = Hn(H;ZH) = 0.
Then Hn(π;Zπ) = 0.

Proof. Since Bπ ≃ BG ∨BH, we can see from the Mayer–Vietoris sequence that

Hn(π;Zπ) ∼= Hn(G; ResπG Zπ) ⊕Hn(H; ResπH Zπ)
∼= Hn

(
G;

⊕
π/G

ZG
)

⊕Hn
(
H;

⊕
π/H

ZH
)

∼=
⊕
π/G

Hn(G;ZG) ⊕
⊕
π/H

Hn(H;ZH) = 0. □

Let π be a group. Recall that, for a Zπ-module A, we denote the module HomZπ(A,Zπ) by A†.
For G ≤ π and a ZG-module A, we denote the module HomZG(A,ZG) by A⋆. In the proof below
we will have two subgroups G,H ≤ π, and we will consider both ZG-duals and ZH-duals. To avoid
a proliferation of symbols, we will use the same notation in both cases.

Lemma 5.4. Let G be a PD3-group and let π = G ∗H for some 3-manifold group H. Let M be a
closed 4-manifold with fundamental group π. Then ResπG

(
π2(M)†)

is projective.

Proof. By Lemma 3.133.13, M is stably homeomorphic to M1#M2 with π1(M1) ∼= G and π1(M2) ∼= H.
Hence π2(M) is stably isomorphic to

IndπG π2(M1) ⊕ IndπH π2(M2).

Therefore, ResπG
(
π2(M)†)

is stably isomorphic to

ResπG
((

IndπG π2(M1)⊕ IndπH π2(M2)
)†

)
∼= ResπG

(
(IndπG π2(M1))†)

⊕ResπG
(
(IndπH π2(M2))†)

(5.5)

We consider the first summand. By Lemma 4.84.8 we have that (IndπG π2(M1))† ∼= IndπG(π2(M1)⋆),
and hence

ResπG(IndπG π2(M1))† ∼= ResπG IndπG(π2(M1)⋆),
where π2(M1)⋆ := HomZG(π2(M1),ZG). By Corollary 3.113.11, π2(M1)⋆ is a stably free ZG-module,
hence ResπG IndπG(π2(M1)⋆) is projective (but not necessarily finitely generated). This deals with
the first summand of (5.55.5), and so it remains to consider ResπG

(
(IndπH π2(M2))†)

.
Again using Lemma 4.84.8, ResπG

(
(IndπH π2(M2))†) ∼= ResπG IndπH(π2(M2)⋆), where π2(M2)⋆ :=

HomZH(π2(M2),ZH). By Proposition 4.104.10 we know that π2(M2)⋆ is free as an abelian group. We
will finish the proof by showing that ResπG IndπH A is free for every ZH-module A that is free as
an abelian group. By [Bro94Bro94, Proposition III.5.6(b)], ResπG IndπH A is isomorphic to a direct sum
of modules of the form IndG{e} ResH{e} A, which are again free, since ResH{e} A is just A considered
as an abelian group. Therefore we have shown that each summand of (5.55.5) is projective, which
completes the proof. □

The following lemma concerns general 3-manifold groups, without an admissibility assumption.

Lemma 5.6. Suppose that π is a 3-manifold group. Let B = P2(M), where M is a closed 4-manifold
with fundamental group π. Let A = Zπ or A = π2(M)†. Then

HomZπ(ev, A) : HomZπ(H2(B;Zπ)†, A) → HomZπ(H2(B;Zπ), A)

is injective.

Proof. Since B can be constructed from M by only adding cells of dimension four and higher, the
map M → P2(M) = B induces isomorphisms π1(M)

∼=−→ π1(B), H2(B;Zπ)† ∼=−→ H2(M ;Zπ)†, and
H2(B;Zπ)

∼=−→ H2(M ;Zπ). By naturality of the evaluation map, we obtain the exact sequence

0 → H2(B;Zπ) ev−→ H2(B;Zπ)† → H3(π;Zπ) → 0 (5.7)
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from the exact sequence (4.34.3), where we used H2(π;Zπ) = 0 and H3(M ;Zπ) = 0 as mentioned.
Apply the HomZπ(−, A) functor to obtain the exact sequence

0 → HomZπ(H3(π;Zπ), A) HomZπ(H2(B;Zπ)†, A) HomZπ(H2(B;Zπ), A).HomZπ(ev,A)

We need to show that HomZπ(ev, A) is an injection. For this, we will show that the left term
HomZπ(H3(π;Zπ), A) vanishes.

Let Y be a 3-manifold such that π ∼= π1(Y ) and let π′ = π1(Ŷ ), where Ŷ is the orienta-
tion double cover of Y . By Shapiro’s lemma, H3(π;Zπ) ∼= H3(π′;Zπ′) as Zπ′-modules. Hence
HomZπ(H3(π;Zπ), A) is a submodule of HomZπ′(H3(π′;Zπ′), A′), where A′ := Resππ′(A). By the
prime decomposition theorem for orientable 3-manifolds, π′ ∼=

(
∗ki=1 Li

)
∗

(
∗sj=1 Gj

)
, for some k, s,

where each Li is infinite cyclic or finite, and each Gj is a PD3-group.
By Lemma 4.94.9, H3(π′;Zπ′) ∼= ⊕s

j=1Ej , where Ej = Zπ′ ⊗ZGj Z = Indπ
′

Gj
(Z). Hence

HomZπ′(H3(π′;Zπ′), A′) ∼= HomZπ′(⊕s
j=1Ej , A

′) ∼=
s∏
j=1

HomZπ′(Ej , A′)

∼=
s∏
j=1

HomZπ′(Indπ
′

Gj
Z, A′) ∼=

s∏
j=1

HomZGj
(Z,ResπGj

A).

Let M̂ be the double cover of M corresponding to π′ ≤ π. As Zπ′-modules we have

π2(M)† ∼= HomZπ(π2(M), Indππ′ Zπ′)) ∼= HomZπ(π2(M),Coindππ′ Zπ′) ∼= HomZπ′(π2(M̂),Zπ′),
where Coindππ′ Zπ′ ∼= HomZπ′(Zπ,Zπ′) is the coinduction of Zπ′, and for the middle isomorphism
we used that Indππ′ Zπ′ ∼= Coindππ′ Zπ′ [Bro94Bro94, Proposition III.5.9]. The last isomorphism used the
Res − Coind adjunction and that Resππ′ π2(M) ∼= π2(M̂). For A = π2(M)† it follows that

ResπGj
A ∼= Resπ

′

Gj
A′ ∼= Resπ

′

Gj
(HomZπ(π2(M̂),Zπ′)).

Hence ResπGj
A is projective by Lemma 5.45.4. For A = Zπ, the module ResπGj

A is projective as well.
Since Gj is infinite, the only Gj-fixed point in ZGj is the trivial element. Since ResπGj

A is
projective, HomZGj

(Z,ResπGj
A) ⊆ HomZGj

(Z,
⊕

ZGj) = 0. Thus HomZπ′(H3(π′;Zπ′), A′) = 0
and hence also HomZπ(H3(π;Zπ), A) = 0 as claimed. □

Lemma 5.8. Let π ∼= H ∗
(

∗sj=1 Gj
)

such that H2(H;ZH) = H3(H;ZH) = 0 and each Gj is
a PD3-group. Let B = P2(M), where M is a closed 4-manifold with fundamental group π. Let
A = Zπ or A = π2(M)†, then

HomZπ(ev, A) : HomZπ(H2(B;Zπ)†, A) → HomZπ(H2(B;Zπ), A)
is surjective.

Proof. As in the proof of Lemma 5.65.6, there is a short exact sequence

0 → H2(B;Zπ) ev−→ H2(B;Zπ)† → H3(π;Zπ) → 0.
Apply the HomZπ(−, A) functor to obtain the exact sequence

HomZπ(H2(B;Zπ)†, A) HomZπ(H2(B;Zπ), A) Ext1
Zπ(H3(π;Zπ), A).HomZπ(ev,A)

We need to show that HomZπ(ev, A) is a surjection. For this, we will show that the term
Ext1

Zπ(H3(π;Zπ), A) vanishes. We have H3(H;ZH) = 0 and H3(Gj ;ZGj) ∼= Zw(Gj), where
w(Gj) : Gj → C2 is the orientation character of the aspherical PD3-complex with fundamental
groupGj . A Mayer–Vietoris argument as in the proof of Lemma 4.94.9 shows thatH3(π;Zπ) ∼= ⊕s

j=1Ej ,
where Ej = Zπ ⊗ZGj

Zw(Gj) = IndπGj

(
Zw(Gj)). Thus Ext1

Zπ(H3(π;Zπ), A) is isomorphic to

Ext1
Zπ(H3(π;Zπ), A) ∼= Ext1

Zπ(⊕s
j=1Ej , A) ∼=

s∏
j=1

Ext1
Zπ(Ej , A)

∼=
s∏
j=1

Ext1
Zπ

(
IndπGj

Zw(Gj), A
) ∼=

s∏
j=1

Ext1
ZGj

(
Zw(Gj),ResπGj

A
)
,
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where we again used the Ind-Res adjunction. We consider each factor separately. By Poincaré
duality, we have

Ext1
ZGj

(
Zw(Gj),ResπGj

A
) ∼= H1(

Gj ; (ResπGj
A)w(Gj)) ∼= H2(Gj ; ResπGj

A).

Since ResπGj
A is projective as in the proof of Lemma 5.65.6 this is trivial. Hence HomZπ(ev, A) is

surjective as claimed. □

Proposition 5.9. Let π be a 3-manifold group and let w : π → C2 be a homomorphism. Let B =
P2(M), where M is a closed 4-manifold with fundamental group π. Then ev∗ : Herw(H2(B;Zπ)†) →
Herw(H2(B;Zπ)) is injective. If moreover (π,w) is admissible, then ev∗ is an isomorphism.

Proof. We know
ev† := HomZπ(ev,Zπ) : H2(B;Zπ)†† → H2(B;Zπ)†

is injective by setting A = Zπ in Lemma 5.65.6. Apply the functor HomZπ(H2(B;Zπ)†,−), which is
covariant and left-exact, to see that

(ev†)∗ : HomZπ(H2(B;Zπ)†, H2(B;Zπ)††) → HomZπ(H2(B;Zπ)†, H2(B;Zπ)†)

is injective. On the other hand, we can apply Lemma 5.65.6 using A = H2(B;Zπ)† ∼= π2(M)† to see
that

HomZπ(ev, H2(B;Zπ)†) : HomZπ(H2(B;Zπ)†, H2(B;Zπ)†) → HomZπ(H2(B;Zπ), H2(B;Zπ)†)

is injective. As a consequence, the composition HomZπ(ev, H2(B;Zπ)†) ◦ (ev†)∗ in the top row of
the commuting diagram

HomZπ(H2(B;Zπ)†, H2(B;Zπ)††) HomZπ(H2(B;Zπ), H2(B;Zπ)†)

Sesqw(H2(B;Zπ)†) Sesqw(H2(B;Zπ))

∼= ∼= (5.10)

is injective. Hence the bottom horizontal map is also injective.
Recall that Hermitian forms are the Σ2-fixed points of sesquilinear forms. So ev∗ is the restriction

of the bottom horizontal map in diagram (5.105.10) to Hermitian forms. Since the bottom horizontal
map is Σ2-equivariant, the first part of the proposition, that ev∗ is injective, follows by taking
Σ2-fixed points.

Now suppose that (π,w) is admissible. Then π is a free product of groups that are cyclic,
isomorphic to Z × Z/2, or PD3-groups, as in (3.153.15). If G is cyclic or isomorphic to Z × Z/2, then
H2(G;ZG) = H3(G;ZG) = 0. Write π = H∗

(
∗sj=1Gj

)
, where each Gj is a PD3-group and H is the

free product of all the remaining factors. By Lemma 5.35.3 we see that H2(H;ZH) = H3(H;ZH) = 0.
Thus ev† and HomZπ(ev, H2(B;Zπ)†) are surjective by Lemma 5.85.8. Arguing as above, this implies
that (ev†)∗, and therefore ev∗, is an isomorphism, as claimed. □

In particular, Proposition 5.95.9 shows that Theorem 2.42.4 (44) holds for 4-manifolds with 3-manifold
fundamental group, with no admissibility condition on subgroups or the orientation character.

6. Injectivity results for B

Again, we fix a finitely presented group π and a map w : π → C2. In this section we give general
criteria under which the map BA : Zw ⊗Zπ Γ(A) → Herw(A†) is injective, where A is a Zπ-module
that is free as an abelian group. The map BA was defined in (2.22.2). Note that if A is finitely
generated and projective it is a subgroup of ⊕kZπ for some k, and hence is free as an abelian group.
So the map BA is defined in this case.

We start the section with the following special case of [Hil21Hil21, Theorem 1].

Proposition 6.1 ([Hil21Hil21, Theorem 1]). Let A be a finitely generated projective Zπ-module. Assume
that there is no g ∈ π of order two with w(g) = −1. Then the map BA : Zw ⊗Zπ Γ(A) → Herw(A†)
is injective.

The following definition appeared in [Ham23Ham23, Definition 6.4; Bas60Bas60, §4.4, pp. 476-477].
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Definition 6.2. A Zπ-module L is called torsionless if there exists a Zπ-embedding L → F
where F is a finitely generated, free Zπ-module. The module L is called w-strongly torsionless if
additionally the induced map Zw ⊗Zπ Γ(L) → Zw ⊗Zπ Γ(F ) is injective.

Note that an arbitrary torsionless Zπ-module A is free as an abelian group, since it is a subgroup
of ⊕kZπ for some k, which is free as an abelian group. Therefore the map BA is defined. We will
use this fact in the sequel without comment.

Proposition 6.3. Let L be a w-strongly torsionless Zπ-module. Assume that there is no g ∈ π of
order two with w(g) = −1. Then BL : Zw ⊗Zπ Γ(L) → Herw(L†) is injective.

Proof. Let L θ−→ F be an embedding as in Definition 6.26.2. Consider the commutative diagram

Zw ⊗Zπ Γ(L) Herw(L†)

Zw ⊗Zπ Γ(F ) Herw(F †).

θ∗

BL

θ∗

BF

The map θ∗ : Zw ⊗Zπ Γ(L) → Zw ⊗Zπ Γ(F ) is injective by assumption and the map BF is injective
by Proposition 6.16.1. Hence BL is injective as claimed. □

It is immediate from the definition (Definition 3.13.1) that twisted augmentation ideals are torsionless.
We now show that they are moreover w-strongly torsionless. The case of π finite and v trivial was
done in [HK88HK88, Lemma 2.3].

Lemma 6.4. Let v : π → C2 be a homomorphism. There is an isomorphism
Γ(Iπv) ⊕ Zπ ∼= Γ(Zπ),

which on Γ(Iπv) is induced by the inclusion Iπv → Zπ. In particular, Iπv is w-strongly torsionless.

Proof. As Zπ is free as an abelian group, Γ(Zπ) is isomorphic to the group of symmetric elements
of Zπ⊗Zπ. Therefore Γ(Zπ) has a Z-basis {g⊗ g, g⊗ h+ h⊗ g | g, h ∈ π, g ≠ h}. We also have an
inclusion Zπ → Γ(Zπ) induced by 1 7→ 1 ⊗ 1. Similarly Γ(Iπv) consists of the symmetric elements
of Iπv ⊗ Iπv.

By sending g ⊗ h+ h⊗ g to −v(gh)
(
v(g)g − v(h)h) ⊗ (v(g)g − v(h)h)

)
we obtain a map

θ : Γ(Zπ)/Zπ → Γ(Iπv).
To see this, since g ⊗ h+ h⊗ g for g ̸= h is a Z-basis of Γ(Zπ)/Zπ, it suffices to show that the map
is π-equivariant, which is a straightforward verification. Recall that the π action on both Γ groups
is diagonal, and the action is not twisted by v.

The map Γ(Iπv) → Γ(Zπ) induced by the inclusion Iπv → Zπ yields a map ψ : Γ(Iπv) →
Γ(Zπ)/Zπ. We have

−v(gh)
(
(v(g)g − v(h)h) ⊗ (v(g)g − v(h)h)

)
= h⊗ g + g ⊗ h− v(gh)h⊗ h− v(gh)g ⊗ g.

Hence ψ ◦θ is the identity on Γ(Zπ)/Zπ because g⊗g and h⊗h lie in Zπ ⊆ Γ(Zπ). So θ is injective.
We will show below that θ is also surjective. This will imply that we have the following commuting

diagram
0 Zπ Γ(Zπ) Γ(Zπ)/Zπ 0

Γ(Iπv)

θ∼=
i∗

where i∗ denotes the inclusion-induced map. Thus i∗ provides a splitting of the short exact sequence,
and we deduce that Γ(Zπ) ∼= Γ(Iπv) ⊕ Zπ.

We complete the argument by showing that the map θ is surjective. Note that {v(g)g − v(h)h |
g, h ∈ π} gives a Z-basis for Iπv, and therefore
{(v(g)g − v(h)h) ⊗ v(g)g − v(h)h | g, h ∈ π}
∪ {(v(g)g − v(h)h) ⊗ (v(g′)g′ − v(h′)h′) + (v(g′)g′ − v(h′)h′) ⊗ (v(g)g − v(h)h) | g, g′, h, h′ ∈ π}

is a Z-basis for Γ(Iπv). By definition of θ,
θ
(

− v(gh)(g ⊗ h+ h⊗ g)
)

= v(g)g − v(h)h⊗ v(g)g − v(h)h,
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for g, h ∈ π. So it remains to show that elements of the form
(v(g)g − v(h)h) ⊗ (v(g′)g′ − v(h′)h′) + (v(g′)g′ − v(h′)h′) ⊗ (v(g)g − v(h)h) (6.5)

lie in the image of θ. Set g̃ := h−1g, g̃′ := h−1g′, and h̃′ := h−1h′. Then we rewrite (6.56.5) as

(v(hg̃)hg̃ − v(h)h) ⊗ (v(hg̃′)hg̃′ − v(hh̃′)hh̃′) + (v(hg̃′)hg̃′ − v(hh̃′)hh̃′) ⊗ (v(hg̃)hg̃ − v(h)h).
Since the image of θ is a Zπ-submodule, we can act by v(h)h−1, and it suffices to show that the
resulting elements, which are of the following form, lie in Im θ:

(v(g̃)g̃ − 1) ⊗ (v(g̃′)g̃′ − v(h̃′)h̃′) + (v(g̃′)g̃′ − v(h̃′)h̃′) ⊗ (v(g̃)g̃ − 1).
For readability, and since we consider arbitrary g, g′, and h′, we drop the tildes from the notation
and consider:

(v(g)g − 1) ⊗ (v(g′)g′ − v(h′)h′) + (v(g′)g′ − v(h′)h′) ⊗ (v(g)g − 1)
=(v(g)g − 1) ⊗ (v(g′)g′ − 1) + (v(g)g − 1) ⊗ (1 − v(h′)h′)

+ (v(g′)g′ − 1) ⊗ (v(g)g − 1) + (1 − v(h′)h′) ⊗ (v(g)g − 1).
Hence it suffices to show that elements of the form

(v(g)g − 1) ⊗ (v(g′)g′ − 1) + (v(g′)g′ − 1) ⊗ (v(g)g − 1) (6.6)
lie in Im θ. Since

(1 − v(g)g) ⊗ (v(g)g − 1) = θ
(

− v(g)(1 ⊗ g + g ⊗ 1)
)

and
(1 − v(g′)g′) ⊗ (v(g′)g′ − 1) = θ

(
− v(g′)(1 ⊗ g′ + g′ ⊗ 1)

)
are in the image of θ by definition, we can add these to (6.66.6), to obtain the following expression,
which lies in Im θ if and only if (6.66.6) does.

(v(g)g − 1) ⊗ (v(g′)g′ − 1) + (v(g′)g′ − 1) ⊗ (v(g)g − 1)
+(1 − v(g′)g′) ⊗ (v(g′)g′ − 1) + (1 − v(g)g) ⊗ (v(g)g − 1)

= (v(g)g − v(g′)g′) ⊗ (v(g′)g′ − 1) + (v(g′)g′ − v(g)g) ⊗ (v(g)g − 1)
= (v(g)g − v(g′)g′) ⊗ (v(g′)g′ − v(g)g).

But θ
(

− v(gg′)(g ⊗ g′ + g′ ⊗ g)
)

= (v(g)g − v(g′)g′) ⊗ (v(g′)g′ − v(g)g), so this lies in the image of
θ, and thus indeed (6.66.6) lies in Im θ. This completes the proof that θ is surjective, and hence an
isomorphism.

For the final sentence of the lemma note that since Γ(Iπv) is a summand of Γ(Zπ), it follows
that Zw ⊗Zπ Γ(Iπv) is also a summand of Zw ⊗Zπ Γ(Zπ). So Iπv is w-strongly torsionless, with
F = Zπ, as desired. □

Corollary 6.7. Assume that there is no g ∈ π of order two with w(g) = −1. Let v : π → C2 be a
homomorphism. The map BIπv : Zw ⊗Zπ Γ(Iπv) → Herw((Iπv)†) is injective.

Proof. By Lemma 6.46.4, Iπv is w-strongly torsionless. Hence BIπv is injective by Proposition 6.36.3. □

Corollary 6.76.7 shows that BA is injective for A a twisted augmentation ideal, assuming that w is
trivial on elements of order two. Soon, in Corollary 6.136.13, we generalise this to show that BA is also
injective whenever A is stably isomorphic to such a twisted augmentation ideal.

We will use the following lemma due to Baues. In the statement, to form A⊗Zπ A
′, we consider

A as a right Zπ-module using the involution on Zπ given by g 7→ w(g)g−1.

Lemma 6.8 ([Bau96Bau96, (1.2.7)]). Let π be a group and let A and A′ be Zπ-modules that are free as
abelian groups. Let ιA : A → A⊕A′ and ιA′ : A′ → A⊕A′ be the canonical inclusions, and define

ψ : A⊗Z A
′ → Γ(A⊕A′)

a⊗ a′ 7→ a⊗ a′ + a′ ⊗ a

where we use the description of Γ(A⊕A′) as the symmetric elements in (A⊕A′) ⊗ (A⊕A′). Then

Γ(ιA) ⊕ Γ(ιA′) ⊕ ψ : Γ(A) ⊕ Γ(A′) ⊕A⊗Z A
′ ∼=−→ Γ(A⊕A′)

is an isomorphism.
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Remark 6.9. Furthermore the map

Herw((A⊕A′)†)
∼=−→ Herw(A†) ⊕ Herw((A′)†) ⊕ HomZπ((A′)†, A††),

induced by the restrictions along the inclusions of A† and (A′)† into (A⊕A′)†, is an isomorphism.

Lemma 6.10. Let A and A′ be (left) Zπ-modules that are free as abelian groups. Then with respect
to the decomposition of Γ(A⊕A′) from Lemma 6.86.8, and the decomposition of Herw((A⊕A′)†) from
Remark 6.96.9, the map BA⊕A′ is isomorphic to the direct sum of BA, BA′ , and the map

A⊗Zπ A
′ → HomZπ((A′)†, A††)

a⊗ a′ 7→ (f 7→ (g 7→ g(a)f(a′))).

Remark 6.11. Here and throughout we adopt the convention that the tensor product A ⊗Zπ A
′

of two left Zπ-modules A and A′ is formed by converting A into a right Zπ-module using the
involution, and then taking the tensor product. We will use the same convention shortly when
forming TorZπ1 (A,A′).

Proof. The splittings of the domain and codomain, from Lemma 6.86.8 and Remark 6.96.9 respectively,
induce the claimed splitting of BA⊕A′ . We only show this for the image of A⊗Zπ A

′ and leave the
other cases to the reader. Here a⊗ a′ maps under BA⊕A′ to the Hermitian form on (A⊕A′)† given
by ((f1, g1), (f2, g2)) 7→ g1(a′)f2(a). In particular, this is trivial when restricted to Herw(A†) and
Herw((A′)†). Hence it maps to HomZπ((A′)†, A††), and this is given by the map claimed. □

Lemma 6.12. Assume that there is no g ∈ π of order two with w(g) = −1. Let A be a torsionless
Zπ-module and let k ≥ 0. Then the canonical map from the kernel of BA : Zw⊗Zπ Γ(A) → Herw(A†)
to the kernel of BA⊕Zπk : Zw ⊗Zπ Γ(A⊕ Zπk) → Herw((A⊕ Zπk)†) is an isomorphism.

Proof. Since A⊕ Zπk is again torsionless, it suffices to consider the case k = 1 by induction. Let
A → F be an embedding into a finitely generated, free Zπ-module. By the commutative square

A F

A†† F ††,

evA evF∼=

the map evA sending a ∈ A to (f 7→ f(a)) ∈ A†† is injective.
By Lemma 6.106.10, BA⊕Zπ is given by the direct sum of BA, BZπ, and evA. By the previous

paragraph evA is injective and BZπ is injective by Proposition 6.16.1. It follows that the kernel of BA
is isomorphic to the kernel of BA⊕Zπk , as claimed. □

Corollary 6.13. Assume that there is no g ∈ π of order two with w(g) = −1. Let v : π → C2 be
a homomorphism and let A be a Zπ-module. Suppose there exists k, j ≥ 0 such that A ⊕ Zπk ∼=
Iπv ⊕ Zπj. Then BA is defined and injective.

Proof. Note that by hypothesis A is a subgroup of (Zπ)j+1 and is therefore free as an abelian
group. Thus the map BA is defined. By Lemma 6.126.12, we know that the kernel of BA is isomorphic
to the kernel of BA⊕Zπk , via a natural map. By hypothesis this kernel can be identified with that
of BIπv⊕Zπk . Another application of Lemma 6.126.12 shows this is isomorphic to the kernel of BIπv ,
which is trivial by Corollary 6.76.7. □

Lemma 6.14. Let A and A′ be torsionless Zπ-modules and suppose that BA : Zw ⊗Zπ Γ(A) →
Herw(A†) and BA′ : Zw ⊗Zπ Γ(A′) → Herw((A′)†) are injective. Assume that 0 → A

j−→ F → Q → 0
is exact with F a finitely generated, free Zπ-module. Then the kernel of

BA⊕A′ : Zw ⊗Zπ Γ(A⊕A′) → Herw((A⊕A′)†)

is contained in the image of

TorZπ1 (Q,A′) → A⊗Zπ A
′ ≤ Zw ⊗Zπ Γ(A⊕A′).



26 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

Proof. By Lemma 6.106.10, BA⊕A′ is the direct sum of BA, BA′ , and A⊗ZπA
′ → Hom((A′)†, A††). Since

BA and BA′ are assumed to be injective, the kernel of BA⊕A′ : Zw ⊗Zπ Γ(A⊕A′) → Herw((A⊕A′)†)
is the kernel of A⊗Zπ A

′ → HomZπ((A′)†, A††). Consider the following commuting diagram, where
the latter map is the left vertical map:

TorZπ1 (Q,A′) A⊗Zπ A
′ F ⊗Zπ A

′

HomZπ((A′)†, A††) HomZπ((A′)†, F ††).

j⊗IdA′

Hom(−,j††)

Since F is free, the right hand vertical map can be identified with a sum of copies of evA′ . Since
evA′ : A′ → (A′)†† is injective as in the proof of Lemma 6.126.12, the right hand vertical map is injective.
The proof is then completed by a diagram chase. □

We end this section with the following result, which we will need in Sections 88 and 1010.

Proposition 6.15. Let π be a finite group and let A be a Zπ-module that is free as a Z-module.
Then the kernel of BA equals the torsion subgroup of Zw ⊗Zπ Γ(A).

Proof. For any Zπ-module B that is free as a Z-module, there is a map

ΦB ◦ ω : Zw ⊗Zπ Γ(B†) → Herw(B)

induced by f⊗g 7→ ((a, b) 7→ f(a)g(b)). Our notation corresponds to [KPT21KPT21, Lemma 4.19], where it
was shown that the kernel of ΦB ◦ω is the torsion in Zw⊗ZπΓ(B†). Note that [KPT21KPT21, Lemma 4.19]
is stated for a special Zπ-module and w = 0. However this proof can be adapted in a straightforward
way to show the statement claimed by replacing the standard norm element with the twisted norm
element

∑
g∈π w(g)g. We apply this with B = A† below.

By [Nic24Nic24, Lemma 2.5], A is reflexive, i.e. the map ev : A → A†† given by a 7→ (f 7→ f(a)) is an
isomorphism. Considering the commutative diagram

Zw ⊗Zπ Γ(A) Zw ⊗Zπ Γ(A††)

Herw(A†)
BA

ev
∼=

Φ
A† ◦ω

we see that the kernel of BA is the torsion in Z ⊗Zπ Γ(A) as claimed. □

7. Proving Theorem 2.42.4 (33) for 3-manifold fundamental groups

Let π be a 3-manifold group and let w : π → C2 be a homomorphism with (π,w) admissible. The
goal of this section is to work towards proving Theorem 2.42.4 (33) for 4-manifolds M with fundamental
group π and orientation character w. Recall that this condition states: the kernel of BH2(B;Zπ) ◦ Υ
is contained in the kernel of φB : Zw ⊗ZπH4(B;Zπ) → H4(B;Zw), where B is the Postnikov 2-type
of M . We recall that by Proposition 4.104.10, H2(B;Zπ) is free as an abelian group, so the map
BH2(B;Zπ) is defined.

In Section 7.17.1 we obtain upper bounds on the size of the kernel of BH2(M ;Zπ). In Section 7.27.2 we
focus on the group Z × Z/2, and we obtain lower bounds on the size of the kernel of φB , when B is
the 2-type of a 4-manifold with fundamental group Z × Z/2, for a specific stable isomorphism class
of π2(M). In Section 7.37.3 we again consider 4-manifolds M of type (π,w). For B = P2(M) we use
the results from Section 7.27.2 to obtain analogous lower bounds on the size of the kernel of φB for all
the fundamental groups considered in Theorem 1.41.4.

The output of this section is summarised in Corollary 7.107.10. As explained in the proof of that
corollary, we know that kerφB is contained in ker BH2(M ;Zπ) ◦ Υ in general. Our upper bounds
from Section 7.17.1 and lower bounds from Section 7.37.3 coincide, and we deduce in Corollary 7.107.10 that
ker(BH2(M ;Zπ) ◦ Υ) = kerφB in our setting. Of course it then follows that ker(BH2(M ;Zπ) ◦ Υ) ⊆
kerφB , so Theorem 2.42.4 (33) is satisfied.
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7.1. Upper bounds on the kernel of BH2(M ;Zπ) for 3-manifold fundamental groups. As
in Section 3.33.3, for the remainder of this section, let π be a 3-manifold group and let w : π → C2 be a
homomorphism with (π,w) admissible. Then, by the prime decomposition theorem for 3-manifolds,
we know there is a decomposition of the form

π ∼= F ∗
(

∗ri=1 Zi
)

∗
(

∗sj=1 Gj
)

∗
(

∗tk=1 Hk

)
, (7.1)

for some r, s, t ≥ 0, with F a free group, Zi a finite cyclic group for each i, Gj a PD3-group for
each j and Hk

∼= Z × Z/2 for each k.

Proposition 7.2. Fix a decomposition for π as in (7.17.1). Let M be a closed 4-manifold with
fundamental group π and orientation character w : π → C2 such that (π,w) is admissible. By
reordering the factors of π if needed, we assume that there exists t′ ≤ t such that the image of
the fundamental class [M ] in H4(π;Zw) ∼=

⊕t
k=1 H4(Hk;Zw) ∼= (Z/2)t is trivial in the first t′

summands and nontrivial for k > t′. Then the kernel of BH2(M ;Zπ) is isomorphic to (Z/2)τ for
some τ ≤ t′.

Proof. By Proposition 3.163.16, H2(M ;Zπ) ∼= π2(M) is stably isomorphic to IndπΓ(IΓv) ⊕ IndπΓ′(IΓ′),
where

Γ =
(

∗ri=1 Zi
)

∗
(

∗sj=1 Gj
)

∗
(

∗t
′

k=1 Hk

)
and

Γ′ =
(

∗ri=1 Zi
)

∗
(

∗t
′

k=1 Hk

)
are subgroups of π in the canonical way. Here v = wv′ : Γ → C2, where v′ is trivial on each
Zi, is the projection onto the second factor on Z × Z/2 (followed by the canonical isomorphism
Z/2 → C2), and on each Gj factor it is the orientation character uj of the aspherical PD3-complex
with fundamental group Gj . By Lemma 6.126.12 we therefore have

ker BH2(M ;Zπ) ∼= ker BIndπ
Γ IΓv⊕Indπ

Γ′ IΓ′ .

Extend v : Γ → C2 to v : π → C2 by taking the trivial map on the factors of π not in Γ. By
Lemma 3.123.12, IndπΓ IΓv ≤ Iπv and IndπΓ′ IΓ′ ≤ Iπ, where each inclusion is of a summand. Similarly,
for the inclusion IndπΓ′ IΓ′ ≤ Iπ, we extend the trivial map on Γ′ to the trivial map on π. Since
IndπΓ IΓv ⊕ IndπΓ′ IΓ′ is a summand of Iπv ⊕ IndπΓ′ IΓ′, by Lemma 6.106.10 we have that

ker BIndπ
Γ IΓv⊕Indπ

Γ′ IΓ′ ≤ ker BIπv⊕Indπ
Γ′ IΓ′

under the natural inclusion from that lemma.
By Corollary 6.76.7, the map BIπu is injective for every twisted augmentation ideal Iπu, where

u : π → C2 is an arbitrary homomorphism that vanishes on elements of π of order two. Applying
this to u = v, we see that BIπv is injective. Also, we have that BIπ is injective, by setting u to be
the trivial map. It then follows from Lemma 6.106.10 and the fact that IndπΓ′ IΓ′ is a summand of Iπ
that BIndπ

Γ′ IΓ′ is also injective.
Now we want to apply Lemma 6.146.14 with 0 → A → F → Q → 0 as 0 → Iπv → Zπ → Zv → 0

and A′ = IndπΓ′ IΓ′. The lemma applies because BIπv and BIndπ
Γ′ IΓ′ are injective. We deduce using

this and the two previous displayed equations that

ker BH2(M ;Zπ) ≤ kerBIπv⊕Indπ
Γ′ IΓ′ ≤ Im

(
TorZπ1 (Zv, IndπΓ′ IΓ′) → Iπv ⊗Zπ IndπΓ′ IΓ′).

Then by the definition, Shapiro’s lemma, and dimension shifting, we have

TorZπ1 (Zv, IndπΓ′ IΓ′) ∼= H1(π; (IndπΓ′ IΓ′)wv) ∼= H1(Γ′; (IΓ′)v
′
) ∼= H2(Γ′;Zv

′
)

∼=
r⊕
i=1

H2(Zi;Z) ⊕
t′⊕
k=1

H2(Hk;Zv
′
) ∼= 0 ⊕

t′⊕
k=1

Z/2 ∼= (Z/2)t
′
.

Here the first isomorphism makes use of Remark 6.116.11, which says that the w-twisted involu-
tion is implicitly used in defining TorZπ1 (Zv, IndπΓ′ IΓ′); to incorporate this into the group homol-
ogy H1(π; (IndπΓ′ IΓ′)wv), we must give the coefficients an extra w-twisting. Since the image of
TorZπ1 (Zv, IndπΓ′ IΓ′) ∼= (Z/2)t′ under a homomorphism is (Z/2)τ for some τ ≤ t′, this completes
the proof. □
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7.2. Lower bounds on the kernel of φB for fundamental group Z×Z/2. For this subsection
let π = Z × Z/2 = ⟨t, T | [T, t], T 2⟩ and let v′ : π → C2 be given by v′(t) = 1 and v′(T ) = −1. In
other words, v′ is trivial on the Z factor and nontrivial on the Z/2 factor.

We first consider the case of a specific Postnikov 2-type P with fundamental group Z/2. Note that
this need not be the Postnikov 2-type of a 4-manifold. This will a useful ingredient in Lemma 7.57.5
where we consider a Postnikov 2-type B with fundamental group π, by comparing with P .

Let Z− denote the integers as a Z/2-module, so that 1 ∈ Z/2 acts by multiplication by −1. We
use Z to denote the integers considered as a trivial Z/2-module.

Lemma 7.3. Let P be a connected, 3-coconnected CW complex with π1(P ) ∼= Z/2, π2(P ) ∼= Z− ⊕Z,
and nontrivial k-invariant 0 ̸= kP ∈ H3(Z/2,Z− ⊕ Z) ∼= Z/2 ⊕ 0. Then we have isomorphisms

Z ⊗Z[Z/2] H4(P ;Z[Z/2]) H4(P ;Z)

Z2 ⊕ Z/2 Z2

φP

∼= ∼=

proj1

Proof. Since P is 3-coconnected, π3(P ) = π4(P ) = 0. Thus H4(P ;Z[Z/2]) ∼= Γ(H2(P ;Z[Z/2])) ∼=
Γ(π2(P )) ∼= Γ(Z− ⊕ Z). By Lemma 6.86.8 we also have

Γ(Z− ⊕ Z) ∼= Γ(Z−) ⊕ Γ(Z) ⊕ (Z− ⊗Z Z) ∼= Z2 ⊕ Z−

and hence
Z ⊗Z[Z/2] H4(P ;Z[Z/2]) ∼= Z ⊗Z[Z/2] Γ(Z− ⊕ Z) ∼= Z2 ⊕ Z/2.

Next we build the following model for P , where the 4-skeleton is explicit. Let α ∈ π3(RP2) ∼= Z be
a generator and Y := RP2 ∪α D4. Then X := Y × CP2 has

π1(X) ∼= Z/2; π2(X) ∼= π2(RP2) ⊕ π2(CP2) ∼= Z− ⊕ Z; and π3(X) = 0.

Furthermore, the inclusion RP2 → Y induces an isomorphism

H3(Z/2;π2(RP2))
∼=−→ H3(Z/2;π2(Y ))

sending the k-invariant of RP2 to the k-invariant of Y . Note that the first k-invariant of RP2 is
nontrivial; if not, there would be a retraction of the inclusion RP2 → RP∞ over the 3-skeleton, i.e.
there would be a retraction RP3 → RP2, which by a cup product argument in Z/2-cohomology
cannot exist.

Using the projection X → Y , we have a map H3(Z/2;π2(X)) → H3(Z/2;π2(Y )) sending the
k-invariant of X to the k-invariant of Y . It follows that the k-invariant of X is nontrivial. So it
follows that up to homotopy equivalence we can build P from X by attaching cells of dimensions 5
and higher. This finishes the construction of X.

By the Künneth theorem we have

H4(X;Z) ∼= H4(Y ;Z) ⊕H2(Y ;Z) ⊕H0(Y ;Z) ∼= Z ⊕ 0 ⊕ Z ∼= Z2.

Hence H4(P ;Z) is some quotient of Z2. We will now show that it is in fact isomorphic to Z2.
Consider the diagram

Z ⊗Z[Z/2] H4(P ;Z[Z/2]) H4(P ;Z)

Her(H2(P ;Z[Z/2])†) Her(H2(P ;Z[Z/2])),

φP

BH2(P ;Z[Z/2])◦Υ ΘP

ev∗

where the map ΘP is given by x 7→
(
(α, β) 7→ ⟨β, α ∩ x⟩

)
. The diagram commutes as in [Hil06Hil06,

Lemma 10]. Here we know that ev∗ is injective by Corollary 5.25.2. We also know from Proposition 6.156.15,
and the fact that Υ is an isomorphism, that the kernel of the map BH2(P ;Z[Z/2]) ◦ Υ equals the
torsion in Z ⊗Z[Z/2] H4(P ;Z[Z/2]). Here we used the fact that H2(P ;Z[Z/2]) ∼= π2(P ) ∼= Z− ⊕ Z is
free as an abelian group. Thus we know that the composition ΘP ◦ φP is precisely the quotient
by the torsion subgroup. Therefore ΘP has domain a quotient of Z2 and image isomorphic to Z2.
Hence, it follows that H4(P ;Z) ∼= Z2, as claimed. □
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Lemma 7.4. For π = Z × Z/2, let w : π → C2 be a homomorphism with w(T ) = 1, and let
v = wv′. Let B be a connected, 3-coconnected CW complex with π1(B) = π, π2(B) ∼= Iπ ⊕ Iπv,
and k-invariant given by 0 ̸= kB ∈ Z/2 ∼= H3(π; Iπ) ≤ H3(π; Iπ ⊕ Iπv). Let P be a CW complex
as in Lemma 7.37.3. Then there exist maps P f−→ B

g−→ P such that the composition is a self-homotopy
equivalence of P .

Proof. We will define the map f : P → B, and will sketch the construction of the map B → P . Let
Z/2 i−→ Z × Z/2 p−→ Z/2 be the inclusion and the projection maps.

We begin the construction of a map f : P → B. Define the module homomorphism f1 : Z− → Iπ
determined by 1 7→ 1 − T , and the homomorphism f2 : Z → Iπv determined by 1 7→ 1 + T . To
show that i : π1(P ) → π1(B) and (f1, f2) : π2(P ) → π2(B) induce a map P → B, note that since
both P and B are connected and 3-coconnected, to determine a map P → B, it suffices to exhibit
homomorphisms πj(P ) → πj(B) for j = 1, 2 that respect the k-invariants. More precisely, we have
to show that

i∗kB = (f1, f2)∗kP ∈ H3(Z/2; ResπZ/2(Iπ ⊕ Iπv)).
For this, since both k-invariants are nontrivial and live in a group isomorphic to Z/2, it suf-
fices to show that the maps i∗ : H3(π; Iπ) → H3(Z/2; ResπZ/2 Iπ) and (f1)∗ : H3(Z/2;Z−) →
H3(Z/2; ResπZ/2 Iπ) are isomorphisms. Here we used the fact that kB lies in H3(π; Iπ) ≤ H3(π; Iπ⊕
Iπv). We have a diagram as follows from dimension shifting using the Bockstein homomorphism
and the sequence 0 → Iπ → Zπ → Z → 0:

H2(π;Z) H3(π; Iπ)

H2(Z/2;Z) H3(Z/2; ResπZ/2 Iπ)

i∗∼=

∼=

i∗

∼=

To conclude that the horizontal maps are isomorphisms we used that ResπZ/2 Zπ is a free Z[Z/2]-
module, and Hk(Z/2;Q) = 0 for every free Z[Z/2]-module Q. Similarly we can compute directly
that Hi(π;Zπ) = 0 for i = 2, 3. The diagram commutes by naturality of the Bockstein map. That
the left vertical map is an isomorphism is a straightforward computation in group cohomology,
which can be performed by comparing standard free resolutions of Z. We deduce that the right
vertical map i∗ is an isomorphism as well.

It remains to show that (f1)∗ is an isomorphism. For this consider the commutative diagram of
Z[Z/2]-modules:

0 Z− Z[Z/2] Z 0

0 ResπZ/2 Iπ ResπZ/2 Zπ Z 0.

1−T

f1 =

From this we obtain the following commuting diagram, where again the horizontal Bockstein maps
are isomorphisms because both Z[Z/2] and ResπZ/2(Zπ) are free Z[Z/2]-modules.

H2(Z/2;Z) H3(Z/2;Z−)

H2(Z/2;Z) H3(Z/2; ResπZ/2 Iπ).

=

∼=

(f1)∗

∼=

Thus (f1)∗ is an isomorphism and so i together with (f1, f2) induces a map f : P → B.
Now we sketch the construction of a map g : B → P . Define an equivariant maps g1 : Iπ → Z−

given by sending 1 − T to 1 and 1 − t to 0, and define g2 : Iπv → Z by sending 1 + T to 1 and
1 − t to 0. A very similar argument to that in the construction of the map f : P → B, which we
omit, shows that p and (g1, g2) induces a map B → P . It is straightforward to check that the
composition is the identity on π1 and π2, and hence, since P is 3-coconnected and a CW complex,
by Whitehead’s theorem the composition P

f−→ B
g−→ P is a self-homotopy equivalence of P . □

Lemma 7.5. For π = Z × Z/2, let w : π → C2 be a homomorphism with w(T ) = 1 and let
v = wv′. Let B be a connected, 3-coconnected CW complex with π1(B) = π, π2(B) ∼= Iπ⊕ Iπv, and
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k-invariant given by 0 ̸= kB ∈ Z/2 ∼= H3(π; Iπ) ≤ H3(π; Iπ ⊕ Iπv). Then the kernel of the map
φB : Zw⊗ZπH4(B;Zπ) → H4(B;Zw) contains a Z/2 subgroup that injects into F2⊗F2[π]H4(B;F2[π])
under the change of coefficients map

redB2 : Zw ⊗Zπ H4(B;Zπ) → F2 ⊗F2[π] H4(B;F2[π]).

Proof. We first show that the kernel of the map Z ⊗Z[Z/2] H4(B;Z[Z/2]w) → H4(B;Zw) contains
a Z/2 subgroup. Let P be a CW complex as in Lemma 7.37.3. By Lemma 7.47.4, there exist maps
P

f−→ B
g−→ P such that the composition is a self-homotopy equivalence. Then we have the following

commutative diagram, from considering the latter maps as well as the change of coefficients map.

F2 ⊗F2[Z/2] H4(P ;F2[Z/2]) Z ⊗Z[Z/2] H4(P ;Z[Z/2]) H4(P ;Z)

F2 ⊗F2[Z/2] H4(B;F2[Z/2]) Z ⊗Z[Z/2] H4(B;Z[Z/2]w) H4(B;Zw)

F2 ⊗F2[Z/2] H4(P ;F2[Z/2])

f∗

φP

f∗ f∗

g∗

The composition g ◦ f is a homotopy equivalence, and therefore the induced map g∗ ◦ f∗, which is
the left vertical composition, is an isomorphism. It follows that the left vertical map F2 ⊗F2[Z/2]

H4(P ;F2[Z/2]) f∗−→ F2 ⊗F2[Z/2] H4(B;F2[Z/2]) is injective. The top right horizontal arrow was
considered in Lemma 7.37.3 and we know that the kernel, which we denote by K, is precisely the Z/2
summand in Z2 ⊕Z/2 ∼= Z⊗Z[Z/2]H4(P ;Z[Z/2]). Note that in this map we do not see a contribution
from w, since w(T ) = 1. As K is a summand of Z ⊗Z[Z/2] H4(P ;Z[Z/2]), it maps nontrivially to
F2 ⊗F2[Z/2] H4(P ;F2[Z/2]), which then maps also nontrivially to F2 ⊗F2[Z/2] H4(B;F2[Z/2]) since
the map f∗ is injective. By the commutativity of the diagram, we see that K must also map
nontrivially to Z ⊗Z[Z/2] H4(B;Z[Z/2]w), along the central vertical map f∗. By definition K maps
trivially to H4(B;Zw) under the composition f∗ ◦ φP . Therefore, by commutativity of the diagram,
the image f∗(K) in Z ⊗Z[Z/2] H4(B;Z[Z/2]w), which we know is nontrivial, must map trivially to
H4(B;Zw). In other words the kernel of the map Z ⊗Z[Z/2] H4(B;Z[Z/2]w) → H4(B;Zw) contains
a Z/2 subgroup as claimed. Moreover, we have shown that this subgroup maps nontrivially to
F2 ⊗F2[Z/2] H4(B;F2[Z/2]).

Let B̂ be the covering of B with respect to the projection π1(B) = Z × Z/2 → Z/2, and let
B̃ denote the universal cover. We consider the fibration B̃ → B̂ → S1 and the associated Leray–
Serre spectral sequence Hp(S1;Hq(B̃;Z)w) ⇒ Hp+q(B̂;Zw) ∼= Hp+q(B;Z[Z/2]w). We have that
π3(B̃) = 0 → H3(B̃;Z) is surjective by the Hurewicz theorem, and hence H1(S1;H3(B̃;Z)) = 0.
From the spectral sequence we see that E2

0,4 = Zw ⊗Z[Z] H4(B;Zπ) → H4(B;Z[Z/2]w) is an
isomorphism, where the codomain is the homology of the total space. This isomorphism is preserved
under tensoring with Z, and is the left vertical map in the commuting diagram

Z ⊗Z[Z/2] (Zw ⊗Z[Z] H4(B;Zπ)) Zw ⊗Zπ H4(B;Zπ)

Z ⊗Z[Z/2] H4(B;Z[Z/2]w) H4(B;Zw).

∼=

∼= φB

The kernel of the right vertical map φB has a Z/2 subgroup, as needed, since this is true for the
kernel of the bottom horizontal map by our previous argument. Repeating this argument with
F2 coefficients shows that this subgroup of kerφB is mapped injectively to F2 ⊗F2[π] H4(B;F2[π])
under the change of coefficients map. This completes the proof of Lemma 7.57.5. □

Now we deduce the fact corresponding to Lemma 7.57.5 for the Postnikov 2-type BM of a closed
4-manifold M with fundamental group π = Z × Z/2 and π2(M) stably isomorphic to Iπ ⊕ Iπv.

Corollary 7.6. For π = Z × Z/2, let w : π → C2 be a homomorphism with w(T ) = 1 and let
v = wv′ : π → C2. Let M be a closed 4-manifold with fundamental group π and orientation
character w. Assume further that π2(M) is stably isomorphic to Iπ ⊕ Iπv. Let BM := P2(M) be
the Postnikov 2-type of M . Then the kernel of the map φBM

: Zw ⊗Zπ H4(BM ;Zπ) → H4(BM ;Zw)
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contains a Z/2 subgroup that injects into F2 ⊗F2[π] H4(BM ;F2[π]) under the change of coefficients
map

redM2 : Zw ⊗Zπ H4(BM ;Zπ) → F2 ⊗F2[π] H4(BM ;F2[π]).

Proof. Let
M ′ := M# ± CP2.

We have maps ι and ρ defined by

BM := P2(M) ι−→ P2(M ∨ S2) ≃ P2(M ′) =: BM ′
ρ−→ P2(M),

where ρ collapses the S2 wedge-summand, and whose composition is homotopic to the identity.
This induces a sequence of homomorphisms

Zw ⊗Zπ H4(BM ;Zπ) ι∗−→ Zw ⊗Zπ H4(BM ′ ;Zπ) ρ∗−→ Zw ⊗Zπ H4(BM ;Zπ),
whose composition is the identity. It follows that ι∗ is injective. Similarly,

ιF2
∗ : F2 ⊗F2[π] H4(BM ;F2[π]) −→ F2 ⊗F[π] H4(BM ′ ;F2[π])

is injective, and we have a map
ρF2

∗ : F2 ⊗F[π] H4(BM ′ ;F2[π]) −→ F2 ⊗F2[π] H4(BM ;F2[π]).

Claim. The kernel of φBM
contains a Z/2 subgroup that maps injectively under the reduction

of coefficients map redM2 if and only if the kernel of φBM′ contains a Z/2 subgroup that maps
injectively under redM

′

2 .

The only if direction is easier, and we prove this first. By naturality of φ and since ι∗ is injective,
if x ∈ Zw ⊗Zπ H4(BM ;Zπ) is an order two element in the kernel of φBM

, then ι∗(x) ∈ Zw ⊗Zπ
H4(BM ′ ;Zπ) is an element of order two in the kernel of φBM′ : Zw⊗ZπH4(BM ′ ;Zπ) → H4(BM ′ ;Zw).
Since ιF2

∗ is injective, the image of x under the reduction of coefficients map redM2 is nontrivial
if and only if this is true for ι∗(x) with respect to redM

′

2 , which can be seen from the following
commuting diagram.

Zw ⊗Zπ H4(BM ;Zπ) Zw ⊗Zπ H4(BM ′ ;Zπ)

F2 ⊗F2[π] H4(BM ;F2[π]) F2 ⊗F[π] H4(BM ′ ;F2[π])

ι∗

redM
2 redM′

2

ι
F2
∗

This completes the proof of the only if direction of the claim.
Conversely, we start with an element x ∈ kerφBM′ ⊆ Zw ⊗Zπ H4(BM ′ ;Zπ) of order two, and

assume that the image redM
′

2 (x) ∈ F2 ⊗F[π] H4(BM ′ ;F2[π]) of x is nontrivial. Then by naturality
ρ∗(x) ∈ Zw ⊗Zπ H4(BM ;Zπ) lies in the kernel of φBM

and since ρ∗ is a homomorphism ρ∗(x) has
order at most two. We need to show that ρ∗(x) has order exactly two, and that redM2 (ρ∗(x)) is
nontrivial.

For N = M,M ′, let φF2
BN

: F2 ⊗F[π] H4(BN ;F2[π]) → H4(BN ;F2) be the version of φBN
with

F2-coefficients. We assert for the moment that ιF2
∗ restricts to an isomorphism

ιF2
∗ | : kerφF2

BM

∼=−→ kerφF2
BM′ .

Since ρF2
∗ | ◦ ιF2

∗ | = IdkerφF2
BM

, we deduce that ρF2
∗ restricts to an isomorphism

ρF2
∗ | : kerφF2

BM′

∼=−→ kerφF2
BM

.

Since redM
′

2 (x) is assumed nontrivial, it follows that ρF2
∗ (redM

′

2 (x)) is nontrivial. Observe that
ρF2

∗ (redM
′

2 (x)) = redM2 ◦ρ∗(x) by naturality of reduction of coefficients. Since the former is nontrivial,
so is the latter, i.e. ρ∗(x) has nontrivial image under the reduction of coefficients map. In particular
ρ∗(x) is nontrivial, and so it has order exactly two. Thus to prove the if direction of the claim, it
remains to prove that ιF2

∗ | is an isomorphism, which we do next.
For both B = BM and B = BM ′ , we consider the fibration B̃ → B → Bπ, where B̃ de-

notes the universal cover, and the associated Leray–Serre spectral sequence Hp(Bπ;Hq(B̃;F2)) ⇒
Hp+q(B;F2). We have E2

0,4
∼= F2 ⊗F2[π] H4(B;F2[π]). Since H1(B̃;F2) = 0 = H3(B̃;F2), several
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differentials are necessarily trivial. In particular, there is no d2- or d4-differential with image in
E2

0,4, so we have homomorphisms as follows, which decompose φF2
B .

φF2
B : F2 ⊗F2[π] H4(B;F2[π]) ∼= E2

0,4
∼=−→ E3

0,4
−/ Im d3−−−−−→ E4

0,4
∼=−→ E5

0,4
−/ Im d5−−−−−→ E6

0,4 (7.7)
∼=−→ E∞

0,4 ↪→ H4(B;F2).

We will investigate the d3- and d5-differentials presently. First, we have d3-differentials as shown
below, with a commuting diagram with exact rows by naturality of the spectral sequence with
respect to ι:

0 ker dM3 H5(π;F2) H2(π;H2(B̃M ;F2))

0 ker dM ′

3 H5(π;F2) H2(π;H2(B̃M ′ ;F2)).

dM
3

= ∼=ι∗

dM′
3

Here the right-most isomorphism uses that H2(B̃M ;F2) and H2(B̃M ′ ;F2) are stably isomorphic. It
follows that the induced map ker dM3

∼=−→ ker dM ′

3 is an isomorphism. Next we return to the analysis
of φF2

BM
and φF2

BM′ from (7.77.7). Both maps are visible in the following commutative diagram, where
the straight and the diagonal rows are exact. We already showed that ιF2

∗ is injective. The fact
that moreover ιF2

∗ restricts to an isomorphism

ιF2
∗ | : kerφF2

BM

∼=−→ kerφF2
BM′ .

follows from chasing this diagram.

ker dM3

H3(π;H2(B̃M ;F2)) F2 ⊗F2[π] H4(BM ;F2[π]) coker dM3 0

ker dM ′

3 E∞
0,4(M) H4(BM ;F2)

H3(π;H2(B̃M ′ ;F2)) F2 ⊗F2[π] H4(BM ′ ;F2[π]) coker dM ′

3 0

E∞
0,4(M ′) H4(BM ′ ;F2)

dM
5

∼=

dM
3

∼= ι
F2
∗ dM′

5

dM′
3

To chase the diagram, let x ∈ kerφF2
BM′ ⊆ F2 ⊗F2[π] H4(BM ′ ;F2[π]). By assumption this maps to 0

in H4(BM ′ ;F2), and hence by injectivity of the bottom right horizontal map goes to 0 in E∞
0,4(M ′).

Thus the image of x in coker dM ′

3 lifts to ker dM ′

3 and hence to ker dM3 . The image of this lift in
coker dM3 maps by exactness of the diagonal top row to 0 in H4(BM ;F2), and also by exactness of
the top straight row lifts to y ∈ kerφF2

BM
⊆ F2 ⊗F2[π] H4(BM ;F2[π]). By commutativity ιF2

∗ (y) − x

maps to zero in coker dM ′

3 and so lifts to H3(π;H2(B̃M ′ ;F2)) and hence to H3(π;H2(B̃M ;F2)). Use
the image of this lift in F2 ⊗F2[π] H4(BM ;F2[π]) to alter y to y′ with ιF2

∗ (y′) = x. By exactness we
still have that y′ ∈ kerφF2

BM
. Hence ιF2

∗ | is surjective as required. This completes the proof of the
claim that ιF2

∗ | is an isomorphism.
It follows that for a 4-manifold X that is CP2-stably homeomorphic to M , the kernel of

φM : Zw ⊗Zπ H4(BM ;Zπ) → H4(BM ;Zw) contains a Z/2 subgroup that injects into F2 ⊗F2[π]
H4(BM ;F2[π]) under redM2 if and only if, writing BX := P2(X), the kernel of φX : Zw ⊗Zπ
H4(BX ;Zπ) → H4(BX ;Zw) contains a Z/2 subgroup that injects into F2 ⊗F2[π] H4(BX ;F2[π])
under redX2 .

By Lemma 3.93.9, c∗([M ]) = 0 ∈ H4(π;Zw) ∼= Z/2, for a classifying map c : M → Bπ inducing an
isomorphism on fundamental groups. Suppose we have a 4-manifold X with fundamental group
π and c∗([X]) = 0 ∈ H4(π;Zw). Then such an X is CP2-stably homeomorphic to our M by
[KPT22KPT22, Theorem 1.2] (which is due to Kreck [Kre99Kre99]; however the citation we provided gives the
explicit statement). So it suffices to show that the kernel of φBX

contains a Z/2 subgroup that
injects into F2 ⊗F2[π] H4(BX ;F2[π]) under the change of coefficients map redX2 , and then by the
previous paragraph we deduce the analogous fact for M .
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To construct such a 4-manifold, let X be a double for π and orientation character w, obtained by
definition as the boundary of a 5-dimensional thickening W of the standard 2-complex corresponding
to a presentation for the group π, with the thickening chosen to have orientation character w. Since
X is the boundary of a 5-manifold with fundamental group π and orientation character w, and
therefore (cX)∗([X]) = 0 ∈ H4(π;Zw) under a classifying map cX : X → Bπ. By [BR82BR82, Theorem 1],
the first k-invariant of a 2-complex K is trivial if and only if π1(K) has cohomological dimension at
most 2. Thus the k-invariant of W , and therefore of X, is nontrivial. By [KPT21KPT21, Lemmas 7.11, 7.12,
and 7.14], π2(X) ∼= Iπ⊕Iπv. Hence BX is homotopy equivalent to a CW complex B as in Lemma 7.57.5,
and we deduce from that lemma that the kernel of the map φX : Zw⊗ZπH4(BX ;Zπ) → H4(BX ;Zw)
contains a Z/2 subgroup that injects into F2 ⊗F2[π] H4(BX ;F2[π]) under the change of coefficients
map. This completes the proof of the corollary. □

7.3. Lower bounds on the kernel of φB for 3-manifold fundamental groups that are free
products. With the results of the previous subsection in hand, we can now prove the following
result bounding the size of the kernel of the map φB, for B the Postnikov 2-type of a 4-manifold
with fundamental group π and orientation character w as in (7.17.1). First we need a lemma showing
how the kernel of the reduction of coefficients map φ changes under stabilisation.
Lemma 7.8. Let M be a closed 4-manifold with fundamental group π and orientation character
w : π → C2. Let B := P2(M) and let Bs := P2(M#(S2 × S2)) ≃ P2(M ∨ S2 ∨ S2). The map
M → M ∨ S2 ∨ S2 induces an isomorphism between kerφB and kerφBs .

Proof. The E2
0,4 term of the Leray–Serre spectral sequence for the fibration B̃ → B → Bπ

converging to H∗(B;Zw) is H0(π;H4(B̃;Z)w) ∼= H0(π;H4(B;Zπ)w). Quotienting by the images
of the iterated differentials in the spectral sequence with codomain the terms Ek0,4 induces a map
H0(π;H4(B;Zπ)w) → FB0,4. The codomain FB0,4 is then a subgroup of the output H4(B;Zw) of
the spectral sequence, and, under the identification H0(π;H4(B;Zπ)w) ∼= Zw ⊗Zπ H4(B;Zπ), the
kernel is precisely the kernel of φB. We have a similar quotient map H0(π;H4(Bs;Zπ)w) → FB

s

0,4
for Bs. The idea of the proof is to compare the kernels of these two maps using naturality of the
Leray-Serre spectral sequence.

The inclusion map M → M∨S2∨S2 and the collapse map M∨S2∨S2 → M induce isomorphisms
on fundamental groups, and hence induce isomorphisms between π1(B) and π1(Bs). These maps
also induce respectively the inclusion π2(B) ∼= π2(M) → π2(M) ⊕Zπ2 ∼= π2(Bs) and the projection
π2(Bs) ∼= π2(M)⊕Zπ2 → π2(M) ∼= π2(B) on second homotopy groups. We have that Hp(π;Zπ) = 0
for all p > 0, and that H3(B;Zπ) ∼= H3(B̃;Z) = 0, and similarly for Bs. The latter claim holds
because 0 = π3(B̃) → H3(B̃;Z) is surjective in degree three by the Hurewicz theorem. It follows
that the induced maps B → Bs and Bs → B induce isomorphisms on Hp(π;Hq(−;Zπ)) for all
p > 0 and all q < 4. Whence naturality of the Leray-Serre spectral sequence implies that the
iterated images of the differentials in H0(π;H4(−;Zπ)w) and its iterated quotients, for B and Bs,
are identified by the inclusion and collapse maps. Thus the kernels of φB and φBs are isomorphic
as claimed. □

Lemma 7.9. Let M be a closed 4-manifold with fundamental group π as in (7.17.1), and orientation
character w : π → C2, such that (π,w) is admissible. Let t′ ≤ t be such that, for some identification
as in (7.17.1), the image of the fundamental class [M ] in H4(π;Zw) ∼=

⊕t
k=1 H4(Hk;Zw) ∼= (Z/2)t is

trivial in the first t′ summands and nontrivial for k > t′. Let B := P2(M). Then the kernel of
φB : Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw) is an abelian group that needs at least t′ generators.
Proof. As M is stably a connected sum by Lemma 3.133.13, there exists m ≥ 0 and a connected sum
decomposition

M#
m

#S2 × S2 ∼= N#M1# · · · #Mt

with π1(N) ∼= F ∗
(

∗ri=1 Zi
)

∗
(

∗sj=1 Gj
)

and π1(Mk) ∼= Hk
∼= Z × Z/2. Let Bs := P2(M#m(S2 ×

S2)) ≃ P2(M ∨
∨2m

S2). The map M → M ∨
∨2m

S2 induces a map B → Bs. By Lemma 7.87.8,
this map induces an isomorphism kerφB

∼=−→ kerφBs . Hence it suffices to prove the statement of
the lemma with Bs in place of B.

Let π′ := Z×Z/2 = ⟨t, T | [T, t], T 2⟩ and v′ : π′ → C2 be given by v′(t) = 1 and v′(T ) = −1. Let
w denote the composition π′ ↪→ π

w−→ C2, where the first map is the inclusion as one of the factors
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in (7.17.1). Let v = wv′. Let M ′ be a closed 4-manifold with fundamental group π′ := Z × Z/2 and
π2(M ′) ∼= Iπ ⊕ Iπv. Let B′ be the Postnikov 2-type of M ′.

For each factor Hk of π, k = 1, . . . , t′, by Lemma 3.93.9 there are maps B′ ιk−→ Bs and Bs
pk−→ B′

such that pk ◦ ιk ≃ IdB′ and pk ◦ ιk′ is homotopic to the constant map for k ̸= k′.
Consider the commutative diagram

Zw ⊗Zπ H4(B′;Zπ) Zw ⊗Zπ′ H4(B′;Zπ′) H4(B′;Zw)

Zw ⊗Zπ H4(Bs;Zπ) Zw ⊗Zπ′ H4(Bs;Zπ′) H4(Bs;Zw)

∼=

(ιk)∗ (ιk)∗ (ιk)∗

Here Zπ′ is defined to be a Zπ-module via the map pk. Our goal is to show that the composition of
the two bottom horizontal maps has kernel needing at least t′ generators. By our condition above
on the maps ιk and pk, it will suffice to show that the bottom right horizontal map has nontrivial
kernel. The result will then follow since we have t′ distinct Hk factors in π.

For this final step, consider the following commutative diagram, where we have used the change
of coefficients map corresponding to Z → F2.

F2 ⊗F2[π′] H4(B′;F2[π′]) Zw ⊗Zπ′ H4(B′;Zπ′) H4(B′;Zw)

F2 ⊗F2[π′] H4(Bs;F2[π′]) Zw ⊗Zπ′ H4(Bs;Zπ′) H4(Bs;Zw)

F2 ⊗F2[π′] H4(B′;F2[π′])

(ιk)∗ (ιk)∗ (ιk)∗

(pk)∗

The composition B′ ιk−→ Bs
pk−→ B′ is homotopic to the identity, and hence (pk)∗ ◦ (ιk)∗ = Id.

It follows that the top left vertical map is injective. By Corollary 7.67.6, the kernel of the top
right horizontal map has a Z/2 subgroup, call it K, which is mapped nontrivially to F2 ⊗F2[π′]
H4(B′;F2[π′]), and onward by the vertical injection (ιk)∗ to F2 ⊗F2[π′] H4(Bs;F2[π′]). By the
commutativity of the diagram, K is mapped nontrivially to Zw ⊗Zπ′ H4(Bs;Zπ′) under the
middle vertical (ιk)∗. By definition, K maps trivially to H4(B′;Zw), and so maps trivially to
H4(Bs;Zw) in the bottom right. Hence by the commutativity of the diagram, the image of K in
Zw ⊗Zπ′ H4(Bs;Zπ′), which we know is nontrivial, maps trivially to H4(Bs;Zw). In other words,
the map Zw ⊗Zπ′ H4(Bs;Zπ′) → H4(Bs;Zw) has nontrivial kernel, as desired. □

The following corollary shows that Theorem 2.42.4 (33) holds for 4-manifolds with fundamental group
π as in (7.17.1). We will also use it in the proof of Proposition 8.228.22, showing that for a 3-manifold group
π and homomorphism w : π → C2 such that (π,w) is admissible, the pair (π,w) has Property 4HL.

Corollary 7.10. Let M be a closed 4-manifold with fundamental group π as in (7.17.1) and orientation
character w : π → C2 such that (π,w) is admissible. Let t′ ≤ t be such that, for some identification
as in (7.17.1), the image of the fundamental class [M ] in H4(π;Zw) ∼=

⊕t
k=1 H4(Hk;Zw) ∼= (Z/2)t is

trivial in the first t′ summands and nontrivial for k > t′. Let B := P2(M). Then the kernel of
BH2(B;Zπ) ◦ Υ equals the kernel of φB : Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw).

Proof. By the commutativity of the diagram in (2.72.7), we know that ev∗ ◦BH2(B;Zπ) ◦ Υ = ΘB ◦ φB .
Since π is a 3-manifold group, by Proposition 5.95.9 ev∗ is an isomorphism. Therefore, the kernel of
φB is contained in the kernel of BH2(B;Zπ) ◦ Υ.

By Proposition 7.27.2, the kernel of BH2(B;Zπ) ◦ Υ is a subgroup of (Z/2)t′ , where the image of the
fundamental class [M ] in H4(π;Zw) ∼=

⊕t
k=1 H4(Hk;Zw) ∼= (Z/2)t is trivial in the first t′ summands

and nontrivial for k > t′. On the other hand, the kernel of φB needs at least t′ generators by
Lemma 7.97.9. Therefore the kernel of BH2(B;Zπ) ◦ Υ equals the kernel of φB , as needed. □

8. Property 4HL

In this section we discuss the 4th homology lifting property, henceforth known as Property 4HL.
This will help us to show that Theorem 2.42.4 (22) holds. More precisely, it seeks to establish criteria
for deciding whether an element in the codomain of φX : Zw ⊗Zπ H4(X;Zπ) → H4(X;Zw) lies in
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the image, for an arbitrary CW complex X with π1(X) = π. We will first define a version for
3-coconnected CW complexes and homomorphisms w : π → C2, and later we will define a version for
groups. We will end this section by showing that (π,w) has Property 4HL, where π is a 3-manifold
group and w : π → C2 is a homomorphism, such that (π,w) is admissible (Proposition 8.228.22).

8.1. Property 4HL for CW complexes.

Definition 8.1 (Property 4HL). Let X be a connected CW complex and write π := π1(X). Let
w : π → C2 be a homomorphism. We say that (X,w) has Property 4HL if for every 2-connected
map c : X → Bπ and for every

x ∈ ker(c∗ : H4(X;Zw) → H4(π;Zw))

such that
⟨α, β ∩ x⟩ = 0 ∈ Zπ

for all α, β ∈ H2(X;Zπ), we have that x lies in the image of φX : Zw ⊗ZπH4(X;Zπ) −→ H4(X;Zw).

Remark 8.2. Different choices of 2-connected maps c : X → Bπ are related by automorphisms of
π, and therefore they determine the same kernel K := ker(H4(X;Zw) → H4(π;Zw)). So to verify
that Property 4HL holds it suffices to fix one choice of c.

We also note that the image of φX equals the image of the map H4(X;Zπ) → H4(X;Zw), so
we could have equivalently asked for x to lie in the image of the latter map in the definition of
Property 4HL.

The next lemma shows that Property 4HL is independent of stabilisations for 3-coconnected
CW complexes.

Lemma 8.3. Let B be a connected, 3-coconnected CW complex and let π := π1(B). Let cB : B →
Bπ be a 2-connected map. Let w : π → C2 be a homomorphism. Let Bs := P2(B ∨ S2). Then
(B,w) has Property 4HL if and only if (Bs, w) has Property 4HL.

Proof. First we need some setup. Let K := ker(H4(B;Zw) → H4(π;Zw)). We consider the Leray–
Serre spectral sequence for the fibration B̃ → B

cB−−→ Bπ, where B̃ is the universal cover, converging
to H∗(B;Zw). Note that H1(B̃;Z) = 0. In addition, since B is 3-coconnected, we know B̃ ≃
K(π2(B), 2), and so π3(B̃) = 0. By the Hurewicz theorem, the Hurewicz map π3(B̃) → H3(B̃;Z)
is surjective, and hence H3(B̃;Z) = 0. Note that K is the term F2,2 in the filtration of H4(B;Zw)
given by convergence of the spectral sequence and there is an exact sequence

Zw ⊗Zπ H4(B̃;Z) → K → E → 0

with E := E∞
2,2 a quotient of H2(π;π2(B)w). Here we used that π2(B) ∼= H2(B̃;Z). Similarly, for

Ks := ker(H4(Bs;Zw) → H4(π;Zw)) we have an exact sequence

Zw ⊗Zπ H4(Bs;Zπ) → Ks → Es → 0

with Es the E∞
2,2 term of the corresponding Leray–Serre spectral sequence for B̃s → Bs

cBs−−→ Bπ.
Again Es is a quotient of H2(π;π2(Bs)w). The isomorphism H2(π;π2(Bs)w) ∼= H2(π;π2(B)w ⊕
Zπ) ∼= H2(π;π2(B)w) induces an isomorphism Es

∼=−→ E. To see this use the definition of Es and E
as the quotients of H2(π;π2(Bs)w) ∼= H2(π;π2(B)w) by the image of the d3 map on H4(Bπ;Zw).
Then naturality of the spectral sequences shows that the quotients agree.

Consider the inclusion and collapse maps B → B ∨ S2 → B. Passing to the Postnikov 2-types
yields maps B ι−→ Bs

ρ−→ B. Then, comparing the spectral sequences, using ι and ρ, we obtain the
following induced commutative diagram with exact rows.

Zw ⊗Zπ H4(B;Zπ) K E 0

Zw ⊗Zπ H4(Bs;Zπ) Ks Es 0

Zw ⊗Zπ H4(B;Zπ) K E 0

ι∗ ∼=

ρ∗ ∼=

(8.4)
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Now we are ready to prove that (B,w) has Property 4HL if and only if (Bs, w) has Property 4HL.
First suppose that (Bs, w) has Property 4HL. We will show that (B,w) has Property 4HL. So let x ∈
K and assume that ⟨α, β ∩ x⟩ = 0 ∈ Zπ for all α, β ∈ H2(B;Zπ). Define xs := ι∗(x) ∈ H4(Bs,Zw).
Then xs lies in Ks, because cB : B → Bπ factors through ι. Moreover for all αs, βs ∈ H2(Bs;Zπ)
we have, in Zπ, that

⟨αs, βs ∩ xs⟩ = ⟨αs, βs ∩ ι∗(x)⟩ = ⟨αs, ι∗(ι∗(βs) ∩ x)⟩ = ⟨ι∗(αs), ι∗(βs) ∩ x⟩ = 0.
Then, since (Bs, w) has Property 4HL, we know that xs ∈ Ks lies in the image of Zw⊗ZπH4(Bs;Zπ).
So xs has trivial image in Es. By the top right square of (8.48.4), x has trivial image in E, and so
lies in the image of Zw ⊗Zπ H4(B;Zπ). Thus (B,w) has Property 4HL.

It remains to show that Property 4HL for (B,w) implies Property 4HL for (Bs, w). We will apply
essentially the same argument as above, but now using the bottom two rows of (8.48.4). Assume that
(B,w) has Property 4HL. Let xs ∈ Ks such that ⟨αs, βs ∩xs⟩ = 0 ∈ Zπ for all αs, βs ∈ H2(Bs;Zπ).
Define x := ρ∗(xs) ∈ H4(B;Zw). Then x ∈ K since the map cBs factors through ρ. We also have

⟨α, β ∩ x⟩ = ⟨α, β ∩ ρ∗(xs)⟩ = ⟨α, ρ∗(ρ∗(β) ∩ xs)⟩ = ⟨ρ∗(α), ρ∗(β) ∩ xs⟩ = 0,
for all α, β ∈ H2(B;Zπ). So by Property 4HL for (B,w), the element x lies in the image of
Zw ⊗Zπ H4(B;Zπ), and thus has trivial image in E. By the bottom right square of (8.48.4), the
element xs ∈ Ks also has trivial image in Es, and hence lies in the image of Zw ⊗Zπ H4(Bs;Zπ).
Thus Property 4HL for (B,w) implies Property 4HL for (Bs, w). This completes the proof. □

Lemma 8.5. For i = 1, . . . , n, let Bi be a connected, 3-coconnected CW complex with fundamental
group Gi. Let X :=

∨n
i=1 Bi and let π := π1(X) ∼= ∗ni=1Gi. Let w : π → C2 be a homomorphism. If

each (Bi, w|Gi
) has Property 4HL, for i = 1, . . . , n, then (X,w) has Property 4HL.

Proof. We will write wi for w|Gi
to make the proof more readable. Let

Ki := ker(H4(Bi;Zwi) → H4(Gi;Zwi)) and K := ker(H4(X;Zw) → H4(π;Zw)).

Using the Mayer–Vietoris sequence, we have that K ∼=
⊕n

i=1 Ki and Zw ⊗Zπ H4(X̃;Z) ∼=⊕n
i=1 Zwi ⊗ZGi

H4(B̃i;Z), where X̃ and B̃i are the universal covers. For each x ∈ K with
⟨α, β ∩ x⟩ = 0 ∈ Zπ for all α, β ∈ H2(X;Zπ), write xi for the image of x in Ki. We can view
αi, βi ∈ H2(Bi;Zπ) as elements of H2(X;Zπ), again using a Mayer–Vietoris sequence. Then

⟨αi, βi ∩ xi⟩ = ⟨αi, βi ∩ xi⟩ +
∑
j ̸=i

⟨0, 0 ∩ xj⟩ = ⟨αi, βi ∩ x⟩ = 0.

By assumption (Bi, wi) has Property 4HL and hence for each i there exists a preimage yi ∈ Zw⊗ZGi

H4(B̃i;Z) of xi ∈ Ki. By naturality of the Mayer–Vietoris sequence, taking
∑
i yi ∈

⊕n
i=1 Ki

∼= K
we have that φX(

∑
i yi) = x ∈ H4(X;Zw). Hence (X,w) has Property 4HL. □

We will need the following lemma on 3-coconnected CW complexes later in this section to
establish Property 4HL for Z × Z/2, as well as in the proof of Corollary 10.210.2.

Lemma 8.6. Let B be a connected, 3-coconnected CW complex with fundamental group π := π1(B)
and let w : π → C2 be a homomorphism. Assume that π2(B) is projective as a Zπ-module. Then
there is an exact sequence

H5(π;Zw) → Zw ⊗Zπ H4(B;Zπ) φB−−→ H4(B;Zw) → H4(π;Zw) → 0,
where the third map is induced by some classifying map B → Bπ inducing an isomorphism on
fundamental groups.

Proof. Since π2(B) is projective, there is a decomposition π2(B) ⊕Q ∼= Zπm for some Zπ-module
Q and for some m ∈ N, and hence

Hn(π;π2(B)w) ≤ Hn(π;π2(B)w) ⊕Hn(π;Qw) ∼= Hn(π; (π2(B) ⊕Q)w) ∼= Hn(π;Zπm) = 0
for all n > 0. Furthermore, π2(B) is free as an abelian group, and therefore projective. Thus for the
universal cover B̃ ≃ K(π2(B), 2) ≃

∏
CP∞ we have H2k+1(B;Zπ) ∼= H2k+1(B̃;Z) = 0 for all k.

Consider the Leray–Serre spectral sequence for the fibration B̃ → B → Bπ. On the 4-line the only
nontrivial terms are H0(π;H4(B̃;Z)w) ∼= Zw ⊗Zπ H4(B;Zπ) and H4(Bπ;H0(B̃;Z)w) ∼= H4(π;Zw).
The codomains of all differentials going out of H4(π;Zw) are trivial, while the only possibly nontrivial
differential into Zw ⊗Zπ H4(B;Zπ) is d5 : H5(π;Zw) → Zw ⊗Zπ H4(B;Zπ).
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Hence H4(B;Zw) fits into an extension

0 → Zw ⊗Zπ H4(B;Zπ)/ Im d5 → H4(B;Zw) → H4(π;Zw) → 0

and the lemma follows. □

8.2. Property 4HL for groups.

Definition 8.7. Let π be a finitely presented group and let w : π → C2 be a homomorphism.
We say that (π,w) has Property 4HL if the pair (P2(M), w) has Property 4HL, for every closed
4-manifold M with fundamental group π and orientation character w.

Lemma 8.8. Let π be a finite group and let w : π → C2 be a homomorphism. Then (π,w) has
Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group π and orientation character w. Let
B := P2(M). Let x ∈ H4(B;Zw) be such that ⟨α, β ∩ x⟩ = 0 for all α, β ∈ H2(B,Zπ). We will
show that x lies in the image of the map φB : Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw). We will use the
commutative diagram

Zw ⊗Zπ H4(B;Zπ) H4(B;Zw)

Herw(H2(B;Zπ)†) Herw(H2(B;Zπ)),

φB

BH2(B;Zπ)◦Υ ΘB

ev∗

analogous to (2.72.7). Recall that we know ev∗ is injective by Corollary 5.25.2. Since π is finite, there
exists k ∈ N such that kx = φB(y) – see for example [KT21KT21, (3.3)]. By Proposition 6.156.15, y is in
the torsion subgroup of Zw ⊗Zπ H4(B;Zπ) since its image in Herw(H2(B;Zπ)) is zero and ev∗ is
injective. As a result, kx, and therefore also x, is in the torsion subgroup of H4(B;Zw). Teichner
[Tei92Tei92] showed that the torsion subgroup of H4(B;Zw) lies in the image of φB for every finite group
(see also [KT21KT21, Proof of Theorem 3.4]). This completes the proof of the lemma. □

Lemma 8.9. Let π = Z and let w : π → C2 be a homomorphism. Then (π,w) has Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group π = Z and orientation character
w. Let B := P2(M). By Lemma 3.63.6, we know that π2(M) ∼= π2(B) is stably free and therefore
projective. So we can apply Lemma 8.68.6 to yield the exact sequence

H5(π;Zw) → Zw ⊗Zπ H4(B;Zπ) φB−−→ H4(B;Zw) → H4(π;Zw) → 0.

Since π is geometrically 1-dimensional, it follows that the map φB is an isomorphism. This implies
that (π,w) has Property 4HL. □

8.3. Property 4HL for P D3-groups.

Lemma 8.10. Let π be a PD3-group and let w : π → C2 be a homomorphism. Then (π,w) has
Property 4HL.

Proof. Let X be an aspherical PD3-complex with fundamental group π, orientation character
v′ : π → C2, and a single top cell. Then K := X(2) has H2(K;Zπ) ∼= Zπ and H2(K;Zπ) ∼= Iπv

′ .
Let v := wv′. By [KPT21KPT21, Lemma 7.12], there is a 4-manifold N with fundamental group π,
orientation character w, second homotopy group π2(N) ∼= Iπv ⊕ Zπ, and, under the decomposition

Herw(Iπv ⊕ Zπ) ∼= Herw(Iπv) ⊕ Herw(Zπ) ⊕ HomZπ(Iπv,Zπ†) ∼= Herw(Iπ) ⊕ Herw(Zπ) ⊕ Zπ,

where the second isomorphism uses [KLPT17KLPT17, Lemma 7.5], the intersection form λN maps to
(0, ∗, 1).

By [Kre99Kre99] (see also [KPT22KPT22, Theorem 1.2, Section 1.5]), and since H4(π;Zw) = 0, every other
4-manifold with fundamental group π and orientation character w is homeomorphic to N modulo
connected sum with copies of CP2,CP2, and ⋆CP2. Using Lemma 8.38.3, it suffices to show that (B,w)
has Property 4HL for B := P2(N).

The Leray–Serre spectral sequence for the fibration B̃ → B → Bπ yields the short exact sequence

0 → Zw ⊗Zπ H4(B̃;Z) → H4(B;Zw) q−→ Z → 0.
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Let y ∈ H4(B;Zw) be a class such that for all α, β ∈ H2(B;Zπ) we have ⟨α, β ∩ y⟩ = 0, i.e.
y ∈ ker ΘB. Since π is a PD3-group we have that H4(π;Zw) = 0 so there is no corresponding
condition on y. Let k := q(y) be the image of y in Z. We then have to show that k is zero, so that
y lies in the image of Zw ⊗Zπ H4(B̃;Z). It will follow that (π,w) has Property 4HL.

By comparing the above Leray–Serre spectral sequence for B̃ → B → Bπ with the corresponding
Leray–Serre spectral sequence for Ñ → N → Bπ, via a 3-connected map f : N → B, we obtain a
commutative diagram with exact rows:

0 H4(N ;Zw) Z 0

0 Zw ⊗Zπ H4(B̃;Z) H4(B;Zw) Z 0.

∼=

f∗ =

Therefore, f∗[N ] ∈ H4(B;Zw) maps to ±1 ∈ Z. Thus kf∗[N ] ∓ y is in the image of H4(B;Zπ). We
have the commutative diagram

Zw ⊗Zπ H4(B;Zπ) H4(B;Zw)

Herw(H2(B;Zπ)†) Herw(H2(B;Zπ)),

φB

BH2(B;Zπ)◦Υ ΘB

ev∗

again following (2.72.7). Since y ∈ ker ΘB we have that ΘB(kf∗[N ] ± y) = kf∗λN . Let λ := f∗λN .
Then we have that kλ lies in the image of ΘB ◦ φB. By the diagram, kλ lies in the image of
ev∗ ◦ BH2(B;Zπ) ◦ Υ. Since Υ is an isomorphism this implies kλ lies in the image of ev∗ ◦ BH2(B;Zπ).

Under the decomposition

Herw(Iπv ⊕ Zπ) ∼= Herw(Iπv) ⊕ Herw(Zπ) ⊕ HomZπ(Iπv,Zπ†) ∼= Herw(Iπv) ⊕ Herw(Zπ) ⊕ Zπ,

where the second isomorphism uses [KLPT17KLPT17, Lemma 7.5], the element kλ maps to (0, ∗, k) using
the description of λ at the start of the proof. By Lemma 6.106.10, the component of the image of
kλ in HomZπ(Iπv,Zπ†) ∼= Zπ lies in the image of Iπv ⊗Zπ Zπ → HomZπ(Iπv,Zπ†). Under the
isomorphisms Iπv⊗ZπZπ ∼= Iπv and HomZπ(Iπv,Zπ†) ∼= Zπ, this map corresponds to the inclusion
Iπv ↪→ Zπ. In particular, k lies in the image only for k = 0. Since above we had that kf∗[N ] ∓ y
lies in the image of φB, and we now know that k = 0, we deduce that y lies in the image of φB.
Hence (π,w) has Property 4HL. □

8.4. Property 4HL for Z × Z/2. In this subsection let π = Z × Z/2 = ⟨t, T | [T, t], T 2⟩ and let
v′ : Zπ → C2 be given by v′(t) = 1 and v′(T ) = −1. Let w : π → C2 be such that w(T ) = 1. We
will show in Lemma 8.138.13 that (π,w) has Property 4HL, but we will need a couple of preliminary
lemmas. Let v = wv′. We will need to consider both the untwisted augmentation ideal Iπ, as well
as the twisted augmentation ideals Iπw, Iπv′ , and Iπv.

Lemma 8.11. Let M be a closed 4-manifold with fundamental group π and orientation character
w such that w(T ) = 1. Let B be a connected, 3-coconnected CW complex, and let f : M → B be
3-connected. Then there is an exact sequence

Zw ⊗Zπ H4(B̃;Z) → H4(B;Zw) → Z/2 → 0,

and the image of f∗[M ] in Z/2 is nontrivial.

Proof. If π2(M) ∼= π2(B) is stably free as a Zπ-module, then there is an exact sequence

Zw ⊗Zπ H4(B;Zπ) → H4(Bw;Z) → H4(π;Zw) → 0

by Lemma 8.68.6. By Lemma 3.93.9, π2(M) is stably free if and only if the image of [M ] in H4(π;Zw) ∼=
Z/2 is nontrivial. This completes the proof of the lemma in this case.

If π2(M) is not stably free, then it is stably isomorphic to Iπ ⊕ Iπv by Lemma 3.93.9, where
v = wv′. We now prove the lemma in this case. Let M̃ denote the universal cover of M . Note
that H3(M ;Zw) ∼= H1(M ;Z) ∼= H1(π;Z) ∼= Z and H3(M̃ ;Z) ∼= H3(M ;Zπ) ∼= H1(M ;Zπw) ∼=
H1(π;Zπw) ∼= Zw, where the last isomorphism follows from the fact that π has two ends [Geo08Geo08,
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Theorem 13.5.5]. Consider the spectral sequence with E2 term Hp(π;Hq(M̃ ;Z)w) converging to
Hp+q(M ;Zw). On the 3-line of the E2 page we have

Zw ⊗Zπ H3(M̃ ;Z) ∼= Zw ⊗Zπ Zw ∼= Z;

H1(π; Iπw ⊕ Iπv
′
) ∼= H1(π; Iπw) ⊕H1(π; Iπv

′
) ∼= H2(π;Zw) ⊕H2(π;Zv

′
) ∼= Z/2 ⊕ Z/2;

H3(π;Zw) ∼= Z/2.

On the E∞ page, these terms will produce the associated graded group for the cyclic group
H3(M ;Zw). Since only cyclic groups can arise in such an associated graded group, it follows that
the d3-differential Z/2 ∼= H4(π;Zw) → H1(π; Iπw ⊕ Iπv

′) is nontrivial and thus injective.
On the 4-line of the E2 page we have

H1(π;H3(M̃ ;Z)w) ∼= H1(π;Z) ∼= Z ⊕ Z/2;

H2(π; Iπw ⊕ Iπv
′
) ∼= H3(π;Zw) ⊕H3(π;Zv

′
) ∼= Z/2 ⊕ Z/2;

H4(π;Zw) ∼= Z/2.

We already saw that the d3 map out of H4(π;Zw) is injective, so that term does not survive to the
E∞ page. The d2-differential H2(π; Iπw ⊕ Iπv

′) ∼= Z/2 ⊕ Z/2 → H0(π;H3(M̃ ;Z)w) ∼= Z is trivial,
so H2(π; Iπw ⊕ Iπv

′) survives to the E3 page. Since H4(M ;Zw) is again cyclic, the d3-differential
H5(π;Zw) ∼= Z/2 → H2(π; Iπw ⊕ Iπv

′) ∼= Z/2 ⊕ Z/2 is nontrivial and therefore injective. Hence
from the E∞ page we obtain an extension Z → H4(M ;Zw) → H2(π; Iπw⊕ Iπv

′)/ Im d2 ∼= Z/2 → 0.
Now we consider the analogous spectral sequence with E2 term Hp(π;Hq(B̃;Z)w) converging to

Hp+q(B;Zw), where B̃ is the universal cover of B. In this case the d2-differential H2(π; Iπw⊕Iπv′) ∼=
Z/2 ⊕ Z/2 → H0(π;H3(B̃;Z)w) = 0 is necessarily trivial. Since f : M → B is 3-connected, the
same d3-differentials as above are nontrivial, and we have the following commutative diagram with
exact rows.

Z H4(M ;Zw) Z/2 0

Zw ⊗Zπ H4(B̃;Z) H4(B;Zw) Z/2 0

f∗ =

Since [M ] is a generator of H4(M ;Zw) it follows that the image of f∗[M ] is nontrivial in H2(π; Iπw⊕
Iπv

′)/ Im d2 ∼= Z/2 as claimed. □

Lemma 8.12. The map e : Iπ → Iπ†† sending x 7→ (f 7→ f(x)) is an isomorphism.

Proof. The statement of the lemma is independent of w, but w appears indirectly in the proof, in
the involution used to consider Iπ† as a left module. For simplicity, we assume that w is trivial.

By [KPT21KPT21, Lemma 7.14], the map θ : Iπv′ ∼=−→ Iπ† sending

1 − t 7→

{
1 − t 7→ 1 − t

1 − T 7→ 1 − T

}
and 1 + T 7→

{
1 − t 7→ 1 + T

1 − T 7→ 0

}

is an isomorphism. Similarly one sees that the map θ′ : Iπ
∼=−→ (Iπv′)† sending

1 − t 7→

{
1 − t 7→ 1 − t

1 + T 7→ 1 + T

}
and 1 − T 7→

{
1 − t 7→ 1 − T

1 + T 7→ 0

}
is an isomorphism. By a straightforward computation,

θ′ = θ† ◦ e : Iπ → (Iπv
′
)†.

It follows that e is an isomorphism as claimed. □

Now we are ready to show that the group Z × Z/2 has Property 4HL with respect to a certain
map Z × Z/2 → C2.

Lemma 8.13. Let w : Z×Z/2 → C2 be such that w(T ) = 1. The pair (Z×Z/2, w) has Property 4HL.
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Proof. Let π := Z × Z/2. Since w(T ) = 1, the orientation character is determined by w(t) =
±1 ∈ C2. For both w(t) = ±1, we have that H4(π;Zw) ∼= Z/2 and thus by [Kre99Kre99] (see also
[KPT22KPT22, Theorem 1.2, Section 1.5]) up to connected sum with CP2,CP2 and ⋆CP2 there are only
two homeomorphism classes with fundamental group π and orientation character w. By Lemma 8.38.3,
it suffices to consider one manifold from both classes.

First we consider the case of w trivial. The nontrivial class in H4(π;Z) ∼= Z/2 is represented by
M = S1 ×RP3, and the trivial class by a 4-manifold N obtained as the boundary of a 5-dimensional
thickening of the 2-skeleton of Bπ.

Consider the nontrivial class in H4(π;Z) and B := P2(M), where M = S1×RP2. Since π2(B) = 0
and so is certainly projective, by Lemma 8.68.6 there is an exact sequence

Z ⊗Zπ H4(B̃;Z) φB−−→ H4(B;Z) → H4(π;Z) → 0.

In particular, every class in the kernel of H4(B;Z) → H4(π;Z) belongs to the image of Zw ⊗Zπ
H4(B̃;Z) and thus (B,w) has Property 4HL.

Now we consider the trivial class in H4(π;Z). By [KPT21KPT21, Lemma 7.12], the manifold N has
π1(N) ∼= π, the second homotopy group π2(N) ∼= Iπ ⊕ Iπ†, and hyperbolic intersection form. Let
P := P2(N). We need to show that (P,w) has Property 4HL.

Let f : N → P be 3-connected. By Lemma 8.118.11, there is an exact sequence

Z ⊗Zπ H4(P̃ ;Z) φP−−→ H4(P ;Z) → Z/2 → 0 (8.14)

and the image of f∗[N ] in Z/2 is nontrivial. Let y ∈ H4(P ;Z) be a class such that ⟨α, β ∩ y⟩ = 0
for all α, β ∈ H2(P ;Zπ), i.e. y ∈ ker ΘP . It follows from the spectral sequence computation in the
proof of Lemma 8.118.11 that the map H4(P ;Z) → H4(π;Z) is the trivial map, so we must consider all
y ∈ ker ΘP . By exactness of (8.148.14), we have to show that the image of y in Z/2 is trivial. Assume
for a contradiction that y maps nontrivially to Z/2. Then f∗[N ] − y maps to 0 ∈ Z/2 and hence
lies in the image of φP : Z ⊗Zπ H4(P̃ ;Z) → H4(P ;Z). We have the commutative diagram

Z ⊗Zπ H4(P ;Zπ) H4(P ;Z)

Her(H2(P ;Zπ)†) Her(H2(P ;Zπ)).

φP

BH2(P ;Zπ)◦Υ ΘP

ev∗

We have that ΘP (f∗[N ] − y) = f∗λN . Let λ := f∗λN . Then ΘP (f∗[N ] − y) = λ, and so we
deduce that λ lies in the image of ΘP ◦ φP . By the diagram, it follows that λ lies in the image
of ev∗ ◦ BH2(P ;Zπ) ◦ Υ, or equivalently, since Υ is an isomorphism, that λ lies in the image of
ev∗ ◦ BH2(P ;Zπ).

Since P = P2(N), we have that H2(P ;Zπ) ∼= H2(N ;Zπ) ∼= H2(N ;Zπ) ∼= Iπ ⊕ Iπ†. Under the
decomposition Her(Iπ ⊕ Iπ†) ∼= Her(Iπ) ⊕ Her(Iπ†) ⊕ HomZπ(Iπ, Iπ††), the element λ maps to
(0, 0, e), where e : Iπ → Iπ†† is as in Lemma 8.128.12, since λ is hyperbolic.

We will obtain a contradiction by showing that λ is not in the image of ev∗ ◦ BH2(B;Zπ). The
desired contradiction will prove that the image of y in Z/2 is trivial after all, and hence by exactness
of (8.148.14) that y lies in the image of φP .

We examine the pre-image of λ under ev∗. Note that (Iπ⊕ Iπ†)† ∼= Iπ† ⊕ Iπ††. The bottom left
group of Hermitian forms Her(H2(P ;Zπ)†) has a similar decomposition as in Remark 6.96.9, with

Her(Iπ† ⊕ Iπ††) ∼= Her(Iπ†) ⊕ Her(Iπ††) ⊕ HomZπ(Iπ††, Iπ††).

The map ev : H2(P ;Zπ) → H2(P ;Zπ)† translates to a map ev : Iπ ⊕ Iπ† → Iπ† ⊕ Iπ††, given
by (x, g) 7→ (g, e(x)). The coordinates are switched because we used Poincaré duality in the
identification H2(P ;Zπ) ∼= Iπ⊕ Iπ†. A straightforward check shows that e lies in the image of ev∗,
and that ev∗(IdIπ††) = e. That is, one has to check that, (0, 0, IdIπ††) induces, under the map ev,
the form corresponding to (0, 0, e). Moreover ev∗ is injective by Proposition 5.95.9, so (0, 0, IdIπ††)
represents the unique pre-image of λ in Her(H2(P ;Zπ)†). So we have to show that (0, 0, IdIπ††) is
not in the image of BH2(P ;Zπ).

Now we consider the map BH2(P ;Zπ). The compatibility of the decomposition in Lemma 6.86.8 and
the decomposition from Remark 6.96.9 with respect to BH2(P ;Zπ), as in Lemma 6.106.10, means it suffices
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to show that IdIπ†† does not lie in the image of the map

Iπ ⊗Zπ Iπ
† → HomZπ(Iπ††, Iπ††)

from Lemma 6.106.10.
The map e : Iπ → Iπ†† is an isomorphism by Lemma 8.128.12. Using this we have an isomorphism

HomZπ(Iπ††, Iπ††) ∼= HomZπ(Iπ, Iπ) sending IdIπ†† to IdIπ, and a commutative diagram

Iπ ⊗Zπ Iπ
† Zπ ⊗Zπ Iπ

†

HomZπ(Iπ††, Iπ††) HomZπ(Iπ††,Zπ††)

HomZπ(Iπ, Iπ) HomZπ(Iπ,Zπ).

j⊗Id

∼=∼=
j††

∗

∼= ∼=
j∗

The top vertical maps are those induced by BIπ⊕Iπ† and BZπ⊕Iπ† , described in Lemma 6.106.10. The
lower vertical maps are induced by e. The horizontal maps are induced by the inclusion j : Iπ → Zπ.
We want to see that IdIπ is not in the image of the left vertical composition. Under the lower
horizontal map, IdIπ maps to the inclusion j : Iπ → Zπ, which lifts to 1⊗j in the top right Zπ⊗ZπIπ.
Thus if we show that 1 ⊗ j is not in the image of the top horizontal map Iπ⊗Zπ Iπ

† → Zπ⊗Zπ Iπ
†,

it follows from the diagram that IdIπ is not in the image of the left vertical composition, and hence
that IdIπ†† is not in the image of the top left vertical map, as desired.

Recall that v′ : π → C2 is given by v′(t) = 1 and v′(T ) = −1. Using the group presentation
π ∼= ⟨t, T | [t, T ], T 2⟩, there is an isomorphism θ−1 : Iπ† → Iπv

′ sending j to (1 − t); see the proof
of Lemma 8.128.12. The composition

Iπ ⊗Zπ Iπ
† j⊗Id−−−→ Zπ ⊗Zπ Iπ

† ε⊗θ−1

−−−−→ Z ⊗Zπ Iπ
v′

is the zero homomorphism, where ε : Zπ → Z is the augmentation, and (ε⊗θ−1)(1⊗ j) = 1⊗ (1− t).
Thus if 1 ⊗ j is in the image of j ⊗ Id, it follows that 1 ⊗ (1 − t) = 0 ∈ Z ⊗Zπ Iπ

v′ . It therefore
suffices to show that 1 ⊗ (1 − t) is nontrivial. For this we consider the exact sequence

0 → TorZπ1 (Z,Zv
′
) → Z ⊗Zπ Iπ

v′
→ Z ⊗Zπ Zπ → Z ⊗Zπ Zv

′
→ 0.

This can be identified with the exact sequence

0 → Z/2 → Z ⊗Zπ Iπ
v′

→ Z → Z/2 → 0

where 1 ⊗ (1 − t) maps to 0 ∈ Z and 1 ⊗ (1 + T ) maps to 2 ∈ Z. Since 1 ⊗ (1 − t) and 1 ⊗ (1 + T )
generate Z⊗Zπ Iπ

v′ , it follows that 1 ∈ Z/2 maps to 1⊗ (1− t). In particular, the latter is nontrivial
as needed.

Recapping, this means that 1 ⊗ j is not in the image of j ⊗ Id, which implies that IdIπ†† is not
in the image of the restriction of BH2(P ;Zπ) to the map Iπ ⊗Zπ Iπ

† → HomZπ(Iπ††, Iπ††) that is
the top left vertical map of the previous diagram. This in turn implies that λ = f∗λN is not in the
image of ev∗ ◦BH2(P ;Zπ), which as explained above leads to the desired contradiction. So y maps to
0 ∈ Z/2, and therefore y lies in the image of φB , as required. Thus (π,w) has Property 4HL when
w is trivial.

The case where w(t) = −1 is similar. Here one has to consider the mapping torus M ′ of the
orientation reversing involution on RP3 in place of S1 × RP3, representing the nontrivial element of
H4(π;Zw) ∼= Z/2. Since π2(M ′) = 0, letting B′ := P2(M ′), we again have an exact sequence

Z ⊗Zπ H4(B̃′;Zw) φB′−−→ H4(B′;Zw) → H4(π;Zw) → 0

by Lemma 8.68.6. Again, this implies that every element in the kernel of H4(B′;Zw) → H4(π;Zw)
lies in the image of φB′ .

For 0 ∈ H4(π;Zw) there is a 4-manifold N ′ with π2(N ′) ∼= Iπ⊕ Iπwv
′ ∼= Iπ⊕ Iπ† and hyperbolic

intersection form. Here we use that the involution of Zπ in this case is given by g 7→ w(g)g−1

so that as a left module Iπ† is isomorphic to Iπwv
′ . Let P ′ := P2(N ′). We just observed that

H2(P ′;Zπ) is isomorphic to H2(P ;Zπ). We also have the exact sequence from Lemma 8.118.11 for
w(t) = −1. The analysis above applies unchanged, to show that for y ∈ ker ΘP ′ we have that
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y 7→ 0 ∈ Z/2, and hence y ∈ ImφP ′ . This shows that (π,w) has Property 4HL for w(T ) = 1 and
w(t) = −1. □

8.5. Property 4HL for 3-manifold groups that are nontrivial free products. In this section
we establish Property 4HL for all admissible (π,w), deducing it for 3-manifold groups that are
nontrivial free products of factors for which we already proved Property 4HL in Sections 8.28.2 to 8.48.4.

We work initially with an arbitrary finitely presented group π, a subgroup G ≤ π, and a character
w : π → C2. Only at the end of the section, in Proposition 8.228.22, do we restrict to admissible
3-manifold groups and orientation characters. For G ≤ π, we also prove results for an arbitrary left
ZG-module A. Recall that Σ2 denotes the symmetric group on two elements.
Definition 8.15. Let G ≤ π be a subgroup. Let w : π → C2 be a homomorphism and define the
composition w : G ↪→ π

w−→ C2. For every ZG-module A we define
ψ : IndπG(A⊗Z A) → (IndπGA) ⊗Zπ (IndπGA)

γ ⊗ (a⊗ a′) 7→ (γ ⊗ a) ⊗ (γ ⊗ a′)
and

ξ : Sesqw(A) → Sesqw(IndπGA)
λ 7→

(
(γ ⊗ a, γ′ ⊗ a′) 7→ γλ(a, a′)γ′

)
.

In the case that A is free as an abelian group, recall that Γ(A) is isomorphic to the group of fixed
points of A⊗ZA under the Σ2-action permuting the two copies of A. Therefore, taking fixed points,
we obtain

ψΣ2 : IndπG Γ(A) → Γ(IndπGA) and

ξΣ2 : Herw(A) → Herw(IndπGA).

Recall that for G ≤ π, and a ZG-module A, we denote the module HomZG(A,ZG) by A⋆.
Lemma 8.16. Let G ≤ π be a subgroup, let A be a ZG-module, and let w : π → C2 be a
homomorphism. Define the composition w : G ↪→ π

w−→ C2. Then we have the commutative diagram

IndπG(A⊗Z A) IndπGA⊗Zπ IndπGA

Sesqw(A⋆) Sesqw((IndπGA)†),

ψ

B̃A B̃Indπ
G

A

ξ

(8.17)

where
(1) B̃A(γ ⊗ (a⊗ a′)) =

(
(f, f ′) 7→ w(γ)f(a)f(a′)

)
, and

(2) B̃Indπ
G
A((γ ⊗ a) ⊗ (γ′ ⊗ a′)) =

(
(h, h′) 7→ h(γ ⊗ a)h′(γ′ ⊗ a′)

)
,

and the maps ψ and ξ are from Definition 8.158.15.
Here we used the isomorphism Sesqw((IndπGA)†) ∼= Sesqw(IndπG(A⋆)) induced by the isomorphism

from Lemma 4.84.8, in order to use the map ξ.
Proof. We have

B̃Indπ
G

(A)(ψ(γ ⊗ (a⊗ a′))) =
(
(h, h′) 7→ h(γ ⊗ a)h′(γ ⊗ a′)

)
.

Applying the isomorphism from Lemma 4.84.8, we obtain the element of Sesqw(IndπG(A⋆)) given by

(δ ⊗ f, δ′ ⊗ f ′) 7→ (γf(a)δ)(γf ′(a′)δ′) = w(γ)δf(a)f ′(a′)δ′.

On the other hand, we also see
ξ(B̃A(γ ⊗ (a⊗ a′))) = ξ

(
(h, h′) 7→ w(γ)h(a)h′(a′)

)
=

(
(δ ⊗ f, δ′ ⊗ f ′) 7→ w(γ)δf(a)f ′(a′)δ′

)
as well. Hence the diagram commutes as claimed. □

Lemma 8.18. Let G ≤ π be a subgroup, let A be a ZG-module, and let w : π → C2 be a
homomorphism. Define the composition w : G ↪→ π

w−→ C2. Consider the diagram (8.178.17). Let x ∈
IndπG(A)⊗Z IndπG(A) such that B̃Indπ

G
(A)(x) is in the image of ξ. Then there exists b ∈ IndπG(A⊗ZA)

such that x− ψ(b) is in the kernel of B̃Indπ
G

(A).
Furthermore, if x is a Σ2-fixed point, then b can be chosen to be a Σ2-fixed point.
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Proof. Let x =
∑n
i=1(gi ⊗ ai) ⊗ (g′

i ⊗ a′
i). Using the isomorphism

Sesqw((IndπGA)†) ∼= Sesqw(IndπG(A⋆))

coming from Lemma 4.84.8, we have that

B̃Indπ
G

(A)(x) = ((γ ⊗ f, γ′ ⊗ f ′) 7→
n∑
i=1

γf(mi)gig′
if

′(m′
i)γ′).

Since B̃Indπ
G

(A)(x) is in the image of ξ, there exists a λ ∈ Sesqw(A⋆) such that for all f, f ′ ∈ A⋆ we
have

λ(f, f ′) =
n∑
i=1

f(mi)gig′
if

′(m′
i).

Up to reordering, we can assume that there exists an m such that g−1
i g′

i ∈ G for i ≤ m and g−1
i g′

i /∈ G

for i > m. Note that f(mi)gig′
if

′(m′
i) ∈ Z[G] if and only if g−1

i g′
i ∈ G. Since λ(f, f ′) ∈ Z[G], it

follows that

λ(f, f ′) =
m∑
i=1

f(mi)gig′
if

′(m′
i),

and that
∑n
i=m+1(gi ⊗ ai) ⊗ (g′

i ⊗ a′
i) is in the kernel of B̃Indπ

G
(A).

By assumption, for each i ≤ m there exists hi ∈ G such that g′
i = gih

−1. Then (gi ⊗mi) ⊗ (g′
i ⊗

m′
i) = (gi ⊗ ai) ⊗ (gi ⊗ ha′

i) and hence
m∑
i=1

(gi ⊗ ai) ⊗ (g′
i ⊗ a′

i) = ψ(
∑
i

gi ⊗ (ai ⊗ ha′
i)).

Thus setting b :=
∑
i gi ⊗ (ai ⊗ ha′

i) we have that x− ψ(b) is in the kernel of B̃Indπ
G

(A) as required.
Since g−1

i g′
i ∈ G if and only if (g′

i)−1gi ∈ G, the element b defined above is a Σ2-fixed point if x
is a Σ2-fixed point. □

Now we consider the case that π ∼= ∗ni=1Gi, where the groups Gi, for i = 1, . . . , n are finitely
presented, and for each i we consider left ZGi-modules Ai. Let A :=

⊕
i

IndπGi
(Ai) and let

si : IndπGi
(Ai) → A denote the canonical inclusion map for each i. Let w : π → C2 be a homomor-

phism, and for each i, consider the composition wi : Gi ↪→ π
w−→ C2.

Lemma 8.19. Let x ∈ Zw ⊗Zπ Γ(A). The diagram

⊕
i

Zw ⊗Zπ IndπGi
Γ(Ai)

⊕
i

Zw ⊗Zπ Γ(IndπGi
Ai) Zw ⊗Zπ Γ(A)

⊕
i

Herwi(A⋆i )
⊕
i

Herw((IndπGi
Ai)†) Herw(A†)

⊕iψ
Σ2
i

⊕iBAi ⊕iBIndπ
Gi

A

s

BA

⊕iξ
Σ2
i s†

commutes, where s and s† are the maps induced by (Γ(si))i and (s†
i )i respectively, and each ψi

and ξi comes from Definition 8.158.15. We denote the top composition by ΨΣ2 := s ◦ (⊕iψ
Σ2
i ) and the

bottom composition by ΞΣ2 := s† ◦ (⊕iξ
Σ2
i ). If BA(x) lies in the image of ΞΣ2 , then there exists

b ∈
⊕
i

Zw ⊗Zπ IndπGi
Γ(Ai) such that x− ΨΣ2(b) ∈ ker BA.

Proof. For every Zπ-module U , the map BU is obtained from B̃U by taking Σ2-fixed points and
noticing that the result factors through Zw ⊗Zπ Γ(U). The left hand square thus commutes by
Lemma 8.168.16. The right hand square commutes by naturality of B.

Now assume that BA(x) lies in the image of ΞΣ2 . Let y ∈
⊕
i

Herwi(A⋆i ) be a preimage. Then

s†(⊕iξ
Σ2
i (y)) = BA(x). By Lemma 6.106.10, there exists x′ ∈

⊕
i

Zw ⊗Zπ Γ(IndπGi
Ai) with

⊕iBIndπ
Gi
A(x′) = ⊕iξ

Σ2
i (y)
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such that x−s(x′) ∈ ker BA ⊆ Zw⊗ZπΓ(A). By Lemma 8.188.18, there exists b ∈
⊕
i

Zw⊗ZπIndπGi
(Γ(Ai))

such that x′ −
⊕

i ψ
Σ2
i (b) ∈ ker

(
⊕i BIndπ

Gi
A

)
. Then

BA(x− ΨΣ2(b)) = BA(x− s(x′) + s(x′ − ⊕iψ
Σ2
i (b)))

= 0 + s†(⊕iBIndπ
Gi

(A)(x′ − ⊕iψ
Σ2
i (b)))

= 0.

So x− ΨΣ2(b) lies in the kernel of BA as needed. □

Lemma 8.20. For i = 1, . . . , n, let Bi be a connected, 3-coconnected CW complex. Let B :=
P2(

∨
iBi). Let f i : Bi → B be the composition Bi ↪→

∨
iBi → B. Let π := π1(B) and Gi := π1(Bi)

for each i. Then the square

IndπGi
Γ(H2(Bi;ZGi)) Γ(IndπGi

H2(Bi,ZGi)) Γ(H2(B;Zπ))

IndπGi
H4(Bi;ZGi) H4(B;Zπ)

ψ
Σ2
i

∼=

Γ(fi
∗)

∼=
fi

∗

commutes, where ψΣ2
i is as in Definition 8.158.15.

Proof. By naturality of Whitehead’s exact sequence [Whi50Whi50], the square

Γ(H2(B̃i;Z)) Γ(H2(B̃;Z))

H4(B̃i;Z) H4(B̃;Z)

Γ(f̃i
∗)

f̃i
∗

∼= ∼=

commutes. We use the isomorphisms H∗(B̃i;Z) ∼= H∗(Bi;ZGi) and H∗(B̃;Z) ∼= H∗(B;Zπ). Under
these, f̃ i∗ : H2(B̃i;Z) → H2(B̃;Z) agrees with the composition

H2(Bi;ZGi)
u−→ IndπGi

H2(Bi;ZGi) ∼= H2(Bi;Zπ) fi
∗−→ H2(B;Zπ),

where we omit ResπGi
from the notation for readability. Also inverting the vertical isomorphisms,

we obtain the commutative diagram

Γ(H2(Bi;ZGi))) Γ(IndπGi
H2(Bi,ZGi)) Γ(H2(B;Zπ))

H4(Bi;ZGi) H4(B;Zπ)

Γ(u)

∼=

Γ(fi
∗)

∼=
fi

∗◦u

By naturality, the diagram is Gi-equivariant, and thus induces the diagram from the statement by
applying IndπGi

, and also noticing that by doing so Γ(u) agrees with ψΣ2
i . □

Lemma 8.21. For i = 1, . . . , n, let Bi be a connected, 3-coconnected CW complex. Let B :=
P2(

∨
iBi). Let f i : Bi → B be the composition Bi ↪→

∨
iBi → B. Let π := π1(B) and Gi := π1(Bi)

for each i. For each i, let wi denote the composition Gi ↪→ π
w−→ C2. Then the diagram

H4(Bi;Zwi) H4(B;Zw)

Herwi(H2(Bi;ZGi)) Herw(IndπGi
H2(Bi;ZGi)) Herw(H2(B;Zπ))

fi
∗

ΘBi ΘB

ξ
Σ2
i fi

∗

commutes, where ξΣ2
i is as in Definition 8.158.15.
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Proof. We can extend the diagram as follows.

H4(Bi;Zwi) H4(B;Zw)

Herwi(H2(Bi;ZGi)) Herw(IndπGi
H2(Bi;ZGi)) Herw(H2(B;Zπ))

fi
∗

x 7→⟨−,−∩x⟩ΘBi ΘB

ξ
Σ2
i fi

∗

The right hand square then commutes by naturality of the Kronecker product since ΘB(f i∗(x)) =
⟨−,− ∩ f i∗(x)⟩. To see that the left hand triangle commutes, note that for all x ∈ H4(Bi;Zwi),
α, β ∈ H2(Bi;ZGi) and g, g′ ∈ π we have

⟨g ⊗ α, (g′ ⊗ β) ∩ x⟩ = g⟨α, β ∩ x⟩g′ = ξΣ2
i (ΘBi

(x))(g ⊗ α, g′ ⊗ β). □

Proposition 8.22. Let π be a 3-manifold group and let w : π → C2 be a homomorphism such that
(π,w) is admissible. Then (π,w) has Property 4HL.

Proof. Let M be a closed 4-manifold with fundamental group π and orientation character w. We
have to show that (P2(M), w) has Property 4HL. By Lemma 8.38.3, it suffices to show this for some
stabilisation of M . By Lemma 3.133.13, we can thus assume that M = #iMi, where each Mi is a
closed 4-manifold with fundamental group π1(Mi) =: Gi either cyclic, isomorphic to Z × Z/2, or
a PD3-group. Let Bi := P2(Mi) and let B := P2(M) ≃ P2(

∨
iBi). For each i, denote by wi the

composition Gi ↪→ π
w−→ C2.

Consider the following diagram with exact rows. The top left and the second-from-bottom left
square are given in Lemmas 8.208.20 and 8.218.21, respectively. The maps φBi , φB , ΘBi , and ΘB are as in
(2.72.7). The map Ξ̂Σ2 is the map induced by (f i∗ ◦ ξΣ2

i )i, where the terms come from Lemma 8.218.21.
The second and third rows are part of the long exact sequences for the pair (B,

∨
iBi). The diagram

commutes by naturality of φ, ξΣ2 and Θ, together with Lemmas 8.208.20 and 8.218.21.

Zw ⊗Zπ
⊕
i

IndπGi
Γ(H2(Bi;ZGi)) Zw ⊗Zπ Γ(H2(B;Zπ)) coker(ΨΣ2)

Zw ⊗Zπ H4(
∨
iBi;Zπ) Zw ⊗Zπ H4(B;Zπ) Zw ⊗Zπ H4(B,

∨
iBi;Zπ)

H4(
∨
iBi;Zw) H4(B;Zw) H4(B,

∨
iBi;Zw)

⊕
i

Herwi(H2(Bi;ZGi)) Herw(H2(B;Zπ)) coker(Ξ̂Σ2)

⊕
i

Herwi(H2(Bi;ZGi)⋆) Herw(H2(B;Zπ)†) coker(ΞΣ2)

ΨΣ2

∼=⊕iΥ−1
i

∼=Υ−1

ι∗

∨iφBi
φB ∼=

ι∗

∨iΘBi ΘB

Ξ̂Σ2

ΞΣ2

⊕ ev∗ ∼= ev∗ ∼= ∼=

The vertical map second from the top on the right is an isomorphism by the relative Leray–Serre
spectral sequence [Swi02Swi02, Theorem 15.27, Remark 2, p. 351] since Hj(B,

∨
iBi;Zπ) = 0 for j < 4.

The maps denoted by ev∗ are isomorphisms by Proposition 5.95.9 since π is a 3-manifold group. Note
that the composition of the five maps in the middle column is the map BH2(B;Zπ).

Note that
H3

( ∨
i

Bi;Zπ
) ∼=

⊕
i

H3(Bi;Zπ) ∼=
⊕
i

IndπGi
H3(Bi;ZGi),

and 0 = π3(Bi) → H3(Bi;ZGi) is surjective for each i by the Hurewicz theorem. Therefore
H3

( ∨
iBi;Zπ

)
= 0 and the map Zw ⊗Zπ H4(B;Zπ) → Zw ⊗Zπ H4(B,

∨
iBi;ZGi) on the second

row is surjective.
Let x ∈ ker(H4(B;Zw) → H4(π;Zw)) be such that ⟨α, β ∩ x⟩ = 0 for all α, β ∈ H2(B;Zπ). We

will show that x admits a lift to Zw ⊗Zπ H4(B;Zπ). This will complete the proof that (B,w) has
Property 4HL.
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Let x be the image of x in H4(B,
∨
iBi;Zw) and let z be the preimage of x in Zw ⊗Zπ

H4(B,
∨
iBi;Zπ) under the isomorphism Zw ⊗Zπ H4(B,

∨
iBi;Zπ)

∼=−→ H4(B,
∨
iBi;Zw). Let

z ∈ Zw ⊗Zπ H4(B;Zπ) be a preimage of z and let y ∈ Zw ⊗Zπ Γ(H2(B;Zπ)) be a preimage under
the top middle isomorphism. Let u denote the image of y in Herw(H2(B;Zπ)). By the definition
of the map ΘB, the element x maps trivially to Herw(H2(B;Zπ)). Therefore, z maps to zero in
coker(Ξ̂Σ2), which implies that u lies in the image of the map Ξ̂Σ2 . Consider the image v of y in
Herw(H2(B;Zπ)†) under the map BH2(B;Zπ). Using the vertical isomorphisms between the two
bottom rows of the diagram, we see that v lies in the image of ΞΣ2 , since u lies in the image of Ξ̂Σ2 .

By Lemma 8.198.19, there exists b̃ ∈ Zw ⊗Zπ
⊕

i Γ(H2(B;Zπ)) such that y − ΨΣ2 (̃b) ∈ Zw ⊗Zπ

Γ(H2(B;Zπ)) maps trivially to Herw(H2(B;Zπ)†). In other words y − ΨΣ2 (̃b) is in the kernel of
BH2(B;Zπ). We know from Corollary 7.107.10 that in our setting the kernel of BH2(B;Zπ) equals the
kernel of φB . Therefore, the element y− ΨΣ2 (̃b) also maps trivially to H4(B;Zw). Mapping further
to H4(B,

∨
iBi;Zw), it follows that z = 0. This implies that x is zero, so x lies in the image of

H4(
∨
iBi;Zw). Let x̃ ∈ H4(

∨
iBi;Zw) be a preimage of x.

We know that each individual (Bi, w|π1(Bi
) has Property 4HL by Lemmas 8.88.8 to 8.108.10 and 8.138.13.

Therefore by Lemma 8.58.5, (
∨
iBi, w) has Property 4HL as well. We will apply this momentarily.

First we check that x̃ satisfies the desired conditions. We note that x̃ lies in ker(H4(
∨
iB;Zw) →

H4(π;Zw)), since the map
∨
iB → Bπ factors through B and since x maps to 0 in H4(π;Zw).

Moreover, for any α, β ∈ H2(
∨
iBi;Zπ), we have

⟨α, β ∩ x̃⟩ = ⟨α, β ∩ ι∗(x)⟩ = ⟨α, ι∗(ι∗(β) ∩ x)⟩ = ⟨ι∗(α), ι∗(β) ∩ x⟩ = 0,

where the final equality follows by our assumption on x. Now we can apply the fact that (
∨
iB,w)

has Property 4HL to conclude that s̃ admits a lift t̃ in Zw ⊗Zπ H4(
∨
iBi;Zπ). The image of s̃ in

Zw ⊗Zπ H4(B;Zπ) is the required lift of x. It follows that (B,w) has Property 4HL as needed. □

9. Proof of Theorem 1.41.4

With all our preliminary results in hand, we are finally able to prove the main theorem. We
recall the statement for the convenience of the reader.

Theorem 1.41.4. Let M and M ′ be closed 4-manifolds with fundamental group π and orientation
character w, such that π is a 3-manifold group and (π,w) is admissible.

Then every isomorphism Q(M)
∼=−→ Q(M ′) between the quadratic 2-types of M and M ′ is realised

by a homotopy equivalence. In particular, M and M ′ are homotopy equivalent if and only if they
have isomorphic quadratic 2-types. Here, homotopy equivalences are assume to be basepoint and
local orientation preserving.

Proof. We will apply Corollary 2.82.8. Assume that M and M ′ have isomorphic quadratic 2-types.
By definition this means that for B the Postnikov 2-type of M (and equivalently of M ′), we have
3-connected maps f : M → B and f ′ : M ′ → B inducing a given identification of the quadratic
2-type. Let π := π1(B). By Proposition 4.104.10, π2(M) and π2(M ′) are free as abelian groups, so
Theorem 2.42.4 (11) holds. Theorem 2.42.4 (33) holds by Corollary 7.107.10. Also by Proposition 5.95.9, ev∗ is
injective (and in fact an isomorphism), so Theorem 2.42.4 (44) holds.

Next we show that M and M ′ satisfy Theorem 2.42.4 (22), for k = 1. Consider the element

x := f∗[M ] − (f ′)∗[M ′] ∈ H4(B;Zw).

By Corollary 3.233.23, which applies since M and M ′ have isomorphic quadratic 2-types, x maps to the
trivial element in H4(π;Zw). Moreover, since M and M ′ have isomorphic equivariant intersection
forms, we also know that ⟨α, β ∩ x⟩ = 0 for every α, β ∈ H2(B;Zπ). By Proposition 8.228.22, π has
Property 4HL. Then by Property 4HL, we conclude that x ∈ H4(B;Zw) is contained in the image
of Zw ⊗Zπ H4(B;Zπ). Therefore the given M and M ′ satisfy Theorem 2.42.4 (22), for k = 1.

Since all the requirements of Theorem 2.42.4 are satisfied, we see by Corollary 2.82.8 that M and M ′ are
homotopy equivalent, via a homotopy equivalence inducing the desired maps (f ′)−1

∗ ◦ f∗ : π1(M) →
π1(M ′) and (f ′)−1

∗ ◦ f∗ : π2(M) → π2(M ′). □
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10. Applications to geometrically 2-dimensional and finite groups

In this section we reprove a couple of results of Hambleton, Kreck, and Teichner, in order to
demonstrate the wide applicability of our methods. That is, as well as dealing with new fundamental
groups, our methods recover previously known results.

10.1. Geometrically 2-dimensional groups. In [HKT09HKT09, Theorem C], Hambleton, Kreck, and
Teichner showed that closed, oriented 4-manifolds with geometrically 2-dimensional fundamental
group π that satisfies the Farrell-Jones conjecture, are classified up to s-cobordism by their quadratic
2-type together with their Kirby-Siebenmann invariant and their w2-type. It follows that such
4-manifolds are classified up to homotopy equivalence by their quadratic 2-type together with the
w2-type.

The w2-type is determined by the homotopy type but, as we show in the next example, the
w2-type is not determined by the quadratic 2-type. Thus the w2-type has to be included in the
data for a complete homotopy classification, and the analogue of the statement of Theorem 1.41.4
does not hold for geometrically 2-dimensional groups.

Example 10.1. Let S2 → S2×̃T 2 → T 2 be the unique S2-bundle over T 2 that is orientable but
not spin. Then both S2 × T 2 and S2×̃T 2 have fundamental group Z2 and second homotopy group
Z with the trivial action of Z2. The k-invariants are trivial since Z2 is geometrically 2-dimensional.
Since the radical of the intersection form is H2(Z2;Z[Z2]) ∼= Z, the intersection forms are also
trivial.

In particular, S2 × T 2 and S2×̃T 2 have quadratic 2-type (Z2,Z, 0, 0), but are not homotopy
equivalent since only one of them is spin.

We discuss the failure of the conditions in Theorem 2.42.4, which is that (33) does not hold. Thus
these examples are consistent with Theorem 2.42.4. The 2-type B is CP∞ × T 2, so H∗(B;Z[Z2]) ∼=
H∗(CP∞;Z), with a trivial Z2-action. We therefore see using the Künneth theorem that

φB : Z ⊗Z[Z2] H4(B;Z[Z2]) ∼= Z → H4(B;Z) ∼= Z2

is injective. On the other hand the map

BH2(B;Z[Z2]) ◦ Υ: Z ⊗Z[Z2] H4(B;Z[Z2]) ∼= Z → Her(H2(B;Z[Z2])†) ∼= Her(Z†)

is zero, because Z† := HomZ[Z2](Z,Z[Z2]) = 0 and hence the codomain is trivial. So it is not possible
for the nontrivial kernel of BH2(B;Z[Z2]) ◦ Υ to be contained in the trivial kernel of φB .

The reduced Postnikov 2-type P of a manifold M is a 3-coconnected CW complex that is
determined up to homotopy equivalence by the existence of a 2-connected map cM : M → P
whose kernel on π2 is the radical R of the equivariant intersection form λM . In particular,
π2(P ) ∼= π2(M)/R. Such a map cM : M → P is called a reduced 3-equivalence.

Despite Example 10.110.1, the quadratic 2-type determines the image of the fundamental class in
the homology of the reduced Postnikov 2-type, when the fundamental group is geometrically 2-
dimensional [HKT09HKT09, Theorem 5.13]. This theorem is a key step in the proof of [HKT09HKT09, Theorem C].
We perceive a problem with the proof of the former theorem, in particular with the diagram at
the start of the proof. The fixed points Γ(A)π can be trivial, and the map Γ(A)π → Γ(A)π need
not be defined. This map is used in showing that the diagram commutes. We give a new proof of
[HKT09HKT09, Theorem 5.13] below, as a corollary of Theorem 2.42.4.

Corollary 10.2 ([HKT09HKT09, Theorem 5.13]). Let π be a geometrically 2-dimensional group and
let M and N be closed 4-manifolds with fundamental group π, orientation character w, and the
same reduced Postnikov 2-type P . Two reduced 3-equivalences cM : M → P and cN : N → P satisfy
(cM )∗[M ] = (cN )∗[N ] ∈ H4(P ;Zw) if and only if (cM )∗λM = (cN )∗λN .

Proof. If π is geometrically 2-dimensional, then H3(π;Zπ) = 0. Then ev∗ is injective by Lemma 5.15.1,
so Theorem 2.42.4 (44) holds. Furthermore, π2(M)/R ∼= π2(P ) ∼= H2(P ;Zπ) is stably free for any
4-manifold with geometrically 2-dimensional fundamental group by [HKT09HKT09, Corollary 4.4]. Hence
H2(P ;Zπ) is projective as a Zπ-module, and is therefore free as an abelian group, so Theorem 2.42.4 (11)
holds. In addition BH2(P ;Zπ) is injective by Proposition 6.16.1, since H2(P ;Zπ) is projective. Hence
Theorem 2.42.4 (33) holds automatically.
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Since π is geometrically 2-dimensional and H2(P ;Zπ) is projective, φP : Zw ⊗Zπ H4(P ;Zπ) →
H4(P ;Zw) is an isomorphism by Lemma 8.68.6. Hence Theorem 2.42.4 (22) holds, and in particular for
k = 1. Thus the corollary follows from Corollary 2.82.8. □

10.2. Finite groups. We end this section by reproving the result, mentioned just below Theorem 2.12.1,
of Hambleton–Kreck [HK88HK88, Theorem 1.1 (i)] and Teichner [Tei92Tei92] (cf. [KT21KT21, Corollary 1.6]). In
contrast with the previous subsection, no negative inference should be drawn about the published
proofs. Rather, the purpose is to demonstrate that our method is consistent with, and an extension
of, the previously known methods.

Corollary 10.3 ([HK88HK88, Tei92Tei92, KT21KT21]). Let π be a finite group. Let M and M ′ be closed 4-
manifolds with fundamental group π and orientation character w. Assume that Zw ⊗Zπ Γ(π2(M))
is torsion-free.

Then every isomorphism Q(M)
∼=−→ Q(M ′) between the quadratic 2-types of M and M ′ is realised

by a (basepoint and local orientation preserving) homotopy equivalence.

Proof. Certainly if M and M ′ are homotopy equivalent then they have isomorphic quadratic
2-types. For the converse, suppose that M and M ′ have isomorphic quadratic 2-types. We will
apply Corollary 2.82.8. Let B denote the Postnikov 2-type of M (and therefore also of M ′). Therefore
there are 3-connected maps f : M → B and f ′ : M ′ → B.

We need to check that the conditions of Theorem 2.42.4 are satisfied. Since π is finite, the dual of
the evaluation map ev∗ : Her(H2(B;Zπ)†) → Her(H2(B;Zπ)) is injective by Corollary 5.25.2. This
establishes Theorem 2.42.4 (44). Since M is closed and has finite fundamental group, as an abelian
group H2(B;Zπ) ∼= H2(M ;Zπ) ∼= H2(M̃ ;Z) ∼= H2(M̃ ;Z) where M̃ is the universal cover. This is
free by the universal coefficient theorem, since H1(M̃ ;Z) = 0. This establishes Theorem 2.42.4 (11).

Further, there is an exact sequence 0 → Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw) → Z/|π| by [HK88HK88,
p. 89]. Teichner [Tei92Tei92] (see also [KT21KT21, Theorem 3.4]) showed that when M and M ′ have isomorphic
quadratic 2-types, the elements f∗[M ] and f ′

∗[M ′] in H4(B;Zw) map to the same element in Z/|π|.
Therefore, f∗[M ] − f ′

∗[M ′] lies in the image of the map Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw), giving
Theorem 2.42.4 (22) with k = 1. Finally since the map Zw ⊗Zπ H4(B;Zπ) → H4(B;Zw) is injective, in
order to establish Theorem 2.42.4 (33) we have to show that the map BH2(B;Zπ) is injective. But this
follows from Proposition 6.156.15 when Zw ⊗Zπ Γ(H2(B;Zπ)) is torsion-free, which holds by hypothesis.
The result now follows from Corollary 2.82.8. □

11. A homeomorphism classification for oriented 4-manifolds with infinite dihedral
fundamental group

Let D∞ := ⟨a, b | a2, b2⟩ ∼= Z/2 ∗ Z/2 be the infinite dihedral group. In this section we will prove
Theorem 1.101.10 from the introduction. The following theorem will be a key ingredient.

Theorem 11.1. Let M and M ′ be closed, oriented 4-manifolds with fundamental group D∞. Then
M and M ′ are homeomorphic over D∞ if and only if they are homotopy equivalent and stably
homeomorphic over D∞.

Here and throughout the section, we assume that all homotopy equivalences, homeomorphisms,
and stable homeomorphisms are basepoint and orientation preserving, as per our conventions.

In Section 11.111.1 we compute the stable classification using modified surgery. In Section 11.211.2 we
compute the structure set using the surgery exact sequence. In Section 11.311.3 we then combine these
two computations to obtain Theorem 11.111.1 and hence Theorem 1.101.10. Finally in Section 11.411.4 we
show that in some situations one need not compute the k-invariant, and instead computing the
w2-type suffices.

11.1. The stable homeomorphism classification. By modified surgery [Kre99Kre99], the stable
classification is determined by the bordism group of the normal 1-type of the manifold. For M
oriented this only depends on π1(M) and the second Stiefel–Whitney class w2(M). More precisely,
it is given by π1(M) and the w2-type. By definition, the w2-type is ∞ if the universal cover M̃ is not
spin and otherwise the w2-type is given by an element θ ∈ H2(π1(M);Z/2) such that c∗θ = w2(M),
where c : M → Bπ1(M) is a classifying map. Up to automorphisms of D∞, there are four w2-types,
as follows. Consider the standard projections pa, pb : D∞ → Z/2 determined by pa(a) = 1, pa(b) = 0
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and pb(a) = 0, pb(b) = 1. Let ψ ∈ H1(Z/2;Z/2) be the generator. Define elements of H1(D∞;Z/2)
by

x := p∗
a(ψ) and y := p∗

b(ψ).
Then the possibilities for the w2-type are

θ ∈ {∞, 0, x2, x2 + y2}.

Remark 11.2. For θ = 0, the stable classification is determined by the signature. For the cases
θ = ∞, x2, the stable classification is determined by the signature and the Kirby–Siebenmann
invariant. For θ = 0 or x2 this is similar to the computation in [Tei97Tei97, Lemma 2] using that
ΩTopSpin

4 (BZ/2) ∼= 8Z via the signature [Tei92Tei92, Section 4.2]. For θ = ∞, bordism over the normal
1-type is given by oriented bordism over BD∞ [Tei92Tei92, Example 2.1.2], and we have Ω4(BD∞) ∼= Z
via the signature.

As mentioned in the introduction, we will use the invariants from Definition 1.91.9. If the w2-type
of M is 0,∞, or x2, this stable homeomorphism invariant is determined by the signature and the
Kirby–Siebenmann invariant, since those determine the stable classification (see Remark 11.211.2).
Hence we focus on the case of w2-type x2 + y2.

Lemma 11.3. Let θ = x2 + y2. There are precisely four distinct stable homeomorphism classes
with fixed identification of the fundamental group with D∞, w2-type θ and a given signature z ∈ 8Z.
These classes are represented by homotopy equivalent manifolds and distinguished by s; recall that s
takes values in Z/2 × Z/2.

Proof. By [Kre99Kre99, Theorem C], two 4-manifolds with normal 1-type (D∞, x
2 + y2) are stably

homeomorphic if they admit bordant normal 1-smoothings. By [Tei97Tei97, Lemma 2], the bordism
group over this normal 1-type is isomorphic to 8Z ⊕ Z/2 ⊕ Z/2, where the first summand is given
by the signature. Hence there are at most four stable homeomorphism classes for a given signature.

Consider the bundle S2 → E → RP2 with orientable but not spin total space. By [Tei97Tei97,
Proposition 1], there exists a manifold ⋆E that is homotopy equivalent to E but has nontrivial
Kirby–Siebenmann invariant. For z ∈ Z, the manifolds E#E#zE8, ⋆E# ⋆ E#zE8, E# ⋆ E#zE8
and ⋆E#E#zE8 have normal 1-type determined by (D∞, θ). Since σ(E) = 0, these manifolds have
signature 8z. We have

s(E#E#zE8) = (σ(E)/8 + ks(E), σ(E#zE8)/8 + ks(E#zE8)) = (0 + 0, z + z) = (0, 0),
and similarly s(⋆E# ⋆ E#zE8) = (1, 1), s(E# ⋆ E#zE8) = (0, 1), and s(⋆E#E#zE8) = (1, 0). It
follows that there are precisely four stable homeomorphism classes with signature 8z and that they
are distinguished by s, as asserted. □

Remark 11.4. If we also consider stable homeomorphisms that induce a nontrivial automorphism
on D∞, then two of the stable classes are identified, namely those with s = (1, 0) and s = (0, 1).
Actually, Out(D∞) ∼= C2 with the nontrivial element given by the map that swaps a and b. To
see this, it is easier to use the presentation ⟨t, a | a2, atat⟩, where t = ab. Then we see that
Aut(D∞) = {(m, ε) | m ∈ Z, ε ∈ {±1}}, with (m, ε) mapping t to tε and a to atm. Then
(m, ε) ◦ (n, η) = (m + εn, εη) and hence D∞ ∼= Aut(D∞) by t 7→ (1, 0) and a 7→ (0, 1). The
inner automorphisms are generated by the conjugations ct = (−2, 1) and ca = (0,−1), where
cg : x 7→ gxg−1 denotes conjugation by g. Hence Out(D∞) ∼= C2 is generated by (1,−1), which is
the map that swaps a and b.

11.2. The structure set. The next step in the proof of Theorem 11.111.1 is to calculate the relevant
structure set. We will make use of the stable homeomorphism classification in this computation.

Proposition 11.5. Let M be a closed, oriented 4-manifold with fundamental group D∞. Then the
structure set S(M) is isomorphic to H2(M ;Z/2).

For the proof we need the following lemma. The Whitehead group of Z/2 vanishes, and
the Whitehead group is additive with respect to free products by [Sta65Sta65]. Hence Wh(D∞) =
Wh(Z/2) ⊕ Wh(Z/2) = 0, and so throughout this section we may and shall omit decorations from
L-groups and structure sets.

Lemma 11.6 (Connolly–Davis [CD04CD04]). L5(ZD∞) = 0 and L4(ZD∞) ∼= Z3.



50 JONATHAN HILLMAN, DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

Proof. By [CD04CD04, p. 1046] we have Ln(ZD∞) ∼= Ln(Z[Z/2]) ⊕ L̃n(Z[Z/2]) ⊕ UNiln(Z,Z,Z). By
Wall [Wal99Wal99, Theorem 13A.1], L5(Z[Z/2]) = 0 and L4(Z[Z/2]) ∼= Z2. Furthermore, UNil5(Z;Z,Z) =
UNil1(Z;Z,Z) = 0 and UNil4(Z;Z,Z) = UNil0(Z;Z,Z) = 0 by [CD04CD04, Theorem 1.10]. Here Davis–
Connolly relied on prior computations by Connolly–Ranicki [CR05CR05], Connolly–Koźniewski [CK95CK95],
and Cappell [Cap74Cap74]. □

Proof of Proposition 11.511.5. The group D∞ is an extension of abelian groups 0 → Z → D∞ →
Z/2 → 0, and thus a good group (see e.g. [FT95FT95, KOPR21KOPR21]). Hence we have the surgery exact
sequence

L5(ZD∞) → S(M) → N (M) → L4(ZD∞).
As stated above, decorations are irrelevant for this fundamental group, so we omit them. The set
of normal invariants N (M) is isomorphic to

N (M) ∼= [M,G /Top] ∼= H4(M ;Z) ⊕H2(M ;Z/2) ∼= Z ⊕H2(M ;Z/2),
where the Z-summand is detected in L4(ZD∞) by the signature. By Lemma 11.611.6, L4(ZD∞) is
torsion-free and hence the kernel of the surgery obstruction map is H2(M ;Z/2). Since L5(ZD∞) = 0
by Lemma 11.611.6, S(M) ∼= H2(M ;Z/2) as claimed. □

11.3. The homeomorphism classification. Let M be a closed, oriented 4-manifold together
with an identification of π1(M) with D∞. Let hAut(M,D∞) denote the group of homotopy
self-equivalences of M that act as the identity on π1(M). Again, recall that all homotopy self-
equivalences, homeomorphisms, and stable homeomorphisms are assumed to be orientation preserv-
ing.

Theorem 11.7. Let M be a closed, oriented 4-manifold with fundamental group D∞. Then the
set of homeomorphism classes over D∞ of manifolds homotopy equivalent to M , which by surgery
theory is isomorphic to S(M)/ hAut(M,D∞), has:

(1) a single element if M is spin;
(2) two elements distinguished by the Kirby–Siebenmann invariant if M has w2-type ∞ or x2;
(3) four elements if M has w2-type x2 + y2, distinguished by the invariant s.

In all cases, the different classes are pairwise not stably homeomorphic.

Proof. As mentioned above, since Wh(D∞) = 0, the forgetful map Ss(M) → Sh(M) from the
simple to the non-simple structure set is an isomorphism, and so we can consider S(M) as the
simple structure set. Moreover since D∞ is good, the s-cobordism theorem holds, and so we
can identify the set of homeomorphism classes over D∞ of manifolds homotopy equivalent to M
with S(M)/hAut(M,D∞).

By Proposition 11.511.5, S(M) ∼= H2(M ;Z/2). It remains to deduce the action of hAut(M,D∞) on
the structure set. By Stong [Sto94bSto94b, Proposition 3.2], every class in H2(M ;Z/2) ∼= S(M) that is
represented by a map R : RP2 → M with R∗w2(M) = 0 can be represented by a self-homotopy
equivalence of M (which is homotopic to the identity on the 2-skeleton of M).

We first consider the case w2(M̃) = 0. Then every element of π2(M) can be represented by a
map R : RP2 → M with R∗w2(M) = 0 and we have H2(M ;Z/2)/π2(M) ∼= H2(D∞;Z/2) ∼= (Z/2)2.

For elements a, b ∈ D∞ = π1(M), we can choose maps Ra, Rb : RP2 → M that map to the
elements (1, 0) and (0, 1) in H2(D∞;Z/2) ∼= Z/2⊕Z/2. The images in H2(D∞;Z/2) are determined
by the elements of π1(M) represented by the image of the generator of π1(RP2), a and b respectively,
since the composition RP2 → M

c−→ BD∞ is determined by the induced map on fundamental
groups.

If w2(M) = 0, then both (Ra)∗[RP2] and (Rb)∗[RP2] in H2(M ;Z/2) ∼= S(M) can be represented
by self-homotopy equivalences by [Sto94bSto94b, Proposition 3.2], as in the first paragraph of the proof.
Thus (11) follows. If w2(M) = c∗x2, then again using Stong’s method, the map Rb : RP2 → M can
be represented by a self-homotopy equivalence of M . Thus S(M)/hAut(M,D∞) has at most two
elements. In this case, there exists a manifold M ′ homotopy equivalent to M with ks(M ′) ̸= ks(M)
by [Sto94aSto94a] (see also [KPR22KPR22, Proposition 5.11]). This implies (22) in the case of w2-type x2.

Now we consider the case of w2-type x2+y2. As before S(M)/ hAut(M) has at most four elements.
Let f : M ′ → M be a homotopy equivalence. Then f and f# Id: M ′#(S2 × S2) → M#(S2 × S2)
have the same image under S(M)

∼=−→ H2(M ;Z/2) → H2(D∞;Z/2). By Lemma 11.311.3, the four
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classes are pairwise not stably homeomorphic and are distinguished by the values of s. Thus (33)
follows.

It remains to show (22) in the case of w2-type ∞. If w2(M̃) ̸= 0, choose a map S : S2 → M
with S∗w2(M) ̸= 0. Then there is a basis of x ∈ H2(M ;Z/2) such that either x or x+ [S] can be
represented by a map R : RP2 → M with R∗w2(M) = 0. Hence S(M)/ hAut(M,D∞) has at most
two elements. As before, by [FQ90FQ90,Sto94bSto94b] there exists a manifold M ′ homotopy equivalent to M
with ks(M ′) ̸= ks(M). This implies (22) in the case of w2-type ∞. □

Theorem 11.111.1 is a direct consequence of Theorem 11.711.7 as follows.

Proof of Theorem 11.111.1. For M ′ ≃ M , we deduce from the contrapositive of the last sentence
of Theorem 11.711.7 that M ′ is homeomorphic to M if M is stably homeomorphic to M . Thus
Theorem 11.111.1 follows from Theorem 11.711.7. □

We now prove Theorem 1.101.10 from the introduction as an application of Theorem 11.111.1. We
restate the theorem for the convenience of the reader.

Theorem 1.101.10. Let M1 and M2 be closed, oriented 4-manifolds with isomorphisms αi : π1(Mi)
∼=−→

D∞. Then M1 and M2 are orientation preserving homeomorphic over D∞ if and only if
(1) M1 and M2 have isomorphic quadratic 2-types over D∞,
(2) ks(M1) = ks(M2), and
(3) s(M1, α1) = s(M2, α2) ∈ Z/2 × Z/2.

Moreover, if conditions (22) and (33) hold, then every isomorphism of the quadratic 2-types over D∞
is realised by a homeomorphism M1 → M2.

Proof of Theorem 1.101.10. By Theorem 1.41.4, the homotopy type is determined by the quadratic 2-type.
The homotopy type determines the signature, and by homotopy invariance of Stiefel-Whitney classes,
the homotopy type determines the w2-type. Hence by Theorem 11.711.7, two oriented 4-manifolds M0
and M1 with the same quadratic 2-types are orientation preserving stably homeomorphic if and
only if:

(i) they have equal Kirby–Siebenmann invariants, ks(M0) = ks(M1), and
(ii) s(M0, α0) = s(M1, α1) ∈ Z/2 × Z/2.

If the common w2-type differs from x2 + y2, then by Remark 11.211.2 the second item s(M0, α0) =
s(M1, α1) holds automatically, since the stable homeomorphism classification and hence the invari-
ants s(Mi, αi) are determined by the signatures and the Kirby-Siebenmann invariants, which by
the other assumptions already agree. If the w2-type is x2 + y2, then the additional assumption on
s(Mi, αi) is necessary.

Then by Theorem 11.111.1, two oriented 4-manifolds with fundamental group D∞ are homeomorphic
over D∞ if and only if they are homotopy equivalent and stably homeomorphic over D∞. This
completes the proof of Theorem 1.101.10. □

11.4. Replacing the k-invariant with the second Stiefel–Whitney class. If one seeks to
apply Theorem 1.101.10 in practice, it may be challenging to decide whether two quadratic 2-types are
isomorphic. We do not know whether there is an algorithm to decide this problem. To ease the
burden, we demonstrate next that in some cases one need not compute the k-invariant, and can
instead either compute the w2-type or take connected sum with either CP2 or CP2.

For an arbitrary group π and the augmentation ideal Iπ, let H(Iπ) denote the hyperbolic form
on Iπ, i.e. the form

(Iπ ⊕ Iπ†) × (Iπ ⊕ Iπ†) → Zπ

((x, φ), (y, ψ)) 7→ φ(y) + ψ(x).

Proposition 11.8. Let M and M ′ be oriented 4-manifolds with fundamental group π := D∞, with
corresponding identifications α and α′. Suppose that the equivariant intersection forms are both
isomorphic to H(Iπ) ⊕ λ, where λ is a nonsingular Hermitian form on a stably free Zπ-module.

(i) Then M#CP2 and M ′#CP2 have isomorphic quadratic 2-types, and hence by Theorem 1.41.4
are homotopy equivalent.
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(ii) If M and M ′ are almost spin and have the same w2-type wπ2 ∈ H2(π;Z/2) ∼= Z/2 × Z/2,
then they have isomorphic quadratic 2-types, and hence by Theorem 1.41.4 are homotopy
equivalent.

If in addition ks(M) = ks(M ′), and if in case (ii)(ii) we have moreover that s(M,α) = s(M ′, α′), then
Theorem 1.101.10 implies that M and M ′ are homeomorphic.

The condition on s-invariants is automatic in case (i)(i) because the universal covers are not spin.
This quickly leads to Corollary 1.121.12, which we restate.

Corollary 1.121.12. Let M and M ′ be closed, oriented, smooth 4-manifolds with fundamental group
π := D∞ and equivariant intersection forms both isomorphic to H(Iπ)⊕λ, where λ is a nonsingular
Hermitian form on a stably free Zπ-module. Then M#CP2 and M ′#CP2 are homeomorphic, as
are M#CP2 and M ′#CP2.

Proof. Both M#CP2 and M ′#CP2 have trivial Kirby–Siebenmann invariant as they are smooth.
Since their universal covers are not spin, they also have trivial s-invariant by definition. By
Proposition 11.811.8, M#CP2 and M ′#CP2 have isomorphic quadratic 2-types. Hence M#CP2 and
M ′#CP2 are homeomorphic by Theorem 1.101.10.

Since −H(Iπ) is isometric to H(Iπ), we can apply the same argument to show that M#CP2 and
M ′#CP2 are homeomorphic. Changing the orientation, it follows that also M#CP2 and M ′#CP2

are homeomorphic. □

Now we begin working towards the proof of Proposition 11.811.8. First we introduce a pair of useful
4-manifolds.

Example 11.9. There are two important examples of smooth, oriented 4-manifolds with fundamen-
tal group Z/2, denoted by E and F , that arise as the total spaces of S2-bundles over RP2. Let η be
the canonical line bundle over RP2 and let ε be the trivial bundle. Then, as in [HK88HK88, Remark 4.5],
we define E = S(3η) and F = S(η ⊕ 2ε). We already used E in the proof of Lemma 11.311.3. Kirby
diagrams for E and F are shown in Figure 11; they also appear in [GS99GS99, Example 4.6.5, Figure 5.4.6].

1

0

0

0

Figure 1. Kirby diagrams for E (left) and F (right).

Lemma 11.10. The manifold F is spin while E is not. Further, if p : E → RP2 is the bundle
projection and x ∈ H2(RP2;Z/2) ∼= Z/2 is the nontrivial element, then w2(E) = p∗(x).

Proof. This can be computed by the Whitney sum formula as follows. Writing E(3η) for the total
space of 3η, we have wi(TE ⊕ νE⊆E(3η)) = j∗wi(E(3η)), where j : E → E(3η) is the inclusion of
the sphere bundle into the total space. Since E and 3η have orientable total spaces, it follows that
w1(νE⊆E(3η)) = 0, and hence the line bundle νE⊆E(3η) is trivial. Therefore w2(TE) = j∗w2(E(3η)).
Since

w(TRP2) = (1 + x)3 = 1 + x+ x2,

where x ∈ H1(RP2;Z/2) is the generator, we compute that

w2(TRP2 ⊕ 3η) = w2(TRP2) + w1(TRP2)w1(3η) + w2(3η) = x2 + x2 + x2 = x2 ∈ H2(RP2;Z/2),

so w2(TRP2 ⊕ 3η) is nontrivial. Then since

w2(TRP2 ⊕ 3η) = z∗w2(E(3η)) ∈ H2(RP2;Z/2),
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where z : RP2 → E(3η) is the zero section, we deduce that w2(E(3η)) is nontrivial in

H2(E(3η);Z/2) ∼= H2(RP2;Z/2) ∼= Z/2,

and hence w2(E) is the nontrivial element of j∗(H2(E(3η);Z/2)) ⊆ H2(E;Z/2). The computation
for F is similar, and yields that w2(F ) = 0.

Alternatively, the computation of w2 follows by [GS99GS99, Corollary 5.7.2] from the Kirby diagrams
for E and F in Figure 11. □

Lemma 11.11. Both E and F have (spin) universal cover S2 × S2.

Proof. This can also be computed geometrically using Kirby calculus. Alternatively, note that the
universal covers F̃ and Ẽ are both S2-bundles over S2. We have to argue that the nontrivial bundle
does not arise. For this recall that w2 pulls back under the covering map to w2 of the cover. Since
w2(F ) = 0, this implies immediately that F̃ is spin, and hence is S2 × S2. For E, the RP2 in E

is double covered by the base S2 in Ẽ, and hence the nontrivial w2(E) pulls back trivially to Ẽ.
Thus Ẽ is also spin and hence is S2 × S2. □

Next we compute some algebraic topological invariants of E and F .

Lemma 11.12. Let M ∈ {E,F}. Then M is a rational homology 4-sphere with H1(M ;Z) ∼=
Z/2 ∼= H2(M ;Z), H0(M ;Z) ∼= Z ∼= H4(M ;Z), and Hi(M ;Z) = 0 otherwise.

Proof. Both E and F have integral handle chain complexes

Z (0)−−→ Z (0,2)−−−→ Z ⊕ Z (2,0)−−−→ Z (0)−−→ Z,

so in particular they are rational homology 4-spheres. Here the attaching maps of the 3-handles
can be seen by turning the handle decomposition upside down. The Z-homology can be read off to
be as claimed. □

Remark 11.13. The fact that E and F are rational homology spheres can be deduced from
χ(E) = 2 = χ(F ) and π1(E) = Z/2 = π1(F ).

With Z/2 coefficients, we have H2(M ;Z/2) ∼= Z/2 ⊕ Z/2, with one summand generated by an
embedded RP2, denoted by R, corresponding to a section of the S2-bundle. It arises by capping
off the Möbius band that is visible in the Kirby diagram with the core of the 2-handle. The other
summand is generated by an S2 fibre and denoted by S, and is again visible in the Kirby diagram as
the disc bounded by the ‘helper circle’ union the core of that 2-handle. The fibre S also represents
the nontrivial element in H2(M ;Z). Identifying H2(E;Z/2) ∼= Hom(H2(E;Z/2),Z/2) we have
w2(E)(R) = 1 and w2(E)(S) = 0, while w2(F )(R) = 0 = w2(F )(S), which accords with F being
spin.

The Z[Z/2]-module chain complexes for E and F can also be read off from the Kirby diagrams
to be

Z[Z/2] (T−1)−−−−→ Z[Z/2] (0,T+1)−−−−−→ Z[Z/2] ⊕ Z[Z/2] (T+1,0)−−−−−→ Z[Z/2] (T−1)−−−−→ Z[Z/2], (11.14)

where T is the nontrivial element in Z/2 and corresponds to the covering transformation. This is
immediate from the diagrams and Fox calculus for the handle 2-skeleton, and then the remaining
boundary maps can be seen by turning the handle decomposition upside down. We deduce, again
for M ∈ {E,F}, that π2(M) ∼= H2(M ;Z[Z/2]) ∼= ker(T + 1) ⊕ coker(T + 1) ∼= Z− ⊕ Z−. We then
compute

H3(Z/2;π2(M)) ∼= H3(Z/2;Z− ⊕ Z−) ∼= Z/2 ⊕ Z/2.

Lemma 11.15. Let M ∈ {E,F}. The intersection form λM : π2(M) × π2(M) → Z[Z/2] is
hyperbolic. With respect to a hyperbolic basis for π2(M) ∼= Z− ⊕ Z−, we have an identification
H3(Z/2;π2(M)) ∼= Z/2 ⊕ Z/2. Then kF = (1, 0) and kE = (1, 1).

Note that this result agrees with the assertion in [HK88HK88, Remark 4.5].
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Proof. Recall from [EM49EM49, (4.1) and Section 9] that the k-invariant can be computed by con-
structing a partial chain map up to degree 2 of the standard free Z[Z/2]-module resolution
C

Z/2
∗ := C∗(Z/2;Z/2[Z/2]) of Z into CM∗ := C∗(M ;Z[Z/2]), as follows:

Z[Z/2] Z[Z/2] Z[Z/2] Z[Z/2]

Z[Z/2] Z[Z/2] ⊕ Z[Z/2] Z[Z/2] Z[Z/2].

(T−1)

k=(T−1,0)

(T+1)

(1,0)

(T−1)

(1) (1)

(0,T+1) (T+1,0) (T−1)

The image of the map k under

HomZ[Z/2]
(
C

Z/2
3 , ker

(
d2 : CM2 → CM1

))
→ HomZ[Z/2]

(
C

Z/2
3 , π2(M)

) ∼= HomZ[Z/2]
(
C

Z/2
3 ,Z− ⊕ Z−)

represents the k-invariant in H3(Z/2;Z− ⊕ Z−). The cycles (1 − T, 0) and (0, 1) in CM2 generate
π2(M) ∼= Z− ⊕ Z−. In this basis, the k-invariant of M is (1, 0) ∈ H3(Z/2;π2(M)) ∼= Z/2 ⊕ Z/2.

We compute the intersection forms from the diagrams of E and F with respect to this basis of
π2. Note that HomZ[Z/2](Z−,Z[Z/2]) ∼= Z−, with the generator given by the homomorphism that
sends 1 7→ 1 − T . Hence, chasing through the definition, the hyperbolic form on Z− is identified
with the form on Z− ⊕ Z− that sends ((a, b), (c, d)) 7→ (1 − T )(ad+ bc).

A geometric computation using the Kirby diagram shows that for M ∈ {E,F} the form λM is
represented by ( ∗ 1−T

1−T 0
)

: (Z− ⊕ Z−) × (Z− ⊕ Z−) → Z[Z/2]. (11.16)
The top left entry ∗ is of the form n(1 − T ), because every element in HomZ[Z/2](Z−,Z[Z/2]) sends
1 to a multiple of 1 − T . If we ignore all T terms we obtain ( n 1

1 0 ), which gives the intersection
pairing of the universal cover, which we know to be homeomorphic to S2 × S2 by Lemma 11.1111.11.
Hence n is even. However, unless n = 0, our given basis is not a hyperbolic basis. Nonetheless we
can change the basis of π2(M) to a hyperbolic basis, so that the intersection form is represented
by the matrix in (11.1611.16) with ∗ = 0. We want to describe the k-invariant with respect to this
hyperbolic basis of π2(M).

If n ≡ 0 mod 4 then the basis change matrix reduces to the identity modulo 2 and the k-invariant
is again given by (1, 0) ∈ Z/2 ⊕ Z/2 ∼= H3(Z/2;π2(M)) with respect to the hyperbolic basis. On
the other hand if n ≡ 2 mod 4 then the k-invariant is given by (1, 1) ∈ Z/2 ⊕ Z/2.

We show that n ≡ 0 mod 4 for M = F and n ≡ 2 mod 4 for M = E, so that, as in the
statement of the lemma, kF = (1, 0) and kE = (1, 1) with respect to the hyperbolic bases as claimed.
For this we use the intersection form λZ

−

M on M with Z− coefficients and its relationship with the
intersection forms with Z[Z/2] and with Z/2 coefficients. Let ε− : Z[Z/2] → Z− be the twisted
augmentation and let red2 : Z− → Z/2 be reduction modulo 2. Let

ε−
∗ : H2(M ;Z[Z/2]) → H2(M ;Z−) and (red2)∗ : H2(M ;Z−) → H2(M ;Z/2)

be the induced maps on homology. By naturality of the cap product and the Kronecker pairing we
have

ε−λM (x, y) = λZ
−

M (ε−
∗ (x), ε−

∗ (y))
for all x, y ∈ H2(M ;Z[Z/2]) and

red2 λ
Z−

M (u, v) = λ
Z/2
M

(
(red2)∗(u), (red2)∗(v)

)
for all u, v ∈ H2(M ;Z−).

Using the chain complex (11.1411.14) we compute that H2(M ;Z−) ∼= Z− ⊕ Z−, with basis elements
{R,S} from Remark 11.1311.13 again corresponding to the two 2-handles. Consider the composition

H2(M ;Z−) (red2)∗−−−−→ H2(M ;Z/2) w2−−→ Z/2. (11.17)
For M = F this is the zero map since w2 is trivial, while for M = E this is given by (1, 0), by
Lemma 11.1011.10. We can also consider the composition

H2(M ;Z−) x 7→λZ−
M (x,x)−−−−−−−−→ Z− red2−−−→ Z/2. (11.18)

The two maps H2(M ;Z−) → Z/2 in (11.1711.17) and (11.1811.18) coincide, because

red2 λ
Z−

M (x, x) = λ
Z/2
M ((red2)∗x, (red2)∗x) = w2((red2)∗x)



HOMOTOPY CLASSIFICATION OF 4-MANIFOLDS 55

by the Wu formula. So λZ−

M ((1, 0), (1, 0)) = m, for some m that is even for M = F and odd for
M = E.

The element (1, 0) ∈ Z− ⊕ Z− ∼= π2(M) ∼= H2(M ;Z[Z/2]) is represented by

(1 − T, 0) ∈ Z[Z/2] ⊕ Z[Z/2] ∼= C2(M ;Z[Z/2]);

this is the element whose square with respect to λM gives the entry ∗ in (11.1611.16) we seek to
understand. It maps to (2, 0) in Z− ⊕ Z− ∼= H2(M ;Z−). Therefore, with ε− : Z[Z/2] → Z− the
twisted augmentation, we have

4m = λZ
−

M ((2, 0), (2, 0)) = ε−(λM ((1, 0), (1, 0))) = ε−(n(1 − T )) = 2n.

So 2m = n. For M = F we have that m = 2ℓ for some ℓ, thus n = 4ℓ and hence n ≡ 0 mod 4.
For M = E we have m = 2ℓ+ 1, thus n = 4ℓ+ 2 and hence n ≡ 2 mod 4.

In fact we also verified geometrically using the Kirby diagram that for M = F we have n = −4
and for M = E we have n = −2, but we prefer to give the algebraic argument here as it is easier
for the reader to verify.

This completes the computation that kF = (1, 0) and kE = (1, 1) with respect to the hyperbolic
bases of π2. □

Lemma 11.19. There is a diffeomorphism E#CP2 ∼= F#CP2.

Proof. We give a Kirby calculus argument in Figure 22. □

0

0 1

(a)

1

0 1

(b)

1

0 1

(c)

Figure 2. Starting with F#CP2 in (a), perform the handle slide indicated by a
dashed arrow to produce (b). After a second handle slide the result is E#CP2

in (c).

Having gathered all this information about E and F we can now begin considering the 4-manifolds
with infinite dihedral fundamental group arising as their connected sum.

Lemma 11.20. Let π := D∞. The equivariant intersection form of each of the manifolds F#F ,
E#F , F#E, and E#E is isomorphic to the hyperbolic form H(Iπ). Their k-invariants lie in
H3(π; Iπ ⊕ Iπ†) ∼= (Z/2)2 ⊕ (Z/2)2. In some hyperbolic bases, their k-invariants are ((1, 0), (1, 0)),
((1, 1), (1, 0)), ((1, 0), (1, 1)), and ((1, 1), (1, 1)), respectively.

Proof. Let M ∈ {F#F,E#F, F#E,E#E}. Let Gi ∼= Z/2 denote the two factors of π, that is
π := D∞ = G1 ∗G2. Using Lemmas 3.123.12 and 4.84.8 we compute that

H(Iπ) ∼= H(IndπZ/2 Z− ⊕ IndπZ/2 Z−)
∼= H(IndπZ/2 Z−) ⊕H(IndπZ/2 Z−)
∼= IndπZ/2 H(Z−) ⊕ IndπZ/2 H(Z−).

Hence by Lemma 11.1511.15, the equivariant intersection form of M is isomorphic to the hyperbolic
form H(Iπ). In particular

π2(M) ∼= Iπ⊕Iπ† ∼= IndπG1
(Z−⊕(Z−)∗)⊕IndπG2

(Z−⊕(Z−)∗) ∼= IndπG1
(Z−⊕Z−)⊕IndπG2

(Z−⊕Z−).

Therefore, the k-invariant lies in

H3(π;π2(M)) ∼= H3(π; IndπG1
(Z− ⊕ Z−)) ⊕H3(π; IndπG2

(Z− ⊕ Z−)).
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By Shapiro’s lemma (see e.g. [Bro94Bro94, Proposition III.6.2]),

H3(π; IndπGi
(Z− ⊕ Z−)) ∼= H3(Z/2;Z− ⊕ Z−) ∼= H3(Z/2;Z−) ⊕H3(Z/2;Z−) ∼= (Z/2)2,

for each i. We only give the computation of the k-invariant for M = E#F ; the other three
cases are similar. The inclusion of the 3-skeleton E(3) into M induces the inclusion G1 → π on
fundamental groups. Hence the k-invariant of M maps to the image of the k-invariant of E(3) in
H3(G1; ResπG1

π2(M)). Note that ResπGi
IndπGi

Z− ∼= Z− ⊕ Fi, where Fi is a free Z[Gi]-module, for
each i, while ResπGj

IndπGi
Z− is a free Z[Gj ]-module F ′

j for i ̸= j by [Bro94Bro94, Proposition III.5.6].
Using that H3(G1;Fi) = H3(G1;F ′

j) = 0 for all i, j, we deduce that

H3(G1; ResπG1
π2(M)) ∼= H3(

G1; ResπG1

(
IndπG1

(Z− ⊕ Z−) ⊕ IndπG2
(Z− ⊕ Z−)

))
∼= H3(G1;Z− ⊕ Z−)
∼= (Z/2)2.

The map Z− ⊕Z− ∼= π2(E(3)) → ResπG1
π2(M) ∼= Z− ⊕F1 ⊕Z− ⊕F1 ⊕F ′

1 is given by the inclusion
of the two Z−-summands. Identifying π2(E(3)) = π2(E), the k-invariant of E(3) equals the k-
invariant of E. Hence the image of the k-invariant of E(3) in H3(G1; ResπG1

π2(M)) is (1, 1) by
Lemma 11.1511.15. Similarly, the image of the k-invariant of F (3) in H3(G2; ResπG2

π2(M)) is (1, 0),
again using Lemma 11.1511.15. Hence the k-invariant of E#F is ((1, 1), (1, 0)) as claimed. □

The next proposition proves Proposition 11.811.8 (i)(i).

Proposition 11.21. Let M and M ′ be oriented 4-manifolds with fundamental group π := D∞ and
equivariant intersection forms both isometric to H(Iπ) ⊕ λ, where λ is a nonsingular Hermitian
form on a stably free Zπ-module. Then M#CP2 and M ′#CP2 have isomorphic quadratic 2-types.

Proof. It suffices to show that there is an isometry from λM ⊕ ⟨1⟩ to λM ′ ⊕ ⟨1⟩ sending the k-
invariant of M#CP2 to that of M ′#CP2. By modified surgery theory [Kre99Kre99] (see also [KPT22KPT22,
Theorem 1.2 and Remark 1.3]) and since H4(π;Z) = 0, there exist p, p′, q, q′ ∈ N such that we have
a homeomorphism

M# ks(M)(⋆CP2)#pCP2#qCP2 ∼= F#F#p′CP2#q′CP2
.

Since the k-invariant of F#F is nontrivial by Lemma 11.2011.20, so is the k-invariant of M .
Indeed we will need slightly more than just nontriviality. Let G1 and G2 both denote Z/2, so

that π = G1 ∗G2. As in the proof of Lemma 11.2011.20, the k-invariant of M lies in

H3(π;π2(M)) ∼= H3(π; IndπG1
(Z− ⊕ Z−)) ⊕H3(π; IndπG2

(Z− ⊕ Z−)). (11.22)

We showed above that M is CP2-stably homeomorphic (possibly with an extra ⋆CP2 connected-
summand) to F#F . The k-invariant of F#F is nontrivial in both summands of (11.2211.22) by
Lemma 11.2011.20. Therefore, not only is the k-invariant of M nontrivial, it restricts nontrivially to
each direct summand in (11.2211.22). By the same argument, this is also true for the k-invariant of M ′.

Let α1 and α2 denote arbitrary elements of H3(π; Iπ ⊕ Iπ†) which are nontrivial in each
summand under the isomorphism (11.2211.22). Since the equivariant intersection form of M is isometric
to H(Iπ) ⊕ λ and the αi are arbitrary, showing that there is an isometry of H(Iπ) ⊕ ⟨1⟩ that maps
α1 ∈ H3(π; Iπ ⊕ Iπ† ⊕ Zπ) ∼= H3(π; Iπ ⊕ Iπ†) to α2 will complete the proof.

Up to the isometry of H(Z−) that interchanges the two summands of Z− ⊕ (Z−)∗ ∼= Z− ⊕ Z−,
for both i = 1, 2, each αi ∈ H3(π; Iπ ⊕ Iπ†) is the k-invariant of one of F#F , E#F , F#E or
E#E by Lemma 11.2011.20. Since

F#F#CP2 ∼= F#E#CP2 ∼= E#F#CP2 ∼= E#E#CP2

by Lemma 11.1911.19, there exist enough isometries of H(Iπ) ⊕ ⟨1⟩. □

Finally, the next proposition proves Proposition 11.811.8 (ii)(ii).

Proposition 11.23. Let M and M ′ be oriented, almost spin 4-manifolds with fundamental group
π := D∞, and the same wπ2 ∈ H2(π;Z/2) ∼= (Z/2)2. Assume that the intersection forms of M and
M ′ are both isometric to H(Iπ) ⊕ λ, where λ is a nonsingular Hermitian form on a stably free
Zπ-module. Then M and M ′ are homotopy equivalent.
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Proof. By Theorem 1.41.4, it suffices to show that there is an isometry π2(M) → π2(M ′) that sends
kM to kM ′ . By assumption there is an isometry φ : π2(M) → π2(M ′), but we have no control over
the behaviour of the k-invariants.

By the stable classification (Remark 11.211.2 and Lemma 11.311.3), there are simply connected, spin
4-manifolds L and K, as well as Ni ∈ {E,F}, for i = 1, 2, such that

M#L N1#N2#K M ′#L.f

≃ ≃
f ′

Then

Ψ := f ′
∗ ◦ (φ⊕ IdZπ⊗π2(L)) ◦ f−1

∗ : π2(N1#N2#K) → π2(N1#N2#K)

is an isometry. Note that Ψ preserves the k-invariant of N1#N2#K if and only if φ⊕ IdZπ⊗π2(L)
sends kM#L to kM ′#L, which in turn holds if and only if φ sends kM to kM ′ .

We carry out the argument in the case that N1#N2 = E#F . The other cases are similar. As
before let Gi ∼= Z/2 denote the two factors of π, that is π := D∞ = G1 ∗ G2. By Lemma 11.2011.20,
since K is simply connected, the k-invariant of E#F#K is

((1, 1), (1, 0)) ∈ H3(π;π2(E#F#K)) ∼= H3(π; IndπG1
(Z− ⊕ Z−) ⊕ IndπG2

(Z− ⊕ Z−))
∼= (Z/2)2 ⊕ (Z/2)2.

As in the proof of Lemma 11.2011.20, the inclusions Gi → π map the k-invariant to

(1, 1) ∈ (Z/2)2 ∼= H3(G1;Z− ⊕ Z−) ∼= H3(G1; ResπG1
π2(E#F#K)),

and

(1, 0) ∈ (Z/2)2 ∼= H3(G2;Z− ⊕ Z−) ∼= H3(G2; ResπG2
π2(E#F#K)).

The inclusion ji : Gi → π induces the following commutative square.

H3(π;π2(E#F#K)) H3(π;π2(E#F#K))

H3(Gi; ResπGi
π2(E#F#K)) H3(Gi; ResπGi

π2(E#F#K))

Ψ
∼=

j∗
i j∗

i

Resπ
Gi

(Ψ)
∼=

Since j∗
i (kE#F#K) is nontrivial, so is

(xi, yi) := j∗
i Ψ(kE#F#K) ∈ (Z/2)2 ∼= H3(Gi; ResπG1

π2(E#F#K))

for i = 1, 2.
As in the proof of Lemma 11.2011.20, using Lemmas 3.123.12 and 4.84.8 we compute that

H(Iπ) ∼= IndπZ/2 H(Z−) ⊕ IndπZ/2 H(Z−),

We can therefore change φ (and hence Ψ) by the isometry that permutes the two copies of Z−

in H(Z−), if necessary, to arrange that (xi, yi) is the k-invariant of a 4-manifold N ′
i ∈ {E,F} for

i = 1, 2. Thus we can construct an isometry

Ψ′ : π2(E#F#K) Ψ−→ π2(E#F#K) ∼= π2(N ′
1#N ′

2#K)

that preserves the k-invariant, using that the intersection forms of E and F are isometric. Hence
by Theorem 1.41.4, the isometry Ψ′ is induced by a homotopy equivalence E#F#K → N ′

1#N ′
2#K

over π. Since a homotopy equivalence over π preserves the second Stiefel–Whitney class wπ2 , it
follows that N ′

1 = E and N ′
2 = F . We deduce that Ψ must have already preserved the k-invariant

of kE#F#K . From the construction of Ψ it follows that the isometry φ maps the k-invariant of M
to that of M ′. Again applying Theorem 1.41.4, φ is realised by a homotopy equivalence M ≃−→ M ′, as
desired. □
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12. Additional information on classifications for torsion-free 3-manifold groups

In this section we prove results primarily about 4-manifolds with torsion-free 3-manifold funda-
mental group. First we consider some aspects of the realisation question, which asks: for a fixed
fundamental group, which values of the quadratic 2-type are realised as the invariants of some
4-manifold? We focus on characterising the modules that arise as π2(M) and the sesquilinear forms
that are realisable as equivariant intersection forms.

After that we investigate what can be said about the s-cobordism and homeomorphism clas-
sifications for 4-manifolds in a fixed homotopy type. In particular, we analyse the surgery exact
sequence and give upper bounds on the number of s-cobordism and homeomorphism classes.

12.1. Realisation of π2(M). We say that two Zπ-modules L and L′ are strictly stably isomorphic
if L⊕ Zπr ∼= L′ ⊕ Zπr for some r ∈ N.

Theorem 12.1. Let M be a closed 4-manifold such that π := π1(M) ∼= G1 ∗ . . . ∗Gm ∗F (r), where
Gi is a PD3-group for each i, F (r) is free of rank r, and m, r ≥ 0. Let β1 := β1(π;F2). Then

χ(M) = 2 + dimF2(F2 ⊗Zπ π2(M)) − β1 −m− r. (12.2)
Let w : π → C2 be the orientation character of M . Let v′ : π → C2 be trivial on F (r) and the
orientation character of a PD3-complex with fundamental group Gj for each j. Then π2(M) is
strictly stably isomorphic to Zπs ⊕ Iπv, where s = χ(M) +m+ r − 2 and v = wv′ : π → C2.

Proof. Let c : M → Bπ be a classifying map. Consider the Leray–Serre spectral sequence for
M̃ → M → Bπ with E2-page Hp(π;Hq(M̃ ;F2)) converging to Hp+q(M ;F2). This gives rise to an
exact sequence

H3(M ;F2) c∗−→ H3(π;F2) → F2 ⊗Zπ π2(M) → H2(M ;F2) c∗−→ H2(π;F2) → 0. (12.3)
By naturality of the cap product, the composition

H1(π;F2) c∗

−→ H1(M ;F2) −∩[M ]−−−−→ H3(M ;F2) c∗−→ H3(π;F2) (12.4)
agrees with the map − ∩ c∗[M ]. Since H4(π;Z) = 0, in particular c∗[M ] = 0 and thus the above
composition is trivial. The first two maps of the composition (12.412.4) are isomorphisms and hence
H3(M ;F2) c∗−→ H3(π;F2) is trivial. It now follows from (12.312.3), that

β2(M ;F2) = β2 + dimF2(F2 ⊗Zπ π2(M)) − β3,

where βi := βi(π;F2). By Poincaré duality, β3(M ;F2) = β1(M ;F2) = β1. Hence we have
χ(M) = 2 + β2 + dimF2(F2 ⊗Zπ π2(M)) − β3 − 2β1.

Now we investigate the quantity β2 − β3 − β1. If G is a PD3-group, then
β2(G;F2) − β3(G;F2) − β1(G;F2) = β1(G;F2) − 1 − β1(G;F2) = −1

by Poincaré duality. Furthermore,
β2(Z;F2) − β3(Z;F2) − β1(Z;F2) = 0 − 0 − 1 = −1.

Since the Betti numbers of a free product are the sums of the Betti numbers of the factors,
and we have m factors that are PD3-groups and r factors isomorphic to Z, this implies that
β2 − β3 − β1 = −m− r. Hence
χ(M) = 2 + β2 + dimF2(F2 ⊗Zπ π2(M)) − β3 − 2β1 = 2 + dimF2(F2 ⊗Zπ π2(M)) − β1 −m− r

as claimed.
Moreover, there exist ℓ, ℓ′ such that π2(M#ℓ(S2 × S2)) ∼= π2(M) ⊕ Zπ2ℓ is isomorphic to

Zπℓ′ ⊕ Iπv by Corollary 3.213.21. Then π2(M) is strictly stably isomorphic to Zπℓ′−2ℓ ⊕ Iπ, and we
want to show that ℓ′ − 2ℓ = s, where s = χ(M) +m+ r − 2 as in the statement of the proposition.
We have

dimF2(F2 ⊗Zπ π2(M#ℓ(S2 × S2))) = ℓ′ + dimF2(F2 ⊗Zπ Iπ
v) = ℓ′ + β1.

Here we used that dimF2(F2 ⊗Zπ Iπ
v) = β1. To see this, consider the short exact sequence

0 → Iπv → Zπ → Zv → 0. Tensoring with F2 ⊗Zπ − yields the long exact sequence

TorZπ1 (F2,Zπ) → TorZπ1 (F2,Zv) → F2 ⊗Zπ Iπ
v → F2 ⊗Zπ Zπ → F2 ⊗Zπ Zv → 0.
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Since TorZπ1 (F2,Zπ) = 0, TorZπ1 (F2,Zv) ∼= H1(π;Fv2) ∼= H1(π;F2) and F2 ⊗Zπ Zπ = F2 = F2 ⊗Zπ Zv,
so we obtain the exact sequence 0 → H1(π;F2) → F2 ⊗Zπ Iπ

v → F2 → F2 → 0, from which the
desired equality dimF2(F2 ⊗Zπ Iπ

v) = β1 follows.
Now by (12.212.2) we therefore have

χ(M) + 2ℓ = χ(M#ℓ(S2 × S2)) = 2 + (ℓ′ + β1) − β1 −m− r = 2 + ℓ′ −m− r.

Hence ℓ′ − 2ℓ = χ(M) +m+ r − 2 = s, as asserted. □

12.2. Realisation of the equivariant intersection forms. Let N be a 3-manifold with funda-
mental group π := π1(N). Let N∗ := N \D3. Then

M0 := ∂(N∗ ×D2) ∼= (N∗ × S1) ∪S2×S1 (S2 ×D2)

is a 4-manifold with fundamental group π. Similarly, we can form the Gluck twist M1 := (N∗ ×
S1) ∪τ (S2 × D2) of M0. The manifolds M0 and M1 are called the spin and twist spin of N
respectively.

Plotnick showed that π2(Mς) ∼= Iπ ⊕ π2(N∗) for ς = 0, 1 but that the intersection forms λ0 and
λ1 of M0 and M1 are in general not isomorphic [Plo86Plo86, Propositions 2.1 and 2.2]. If N is aspherical,
then π2(N) ∼= Zπ and Iπ† ∼= Zπ† [KLPT17KLPT17, Lemma 7.5]. If N is aspherical and orientable, the
intersection form on Mς is given by

(
ς 1
1 0

)
. In particular, λ0(α, β) = 0 and λ1(α, β) = αβ for

α, β ∈ Iπ by [Plo86Plo86, Section 3]; see also [KLPT17KLPT17, Section 7.2].
For π the fundamental group of a closed, orientable, aspherical 3-manifold, [KLPT17KLPT17, Theo-

rem 9.6] gives a complete list of stable isomorphism classes of intersection forms of closed, oriented
4-manifolds with fundamental group π. Each of the forms on their list is of the form λ ⊕ λς for
ς = 0 or 1. The next theorem shows that every form λ⊕ λς is moreover realised as the intersection
form of some PD4-complex. If the group π is solvable, then it is in particular good, in which case
we can also realise the form by a topological 4-manifold.

Theorem 12.5. Let N be a 3-manifold, let π := π1(N) and let wN : π → C2 be the orientation
character of N . Suppose that there are no elements of order two in ker(wN ). Let λ be a nonsingular
Hermitian form on a stably free Zπ-module and let ς = 0, 1. Then there is a PD4-complex Z with
fundamental group π, orientation character wZ = wN , and equivariant intersection form λ⊕ λς . If
N is orientable and π is torsion-free and solvable, then Z is homotopy equivalent to a topological
manifold.

Proof. By [Hil21Hil21, Theorem 10], there is a PD4-complex with fundamental group π and a 2-connected
degree one map f : Z → Mς such that the equivariant intersection form on the surgery kernel
is isomorphic to λ. (The hypothesis on 2-torsion is needed here.) Hence it follows from [Ran02Ran02,
Proposition 10.21] that Z has equivariant intersection form λ⊕ λς .

Now assume that N is orientable and π is torsion-free and solvable, then π := π1(N) is either a
PD3-group or Z. It follows that π is cohomologically 3-dimensional.

If N is orientable, then Mς and Z are orientable and thus Z has a Top reduction [Ham19Ham19,Lan22Lan22].
Hence there is a 2-connected degree one normal map g : M → Z. By adding copies of E8 to
M we can assume that the signatures of M and Z agree. In the composition L⟨1⟩4(Bπ) →
L4(Bπ) → L4(Zπ), the first map is an isomorphism since π is 3-dimensional, and the second
map is an isomorphism since π satisfies the Farrell–Jones conjecture [Weg15Weg15]. It follows from
a straightforward consideration of naturality in the Atiyah–Hirzebruch spectral sequence that
the map N (M) ∼= L⟨1⟩4(M) → L⟨1⟩4(Bπ) is surjective. Hence the surgery obstruction map
N (M) σ−→ L4(Zπ) is surjective and there exists a 2-connected degree one normal map g′ : M ′ → M
with surgery obstruction σ(g′ : M ′ → M) = −σ(g : M → Z).

We claim that g ◦ g′ : M ′ → Z is a degree one normal map, as we show next. As a composition of
degree one maps, g ◦g′ is degree one, so we only need to show the compatibility of normal structures.
Since the difference of the signatures of M and Z is zero, and σ(g′) = −σ(g), the difference of
the signatures of M ′ and M is also zero. By the Hirzebruch signature theorem and since g′ is
degree one, we have that (g′)∗p1(νM) = p1(νM ′). Since the Stiefel–Whitney classes depend only on
the underlying spherical fibrations, (g′)∗w2(νM) = w2(νM ′). Dold–Whitney [DW59DW59, Theorems 1
and 2] proved that (stable) orientable bundles over an orientable 4-manifold (or more generally any
PD4-complex X with no 2-torsion in H4(X;Z)) are determined by w2 and p1. It follows that the
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map g′ pulls back the normal bundle of M to the normal bundle of M ′. Hence g ◦ g′ : M ′ → Z is a
degree one normal map as claimed.

The homology of the domain of a 2-connected degree one map splits as the direct sum of the
surgery kernel and the homology of the codomain. It follows that the surgery kernel of g ◦ g′ is
the direct sum of the surgery kernels of g and g′, the surgery obstruction of g ◦ g′ is trivial. Since
solvable groups are good [FT95FT95,KQ00KQ00] (see also [KOPR21KOPR21, Example 19.6]), by surgery [OPR21OPR21;
FQ90FQ90, Chapter 11], g ◦ g′ is normally bordant to a homotopy equivalence, and hence there exists a
manifold homotopy equivalent to Z as claimed. □

12.3. The s-cobordism and homeomorphism classifications. For 4-manifolds with torsion-
free 3-manifold groups, we do not have a complete homeomorphism classification. However by
applying surgery we can obtain some information, which in the case that the group is also solvable
comes very close. We begin by considering arbitrary torsion-free 3-manifold groups. These are in
general not known to be good, so we can only obtain conclusions on the set of 4-manifolds up to
s-cobordism.

Theorem 12.6. Let M be a closed 4-manifold whose fundamental group π is a torsion-free
3-manifold group. Let β3 := β3(π;Z/2) and let β1 := β1(π;Z/2).

(1) There are at most 2β3 topological s-cobordism classes of 4-manifolds homotopy equivalent
to M and with the same Kirby–Siebenmann invariant.

(2) If M is smooth and orientable, then there are at most 2β3+β1 smooth s-cobordism classes
of smooth 4-manifolds homotopy equivalent to M .

(3) If M is smooth and nonorientable, then there are at most 2β3+β1+1 smooth s-cobordism
classes of smooth 4-manifolds homotopy equivalent to M .

Note that if π is torsion-free and π = π1(Y ), for Y a closed 3-manifold, then β3 equals the
number of irreducible factors in a prime decomposition of Y .

Proof. We will only sketch the proof since the strategy is well-known. We refer to [KL22KL22] for a
more detailed treatment and further citations. We give the argument for the topological case and
provide the necessary modifications for the smooth case at the end.

Every 3-manifold group satisfies the Farrell–Jones conjecture by [BFL14BFL14, Corollary 1.3]. By
[KL22KL22, Lemma 2.3], every torsion-free 3-manifold group π thus satisfies the following properties for
every homomorphism w : π → C2.

(1) The Whitehead group Wh(π) vanishes,
(2) the assembly map L⟨1⟩w4 (Bπ) → L4(Zπ,w) is injective, and
(3) the assembly map L⟨1⟩w5 (Bπ) → L5(Zπ,w) is surjective.

In particular by the first item every homotopy equivalence is simple and every h-cobordism is an
s-cobordism.

Fix w to be the orientation character of M . Let f : N → M be a homotopy equivalence. Let
η(f) ∈ N (M) denote its normal invariant. Recall that

N (M) ∼= [M,G /Top] ∼= [Σ∞M+,L⟨1⟩] ∼= L⟨1⟩w4 (M).

Injectivity of L⟨1⟩w4 (Bπ) → L4(Zπ,w) implies that the normal invariant η(f) of f is contained in the
kernel of N (M) ∼= L⟨1⟩w4 (M) → L⟨1⟩w4 (Bπ). Using the twisted Atiyah–Hirzebruch spectral sequence,
the kernel of L⟨1⟩w4 (M) → L⟨1⟩w4 (Bπ) is isomorphic to the kernel of H2(M ;Z/2) → H2(π;Z/2).
Hence, with respect to this identification, η(f) can be represented by an immersed 2-sphere α in
M , i.e. corresponds to an element in the image of π2(M) → H2(M ;Z/2). If w2(M) vanishes on
α, there exists a homotopy equivalence f ′ : N → M with trivial normal invariant using Novikov
pinching; see e.g. [KL22KL22, Lemma 3.3] for more details.

We will now show that if w2(M) is nontrivial on α, then N and M have different Kirby–
Siebenmann invariant, cf. [KL22KL22, Proof of Lemma 3.4]. There is a homotopy equivalence g : ⋆CP2 →
CP2 with normal invariant represented by CP1. The homotopy equivalence f#g : N# ⋆ CP2 →
M#CP2 has normal invariant represented by α+ CP1. On this 2-sphere w2 now vanishes. Hence
N# ⋆ CP2 and M#CP2 are normally cobordant over M#CP2, again using Novikov pinching,
as above. In particular, they have the same Kirby–Siebenmann invariant. It follows that the
Kirby–Siebenmann invariants of N and M are different, as claimed.
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So far we have shown that every manifold N that is homotopy equivalent to M and has the same
Kirby–Siebenmann invariant is normally cobordant to M . Let W be a choice of normal cobordism.
It has a surgery obstruction σ(W ) ∈ L5(Zπ,w). If σ(W ) = 0, then N and M are s-cobordant.

We claim that the number of s-cobordism classes is bounded by the order of the cokernel of
the map L⟨1⟩w5 (M) → L5(Zπ,w). To see this we need to show that if two normal cobordisms
W1 and W2 over M , from M to N1 and N2 respectively, are such that σ(W1) = σ(W2) ∈
coker(L⟨1⟩w5 (M) → L5(Zπ,w)), then N1 and N2 are s-cobordant. By the first paragraph of the
proof of [KL22KL22, Theorem 3.1], we can modify W1 to a normal cobordism W ′

1, also from M to
N1, with surgery obstruction σ(W ′

1) = σ(W2). Stack W ′
1 and W2, gluing them along M , to

obtain a normal cobordism W := −W ′
1 ∪M W2 between N1 and N2 with surgery obstruction

σ(W ) = −σ(W ′
1) + σ(W2) = 0. Hence we can surger W to an s-cobordism between N1 and N2,

completing the proof of the claim.
Since the assembly map L⟨1⟩w5 (Bπ) → L5(Zπ,w) is surjective, the order of the cokernel of

L⟨1⟩w5 (M) → L5(Zπ,w) is the same as that of the cokernel L⟨1⟩w5 (M) → L⟨1⟩w5 (Bπ). Con-
sidering the twisted Atiyah-–Hirzebruch spectral sequences for M and Bπ, as in the proof of
[KL22KL22, Theorem 3.1], the cokernel of L⟨1⟩w5 (M) → L⟨1⟩w5 (Bπ) is isomorphic to the cokernel of
H3(M ;Z/2) → H3(π;Z/2). In particular it has order at most 2β3 . This completes the proof of (11).

For (22), the smooth orientable case, let f : N → M be a homotopy equivalence between smooth
4-manifolds with fundamental group π. The forgetful map N Diff(M) → N Top(M) is described by
Kirby–Taylor in [KT01KT01, Lemma 7]. In the orientable case the forgetful map is injective. We showed
above that N and M are topologically normally bordant over M . Hence by injectivity N and M
are smoothly normally bordant over M . The cokernel of N Diff(M × I, ∂) → N Top(M × I, ∂) can
be identified with the cokernel of [(M × I, ∂), (G /O, ∗)] → [(M × I, ∂), (G /Top, ∗)], which is a
subgroup of

[(M × I, ∂), (B(Top /O), ∗)] = H4(M × I, ∂;Z/2) ∼= H1(M ;Z/2) ∼= H1(π;Z/2),
and therefore has order at most 2β1 . Combining this with the argument above, the cokernel of
N Diff(M × I, ∂) → L5(Zπ,w) has order at most 2β1+β3 , and hence there are at most this many
smooth s-cobordism classes of manifolds homotopy equivalent to M , proving (22).

For (33), the nonorientable case the fibre of IdM under N Diff(M) → N Top(M) has cardinality
two, again by Kirby–Taylor [KT01KT01, Lemma 7]. In Kirby and Taylor’s lemma there are two cases,
depending on whether the Wu class v2(TM) vanishes or not, but in both cases the fibre of IdM
has cardinality two. Hence N lies in one of two smooth normal bordism classes, each of which has
at most 2β1+β3 smooth s-cobordism classes, by the previous argument for (22), which already used
either w-twisted or Z/2-coefficients, and hence applies in the nonorientable case. □

Corollary 12.7. Let M be a closed 4-manifold whose fundamental group π is a torsion-free, solvable
3-manifold group. There are at most two homeomorphism classes of closed 4-manifolds homotopy
equivalent to M and with the same Kirby–Siebenmann invariant.

Proof. Such groups do not decompose nontrivially as free products, so H3(π;Z/2) ∼= Z/2 and hence
β3 = 1. Since π is solvable it is a good group, so the topological s-cobordism theorem implies
that s-cobordant manifolds are homeomorphic. Therefore Theorem 12.612.6 (11) implies that within
a fixed homotopy class, and fixing the Kirby–Siebenmann invariant, we have at most 2β3 = 2
homeomorphism classes. □
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